diff --git a/Work.ipynb b/Work.ipynb index 8033432..e43cb6d 100644 --- a/Work.ipynb +++ b/Work.ipynb @@ -1308,100 +1308,6 @@ "let pi = 3.14159265358979323846264338;;\n" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "(* Fonction de calcul de tous les alpha ER -> Matrice, dépend de m_a12, m_b12 qui dépendent de m_C *)\n", - "(*\n", - "let f_alpha m_C =\n", - "\n", - " let n_mo = Mat.dim2 m_C in\n", - " let t0 = Sys.time () in\n", - " \n", - " let m_b12 = Mat.init_cols n_mo n_mo (fun i j -> 0.) in\n", - " let m_a12 = Mat.init_cols n_mo n_mo (fun i j -> 0.) in\n", - " \n", - " (* Tableaux temporaires *)\n", - " let m_pqr =\n", - " Bigarray.(Array3.create Float64 fortran_layout n_ao n_ao n_ao)\n", - " in\n", - " let m_qr_i = Mat.create (n_ao*n_ao) n_mo in\n", - " let m_ri_j = Mat.create (n_ao*n_mo) n_mo in\n", - " let m_ij_k = Mat.create (n_mo*n_mo) n_mo in\n", - " \n", - " Array.iter (fun s ->\n", - " (* Grosse boucle externe sur s *)\n", - " Array.iter (fun r ->\n", - " Array.iter (fun q ->\n", - " Array.iter (fun p ->\n", - " m_pqr.{p,q,r} <- ERI.get_phys ee_ints p q r s\n", - " ) (Util.array_range 1 n_ao)\n", - " ) (Util.array_range 1 n_ao)\n", - " ) (Util.array_range 1 n_ao);\n", - " \n", - " (* Conversion d'un tableau a 3 indices en une matrice nao x nao^2 *)\n", - " let m_p_qr =\n", - " Bigarray.reshape (Bigarray.genarray_of_array3 m_pqr) [| n_ao ; n_ao*n_ao |]\n", - " |> Bigarray.array2_of_genarray\n", - " in\n", - " \n", - " let m_qr_i =\n", - " (* (qr,i) = = \\sum_p

C_{pi} *)\n", - " gemm ~transa:`T ~c:m_qr_i m_p_qr m_C\n", - " in\n", - " \n", - " let m_q_ri =\n", - " (* Transformation de la matrice (qr,i) en (q,ri) *)\n", - " Bigarray.reshape_2 (Bigarray.genarray_of_array2 m_qr_i) n_ao (n_ao*n_mo)\n", - " in\n", - " \n", - " let m_ri_j =\n", - " (* (ri,j) = = \\sum_q C_{bj} *)\n", - " gemm ~transa:`T ~c:m_ri_j m_q_ri m_C\n", - " in\n", - " \n", - " let m_r_ij =\n", - " (* Transformation de la matrice (ri,j) en (r,ij) *)\n", - " Bigarray.reshape_2 (Bigarray.genarray_of_array2 m_ri_j) n_ao (n_mo*n_mo)\n", - " in\n", - " \n", - " let m_ij_k =\n", - " (* (ij,k) = = \\sum_r C_{rk} *)\n", - " gemm ~transa:`T ~c:m_ij_k m_r_ij m_C\n", - " in\n", - " \n", - " let m_ijk =\n", - " (* Transformation de la matrice (ei,j) en (e,ij) *)\n", - " Bigarray.reshape (Bigarray.genarray_of_array2 m_ij_k) [| n_mo ; n_mo ; n_mo |]\n", - " |> Bigarray.array3_of_genarray\n", - " in\n", - " \n", - " Array.iter (fun j ->\n", - " Array.iter (fun i ->\n", - " m_b12.{i,j} <- m_b12.{i,j} +. m_C.{s,j} *. (m_ijk.{i,i,i} -. m_ijk.{j,i,j});\n", - " m_a12.{i,j} <- m_a12.{i,j} +. m_ijk.{i,i,j} *. m_C.{s,j} -.\n", - " 0.25 *. ( (m_ijk.{i,i,i} -. m_ijk.{j,i,j}) *. m_C.{s,i} +.\n", - " (m_ijk.{j,j,j} -. m_ijk.{i,j,i}) *. m_C.{s,j})\n", - " ) (Util.array_range 1 n_mo)\n", - " ) (Util.array_range 1 n_mo)\n", - " ) (Util.array_range 1 n_ao);\n", - " \n", - " let t1 = Sys.time () in\n", - " Printf.printf \"t = %f s\\n%!\" (t1 -. t0);\n", - " Mat.init_cols n_mo n_mo ( fun i j ->\n", - " if i= j then 0.\n", - " else 0.25 *. (acos(-. m_a12.{i,j} /. sqrt((m_a12.{i,j}**2.) +. (m_b12.{i,j}**2. ))))\n", - " );;\n", - "\n", - "(*********************)\n", - "\n", - "f_alpha m_C;;\n", - "*)" - ] - }, { "cell_type": "code", "execution_count": null, @@ -1456,9 +1362,9 @@ " else 0.25 *. (acos(-. m_a12.{i,j} /. sqrt((m_a12.{i,j}**2.) +. (m_b12.{i,j}**2.)))));;\n", "\n", "(*********************)\n", - "\n", + "(*\n", "f_alpha m_C;; \n", - "\n" + "*)\n" ] }, { @@ -1552,89 +1458,9 @@ " ),Vec.sum v_d);;\n", "\n", "(*********************)\n", - "\n", + "(*\n", "f_alpha m_C;;\n", - "(*\n", "let m_alpha , s_D = f_alpha m_C;;\n", - "\n", - "*)\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "(*\n", - "(* Fonction de calcul de tous les alpha ER -> Matrice, dépend de m_a12, m_b12 qui dépendent de m_C *)\n", - "let f_alpha m_C eps=\n", - " let n_mo = Mat.dim2 m_C\n", - " in\n", - " (* Fonction de calcul de toutes les intégrales B_12 -> Matrice, dépend de m_C *)\n", - " let m_b12 = Mat.init_cols n_mo n_mo (fun i j -> 0.) in\n", - " let m_a12 = Mat.init_cols n_mo n_mo (fun i j -> 0.) in\n", - " Array.iter (fun a ->\n", - " Array.iter (fun b ->\n", - " let mca = Vec.init n_mo (fun i -> m_C.{a,i} *. m_C.{b,i}) in\n", - " Array.iter (fun e ->\n", - " Array.iter (fun f ->\n", - " let integral = ERI.get_phys ee_ints f b e a in\n", - " if abs_float integral > eps then\n", - " Array.iter ( fun i -> \n", - " let mcei = m_C.{e,i} *. m_C.{f,i} in\n", - " Array.iter ( fun j -> \n", - " let x = m_C.{e,i} *. m_C.{f,j} *. integral in\n", - " let mcaij = ( mca.{i} -. mca.{j} ) in\n", - " m_b12.{i,j} <- m_b12.{i,j} +. mcaij *. x;\n", - " m_a12.{i,j} <- m_a12.{i,j} +. m_C.{a,i} *. m_C.{b,j} *. x\n", - " -. 0.25 *. ( mcei -. m_C.{e,j} *. m_C.{f,j} ) *. mcaij *. integral \n", - " ) (Util.array_range 1 n_mo)\n", - " ) (Util.array_range 1 n_mo)\n", - " ) (Util.array_range 1 n_ao)\n", - " ) (Util.array_range 1 n_ao)\n", - " ) (Util.array_range 1 n_ao)\n", - " ) (Util.array_range 1 n_ao);\n", - "\n", - " Mat.init_cols n_mo n_mo ( fun i j -> \n", - " if i= j then 0. \n", - " else 0.25 *. (acos(-. m_a12.{i,j} /. sqrt((m_a12.{i,j}**2.) +. (m_b12.{i,j}**2.)))));;\n", - "\n", - "(*********************)\n", - "\n", - "f_alpha m_C 1.e-5;; \n", - "*)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "(*\n", - "(* Calcul de D -> critère à maximiser dans ER*)\n", - "let s_D m_C = \n", - " let v_D = \n", - " let n_mo = Mat.dim2 m_C\n", - " in\n", - " let m_D = Mat.init_cols n_mo n_mo (fun i j ->\n", - " integral_general (fun a b e f i j -> m_C.{a,i} *. m_C.{b,i} *. m_C.{e,i} *. m_C.{f,i} \n", - " ) i j\n", - " )\n", - " in Vec.init n_mo ( fun i -> m_D.{i,i} )\n", - " in Vec.sum v_D ;;\n", - "\n", - "(******************)\n", - "let m_D = Mat.init_cols n_mo n_mo (fun i j ->\n", - " integral_general (fun a b e f i j -> m_C.{a,i} *. m_C.{b,i} *. m_C.{e,i} *. m_C.{f,i} \n", - " ) i j\n", - " );;\n", - "let toto = s_D m_C;;\n", - "\n", "*)" ] }, @@ -1681,8 +1507,9 @@ " Vec.sum(Vec.init n_mo ( fun i -> (phi_x_phi.{i,i})**2. +. (phi_y_phi.{i,i})**2. +. (phi_z_phi.{i,i})**2.)));;\n", "\n", "(****************************)\n", - "\n", - "f_alpha_boys m_C;;\n" + "(*\n", + "f_alpha_boys m_C;;\n", + "*)" ] }, { @@ -1724,11 +1551,8 @@ "(*\n", "m_alpha_d \"ER\" ;;\n", "m_alpha_d \"Boys\" ;;\n", - "\n", "let methode = \"ER\";;\n", - "\n", "let alphad = m_alpha_d methode m_C;;\n", - "\n", "let m_alpha = alphad.m_alpha;;\n", "let d = alphad.d;;\n", "*)" @@ -1747,8 +1571,9 @@ " in\n", " let vec2 = Vec.sqr vec_m\n", "in sqrt(Vec.sum vec2);;\n", - " \n", - "(*\n", + " \n", + "(************************) \n", + " (*\n", "norme_alpha m_alpha;;\n", "*)" ] @@ -1791,7 +1616,7 @@ " \n", " (* indice i du alpha max *)\n", " let indice_ii = \n", - " let max = max_element3 alpha_m (* Fonction -> constante *)\n", + " let max = max_element3 alpha_m \n", " in\n", " \n", " (*Printf.printf \"%i\\n%!\" max;*)\n", @@ -1801,7 +1626,7 @@ " \n", " (* indice j du alpha max *)\n", " let indice_jj = \n", - " let max = max_element3 alpha_m (* Fonction -> constante *)\n", + " let max = max_element3 alpha_m \n", " in\n", " (max - 1) / n_mo +1\n", " in\n", @@ -1818,7 +1643,7 @@ " alpha_m.{i,j}\n", " \n", " in\n", - " let alpha_max = alpha alpha_m (* Fonction -> constante *)\n", + " let alpha_max = alpha alpha_m \n", " in\n", " \n", " (*Printf.printf \"%f\\n%!\" alpha_max;*)\n", @@ -1828,7 +1653,6 @@ " else new_m_alpha alpha_m m_C (n_rec_alpha-1);;\n", "\n", "(*************************)\n", - "\n", "(*\n", "let m_alpha,d = f_alpha m_C\n", "let alphaij = new_m_alpha m_alpha m_C 3;;\n", @@ -1842,6 +1666,7 @@ "metadata": {}, "outputs": [], "source": [ + "(* Fonction de pattern matching pour localiser ou délocaliser *)\n", "let alpha_v loc_deloc alphaij = \n", " let alpha_loc = alphaij.alpha_max\n", " in\n", @@ -1854,7 +1679,6 @@ " | _ -> invalid_arg \"Unknown method, please enter loc or deloc\" \n", "in choice loc_deloc ;;\n", "\n", - "\n", "(* Matrice de rotation 2 par 2 *)\n", "let f_R alpha =\n", " Mat.init_cols 2 2 (fun i j -> \n", @@ -1865,7 +1689,6 @@ " else -. sin alpha )\n", ";;\n", "(*************************)\n", - "\n", "(*\n", "let alpha = alphaij.alpha_max;; (* Fonction -> constante *) \n", "f_R alpha;;\n", @@ -1886,12 +1709,9 @@ "(*Uniquement pour pouvoir tester les fonctions après cette cellules*)\n", "(*\n", "(* Indice i et j du alpha max après calcul *)\n", - "let indice_i = alphaij.indice_ii;; (* Fonction -> constante *)\n", - " \n", - "let indice_j = alphaij.indice_jj;; (* Fonction -> constante *)\n", - " \n", - " \n", - "let m_R = f_R alpha;; (* Fonction -> constante *) \n", + "let indice_i = alphaij.indice_ii;; \n", + "let indice_j = alphaij.indice_jj;; \n", + "let m_R = f_R alpha;; \n", "*)" ] }, @@ -1909,10 +1729,9 @@ "Mat.init_cols n_ao 2 (fun i j -> if j=1 then m_C.{i,indice_i} else m_C.{i,indice_j} );;\n", "\n", "(*************************)\n", - "\n", "(*\n", - "let m_Ksi = f_Ksi indice_i indice_j m_C;; (* Fonction -> constante *)\n", - "*)\n" + "let m_Ksi = f_Ksi indice_i indice_j m_C;; \n", + "*)" ] }, { @@ -1926,10 +1745,9 @@ "let f_Ksi_tilde m_R m_Ksi m_C = gemm m_Ksi m_R;;\n", "\n", "(*************************)\n", - "\n", "(*\n", - "let m_Ksi_tilde = f_Ksi_tilde m_R m_Ksi;; (* Fonction -> constante *)\n", - "*)\n" + "let m_Ksi_tilde = f_Ksi_tilde m_R m_Ksi;; \n", + "*)" ] }, { @@ -1974,6 +1792,7 @@ " else 0.)\n", ";;\n", "*)\n", + "\n", "let f_k mat indice_i indice_j m_C = \n", "let n_mo = Mat.dim2 m_C\n", " in\n", @@ -1988,9 +1807,9 @@ "(*************************)\n", "\n", "(*\n", - "let m_Psi = f_Psi m_Ksi indice_i indice_j;; (* Fonction -> constante *)\n", + "let m_Psi = f_Psi m_Ksi indice_i indice_j;; \n", "\n", - "let m_Psi_tilde = f_Psi_tilde m_Ksi_tilde indice_i indice_j;; (* Fonction -> constante *)\n", + "let m_Psi_tilde = f_Psi_tilde m_Ksi_tilde indice_i indice_j;; \n", "*)" ] }, @@ -2007,7 +1826,7 @@ "(*************************)\n", "\n", "(*\n", - "let m_interm = f_interm m_C m_Psi;; (* Fonction -> constante *)\n", + "let m_interm = f_interm m_C m_Psi;; \n", "\n", "let new_m_C m_C= Mat.add m_Psi_tilde m_interm;;\n", "\n", @@ -2084,55 +1903,55 @@ " (* alphaij contient le alpha max ainsi que ses indices i et j *)\n", " let n_rec_alpha = 10 (* Nombre ditération max pour réduire les valeurs de alpha *)\n", " in\n", - " let alphaij = new_m_alpha m_alpha m_C n_rec_alpha (* Fonction -> constante *)\n", + " let alphaij = new_m_alpha m_alpha m_C n_rec_alpha \n", " in\n", "\n", " (* Valeur de alpha max après calcul *) (* Epsilon = Pas <1. , 1. -> normal, sinon Pas plus petit *)\n", - " let alpha = (alpha_v loc_deloc alphaij) *. epsilon (* Fonction -> constante *)\n", + " let alpha = (alpha_v loc_deloc alphaij) *. epsilon \n", " in\n", "\n", " (*Printf.printf \"%f\\n%!\" alpha;*)\n", " \n", " (* Indice i et j du alpha max après calcul *)\n", - " let indice_i = alphaij.indice_ii (* Fonction -> constante *)\n", + " let indice_i = alphaij.indice_ii \n", " in\n", - " let indice_j = alphaij.indice_jj (* Fonction -> constante *)\n", + " let indice_j = alphaij.indice_jj \n", " in\n", "\n", " (*Printf.printf \"%i %i\\n%!\" indice_i indice_j;*)\n", " \n", " (* Matrice de rotation *)\n", - " let m_R = f_R alpha (* Fonction -> constante *)\n", + " let m_R = f_R alpha \n", " in\n", "\n", " (*Util.debug_matrix \"m_R\" m_R;*)\n", "\n", " (* Matrice qui va subir la rotation *)\n", - " let m_Ksi = f_Ksi indice_i indice_j m_C (* Fonction -> constante *)\n", + " let m_Ksi = f_Ksi indice_i indice_j m_C \n", " in\n", "\n", " (*Util.debug_matrix \"m_Ksi\" m_Ksi;*)\n", "\n", " (* Matrice ayant subit la rotation *)\n", - " let m_Ksi_tilde = f_Ksi_tilde m_R m_Ksi m_C (* Fonction -> constante *)\n", + " let m_Ksi_tilde = f_Ksi_tilde m_R m_Ksi m_C \n", " in\n", "\n", " (*Util.debug_matrix \"m_Ksi_tilde\" m_Ksi_tilde;*)\n", "\n", " (* Matrice pour supprimerles coef des orbitales i et j dans la matrice des coef *)\n", - " let m_Psi = f_k m_Ksi indice_i indice_j m_C(* Fonction -> constante *)\n", + " let m_Psi = f_k m_Ksi indice_i indice_j m_C\n", " in\n", "\n", " (*Util.debug_matrix \"m_Psi\" m_Psi;*)\n", "\n", " (* Matrice pour ajouter les coef des orbitales i~ et j~ dans la matrice des coef *)\n", - " let m_Psi_tilde = f_k m_Ksi_tilde indice_i indice_j m_C (* Fonction -> constante *)\n", + " let m_Psi_tilde = f_k m_Ksi_tilde indice_i indice_j m_C \n", " in\n", "\n", " (*Util.debug_matrix \"m_Psi_tilde\" m_Psi_tilde;*)\n", "\n", " (* Matrice avec les coef des orbitales i et j remplacés par 0 *)\n", - " let m_interm = f_interm m_C m_Psi (* Fonction -> constante *)\n", + " let m_interm = f_interm m_C m_Psi \n", " in\n", " \n", " (*Util.debug_matrix \"m_interm\" m_interm;*)\n", @@ -2140,7 +1959,7 @@ " (* Matrice après rotation *)\n", " ( Mat.add m_Psi_tilde m_interm, critere_D)\n", " in\n", - " let m_new_m_C , critere_D = new_m_C m_C methode loc_deloc (* Fonction -> constante *)\n", + " let m_new_m_C , critere_D = new_m_C m_C methode loc_deloc \n", " in\n", " let diff = prev_critere_D -. critere_D +. 1.\n", " \n",