Single graph for MADs
This commit is contained in:
parent
0ff8cd4b99
commit
c8d8813b62
1765
Data/RSDFT-CIPSI.org
1765
Data/RSDFT-CIPSI.org
File diff suppressed because it is too large
Load Diff
Binary file not shown.
@ -78,7 +78,7 @@ The Diffusion Monte Carlo (DMC) method is a numerical scheme to obtain
|
||||
the exact solution of the Schrödinger equation with an additional
|
||||
constraint, imposing the solution to have the same nodal hypersurface
|
||||
as a given trial wave function.
|
||||
Within this so-called \emph{fixed-node} approximation,
|
||||
Within this so-called \emph{fixed-node} approximation,
|
||||
the DMC energy associated with a given trial wave function is an upper
|
||||
bound to the exact energy, and the latter is recovered only when the
|
||||
nodes of the trial wave function coincide with the nodes of the exact
|
||||
@ -94,16 +94,18 @@ approximation.
|
||||
The qualitative picture of the electronic structure of weakly
|
||||
correlated systems, such as organic molecules near their equilibrium
|
||||
geometry, is usually well represented with a single Slater
|
||||
determinant.
|
||||
determinant. This feature is in part responsible for the success of
|
||||
density functional theory (DFT) and coupled cluster.
|
||||
DMC with a single-determinant trial wave function can be used as a
|
||||
single-reference post-Hatree-Fock method, with an accuracy comparable
|
||||
to coupled cluster.\cite{Dubecky_2014,Grossman_2002}
|
||||
The favorable scaling of QMC and its adequation with massively
|
||||
parallel architectures makes it a favourable alternative for large
|
||||
systems.
|
||||
The Slater determinant is determined by the nature of the molecular
|
||||
orbitals. Three main options are commonly used: Hartree-Fock (HF),
|
||||
Kohn-Sham (KS) or natural orbitals (NO) of a correlated wave function.
|
||||
The favorable scaling of QMC, its very low memory requirements and
|
||||
its adequation with massively parallel architectures make it a
|
||||
serious alternative for high-accuracy simulations on large systems.
|
||||
|
||||
Different molecular orbitals can be chosen to build the single Slater
|
||||
determinant. Three main options are commonly chosen: Hartree-Fock (HF),
|
||||
Kohn-Sham (KS) or natural (NO) orbitals of a correlated wave function.
|
||||
The nodal surfaces obtained with the KS determinant are in general
|
||||
better than those obtained with the HF determinant,\cite{Per_2012} and
|
||||
of comparable quality to those obtained with a Slater determinant
|
||||
@ -125,19 +127,30 @@ Another approach consists in considering the DMC method as a
|
||||
\emph{post-FCI method}. The trial wave function is obtained by
|
||||
approaching the FCI with a selected configuration interaction
|
||||
method such as CIPSI for instance.\cite{Giner_2013,Caffarel_2016_2}
|
||||
When the basis set is increased, the trial wave function tends to the
|
||||
exact wave function, so the nodal surface can be systematically
|
||||
When the basis set is increased, the trial wave function gets closer
|
||||
to the exact wave function, so the nodal surface can be systematically
|
||||
improved.\cite{Caffarel_2016}
|
||||
This technique has the advantage that using FCI nodes in a given basis
|
||||
set is well defined, so the calculations are reproducible in a
|
||||
black-box way without needing any expertise in QMC.
|
||||
But this technique can't be applied to large systems because of the
|
||||
exponential scaling of the size of the wave function.
|
||||
Extrapolation techniques have been used to estimate the DMC energy of
|
||||
FCI wave functions in a large basis sets,\cite{Scemama_2018} and other
|
||||
authors have used a combination of the two approaches where CIPSI
|
||||
trial wave functions are re-optimized under the presence of a Jastrow
|
||||
factor.\cite{Giner_2016,Dash_2018,Dash_2019}
|
||||
exponential scaling of the size of the trial wave function.
|
||||
Extrapolation techniques have been used to estimate the DMC energies
|
||||
obtained with FCI wave functions,\cite{Scemama_2018} and other authors
|
||||
have used a combination of the two approaches where highly truncated
|
||||
CIPSI trial wave functions are re-optimized under the presence of a
|
||||
Jastrow factor to keep the number of determinants
|
||||
small,\cite{Giner_2016} and where the consistency between the
|
||||
different wave functions is kept by imposing a constant energy
|
||||
difference between the estimated FCI energy and the variational energy
|
||||
of the CI wave function.\cite{Dash_2018,Dash_2019}
|
||||
|
||||
Nevertheless, finding a robust protocol to obtain high accuracy
|
||||
calculations which can be reproduced systematically, and which is
|
||||
applicable for large systems with a multi-configurational character is
|
||||
still an active field of research. The present paper falls
|
||||
within this context.
|
||||
|
||||
|
||||
\begin{enumerate}
|
||||
\item Total energies and nodal quality:
|
||||
@ -401,7 +414,7 @@ implemented.\cite{GinPraFerAssSavTou-JCP-18}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{h2o-dmc.pdf}
|
||||
\caption{Fixed-node energies of the water molecule for different
|
||||
\caption{Fixed-node energies of the water molecule for different
|
||||
values of $\mu$.}
|
||||
\label{fig:h2o-dmc}
|
||||
\end{figure}
|
||||
@ -409,7 +422,7 @@ implemented.\cite{GinPraFerAssSavTou-JCP-18}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{f2-dmc.pdf}
|
||||
\caption{Fixed-node energies of difluorine for different
|
||||
\caption{Fixed-node energies of difluorine for different
|
||||
values of $\mu$.}
|
||||
\label{fig:f2-dmc}
|
||||
\end{figure}
|
||||
@ -567,64 +580,56 @@ theory\cite{Pople_1989,Curtiss_1990} were chosen to test the quality
|
||||
of the RSDFT-CIPSI trial wave functions for energy differences.
|
||||
|
||||
|
||||
\begin{squeezetable}
|
||||
\begin{table}
|
||||
%\begin{squeezetable}
|
||||
\begin{table*}
|
||||
\caption{Mean absolute deviations obtained with the different
|
||||
methods and basis sets.}
|
||||
\label{tab:mad}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{lrrrr}
|
||||
Method & \(\mu\) & VDZ-BFD & VTZ-BFD & VQZ-BFD\\
|
||||
\hline
|
||||
PBE & 0 & 5.02 & 4.57 & 5.31\\
|
||||
BLYP & 0 & 9.53 & 5.58 & 5.86\\
|
||||
PBE0 & 0 & 11.20 & 6.40 & 6.28\\
|
||||
B3LYP & 0 & 11.27 & 7.27 & 6.75\\
|
||||
\hline
|
||||
CCSD(T) & \(\infty\) & 24.10 & 9.11 & 4.52\\
|
||||
\hline
|
||||
RSDFT-CIPSI & 0 & 10.08 & 6.31 & 6.35\\
|
||||
& 1/4 & 5.55 & 4.58 & 5.48\\
|
||||
& 1/2 & 13.42 & 6.77 & 6.35\\
|
||||
& 1 & 17.07 & 9.06 & \\
|
||||
& 2 & 19.20 & & \\
|
||||
& 5 & 22.93 & & \\
|
||||
& \(\infty\) & 23.62 & & \\
|
||||
\hline
|
||||
DMC@RSDFT-CIPSI & 0 & 5.07 \(\pm\) 0.44 & 3.52 \(\pm\) 0.19 & 3.16 \(\pm\) 0.26\\
|
||||
& 1/4 & 4.04 \(\pm\) 0.37 & 3.39 \(\pm\) 0.77 & 2.90 \(\pm\) 0.25\\
|
||||
& 1/2 & 3.74 \(\pm\) 0.35 & 2.46 \(\pm\) 0.18 & 2.06 \(\pm\) 0.35\\
|
||||
& 1 & 5.42 \(\pm\) 0.29 & 4.38 \(\pm\) 0.94 & \\
|
||||
& 2 & 5.98 \(\pm\) 0.83 & & \\
|
||||
& 5 & 6.18 \(\pm\) 0.84 & & \\
|
||||
& \(\infty\) & 7.38 \(\pm\) 1.08 & & \\
|
||||
& Opt. & 5.84 \(\pm\) 1.75 & & \\
|
||||
\begin{tabular}{ll rrr rrr rrr}
|
||||
Method & \(\mu\) & \phantom{} & VDZ-BFD & \phantom{} & \phantom{} & VTZ-BFD & \phantom{} & \phantom{} & VTZ-BFD & \phantom{} \\
|
||||
\phantom{} & \phantom{} & MAD & MUD & SD & MAD & MUD & SD & MAD & MUD & SD \\
|
||||
\hline
|
||||
PBE & 0 & 5.02 & & & 4.57 & & & 5.31 & & \\
|
||||
BLYP & 0 & 9.53 & & & 5.58 & & & 5.86 & & \\
|
||||
PBE0 & 0 & 11.20 & & & 6.40 & & & 6.28 & & \\
|
||||
B3LYP & 0 & 11.27 & & & 7.27 & & & 6.75 & & \\
|
||||
\hline
|
||||
CCSD(T) & \(\infty\) & 24.10 & & & 9.11 & & & 4.52 & & \\
|
||||
\hline
|
||||
RSDFT-CIPSI & 0 & 10.08 & & & 6.31 & & & 6.35 & & \\
|
||||
\phantom{} & 1/4 & 5.55 & & & 4.58 & & & 5.48 & & \\
|
||||
\phantom{} & 1/2 & 13.42 & & & 6.77 & & & 6.35 & & \\
|
||||
\phantom{} & 1 & 17.07 & & & 9.06 & & & \phantom{} & & \\
|
||||
\phantom{} & 2 & 19.20 & & & \phantom{} & & & \phantom{} & & \\
|
||||
\phantom{} & 5 & 22.93 & & & \phantom{} & & & \phantom{} & & \\
|
||||
\phantom{} & \(\infty\) & 23.62 & & & \phantom{} & & & \phantom{} & & \\
|
||||
\hline
|
||||
DMC@RSDFT-CIPSI & 0 & 5.07\(\pm\)0.44 & & & 3.52\(\pm\)0.19 & & & 3.16\(\pm\)0.26 & & \\
|
||||
\phantom{} & 1/4 & 4.04\(\pm\)0.37 & & & 3.39\(\pm\)0.77 & & & 2.90\(\pm\)0.25 & & \\
|
||||
\phantom{} & 1/2 & 3.74\(\pm\)0.35 & & & 2.46\(\pm\)0.18 & & & 2.06\(\pm\)0.35 & & \\
|
||||
\phantom{} & 1 & 5.42\(\pm\)0.29 & & & 4.38\(\pm\)0.94 & & & \phantom{} & & \\
|
||||
\phantom{} & 2 & 5.98\(\pm\)0.83 & & & \phantom{} & & & \phantom{} & & \\
|
||||
\phantom{} & 5 & 6.18\(\pm\)0.84 & & & \phantom{} & & & \phantom{} & & \\
|
||||
\phantom{} & \(\infty\) & 7.38\(\pm\)1.08 & & & \phantom{} & & & \phantom{} & & \\
|
||||
\phantom{} & Opt. & 5.84\(\pm\)1.75 & & & \phantom{} & & & \phantom{} & & \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\end{table}
|
||||
\end{squeezetable}
|
||||
\end{table*}
|
||||
%\end{squeezetable}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{g2-dmc-dz.pdf}
|
||||
\caption{Histogram of the errors in atomization energies with the double-zeta basis set.}
|
||||
\includegraphics[width=\columnwidth]{g2-dmc.pdf}
|
||||
\caption{Errors in the DMC atomization energies with the different
|
||||
trial wave functions. Each dot corresponds to an atomization
|
||||
energy.
|
||||
The boxes contain the data between first and third quartiles, and
|
||||
the line in the box represents the median. The outliers are shown
|
||||
with a cross.}
|
||||
\label{fig:g2-dmc-dz}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{g2-dmc-tz.pdf}
|
||||
\caption{Histogram of the errors in atomization energies with the triple-zeta basis set.}
|
||||
\label{fig:g2-dmc-tz}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{g2-dmc-qz.pdf}
|
||||
\caption{Histogram of the errors in atomization energies with the quadruple-zeta basis set.}
|
||||
\label{fig:g2-dmc-qz}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user