Working on paper
This commit is contained in:
parent
6f080ee388
commit
b5aa67c092
@ -4286,6 +4286,196 @@ plot data u 7:xtic(1) w l notitle, data u :7:8 w err notitle, 1 notitle, -1 noti
|
||||
| | | | MAD | 1.01 |
|
||||
#+TBLFM: @>$5='(org-sbe "madformula" (data @5$5..@>>$5) )
|
||||
|
||||
** Grossman
|
||||
*** Data from the paper ([[doi:10.1063/1.1487829]])
|
||||
| BeH | 43.0 | 0.2 | 46.90 | 0.01 | 0.06852566 | 3.18724e-4 | 0.074740778 | 1.59362e-5 |
|
||||
| C2H2 | 390.0 | 0.4 | 386.9 | 0.2 | 0.6215118 | 6.37448e-4 | 0.61657158 | 3.18724e-4 |
|
||||
| C2H4 | 533.5 | 0.4 | 531.9 | 0.1 | 0.85019627 | 6.37448e-4 | 0.84764648 | 1.59362e-4 |
|
||||
| C2H6 | 669.3 | 0.4 | 666.3 | 0. | 1.0666099 | 6.37448e-4 | 1.0618290 | 0. |
|
||||
| CH | 79.5 | 0.2 | 79.90 | 0.02 | 0.12669279 | 3.18724e-4 | 0.12733024 | 3.18724e-5 |
|
||||
| CH2(1A1) | 169.7 | 0.4 | 170.6 | 0.4 | 0.27043731 | 6.37448e-4 | 0.27187157 | 6.37448e-4 |
|
||||
| CH2(3B1) | 181.9 | 0.4 | 179.6 | 0.4 | 0.28987948 | 6.37448e-4 | 0.28621415 | 6.37448e-4 |
|
||||
| CH3 | 290.9 | 0.2 | 289.3 | 0.2 | 0.46358406 | 3.18724e-4 | 0.46103427 | 3.18724e-4 |
|
||||
| CH3Cl | 371.6 | 0.8 | 371.0 | 0. | 0.59218919 | 1.274896e-3 | 0.59123302 | 0. |
|
||||
| CH4 | 395.0 | 0.2 | 392.5 | 0.1 | 0.6294799 | 3.18724e-4 | 0.62549585 | 1.59362e-4 |
|
||||
| CN | 170.5 | 0.4 | 178 | 2.0 | 0.27171221 | 6.37448e-4 | 0.28366436 | 3.18724e-3 |
|
||||
| CO | 253.2 | 0.3 | 256.2 | 0.2 | 0.40350458 | 4.78086e-4 | 0.40828544 | 3.18724e-4 |
|
||||
| CO2 | 379.5 | 0.4 | 381.93 | 0.01 | 0.60477879 | 6.37448e-4 | 0.60865129 | 1.59362e-5 |
|
||||
| CS | 165.4 | 0.5 | 169 | 6.0 | 0.26358475 | 7.9681e-4 | 0.26932178 | 9.56172e-3 |
|
||||
| Cl2 | 54.3 | 0.2 | 57.18 | 0.01 | 0.086533566 | 3.18724e-4 | 0.091123192 | 1.59362e-5 |
|
||||
| ClF | 53.7 | 0.6 | 59.1 | 0.1 | 0.085577394 | 9.56172e-4 | 0.094182942 | 1.59362e-4 |
|
||||
| ClO | 55.4 | 0.4 | 63.42 | 0.02 | 0.088286548 | 6.37448e-4 | 0.10106738 | 3.18724e-5 |
|
||||
| F2 | 32.0 | 0.8 | 36.9 | 0.1 | 0.05099584 | 1.274896e-3 | 0.058804578 | 1.59362e-4 |
|
||||
| H2CO | 357.5 | 0.5 | 357.2 | 0.1 | 0.56971915 | 7.9681e-4 | 0.56924106 | 1.59362e-4 |
|
||||
| H2O | 219.4 | 0.2 | 219.35 | 0.01 | 0.34964023 | 3.18724e-4 | 0.34956055 | 1.59362e-5 |
|
||||
| H2O2 | 246.6 | 0.3 | 252.3 | 0. | 0.39298669 | 4.78086e-4 | 0.40207033 | 0. |
|
||||
| H2S | 172.1 | 0.4 | 173.1 | 0.2 | 0.27426200 | 6.37448e-4 | 0.27585562 | 3.18724e-4 |
|
||||
| H3COH | 483.8 | 0.5 | 480.8 | 0. | 0.77099336 | 7.9681e-4 | 0.76621250 | 0. |
|
||||
| H3CSH | 446.0 | 0.4 | 445.1 | 0. | 0.71075452 | 6.37448e-4 | 0.70932026 | 0. |
|
||||
| HCN | 302.0 | 0.8 | 301 | 2.0 | 0.48127324 | 1.274896e-3 | 0.47967962 | 3.18724e-3 |
|
||||
| HCO | 269.8 | 0.4 | 270 | 2.0 | 0.42995868 | 6.37448e-4 | 0.4302774 | 3.18724e-3 |
|
||||
| HCl | 103.4 | 0.4 | 102.2 | 0.5 | 0.16478031 | 6.37448e-4 | 0.16286796 | 7.9681e-4 |
|
||||
| HF | 135.9 | 0.2 | 135.2 | 0.2 | 0.21657296 | 3.18724e-4 | 0.21545742 | 3.18724e-4 |
|
||||
| HOCl | 152.8 | 0.4 | 156.3 | 0.5 | 0.24350514 | 6.37448e-4 | 0.24908281 | 7.9681e-4 |
|
||||
| Li2 | 23.5 | 0.2 | 23.9 | 0.7 | 0.03745007 | 3.18724e-4 | 0.038087518 | 1.115534e-3 |
|
||||
| LiF | 145.1 | 0.4 | 138 | 2.0 | 0.23123426 | 6.37448e-4 | 0.21991956 | 3.18724e-3 |
|
||||
| LiH | 55.3 | 0.2 | 56.00 | 0.01 | 0.088127186 | 3.18724e-4 | 0.08924272 | 1.59362e-5 |
|
||||
| N2 | 221.0 | 0.8 | 225.1 | 0.4 | 0.35219002 | 1.274896e-3 | 0.35872386 | 6.37448e-4 |
|
||||
| N2H4 | 406.8 | 0.9 | 405.4 | 0. | 0.64828462 | 1.434258e-3 | 0.64605355 | 0. |
|
||||
| NH | 78.2 | 0.4 | 79.0 | 0.4 | 0.12462108 | 6.37448e-4 | 0.12589598 | 6.37448e-4 |
|
||||
| NH2 | 169.2 | 0.4 | 170.0 | 0.3 | 0.26964050 | 6.37448e-4 | 0.2709154 | 4.78086e-4 |
|
||||
| NH3 | 276.5 | 0.2 | 276.7 | 0.1 | 0.44063593 | 3.18724e-4 | 0.44095465 | 1.59362e-4 |
|
||||
| NO | 142.9 | 0.4 | 150.06 | 0.04 | 0.22772830 | 6.37448e-4 | 0.23913862 | 6.37448e-5 |
|
||||
| Na2 | 17.3 | 0.2 | 16.8 | 0.3 | 0.027569626 | 3.18724e-4 | 0.026772816 | 4.78086e-4 |
|
||||
| NaCl | 98.8 | 0.3 | 97.3 | 0.5 | 0.15744966 | 4.78086e-4 | 0.15505923 | 7.9681e-4 |
|
||||
| O2 | 111.7 | 0.5 | 117.96 | 0.02 | 0.17800735 | 7.9681e-4 | 0.18798342 | 3.18724e-5 |
|
||||
| OH | 101.2 | 0.3 | 101.4 | 0.3 | 0.16127434 | 4.78086e-4 | 0.16159307 | 4.78086e-4 |
|
||||
| P2 | 107.9 | 0.2 | 116.1 | 0.5 | 0.17195160 | 3.18724e-4 | 0.18501928 | 7.9681e-4 |
|
||||
| PH2 | 143.7 | 0.2 | 144.7 | 0.6 | 0.22900319 | 3.18724e-4 | 0.23059681 | 9.56172e-4 |
|
||||
| PH3 | 224.8 | 0.2 | 228.6 | 0.4 | 0.35824578 | 3.18724e-4 | 0.36430153 | 6.37448e-4 |
|
||||
| S2 | 98.3 | 0.3 | 100.66 | 0.07 | 0.15665285 | 4.78086e-4 | 0.16041379 | 1.115534e-4 |
|
||||
| SO | 117.6 | 0.6 | 123.4 | 0.3 | 0.18740971 | 9.56172e-4 | 0.19665271 | 4.78086e-4 |
|
||||
| SO2 | 240.0 | 0.8 | 254.0 | 0.2 | 0.3824688 | 1.274896e-3 | 0.40477948 | 3.18724e-4 |
|
||||
| Si2 | 73.3 | 0.2 | 74.0 | 0. | 0.11681235 | 3.18724e-4 | 0.11792788 | 0. |
|
||||
| Si2H6 | 505.8 | 0.4 | 500.1 | 0. | 0.80605300 | 6.37448e-4 | 0.79696936 | 0. |
|
||||
| SiH2(1A1) | 145.5 | 0.2 | 144.4 | 0.2 | 0.23187171 | 3.18724e-4 | 0.23011873 | 3.18724e-4 |
|
||||
| SiH2(3B1) | 125.8 | 0.2 | 123.4 | 0.2 | 0.20047740 | 3.18724e-4 | 0.19665271 | 3.18724e-4 |
|
||||
| SiH3 | 215.1 | 0.2 | 214 | 1.0 | 0.34278766 | 3.18724e-4 | 0.34103468 | 1.59362e-3 |
|
||||
| SiH4 | 305.8 | 0.2 | 302.6 | 0.5 | 0.48732900 | 3.18724e-4 | 0.48222941 | 7.9681e-4 |
|
||||
| SiO | 186.7 | 0.2 | 190 | 2.0 | 0.29752885 | 3.18724e-4 | 0.3027878 | 3.18724e-3 |
|
||||
#+TBLFM: $6=$2*0.00159362 :: $7=$3*0.00159362 :: $8=$4*0.00159362 :: $9=$5*0.00159362
|
||||
|
||||
*** Data
|
||||
#+NAME: grossman-data
|
||||
| | ae_cal | Error ae_cal | ae_nr | ae_diff |
|
||||
| | Hartree | Hartree | Hartree | kcal/mol |
|
||||
|---------+-------------+--------------+----------+--------------------|
|
||||
| BeH | 0.06852566 | 3.18724e-4 | 0.079400 | -6.8236719 |
|
||||
| C2H2 | 0.6215118 | 6.37448e-4 | 0.642400 | -13.107391 |
|
||||
| C2H4 | 0.85019627 | 6.37448e-4 | 0.899000 | -30.624446 |
|
||||
| C2H6 | 1.0666099 | 6.37448e-4 | 1.136900 | -44.107190 |
|
||||
| CH | 0.12669279 | 3.18724e-4 | 0.133900 | -4.5225399 |
|
||||
| CH2_1A1 | 0.27043731 | 6.37448e-4 | 0.288900 | -11.585378 |
|
||||
| CH2_3B1 | 0.28987948 | 6.37448e-4 | 0.304100 | -8.9234071 |
|
||||
| CH3 | 0.46358406 | 3.18724e-4 | 0.490800 | -17.078061 |
|
||||
| CH3Cl | 0.59218919 | 1.274896e-3 | 0.631000 | -24.353867 |
|
||||
| CH4 | 0.6294799 | 3.18724e-4 | 0.670300 | -25.614701 |
|
||||
| CN | 0.27171221 | 6.37448e-4 | 0.288800 | -10.722625 |
|
||||
| CO | 0.40350458 | 4.78086e-4 | 0.413700 | -6.3976481 |
|
||||
| CO2 | 0.60477879 | 6.37448e-4 | 0.621400 | -10.429845 |
|
||||
| CS | 0.26358475 | 7.9681e-4 | 0.274000 | -6.5355919 |
|
||||
| Cl2 | 0.086533566 | 3.18724e-4 | 0.094000 | -4.6852035 |
|
||||
| ClF | 0.085577394 | 9.56172e-4 | 0.100100 | -9.1129667 |
|
||||
| ClO | 0.088286548 | 6.37448e-4 | 0.104700 | -10.299477 |
|
||||
| F2 | 0.05099584 | 1.274896e-3 | 0.062200 | -7.0306347 |
|
||||
| H2CO | 0.56971915 | 7.9681e-4 | 0.596700 | -16.930542 |
|
||||
| H2O | 0.34964023 | 3.18724e-4 | 0.371900 | -13.968054 |
|
||||
| H2O2 | 0.39298669 | 4.78086e-4 | 0.429400 | -22.849431 |
|
||||
| H2S | 0.27426200 | 6.37448e-4 | 0.292000 | -11.130633 |
|
||||
| H3COH | 0.77099336 | 7.9681e-4 | 0.818700 | -29.936020 |
|
||||
| H3CSH | 0.71075452 | 6.37448e-4 | 0.757000 | -29.019139 |
|
||||
| HCN | 0.48127324 | 1.274896e-3 | 0.496900 | -9.8058257 |
|
||||
| HCO | 0.42995868 | 6.37448e-4 | 0.444700 | -9.2502102 |
|
||||
| HCl | 0.16478031 | 6.37448e-4 | 0.171000 | -3.9028689 |
|
||||
| HF | 0.21657296 | 3.18724e-4 | 0.226100 | -5.9782382 |
|
||||
| HOCl | 0.24350514 | 6.37448e-4 | 0.264700 | -13.299821 |
|
||||
| Li2 | 0.03745007 | 3.18724e-4 | 0.038900 | -0.90983421 |
|
||||
| LiF | 0.23123426 | 6.37448e-4 | 0.222000 | 5.7945181 |
|
||||
| LiH | 0.088127186 | 3.18724e-4 | 0.092430 | -2.7000251 |
|
||||
| N2 | 0.35219002 | 1.274896e-3 | 0.364600 | -7.7872893 |
|
||||
| N2H4 | 0.64828462 | 1.434258e-3 | 0.699600 | -32.200512 |
|
||||
| NH | 0.12462108 | 6.37448e-4 | 0.133500 | -5.5715415 |
|
||||
| NH2 | 0.26964050 | 6.37448e-4 | 0.290400 | -13.026631 |
|
||||
| NH3 | 0.44063593 | 3.18724e-4 | 0.475500 | -21.877279 |
|
||||
| NO | 0.22772830 | 6.37448e-4 | 0.244500 | -10.524278 |
|
||||
| Na2 | 0.027569626 | 3.18724e-4 | 0.026800 | 0.48294198 |
|
||||
| NaCl | 0.15744966 | 4.78086e-4 | 0.157400 | 0.031161758 |
|
||||
| O2 | 0.17800735 | 7.9681e-4 | 0.192400 | -9.0314190 |
|
||||
| OH | 0.16127434 | 4.78086e-4 | 0.170200 | -5.6008710 |
|
||||
| P2 | 0.17195160 | 3.18724e-4 | 0.186000 | -8.8154014 |
|
||||
| PH2 | 0.22900319 | 3.18724e-4 | 0.244000 | -9.4105307 |
|
||||
| PH3 | 0.35824578 | 3.18724e-4 | 0.389000 | -19.298340 |
|
||||
| S2 | 0.15665285 | 4.78086e-4 | 0.164000 | -4.6103525 |
|
||||
| SO | 0.18740971 | 9.56172e-4 | 0.200700 | -8.3396857 |
|
||||
| SO2 | 0.3824688 | 1.274896e-3 | 0.414400 | -20.036897 |
|
||||
| Si2 | 0.11681235 | 3.18724e-4 | 0.121000 | -2.6277594 |
|
||||
| Si2H6 | 0.80605300 | 6.37448e-4 | 0.849000 | -26.949335 |
|
||||
| SiH2_1A1 | 0.23187171 | 3.18724e-4 | 0.243000 | -6.9830261 |
|
||||
| SiH2_3B1 | 0.20047740 | 3.18724e-4 | 0.210000 | -5.9754521 |
|
||||
| SiH3 | 0.34278766 | 3.18724e-4 | 0.363000 | -12.683287 |
|
||||
| SiH4 | 0.48732900 | 3.18724e-4 | 0.515000 | -17.363612 |
|
||||
| SiO | 0.29752885 | 3.18724e-4 | 0.306700 | -5.7549165 |
|
||||
|---------+-------------+--------------+----------+--------------------|
|
||||
| | | | MAD | 12.499646457509431 |
|
||||
#+TBLFM: $5=($2-$4)/0.00159362
|
||||
#+TBLFM: @>$5='(org-sbe "madformula" (data @5$5..@>>$5) )
|
||||
|
||||
*** Grossman's reference values
|
||||
#+NAME: grossman-ref
|
||||
| | ae_cal | error ae_cal | ae_nr | ae_diff |
|
||||
| | Hartree | Hartree | Hartree | kcal/mol |
|
||||
|---------+-------------+-------------+----------+-------------------|
|
||||
| BeH | 0.074740778 | 1.59362e-5 | 0.079400 | -2.9236719 |
|
||||
| C2H2 | 0.61657158 | 3.18724e-4 | 0.642400 | -16.207389 |
|
||||
| C2H4 | 0.84764648 | 1.59362e-4 | 0.899000 | -32.224445 |
|
||||
| C2H6 | 1.0618290 | 0. | 1.136900 | -47.107215 |
|
||||
| CH | 0.12733024 | 3.18724e-5 | 0.133900 | -4.1225386 |
|
||||
| CH2_1A1 | 0.27187157 | 6.37448e-4 | 0.288900 | -10.685377 |
|
||||
| CH2_3B1 | 0.28621415 | 6.37448e-4 | 0.304100 | -11.223410 |
|
||||
| CH3 | 0.46103427 | 3.18724e-4 | 0.490800 | -18.678060 |
|
||||
| CH3Cl | 0.59123302 | 0. | 0.631000 | -24.953866 |
|
||||
| CH4 | 0.62549585 | 1.59362e-4 | 0.670300 | -28.114701 |
|
||||
| CN | 0.28366436 | 3.18724e-3 | 0.288800 | -3.2226252 |
|
||||
| CO | 0.40828544 | 3.18724e-4 | 0.413700 | -3.3976481 |
|
||||
| CO2 | 0.60865129 | 1.59362e-5 | 0.621400 | -7.9998431 |
|
||||
| CS | 0.26932178 | 9.56172e-3 | 0.274000 | -2.9355932 |
|
||||
| Cl2 | 0.091123192 | 1.59362e-5 | 0.094000 | -1.8052032 |
|
||||
| ClF | 0.094182942 | 1.59362e-4 | 0.100100 | -3.7129667 |
|
||||
| ClO | 0.10106738 | 3.18724e-5 | 0.104700 | -2.2794769 |
|
||||
| F2 | 0.058804578 | 1.59362e-4 | 0.062200 | -2.1306347 |
|
||||
| H2CO | 0.56924106 | 1.59362e-4 | 0.596700 | -17.230544 |
|
||||
| H2O | 0.34956055 | 1.59362e-5 | 0.371900 | -14.018053 |
|
||||
| H2O2 | 0.40207033 | 0. | 0.429400 | -17.149427 |
|
||||
| H2S | 0.27585562 | 3.18724e-4 | 0.292000 | -10.130633 |
|
||||
| H3COH | 0.76621250 | 0. | 0.818700 | -32.936020 |
|
||||
| H3CSH | 0.70932026 | 0. | 0.757000 | -29.919140 |
|
||||
| HCN | 0.47967962 | 3.18724e-3 | 0.496900 | -10.805826 |
|
||||
| HCO | 0.4302774 | 3.18724e-3 | 0.444700 | -9.0502127 |
|
||||
| HCl | 0.16286796 | 7.9681e-4 | 0.171000 | -5.1028727 |
|
||||
| HF | 0.21545742 | 3.18724e-4 | 0.226100 | -6.6782420 |
|
||||
| HOCl | 0.24908281 | 7.9681e-4 | 0.264700 | -9.7998205 |
|
||||
| Li2 | 0.038087518 | 1.115534e-3 | 0.038900 | -0.50983421 |
|
||||
| LiF | 0.21991956 | 3.18724e-3 | 0.222000 | -1.3054806 |
|
||||
| LiH | 0.08924272 | 1.59362e-5 | 0.092430 | -2.0000251 |
|
||||
| N2 | 0.35872386 | 6.37448e-4 | 0.364600 | -3.6872906 |
|
||||
| N2H4 | 0.64605355 | 0. | 0.699600 | -33.600513 |
|
||||
| NH | 0.12589598 | 6.37448e-4 | 0.133500 | -4.7715390 |
|
||||
| NH2 | 0.2709154 | 4.78086e-4 | 0.290400 | -12.226629 |
|
||||
| NH3 | 0.44095465 | 1.59362e-4 | 0.475500 | -21.677282 |
|
||||
| NO | 0.23913862 | 6.37448e-5 | 0.244500 | -3.3642776 |
|
||||
| Na2 | 0.026772816 | 4.78086e-4 | 0.026800 | -0.017058019 |
|
||||
| NaCl | 0.15505923 | 7.9681e-4 | 0.157400 | -1.4688382 |
|
||||
| O2 | 0.18798342 | 3.18724e-5 | 0.192400 | -2.7714135 |
|
||||
| OH | 0.16159307 | 4.78086e-4 | 0.170200 | -5.4008672 |
|
||||
| P2 | 0.18501928 | 7.9681e-4 | 0.186000 | -0.61540392 |
|
||||
| PH2 | 0.23059681 | 9.56172e-4 | 0.244000 | -8.4105307 |
|
||||
| PH3 | 0.36430153 | 6.37448e-4 | 0.389000 | -15.498343 |
|
||||
| S2 | 0.16041379 | 1.115534e-4 | 0.164000 | -2.2503545 |
|
||||
| SO | 0.19665271 | 4.78086e-4 | 0.200700 | -2.5396832 |
|
||||
| SO2 | 0.40477948 | 3.18724e-4 | 0.414400 | -6.0368971 |
|
||||
| Si2 | 0.11792788 | 0. | 0.121000 | -1.9277620 |
|
||||
| Si2H6 | 0.79696936 | 0. | 0.849000 | -32.649339 |
|
||||
| SiH2_1A1 | 0.23011873 | 3.18724e-4 | 0.243000 | -8.0830248 |
|
||||
| SiH2_3B1 | 0.19665271 | 3.18724e-4 | 0.210000 | -8.3754534 |
|
||||
| SiH3 | 0.34103468 | 1.59362e-3 | 0.363000 | -13.783286 |
|
||||
| SiH4 | 0.48222941 | 7.9681e-4 | 0.515000 | -20.563616 |
|
||||
| SiO | 0.3027878 | 3.18724e-3 | 0.306700 | -2.4549140 |
|
||||
|---------+-------------+-------------+----------+-------------------|
|
||||
| | | | MAD | 11.00762358960377 |
|
||||
#+TBLFM: $5=($2-$4)/0.00159362
|
||||
#+TBLFM: @>$5='(org-sbe "madformula" (data @5$5..@>>$5) )
|
||||
|
||||
|
||||
** Data export
|
||||
|
||||
#+begin_src python :results output :session :exports code
|
||||
|
17
Manuscript/Makefile
Executable file
17
Manuscript/Makefile
Executable file
@ -0,0 +1,17 @@
|
||||
TARGET=rsdft-cipsi-qmc.pdf
|
||||
SRC=rsdft-cipsi-qmc.tex
|
||||
|
||||
.PHONY: all
|
||||
all: $(TARGET)
|
||||
|
||||
|
||||
$(TARGET): $(SRC)
|
||||
latexmk -pdf $(SRC)
|
||||
|
||||
.PHONY: clean
|
||||
clean:
|
||||
-rm -f $(TARGET)
|
||||
|
||||
follow:
|
||||
latexmk -pdf -view=pdf -bibtex -pvc -gg -interaction=nonstopmode $(SRC)
|
||||
|
@ -597,3 +597,33 @@ note={Gaussian Inc. Wallingford CT}
|
||||
publisher = {American Chemical Society},
|
||||
doi = {10.1021/acs.jpca.9b01933}
|
||||
}
|
||||
|
||||
@article{Dubecky_2014,
|
||||
author = {Dubecký, Matúš and Derian, René and
|
||||
Jurečka, Petr and Mitas, Lubos and Hobza, Pavel and Otyepka, Michal},
|
||||
title = {{Quantum Monte Carlo for noncovalent interactions: an efficient protocol attaining
|
||||
benchmark accuracy}},
|
||||
journal = {Phys. Chem. Chem. Phys.},
|
||||
volume = {16},
|
||||
number = {38},
|
||||
pages = {20915--20923},
|
||||
year = {2014},
|
||||
month = {Sep},
|
||||
issn = {1463-9084},
|
||||
publisher = {The Royal Society of Chemistry},
|
||||
doi = {10.1039/C4CP02093F}
|
||||
}
|
||||
|
||||
@article{Grossman_2002,
|
||||
author = {Grossman, Jeffrey C.},
|
||||
title = {{Benchmark quantum Monte Carlo calculations}},
|
||||
journal = {J. Chem. Phys.},
|
||||
volume = {117},
|
||||
number = {4},
|
||||
pages = {1434--1440},
|
||||
year = {2002},
|
||||
month = {Jul},
|
||||
issn = {0021-9606},
|
||||
publisher = {American Institute of Physics},
|
||||
doi = {10.1063/1.1487829}
|
||||
}
|
@ -50,19 +50,21 @@
|
||||
\section{Introduction}
|
||||
\label{sec:intro}
|
||||
|
||||
The full configuration interaction (FCI) method \eg{within an incomplete basis set}
|
||||
leads to the exact solution of the Schrödinger equation with an approximate Hamiltonian
|
||||
\eg{which consists in the exact one projected onto } \sout{expressed in} a finite basis of Slater determinants.
|
||||
The FCI wave function can be interpreted as the exact solution of the
|
||||
true Hamiltonian obtained with the additional constraint that it
|
||||
can only span the space provided by the basis. At the complete
|
||||
basis set (CBS) limit, the constraint vanishes and the exact solution
|
||||
is obtained.
|
||||
|
||||
The full configuration interaction (FCI) method within a finite atomic
|
||||
basis set leads to an approximate solution of the Schrödinger
|
||||
equation.
|
||||
This solution is the eigenpair of an approximate Hamiltonian, which is
|
||||
the projection of the exact Hamiltonian onto the finite basis of all
|
||||
possible Slater determinants.
|
||||
The FCI wave function can be interpreted as the constrained solution of the
|
||||
true Hamiltonian, where the solution is forced to span the space
|
||||
provided by the basis.
|
||||
At the complete basis set (CBS) limit, the constraint vanishes and the
|
||||
exact solution is obtained.
|
||||
Hence the FCI method enables a systematic improvement of the
|
||||
calculations by \sout{increasing the size} \eg{improving the quality} of the basis set. Nevertheless,
|
||||
its exponential scaling with the number of electrons and with the size
|
||||
of the basis is prohibitive to treat large systems.
|
||||
calculations by improving the quality of the basis set.
|
||||
Nevertheless, its exponential scaling with the number of electrons and
|
||||
with the size of the basis is prohibitive for large systems.
|
||||
In recent years, the introduction of new algorithms\cite{Booth_2009}
|
||||
and the
|
||||
revival\cite{Abrams_2005,Bytautas_2009,Roth_2009,Giner_2013,Knowles_2015,Holmes_2016,Liu_2016}
|
||||
@ -75,32 +77,42 @@ to a loss of size extensivity.
|
||||
The Diffusion Monte Carlo (DMC) method is a numerical scheme to obtain
|
||||
the exact solution of the Schrödinger equation with an additional
|
||||
constraint, imposing the solution to have the same nodal hypersurface
|
||||
as a given trial wave function. This approximation, known as the
|
||||
\emph{fixed-node} approximation, \eg{is variational with respect to the nodes of the trial wave function: the DMC energy obtained with a given trial wave function is an upper bound to the exact energy, and the latter is recovered only }
|
||||
when the nodes of the trial wave function coincide with the nodes of the exact wave function\sout{, the exact energy and wave function are obtained}.
|
||||
The DMC method is attractive because its scaling is polynomial with
|
||||
the number of electrons and with the size of the trial wave
|
||||
function. Moreover, the total energies obtained are usually below
|
||||
those obtained with FCI \eg{in computationally tractable basis sets} because the fixed-node approximation imposes
|
||||
less constraints on the solution than the finite-basis approximation.
|
||||
as a given trial wave function.
|
||||
Within this so-called \emph{fixed-node} approximation,
|
||||
the DMC energy associated with a given trial wave function is an upper
|
||||
bound to the exact energy, and the latter is recovered only when the
|
||||
nodes of the trial wave function coincide with the nodes of the exact
|
||||
wave function.
|
||||
The polynomial scaling with the number of electrons and with the size
|
||||
of the trial wave function makes the DMC method attractive.
|
||||
In addition, the total energies obtained are usually far below
|
||||
those obtained with the FCI method in computationally tractable basis
|
||||
sets because the constraints imposed by the fixed-node approximation
|
||||
are less severe than the constraints imposed by the finite-basis
|
||||
approximation.
|
||||
|
||||
\eg{The qualitative picture of the electronic structure of weakly correlated systems, such as organic molecule near their equilibrium geometry, }\sout{In many cases, the systems under study} are well described by a single
|
||||
Slater determinant. \sout{Single-determinant} DMC \eg{with a single-determinant trial wave function} can be used as a post-Hatree-Fock
|
||||
single-reference method with an accuracy comparable to coupled cluster\eg{mettre la ref}.
|
||||
The qualitative picture of the electronic structure of weakly
|
||||
correlated systems, such as organic molecules near their equilibrium
|
||||
geometry, is usually well represented with a single Slater
|
||||
determinant.
|
||||
DMC with a single-determinant trial wave function can be used as a
|
||||
single-reference post-Hatree-Fock method, with an accuracy comparable
|
||||
to coupled cluster.\cite{Dubecky_2014,Grossman_2002}
|
||||
The favorable scaling of QMC and its adequation with massively
|
||||
parallel architectures makes it an attractive alternative for large
|
||||
parallel architectures makes it a favourable alternative for large
|
||||
systems.
|
||||
The Slater determinant is determined by the nature of the molecular
|
||||
orbitals. Three main options are commonly used: Hartree-Fock (HF),
|
||||
Kohn-Sham (KS) or natural orbitals (NO) of a correlated wave function.
|
||||
The nodal surfaces obtained with the KS determinant are in general
|
||||
better than those obtained with the HF determinant,\cite{Per_2012} and
|
||||
of comparable quality to those obtained with a Slater determinant
|
||||
built with NOs.\cite{Wang_2019}
|
||||
|
||||
\eg{The choice of the Slater determinant entirely depends on the type of orbitals used to build it, for which three main options are available: the Kohn-Sham\ref{} (KS) scheme, the HF scheme or the natural orbitals (NO) of a correlated wave function. }
|
||||
As it has been shown by many studies\cite{Per_2012}, the nodal surfaces obtained with the
|
||||
KS determinant are in general better than those obtained with
|
||||
the HF determinant, and of comparable quality
|
||||
to those obtained with a Slater determinant built with NO.\cite{Wang_2019}
|
||||
|
||||
However, the fixed-node approximation is much more difficult to
|
||||
control than the finite-basis approximation, as it is not possible
|
||||
to minimize directly the DMC energy with respect to the variational
|
||||
parameters of the trial wave function.
|
||||
As it is not possible to minimize directly the DMC energy with respect
|
||||
to the variational parameters of the trial wave function, the
|
||||
fixed-node approximation is much more difficult to control than the
|
||||
finite-basis approximation.
|
||||
The conventional approach consists in multiplying the trial wave
|
||||
function by a positive function, the \emph{Jastrow factor}, taking
|
||||
account of the electron-electron cusp and the short-range correlation
|
||||
@ -117,13 +129,12 @@ When the basis set is increased, the trial wave function tends to the
|
||||
exact wave function, so the nodal surface can be systematically
|
||||
improved.\cite{Caffarel_2016}
|
||||
This technique has the advantage that using FCI nodes in a given basis
|
||||
set is well defined and has a unique solution. The optimization of the
|
||||
wave function is deterministic, so the calculations are reproducible
|
||||
and don't require the expertise of a QMC expert. However,
|
||||
this technique can't be applied to large systems because of the
|
||||
exponential scaling of the size of the wave function. Extrapolation
|
||||
techniques have been applied to estimate the DMC energy of a FCI
|
||||
wave function in a large basis set,\cite{Scemama_2018} and other
|
||||
set is well defined, so the calculations are reproducible in a
|
||||
black-box way without needing any expertise in QMC.
|
||||
But this technique can't be applied to large systems because of the
|
||||
exponential scaling of the size of the wave function.
|
||||
Extrapolation techniques have been used to estimate the DMC energy of
|
||||
FCI wave functions in a large basis sets,\cite{Scemama_2018} and other
|
||||
authors have used a combination of the two approaches where CIPSI
|
||||
trial wave functions are re-optimized under the presence of a Jastrow
|
||||
factor.\cite{Giner_2016,Dash_2018,Dash_2019}
|
||||
|
Loading…
Reference in New Issue
Block a user