Initial repo

This commit is contained in:
Anthony Scemama 2020-04-21 12:00:31 +02:00
parent 5e6a7fb42d
commit 58b6da5780
12 changed files with 20577 additions and 2 deletions

12
Manuscript/.gitignore vendored Normal file
View File

@ -0,0 +1,12 @@
main.pdf
*.aux
*.bbl
*.blg
*.fdb_latexmk
*.fls
*.log
*-eps-converted-to.pdf
main.pdf
*Notes.bib

5180
Manuscript/All-cyclo.eps Normal file

File diff suppressed because it is too large Load Diff

2215
Manuscript/Bib.bib Normal file

File diff suppressed because it is too large Load Diff

1726
Manuscript/DMC-RS-CI.eps Normal file

File diff suppressed because it is too large Load Diff

1566
Manuscript/DMC-RSDFT.eps Normal file

File diff suppressed because it is too large Load Diff

BIN
Manuscript/Plot-Barrier.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 150 KiB

9336
Manuscript/Raw-data.eps Normal file

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 125 KiB

33
Manuscript/TODO.md Normal file
View File

@ -0,0 +1,33 @@
# RSDFT-CIPSI-QMC
Overleaf : https://www.overleaf.com/1388147284fqqydnrxrvnr
## TODO
* Intro
Jastrow + single determinant = short-range correlation
- CIPSI DZ : Shrinks Jastrow
CIPSI TZ : Shrinks Jastrow more
=> CIPSI and Jastrow have significant overlap
- Goal : Treat only what Jastrow can't do with CIPSI
- Mimic Jastrow by DFT => range-separated CIPSI
* Protocol
- Find mu by matching it with Jastrow or standard correlation factor
- Compute RS-CIPSI
- Add Jastrow
- Compute DMC
Plot Evar+EPT2 avec plusieurs mu
- mu=0 : pure DFT -> Converges with 1 det
- mu=inf : pure CIPSI -> Converges with Ndet
- Improvement : Faster convergence with Ndet => Reduces size-consistence error due to truncation
Demo : Example on atomization energy of H2O or N2H4.
Goal : We need to find the smallest possible mu enabling a correct physical description
Articles a citer:
- Optimization of nodal surfaces with CIPSI (LCPQ, Claudia)
- FeS, excitation H2O

BIN
Manuscript/frag_00278.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

509
Manuscript/main.tex Normal file
View File

@ -0,0 +1,509 @@
% ****** Start of file apssamp.tex ******
%
% This file is part of the APS files in the REVTeX 4.1 distribution.
% Version 4.1r of REVTeX, August 2010
%
% Copyright (c) 2009, 2010 The American Physical Society.
%
% See the REVTeX 4 README file for restrictions and more information.
%
% TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
% as well as the rest of the prerequisites for REVTeX 4.1
%
% See the REVTeX 4 README file
% It also requires running BibTeX. The commands are as follows:
%
% 1) latex apssamp.tex
% 2) bibtex apssamp
% 3) latex apssamp.tex
% 4) latex apssamp.tex
%
\documentclass[%
reprint,
%superscriptaddress,
%groupedaddress,
%unsortedaddress,
%runinaddress,
%frontmatterverbose,
%preprint,
%showpacs,preprintnumbers,
%nofootinbib,
%nobibnotes,
%bibnotes,
amsmath,amssymb,
aps,
%pra,
prb,
%rmp,
%prstab,
%prstper,
%floatfix,
]{revtex4-1}
\usepackage{graphicx}% Include figure files
\usepackage{physics}% brakets, etc..
\usepackage{dcolumn}% Align table columns on decimal point
\usepackage{bm}% bold math
\usepackage{multirow}% Added by H. Shin to plot multi-row table
\usepackage{xcolor}
%\usepackage{hyperref}% add hypertext capabilities
%\usepackage[mathlines]{lineno}% Enable numbering of text and display math
%\linenumbers\relax % Commence numbering lines
%\usepackage[showframe,%Uncomment any one of the following lines to test
%%scale=0.7, marginratio={1:1, 2:3}, ignoreall,% default settings
%%text={7in,10in},centering,
%%margin=1.5in,
%%total={6.5in,8.75in}, top=1.2in, left=0.9in, includefoot,
%%height=10in,a5paper,hmargin={3cm,0.8in},
%]{geometry}
\begin{document}
%\preprint{APS/123-QED}
\title{Enabling high accuracy DMC calculations with Range Separated DFT nodes}
%\\ breaks with \\
%\thanks{A footnote to the article title}%
\author{Anouar Benali*}%
\email{benali@anl.gov}
\affiliation{Computational Sciences Division, Argonne National Laboratory, Argonne, IL 60439, United States}
\author{Thomas Applencourt}
\affiliation{Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439, United States}
\author{Pierre-Francois Loos}
\author{Anthony Scemama*}
\affiliation{Laboratoire de Chimie et Physique Quantiques, Universit\'e de Toulouse, CNRS, UPS, France}
\author{Emanuel Giner*}
\email{emmanuel.giner@lct.jussieu.fr}
\affiliation{Laboratoire de Chimie Th\'eorique, Sorbonne Universit\'e and CNRS, F-75005 Paris,
France}
\date{\today}% It is always \today, today,
% but any date may be explicitly specified
\begin{abstract}
%TODO
Fixed Node approximation sucks. Best way to solve it is with multideterminants. sCI approach great but only for small systems. Large number of determinants comes from high energy determinants describing electron electron cusp in the same manner as 2 body Jastrow used in Diffusion Monte Carlo. Range Separated Density Functional Theory removes the cusp by using a DFT function (erf function) to describe the cusp and CIPSI for long range. Determinants are then selected without the electron electron cusp.
\end{abstract}
\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
% Classification Scheme.
%\keywords{Suggested keywords}%Use showkeys class option if keyword
%display desired
\maketitle
%\tableofcontents
\section{\label{sec:level1}Introduction}
%TODO
Single determinant diffusion Monte Carlo (SD-DMC) has proven to be very accurate at describing properties of a wide range of molecules and solids (citation).
While closed-shell systems can reach accuracies of few kcal/mol for molecules and 0.05 to 0.1~eV for solids when compared to experimental data or coupled cluster calculations, a systematic accurate prediction of properties such as total energies and band/HOMO-LUMO gaps remains dependent on the nodes of the trial wavefunction; while DMC solves exactly the many-body Schr\"odinger equation, the fixed node approximation is the only practical way to maintain the fermionic behavior of the wavefunction and therefore is considered the \\
Using a CIPSI trial wavefunction in DMC allows a systematic improvement of the nodal surface for a large class of molecules (cite LCPQ papers) and solids(cite unpublished Diamond).
However, while CIPSI allows for a very compact determinant expansion, we are still limited in practice to a few hundreds of atomic orbitals per system.
Moreover, in many cases, even when it is possible to converge the CIPSI energy for a system, the size of determinant expansion is too large to be used in DMC as the wave function needs to be evaluated at every Monte Carlo step.
While the DMC energy associated with the FCI wave function can be estimated by extrapolation, it is still desirable to find a strategy to reduce the size of the determinant expansions.
%While the large number of determinants is often attributed to describing the electron-electron cusp, using a 2-body Jastrow often comes to achieving the same result at short range.
\section{Short-range correlation}
\newcommand{\psidet}{\Psi_{\text{CI}}}
\newcommand{\psijas}{\exp(J)}
The common practice in QMC calculations is to first compute a trial wave function expressed as a configuration interaction (CI) expansion $\psidet$.
Then, the wave function is improved with a Jastrow factor $\psijas$ optimized in a variational Monte Carlo (VMC) framework.
The role of the Jastrow factor is to take account explicitly of electron correlation and
the simplest Jastrow factor is expressed as
\begin{equation}
J = \sum_{i<j} \exp \qty( \frac{a r_12}{1+b r_{12}} ).
\end{equation}
The parameter $a$ can be set to impose the electron-electron cusp, and the parameter $b$ is related to the width of the Coulomb hole.
Conventional QMC calculations use more advanced forms of Jastrow factor, but the following can be applied to any form of Jastrow factor.
With a Jastrow factor, the variance of the local energy is significantly reduced because the wave function is now described beyond the limits of the one-electron basis set, similarly to F12 methods.
$\psidet$ is finally re-optimized in the presence of the Jastrow factor.(cite Claudia, Cyrus, Sandro, Julien) This last step improves the nodal surfaces, and also has the effect of shortening the CI expansion.
The short-range correlation effects described by the Jastrow factor are partly taken care of by the determinant expansion, but the Slater determinant basis is not well adapted to describe these effects. Moreover, the determinant expansion is responsible for the nodal surface, so it is desirable to express short-range correlations exclusively with a positive function and let the determinant expansion relax to treat exclusively static correlation effects.
In the ideal case, one would make the CIPSI determinant selection in the presence of the Jastrow factor to produce directly short CI expansions.
\section{\label{sec:Methods}Computational details}
All single determinant Hartree Fock (HF) and \textit{vanilla} density functional theory\cite{Hohenberg1964,kohn1965physrev} calculations were done using the PySCF code\cite{PYSCF}. To scan through multiple nodal surfaces, we used some of the most widely used XC functionals in the literature (LDA\cite{Kohn1965}, PBE\cite{PBE}, B3LYP\cite{B3LYP1,B3LYP2,B3LYP3,B3LYP4}, PBE0\cite{PBE,adamo1999jchemphys}, revPBE\cite{PhysRevLett.80.890}, and M06-L\cite{M06-L}).\\
Multideterminant wavefunctions were generated using selected Configuration Interaction\cite{Bender69,Whitten69,Huron73,Buenker78} within the Configuration Interaction Pertubatively Selected Iteratively (CIPSI)\cite{EVANGELISTI1983,Cimiraglia1985,Chirlian1987,Giner2013,Caffarel2014,Caffarel16} flavor as implemented in the Quantum Package code\cite{QP2}. Compared to other sCI methods, CIPSI has the advantage of generated a very compact trial wavefunction ideal for DMC. CIPSI calculations were converged when possible to a threshold $PT_2=0.0001$ or to a number of determinants explicitly specified for each system. For the range-separated multideterminant density functional theory calculations, we used a PBE short-range exchange and correlation functional as describe in ref[\onlinecite{2019JChPh.150h4103F}], also implemented in Quantum Package. The range separation value $\mu$ was optimized for each system in order to minimize the DMC energy. \\
All single and multideterminant DMC calculations used 1, 2 and three body Jastrows as implemented in the QMCPACK code\cite{Kim_2018}. The Jastrow parameters were optimized using VMC in presence of the fixed coefficients of the multideterminant expansions. While it has been shown that simultaneously reoptimizing the determinants coefficients, the Jastrow parameters while rotating the orbitals can lead to significantly small wavefunction with improved accuracies(cite Cyrus), such a procedure can only be applied to very small system as the number of parameters to optimize becomes too important. In our paper, the use of Jastrows has the benefit of reducing the variance and hence speeding up the calculations. All DMC calculation used a 0.001 time step. \\
All calculations used cc-pvNz basissets where N=D,T and Q unless when specified. To extrapolate to the CBS limit we used a mixed gaussian/exponential extrapolation scheme.
\begin{equation}
E_{cbs}(2,3,4)=\frac{(1+e^2)E_2-(e+e^3-e^5)E_3+e^6E_4}{(e-1)(e^5-e^2-1)}
\end{equation}
In the case of $C_2H_2-CH_2-O$ molecule, we also performed CCSD(T) calculations as a reference.
\section{\label{sec:results}Results and Discussion}
\subsection{Water Molecule\label{subsec:Water}}
The water molecule have been extensively studied using CIPSI and DMC for both the ground state\cite{Caffarel2016} and excited states\cite{H2O-exci,H2O-exci-PP}. In their 2016 study, Caffarel \textit{et. al} were able to approximate the total energy of a water molecule to unprecedented accuracy (value here) using a about 1M determinant. In order to assess the accuracy using RS-MDDFT nodes we evaluate the
\begin{table*}
\centering
\caption{Total energy (Ha) of H2O molecule using cc-pcvDz, cc-pcvTz, cc-pcvQz basis-sets. using RSDFT with a PBE functional using various ranges $\mu$. CIPSI(RSDFT) corresponds to the long range Wavefunction treated with selected CI. DMC(RSDFT) corresponds to the DMC with a RSDFT-PBE nodale surface containing 1 determinant. DMC(RSCI) corresponds to the DMC with a RSCI nodale surface. Nb dets is the number of determinants when sCI expansions are used. This number of determinants was also used in the DMC(RS-CI). In the case of RSDFT(PBE) and DMC(RSDFT) the number of determinants is 1. }
\label{tab:RSDFT-H2O}
\begin{tabular}{cccccccccccccccc}
\hline \hline
Basis-set & $\mu$ & Nb dets& RSDFT(PBE)& RS-CI & DMC(RSDFT)& DMC(RS-CI) \\ \hline
\multirow{9}{*}{cc-pcvDz}
%& 0 & 1 & -76.3355494055 &- & -76.410094 0.000624& -\\
%& 0.0001& 2 & -76.33560776488173 & -76.3356077649 & -76.409746 0.000239 & -76.410145 0.000200\\
& 0.5 & 2396 & -76.33604445222997 & -76.3441442508 & -76.410018 0.000198 & -76.411258 0.000383\\
& 1.0 & 40963 & -76.27348956941330 & -76.3336831179 & -76.410771 0.000218 & -76.415616 0.000479\\
& 1.5 & 138253 & -76.20172972611051 & -76.3147073528 & -76.411030 0.000143 & -76.418327 0.000311\\
& 2.0 & 207380 & -76.15446145849143 & -76.3018300218 & -76.410994 0.000168 & -76.417751 0.000544\\
& 2.5 & 311071 & -76.12743299891538 & -76.2963616190 & -76.410997 0.000138 & -76.418830 0.000320\\
& 3.0 & 466607 & -76.11231786534898 & -76.2953530572 & -76.410925 0.000175 & -76.418333 0.000604\\
& 4.0 & 466607 & -76.09737987601412 & -76.2973907108 & -76.410767 0.000183 & -76.417842 0.000485\\
& 5.0 & 466607 & -76.08892265698270 & -76.299088319 & -76.410719 0.000167 & -76.417461 0.000481\\
& 6.0 & 466607 & -76.08222148947996 & -76.2995315838 & -76.410730 0.000172 & -76.417162 0.000632\\
& 7.0 & 466607 & -76.07645402100390 & -76.2992732268 & -76.410741 0.000192 & -76.417398 0.000384\\
\hline
\multirow{9}{*}{cc-pcvTz}
%&0.0001& 1 & -76.37438352807571 & -76.3743835281 & -76.420977 0.000147 & -\\
& 0.5& 8090 & -76.37411359270587 & -76.3853803202 & -76.420407 0.000116 & -76.422574 0.000253\\
& 1.0& 466607 & -76.30808407357975 & -76.3810129344 & -76.420450 0.000117 & -76.427268 0.000494\\
& 1.5& 2000000 & -76.23450972568928 & -76.3699240165 & -76.420484 0.000129 & -76.430965 0.000937\\
& 2.0& 2000000 & -76.18647332232358 & -76.3659759776 & -76.420322 0.000123 & -76.430956 0.000704\\
& 2.5& 2000000 & -76.15905488759424 & -76.3681700530 & -76.420125 0.000170 & -76.432259 0.000539\\
& 3.0& 2000000 & -76.14366220610044 & -76.3730744570 & -76.420003 0.000149 & -76.432267 0.000611\\
& 4.0& 2000000 & -76.12827446549065 & -76.3829546254 & -76.420138 0.000139 & -76.430869 0.000996\\
& 5.0& 2000000 & -76.11950514107885 & -76.3892344149 & -76.419934 0.000119 & -76.431917 0.000943\\
& 7.0& 2000000 & -76.10674756885926 & -76.3942237680 & -76.419851 0.000161& -76.430150 0.000752\\
\hline
\multirow{9}{*}{cc-pcvQz}
&0.5 &12136 &-76.38318565911486 &-76.3952959489 &-76.422831 0.000207 &-76.425846 0.000254\\
&1.0 &2382775 &-76.31599767191094 &-76.3917462575 &-76.422337 0.000151 &-76.428929 0.000748\\
&1.5 &2408343 &-76.24211906926882 &-76.3816852280 &-76.422451 0.000188 &-76.432489 0.000531\\
&2.0 &3698407 &-76.19399206529708 &-76.3795304096 &-76.422567 0.000139 &-76.435818 0.000763\\
&2.5 &3847936 &-76.16655117814619 &-76.3834274230 &-76.422184 0.000103 &-76.435031 0.000546\\
&3.0 &2000000 &-76.15117119770653 &-76.3898019841 &-76.421932 0.000201 &-76.435098 0.000539\\
&4.0 &2000000 &-76.13583094033078 &-76.4016324447 &-76.422268 0.000097 &-76.433833 0.000530\\
&5.0 &2000000 &-76.12708615152579 &-76.4093388884 &-76.421901 0.000154 &-76.434136 0.000370\\
&7.0 &3468702 &-76.11433599757845 &-76.4159382168 &-76.421721 0.000183 &-76.434913 0.000523\\
\hline
\end{tabular}
\end{table*}
\begin{figure*}
\includegraphics[width=5 in]{DMC-RSDFT.eps}
\caption{SD-DMC energy (Ha) of $H_2O$ using an RSDFT trial wavefunction in cc-pcvNz (N=D,T,Q) }
\label{fig:RSDFT(DMC)}
\end{figure*}
\begin{figure*}
\includegraphics[width=5 in]{DMC-RS-CI.eps}
\caption{MD-DMC energy (Ha) of $H_2O$ using an RSDFT-CI trial wavefunction in cc-pcvNz (N=D,T,Q) }
\label{fig:RSDFT(DMC)}
\end{figure*}
\begin{table*}
\centering
\caption{Total energy (Ha) of H2O molecule in cc-pcvDz, cc-pcvTz, cc-pcvQz basis-sets using HF and DFT nodale surfaces with 1 determinant. }
\label{tab:DFT-H2O}
\begin{tabular}{lcccc}
\hline
Method& cc-pcvDz & cc-pcvTz & cc-pcvQz &CBS \\ \hline
Hartree Fock &-76.0271766506 &-76.0573172765 &-76.0649040131&-76.06898746\\
PBE & -76.3355494055&-76.3743286157 &-76.3840723976&-76.38931444\\
PBE0 & -76.3402905995& -76.3753524250&-76.3841796010&-76.38893093\\
B3LYP & -76.3849274149& -76.4237882022&-76.4332604748&-76.43831592\\
DMC(HF) & 76.409528 (501)& -76.419666 (143)&-76.421526 (360)&-76.42243128\\
DMC(PBE) &-76.410094 (624) & -76.420453 (434)&-76.422582 (361)&-76.42366162\\
DMC(PBE0) & -76.410533 (843)& -76.420505 (381)&-76.422983 (595)&-76.42431230\\
DMC(B3LYP) & -76.409494 (681)& -76.420054 (455)&-76.423077 (367)&-76.42475463\\
CIPSI$^\dagger$& -76.282136 & -76.388287 & -76.419324 &-76.43662728\\
DMC$^\dagger$&-76.41571(20)&-76.43182(19)&-76.43622(14)&-76.43863601\\
\end{tabular}
\begin{flushleft}
$^\dagger$Ref.\onlinecite{Caffarel2016}.\\
%$^1$Ref.~\onlinecite{stefanovich1994}.\\
%$^2$Ref.~\onlinecite{bouvier01}.\\
%$^3$Refs.~\onlinecite{fukuhara93,bouvier00,bouvier03}.\\
%$^4$Refs.~\onlinecite{aldebert85,howard88}.\\
%$^5$Ref.~\onlinecite{desgreniers99}.\\
%$^6$Ref.~\onlinecite{lynch74}.\\
%$^\parallel$Estimated in Ref.~\onlinecite{stefanovich1994} from enthalpy differences in Ref.~\onlinecite{ackermann1975}.\\
\end{flushleft}
\end{table*}
While a scan of the different values
\begin{table*}[t]
\centering
\caption{Total energy (Ha) of H2O molecule using cc-pcvDz, cc-pcvTz, cc-pcvQz basis-sets. using RSDFT with a PBE functional using 4 various ranges $\mu$. CIPSI(RSDFT) corresponds to the long range Wavefunction treated with selected CI. DMC(RSDFT) corresponds to the DMC with a RSDFT-PBE nodale surface containing 1 determinant. DMC(RSCI) corresponds to the DMC with a RSCI nodale surface. Nb dets is the number of determinants when sCI expansions are used. In the case of RSDFT(PBE) and DMC(RSDFT) the number of determinants is 1. }
\label{tab:RSDFT-H2O}
\begin{tabular}{ccccc}
\hline \hline
Basis-set & Truncation & Nb dets& DMC(RS-CI) \\ \hline
\multirow{6}{*}{cc-pcvDz}
& $10^{-4}$ & 1635 & -76.414399 (526) \\
& $10^{-5}$ & 13545 & -76.416102 (459) \\
& $10^{-6}$ & 50928 & -76.417872 (480) \\
& $10^{-10}$ &466607 &-76.418333 (604)\\
& sCI-CIPSI$^\dagger$ &172256& -76.415710 (200)\\
& extrapolated & - & \\
\hline
\multirow{6}{*}{cc-pcvTz}
& $10^{-4}$ & 2422& -76.423138 (313) \\
& $10^{-5}$ & 32128 & -76.428206 (325) \\
& $10^{-6}$ & 225188 & -76.430162 (440) \\
& $10^{-10}$ &2000000 & -76.432267 (611) \\
& sCI-CIPSI$^\dagger$ &640426& -76.431820 (190)\\
& extrapolated & - & \\
\hline
\multirow{6}{*}{cc-pcvQz}
& $10^{-4}$ & 2771 & -76.424923 (304) \\
& $10^{-5}$ & 44705& -76.430322 (322) \\
& $10^{-6}$ & 333724& -76.432890 (311) \\
& $10^{-10}$ &2000000&-76.435098 (539)\\
&sCI-CIPSI$^\dagger$& 666927&-76.436220 (140)\\
& extrapolated & - & \\
\hline
\end{tabular}
\begin{flushleft}
$^\dagger$Ref.\onlinecite{Caffarel2016}.\\
\end{flushleft}
\end{table*}
The CBS extrapolated energy is -76.43652806 from DMC(RS-CI)
%\subsection{Heterocyclic rings}
%\label{subsec:rings}
%\subsubsection{symptomatic case}
%In this section, we describe a case where a closed shell molecule $(C_2H_2)(CH_2)_2O$(\ref{Fig:Amon}) (Weird molecule I don't know how to name) shows a large dependence of the nodal surface to the exchange and correlation functional used to generate the trial wavefunction. This molecule is part of the Amon5 data set (citation) and led to an error of 5 kcal/mol between nodal surface using B3LYP or PBE0. As shown in Tab-\ref{tab:Amon}.
%\begin{table*}[t]
%\centering
%\caption{Total energy (Ha) of$(C_2H_2)(CH_2)_2O$ molecule using cc-pcvNz basis-sets, where N=D,T,Q. using RSDFT with a PBE functional using 4 various ranges $\mu$. CIPSI(RSDFT) corresponds to the long range Wavefunction treated with selected CI. DMC(RSDFT) corresponds to the DMC with a RSDFT-PBE nodale surface containing 1 determinant. DMC(RSCI) corresponds to the DMC with a RSCI nodale surface. Nb dets is the number of determinants when sCI expansions are used. In the case of RSDFT(PBE) and DMC(RSDFT) the number of determinants is 1. }
%\label{tab:RSDFT-H2O}
%\begin{tabular}{ccccc}
%\hline \hline
% Basis-set & $\mu$ & Nb dets& RS-CI& DMC(RS-CI) \\ \hline
%\multirow{6}{*}{cc-pcvDz}
%& 0.5 & 1071193 &-230.9072267556 &-231.171773 0.000919\\
%& 1.0 & & &\\
%& 1.5 & & &\\
%& 2.0 & & &\\
%& 3.0 & & &\\
%\hline
%
%\multirow{6}{*}{cc-pcvTz}
%& 0.5 & & &\\
%& 1.0 & & &\\
%& 1.5 & & &\\
%& 2.0 & & &\\
%& 3.0 & & &\\
% \hline
%\end{tabular}
%\end{table*}
%\begin{table*}
%\centering
%\caption{CCSD(T), sCI and RS-CI total energies of $(C_2H_2)(CH_2)_2O$ with corresponding nodal surfaces.}
%\label{tab:Amon}
%\begin{tabular}{lcccc}
%\hline
%Method & cc-pvDz & cc-pvTz & cc-pvQz & CBS\\
%\hline
%B3LYP &-231.093329385307 &-231.170584346714 & -231.253886194304&-231.30756751\\
%LDA &-226.788590559813 &-226.879468843886 & -226.897145319615&-226.90593931\\
%M06-L &-231.203556502805 &-231.264239822355 & -231.289463622331&-231.30441811\\
%PBE &-230.944478188641 &-231.016720117095 & -231.035891670978&-231.04634726\\
%PBE0 &-230.968714378770 &-231.035555580761 & -231.053142060619&-231.06271325\\
%REVPBE &-231.167251334987 &-231.235909155231 & -231.255234805111&-231.26591964\\
%%TPSSH &-231.253886194304 &-231.320766126893 & -231.338230427467 &-231.34771758\\
%DMC(B3LYP) &-231.160238 +/- 0.000575 & -231.177485 +/- 0.000683 &-231.179359 +/- 0.000572 &-231.18002589 +/- 0.0011\\
%DMC(LDA) &-231.158100 +/- 0.000889 & -231.176895 +/- 0.000951 &-231.178217 +/- 0.000577 &-231.17845634 +/- %0.0013\\
%DMC(M06-L) &-231.157596 +/- 0.000634 & -231.172360 +/- 0.000821 &-231.176893 +/- 0.000653 &-231.17944595 +/- 0.0011\\
%DMC(PBE) &-231.159047 +/- 0.000703 & -231.175740 +/- 0.000687 &-231.181002 +/- 0.000509 &-231.18398105 +/- 0.0011\\
%DMC(PBE0) &-231.161049 +/- 0.000839 & -231.175554 +/- 0.000639 &-231.179289 +/- 0.000715 &-231.18131093 +/- 0.0013\\
%DMC(REVPBE) &-231.159579 +/- 0.000627 & -231.173518 +/- 0.000690 &-231.178781 +/- 0.000718 &-231.18185675 +/- 0.0013\\
%DMC(TPSSH) & & -231.176844 +/- 0.000883 \\
%CIPSI & -230.573665595769 & -230.830792783359 & \\
%RS-CI & & & \\
%DMC(CIPSI)& -231.178695 0.000842& -231.179043 +/- 0.000795 \\
%DMC(RS-CI) & \\
%CCSD(T) &-230.6086906999973937& -230.9115831028316285& -231.051884751321992&-231.13627366\\
%\end{tabular}
%\end{table*}
%\begin{figure}
% \includegraphics[width=1.5in]{frag_00278.jpg}
% \caption{Cyclic $(C_2H_2)(CH_2)_2O$. Colored atoms represent Carbon (dark gray), Oxygen (red) and Hydrogen (light gray) }
% \label{Fig:Amon}
%\end{figure}
\subsection{Reaction barrier heights for cycloreversion of heterocyclic rings \label{subsubsec:DMC}}
%TO MODIFY THIS TEXT!!! COPY PASTE FROM PAPER: http://dx.doi.org/10.1016/j.chemphys.2015.07.005 :\\
Cycloaddition reactions (or in the reverse direction; cycloreversion reactions) are one of the most important classes of organic reactions for converting simple unsaturated building blocks to cyclic structures and vice versa. Over the past decade a number of barrier height datasets of cycloaddition reactions have been constructed for the purpose of evaluating the performance of DFT and computationally economical ab initio methods [69]. It has been found that many DFT and ab initio methods perform poorly in computing the barrier heights of cycloaddition reactions.
END OF COPY PASTE\\
\subsubsection{All electrons \label{subsubsubsec:AE}}
\begin{figure}
\includegraphics[width=3.5 in]{Reactant-Transition.jpg}
\caption{Reaction path of the cyloreversion of $N-CH-O-CH_2O$. Left molecule represents the cyclic molecule $N-CH-O-CH_2O$ as a reactant phase, while the right molecules represent the 2 fragments after the cycloreversion $CH_2$=$O$ + $NCH$=$O$. Colored atoms represent Carbon (dark gray), Oxygen (red), Nitrogen (blue) and Hydrogen (light gray)}
\label{fig:Cycloreversion}
\end{figure}
In Single determinant DMC, All hell breaks loose.
\begin{figure}
\includegraphics[width=5 in]{Plot-Barrier.jpg}
\caption{DMC energy (KCal/mol) of the cycloreversion barrier in function of multiple trial wavefunctions }
\label{fig:barrier}
\end{figure}
\begin{table*}[t]
\centering
\caption{Total energy (Ha) of Reactant $NCOHCH_2O$ molecule using cc-pcvTz basis-sets. using RSDFT with a PBE functional using 4 various ranges $\mu$. CIPSI(RSDFT) corresponds to the long range Wavefunction treated with selected CI. DMC(RSDFT) corresponds to the DMC with a RSDFT-PBE nodale surface containing 1 determinant. DMC(RSCI) corresponds to the DMC with a RSCI nodale surface. Nb dets is the number of determinants when sCI expansions are used. In the case of RSDFT(PBE) and DMC(RSDFT) the number of determinants is 1. }
\label{tab:RSDFT-Reactant}
\begin{tabular}{cccccccccccccccc}
\hline \hline
$\mu$ & Nb dets& RS-CI & DMC(RS-CI) \\ \hline
%\multirow{9}{*}{cc-pcvDz}
0.5&1157288&-282.9133058711&-283.094003 0.000927\\
1.0&1904949&-282.8057502175&-283.103138 0.000927\\
1.5&1977527&-282.7101915981&-283.099866 0.000664\\
2.0&1013451&-282.6154071485&-283.099842 0.001062\\
3.0&3004675&-282.6828501511&-283.096674 0.001918\\
CIPSI (unconverged)&\\
\hline
\end{tabular}
\end{table*}
\begin{table*}[t]
\centering
\caption{Total energy (Ha) of Transition $NCOHCH_2O$ molecule using cc-pcvTz basis-sets. using RSDFT with a PBE functional using 4 various ranges $\mu$. CIPSI(RSDFT) corresponds to the long range Wavefunction treated with selected CI. DMC(RSDFT) corresponds to the DMC with a RSDFT-PBE nodale surface containing 1 determinant. DMC(RSCI) corresponds to the DMC with a RSCI nodale surface. Nb dets is the number of determinants when sCI expansions are used. In the case of RSDFT(PBE) and DMC(RSDFT) the number of determinants is 1. }
\label{tab:RSDFT-Transition}
\begin{tabular}{cccccccccccccccc}
\hline \hline
$\mu$ & Nb dets& RS-CI & DMC(RS-CI) \\ \hline
%\multirow{9}{*}{cc-pcvDz}
0.5&1107227&-282.8266993882&-283.016690 0.000992\\
1.0&1755071&-282.7189345822&-283.027787 0.000979\\
1.5&1685418&-282.6247889824&-283.022182 0.000827\\
2.0&1020333&-282.5500457103&-283.017502 0.000869\\
3.0&1034451&-282.5325749807&-283.013154 0.000668\\
CIPSI (unconverged)& \\
\hline
\end{tabular}
\end{table*}
\section{\label{sec:summary}Summary and Conclusions}
\begin{figure*}
\includegraphics[width=7 in]{All-cyclo.eps}
\caption{All results for cyclo-reversion barrier with cc-pvNz and aug-ccpvNz where N=D,T,Q. ALL DATA AND BETTER CURVES TOMORROW }
\label{fig:Cycloreversion-ALL}
\end{figure*}
\begin{figure*}
\includegraphics[width=7 in]{Raw-data.eps}
\caption{All results for cyclo-reversion barrier with cc-pvNz and aug-ccpvNz where N=D,T,Q.ALL DATA AND BETTER CURVES TOMORROW }
\label{fig:Cycloreversion-ALL}
\end{figure*}
\subsubsection{Using ECP \label{subsubsubsec:AE}}
\begin{table*}[t]
\centering
\caption{Total energy (Ha) of }
\label{tab:RSDFT-H2O}
\begin{tabular}{cccccc}
\hline \hline \\
& & & Reactant& &Transition \\
$\mu$ & Truncation & Nb dets& DMC(RS-CI) & Nb dets& DMC(RS-CI)\\ \hline
\multirow{6}{*}{0.5}
& $10^{-4}$ & 1680 & -55.040788 +/- 0.000600 & 2193 & -54.965952 +/- 0.000564 \\
& $10^{-5}$ & 149014 & -55.046736 +/- 0.000487 & 207757 & -54.974071 +/- 0.000438 \\
& $10^{-6}$ & 580538 & -55.049582 +/- 0.000713 & 785845 & -54.975797 +/- 0.001028 \\
& $10^{-8}$ & 878696 & -55.052633 +/- 0.000768 & 1208211 & -54.981078 +/- 0.001185\\
& Extrapolated & - & \\
\hline
\multirow{6}{*}{1.0}
& $10^{-4}$ & 19096 & -55.037836 +/- 0.000937 & 19836 & -54.962879 +/- 0.000694 \\
& $10^{-5}$ & 421767 & -55.052299 +/- 0.000510 & 622751 & -54.979127 +/- 0.000759 \\
& $10^{-6}$ & 706987 & -55.055190 +/- 0.000866 & 1028113 & -54.982507 +/- 0.001025 \\
& $10^{-8}$ & 1028094 & -55.058087 +/- 0.001991 & 1456385 & -54.981470 +/- 0.001254 \\
& Extrapolated & - & \\
\hline
\multirow{6}{*}{1.5}
& $10^{-4}$ & 40490 & -55.037286 +/- 0.000549 & 37140 & -54.959592 +/- 0.000550 \\
& $10^{-5}$ & 684372 & -55.056664 +/- 0.000631 & 757980 & -54.979372 +/- 0.000675 \\
& $10^{-6}$ & 983169 & -55.057857 +/- 0.001030 & 1130973 & -54.981564 +/- 0.001080\\
& $10^{-8}$ & 1396355 & -55.058601 +/- 0.001201 &-1570198 & -54.980353 +/- 0.000821\\
& Extrapolated & - & \\
\hline
\multirow{6}{*}{1.8830139217}
& $10^{-4}$ & 51499 & -55.037119 +/- 0.000488 & 42355 & -54.959355 +/- 0.000739 \\
& $10^{-5}$ & 711366 & -55.056517 +/- 0.000673 & 688729 & -54.976469 +/- 0.000704\\
& $10^{-6}$ & 972113 & -55.054687 +/- 0.000715 & 974856 & -54.978992 +/- 0.000643 \\
& $10^{-8}$ & 1366649 & -55.054010 +/- 0.001094 & 1345970 & -54.978489 +/- 0.001518 \\
& Extrapolated & - & \\
\hline
\multirow{6}{*}{2.0}
& $10^{-4}$ & 52308 & -55.037627 +/- 0.000559 & 42913 & -54.958773 +/- 0.000654\\
& $10^{-5}$ & 727269 & -55.055610 +/- 0.000516 & 722231 & -54.978088 +/- 0.000736 \\
& $10^{-6}$ & 993584 & -55.053594 +/- 0.000896 & 1032111 & -54.978177 +/- 0.000855\\
& $10^{-8}$ & 1388907 & -55.053472 +/- 0.001130 & 1406982 & -54.979097 +/- 0.001066 \\
& Extrapolated & - & \\
\hline
\multirow{6}{*}{2.5}
& $10^{-4}$ & 62531 & -55.037055 +/- 0.000666 & 48428 & -54.955501 +/- 0.000494 \\
& $10^{-5}$ & 891316 & -55.055441 +/- 0.000816 & 696588 & -54.973473 +/- 0.000658 \\
& $10^{-6}$ & 1269257 & -55.056701 +/- 0.001269 & 971339 & -54.974249 +/- 0.001212 \\
& $10^{-8}$ & 1693057 & -55.053642 +/- 0.001261 & 1311271 & -54.975223 +/- 0.001043 \\
& Extrapolated & - & \\
\hline
\multirow{6}{*}{3.0}
& $10^{-4}$ & 64785 & -55.035541 +/- 0.000620 & 55062 & -54.956031 +/- 0.000838 \\
& $10^{-5}$ & 826390 & -55.053692 +/- 0.000548 & 715827 & -54.974286 +/- 0.000671 \\
& $10^{-6}$ & 1152612 & -55.053633 +/- 0.000814 & 994538 & -54.972605 +/- 0.001253 \\
& $10^{-8}$ & 1529509 & -55.049750 +/- 0.000949 & 1323590 & -54.972679 +/- 0.001963 \\
& Extrapolated & - & \\
\hline
\end{tabular}
\begin{flushleft}
\end{flushleft}
\end{table*}
\begin{acknowledgments}
An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research has used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. AB, was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program and Center for Predictive Simulation of Functional Materials.
% MDF citation - H. Shin 07/04
Input and output files for calculations are available on the Materials Data Facility, {\tt https://materialsdatafacility.org/}, DOI:To come.
\end{acknowledgments}
\bibliography{Bib}
\end{document}
%
% ****** End of file apssamp.tex ******

View File

@ -1,2 +0,0 @@
# RSDFT-CIPSI-QMC