saving work
This commit is contained in:
parent
071a0232e2
commit
376082e0fd
@ -1,13 +1,23 @@
|
||||
%% This BibTeX bibliography file was created using BibDesk.
|
||||
%% http://bibdesk.sourceforge.net/
|
||||
|
||||
%% Created for Pierre-Francois Loos at 2020-08-16 14:01:03 +0200
|
||||
%% Created for Pierre-Francois Loos at 2020-08-16 15:38:12 +0200
|
||||
|
||||
|
||||
%% Saved with string encoding Unicode (UTF-8)
|
||||
|
||||
|
||||
|
||||
@article{Giner_2013,
|
||||
Author = {E. Giner and A. Scemama and M. Caffarel},
|
||||
Date-Added = {2020-08-16 15:38:03 +0200},
|
||||
Date-Modified = {2020-08-16 15:38:03 +0200},
|
||||
Journal = {Can. J. Chem.},
|
||||
Pages = {879},
|
||||
Title = {Using perturbatively selected configuration interaction in quantum Monte Carlo calculations},
|
||||
Volume = {91},
|
||||
Year = {2013}}
|
||||
|
||||
@article{Becke_2014,
|
||||
Author = {A. D. Becke},
|
||||
Date-Added = {2020-08-16 14:00:56 +0200},
|
||||
@ -970,16 +980,6 @@
|
||||
Year = {2016},
|
||||
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.5b01170}}
|
||||
|
||||
@article{Giner_2013,
|
||||
Author = {Giner Emmanuel and Scemama Anthony and Caffarel Michel},
|
||||
Journal = {Can. J. Chem.},
|
||||
Month = {Apr},
|
||||
Publisher = {NRC Research Press},
|
||||
Title = {{Using perturbatively selected configuration interaction in quantum Monte Carlo calculations}},
|
||||
Url = {https://www.nrcresearchpress.com/doi/10.1139/cjc-2013-0017},
|
||||
Year = {2013},
|
||||
Bdsk-Url-1 = {https://www.nrcresearchpress.com/doi/10.1139/cjc-2013-0017}}
|
||||
|
||||
@article{Bender_1969,
|
||||
Author = {Bender, Charles F. and Davidson, Ernest R.},
|
||||
Doi = {10.1103/PhysRev.183.23},
|
||||
@ -1367,19 +1367,16 @@
|
||||
Volume = {100},
|
||||
Year = {2004}}
|
||||
|
||||
|
||||
|
||||
@article{Nightingale_2001,
|
||||
author = {Nightingale, M. P. and Melik-Alaverdian, Vilen},
|
||||
title = {{Optimization of Ground- and Excited-State Wave Functions and van der Waals
|
||||
Clusters}},
|
||||
journal = {Phys. Rev. Lett.},
|
||||
volume = {87},
|
||||
number = {4},
|
||||
pages = {043401},
|
||||
year = {2001},
|
||||
month = {Jul},
|
||||
issn = {1079-7114},
|
||||
publisher = {American Physical Society},
|
||||
doi = {10.1103/PhysRevLett.87.043401}
|
||||
}
|
||||
Author = {Nightingale, M. P. and Melik-Alaverdian, Vilen},
|
||||
Doi = {10.1103/PhysRevLett.87.043401},
|
||||
Issn = {1079-7114},
|
||||
Journal = {Phys. Rev. Lett.},
|
||||
Month = {Jul},
|
||||
Number = {4},
|
||||
Pages = {043401},
|
||||
Publisher = {American Physical Society},
|
||||
Title = {{Optimization of Ground- and Excited-State Wave Functions and van der Waals Clusters}},
|
||||
Volume = {87},
|
||||
Year = {2001},
|
||||
Bdsk-Url-1 = {https://doi.org/10.1103/PhysRevLett.87.043401}}
|
||||
|
@ -168,9 +168,9 @@ Another approach consists in considering the FN-DMC method as a
|
||||
\emph{post-FCI method}. The trial wave function is obtained by
|
||||
approaching the FCI with a selected configuration interaction (SCI)
|
||||
method such as CIPSI for instance.\cite{Giner_2013,Giner_2015,Caffarel_2016_2}
|
||||
\toto{When the basis set is enlarged, the trial wave function gets closer to
|
||||
When the basis set is enlarged, the trial wave function gets closer to
|
||||
the exact wave function, so we expect the nodal surface to be
|
||||
improved.\cite{Caffarel_2016} }
|
||||
improved.\cite{Caffarel_2016}
|
||||
This technique has the advantage of using the FCI nodes in a given basis
|
||||
set, which is perfectly well defined and therefore makes the calculations reproducible in a
|
||||
black-box way without needing any expertise in QMC.
|
||||
@ -486,9 +486,9 @@ range separation parameter (\ie, $0 < \mu < +\infty$).
|
||||
For this purpose, we consider a weakly correlated molecular system, namely the water
|
||||
molecule near its equilibrium geometry. \cite{Caffarel_2016}
|
||||
We then generate trial wave functions $\Psi^\mu$ for multiple values of
|
||||
\toto{$\mu$, and compute the associated fixed-node energy keeping fixed all the
|
||||
$\mu$, and compute the associated fixed-node energy keeping fixed all the
|
||||
parameters such as the CI coefficients and molecular orbitals impacting the
|
||||
nodal surface.}
|
||||
nodal surface.
|
||||
|
||||
%======================================================
|
||||
\subsection{Fixed-node energy of $\Psi^\mu$}
|
||||
@ -535,8 +535,8 @@ Such behaviour can be directly compared to the common practice of
|
||||
re-optimizing the multideterminant part of a trial wave function $\Psi$ (the so-called Slater part) in the presence of the exponentiated Jastrow factor $e^J$. \cite{Umrigar_2005,Scemama_2006c,Umrigar_2007,Toulouse_2007,Toulouse_2008}
|
||||
Hence, in the present paragraph, we would like to elaborate further on the link between RS-DFT
|
||||
and wave function optimization in the presence of a Jastrow factor.
|
||||
\toto{For simplicity in the comparison, the molecular orbitals and the Jastrow
|
||||
factor are kept fixed: only the CI coefficients are modified.}
|
||||
For simplicity in the comparison, the molecular orbitals and the Jastrow
|
||||
factor are kept fixed: only the CI coefficients are modified.
|
||||
|
||||
Let us assume a fixed Jastrow factor $J(\br_1, \ldots , \br_N)$,
|
||||
and a corresponding Slater-Jastrow wave function $\Phi = e^J \Psi$,
|
||||
|
Loading…
Reference in New Issue
Block a user