Removed table

This commit is contained in:
Anthony Scemama 2020-08-18 12:10:03 +02:00
parent 6b5714fdbe
commit 1d8e3c382e
3 changed files with 42 additions and 45 deletions

View File

@ -6792,7 +6792,7 @@ dev.off()
** On-top pair density
#+begin_src R :results output graphics :file (org-babel-temp-file "figure" ".png") :exports both :width 600 :height 400 :session *R*
breaks <- c("0.00", "0.25", "0.50", "1.00", "$\\infty$", "Jastrow")
breaks <- c("0.00", "0.25", "0.50", "1.00", "2.00", "5.00", "$\\infty$", "Jastrow")
tmp_data <- read.csv("H2O_1.e-6.density")
data.0 <- data.frame(mu=breaks[1], x=tmp_data$X..distance, n=tmp_data$on.top)
@ -6806,32 +6806,49 @@ data.0.5 <- data.frame(mu=breaks[3], x=tmp_data$X..distance, n=tmp_data$on.top)
tmp_data <- read.csv("H2O_1.0.density")
data.1.0 <- data.frame(mu=breaks[4], x=tmp_data$X..distance, n=tmp_data$on.top)
tmp_data <- read.csv("H2O_2.0.density")
data.2.0 <- data.frame(mu=breaks[5], x=tmp_data$X..distance, n=tmp_data$on.top)
tmp_data <- read.csv("H2O_5.0.density")
data.5.0 <- data.frame(mu=breaks[6], x=tmp_data$X..distance, n=tmp_data$on.top)
tmp_data <- read.csv("H2O_1e6.density")
data.inf <- data.frame(mu=breaks[5], x=tmp_data$X..distance, n=tmp_data$on.top)
data.inf <- data.frame(mu=breaks[7], x=tmp_data$X..distance, n=tmp_data$on.top)
tmp_data <- read.csv("H2O.density")
data.J <- data.frame(mu=breaks[6], x=tmp_data$X..distance, n=tmp_data$on.top)
data.J <- data.frame(mu=breaks[8], x=tmp_data$X..distance, n=tmp_data$on.top)
data <- rbind(data.0, data.0.25, data.0.5, data.1.0, data.inf)
data <- rbind(data.0, data.0.25, data.0.5, data.1.0, data.2.0, data.5.0, data.inf)
labels= TeX(breaks)
labels[1] <- TeX("\u00B5=$0.00$, $(1.443)$")
labels[2] <- TeX("\u00B5=$0.25$, $(1.438)$")
labels[3] <- TeX("\u00B5=$0.50$, $(1.423)$")
labels[4] <- TeX("\u00B5=$1.00$, $(1.378)$")
labels[5] <- TeX("\u00B5=$2.00$, $(1.325)$")
labels[6] <- TeX("\u00B5=$5.00$, $(1.288)$")
labels[7] <- TeX("\u00B5=\\infty, $(1.277)$")
labels[8] <- TeX("Jastrow $(1.404)$")
p <- ggplot(data, aes(x=x, y=n, col=mu))
p <- p + geom_line(lwd=1.5)
p <- p + geom_line(data=data.J, lwd=1, col=1, linetype="dashed")
p <- p + scale_colour_discrete(name = TeX("$\\mu$"), breaks = breaks,
p <- p + scale_colour_discrete(name = "", breaks = breaks,
labels = labels)
#p <- p + scale_color_brewer(palette = "Paired")
p <- p + scale_x_continuous(name=TeX("$r_{O-H}$ (bohr)"))
p <- p + scale_y_continuous(name = "On-top pair density (a.u.)")
p <- p + theme(text = element_text(size = 20, family="Times"), legend.position=c(.85,.75), legend.text.align = 0)
p <- p + theme(text = element_text(size = 20, family="Times"),
legend.title=element_blank(),
legend.position=c(.81,.75), legend.text.align = 0)
p
#+end_src
#+RESULTS:
[[file:/tmp/babel-eZHQur/figureWPqghB.png]]
[[file:/tmp/babel-eZHQur/figureKY394n.png]]
#+begin_src R :results output :session *R* :exports both
pdf("../Manuscript/on-top-mu.pdf", family="Times", width=8, height=5)
@ -7201,7 +7218,7 @@ p
#+end_src
#+RESULTS:
[[file:/tmp/babel-eZHQur/figureXcyXmu.png]]
[[file:/tmp/babel-eZHQur/figureB8MCqS.png]]
#+begin_src R :results output :session *R* :exports both
pdf("../Manuscript/g2-dmc.pdf", family="Times", width=16, height=5)
@ -7243,7 +7260,7 @@ p
#+end_src
#+RESULTS:
[[file:/tmp/babel-eZHQur/figureS69edW.png]]
[[file:/tmp/babel-eZHQur/figureFlQgjd.png]]
#+begin_src R :results output :session *R* :exports both
pdf("../Manuscript/g2-ndet.pdf", family="Times", width=16, height=5)

Binary file not shown.

View File

@ -643,38 +643,18 @@ This confirms that introducing short-range correlation with DFT has
an impact on the CI coefficients similar to a Jastrow factor.
This is yet another key result of the present study.
%%% TABLE II %%%
\begin{table}
\caption{\ce{H2O}, double-zeta basis set. Integrated on-top pair density $\expval{ P }$
for $\Psi^J$ and $\Psi^\mu$ with different values of $\mu$.
\titou{Please remove table and merge data in Fig. 4.}}
\label{tab:table_on_top}
\begin{ruledtabular}
\begin{tabular}{cc}
$\mu$ & $\expval{ P }$ \\
\hline
0.00 & 1.443 \\
0.25 & 1.438 \\
0.50 & 1.423 \\
1.00 & 1.378 \\
2.00 & 1.325 \\
5.00 & 1.288 \\
$\infty$ & 1.277 \\
\hline
$\Psi^J$ & 1.404 \\
\end{tabular}
\end{ruledtabular}
\end{table}
%%% %%% %%% %%%
%%% FIG 4 %%%
\begin{figure*}
\includegraphics[width=\columnwidth]{density-mu.pdf}
\includegraphics[width=\columnwidth]{on-top-mu.pdf}
\caption{One-electron density $n(\br)$ (left) and on-top pair
density $n_2(\br,\br)$ (right) along the \ce{O-H} axis of \ce{H2O} as a function of $\mu$ for $\Psi^J$ (dashed curve) and $\Psi^\mu$.
For these two trial wave functions, the CI expansion consists of the 200 most important
determinants of the FCI expansion obtained with the VDZ-BFD basis (see Sec.~\ref{sec:rsdft-j} for more details).}
\caption{\toto{One-electron density $n(\br)$ (left) and on-top pair
density $n_2(\br,\br)$ (right) along the \ce{O-H} axis of \ce{H2O}
as a function of $\mu$ for $\Psi^\mu$, and $\Psi^J$ (dashed
curve).
The integrated on-top pair density $\expval{P}$ is
given in the legend.
For all trial wave functions, the CI expansion consists of the 200 most important
determinants of the FCI expansion obtained with the VDZ-BFD basis (see Sec.~\ref{sec:rsdft-j} for more details).}}
\label{fig:densities}
\end{figure*}
%%% %%% %%% %%%
@ -682,7 +662,7 @@ This is yet another key result of the present study.
In order to refine the comparison between $\Psi^\mu$ and $\Psi^J$, we
report several quantities related to the one- and two-body densities of
$\Psi^J$ and $\Psi^\mu$ with different values of $\mu$. First, we
report in Table~\ref{tab:table_on_top} the integrated on-top pair density
report in the legend of Fig~\ref{fig:densities} the integrated on-top pair density
\begin{equation}
\expval{ P } = \int d\br \,\,n_2(\br,\br)
\end{equation}
@ -694,21 +674,21 @@ the plots of the total density $n(\br)$ and on-top pair density
$n_2(\br,\br)$ along one of the \ce{O-H} axis of the water molecule.
From these data, one can clearly notice several trends.
First, from Table~\ref{tab:table_on_top}, we can observe that the overall
on-top pair density decreases when $\mu$ increases, which is expected
as the two-electron interaction increases in $H^\mu[n]$.
First, the overall on-top pair density decreases when $\mu$ increases,
which is expected as the two-electron interaction increases in
$H^\mu[n]$.
Second, Fig.~\ref{fig:densities} shows that the relative variations of the on-top pair density with respect to $\mu$
are much more important than that of the one-body density, the latter
being essentially unchanged between $\mu=0$ and $\mu=\infty$ while the
former can vary by about 10$\%$ in some regions.
%TODO TOTO
In the high-density region of the \ce{O-H} bond, the value of the on-top
\toto{In the high-density region of the \ce{O-H} bond, the value of the on-top
pair density obtained from $\Psi^J$ is superimposed with
$\Psi^{\mu=0.5}$, and at a large distance the on-top pair density of $\Psi^J$ is
the closest to $\mu=\infty$. The integrated on-top pair density
obtained with $\Psi^J$ lies between the values obtained with
$\mu=0.5$ and $\mu=1$~bohr$^{-1}$ (see Table~\ref{tab:table_on_top}), consistently with the FN-DMC energies
and the overlap curve depicted in Fig.~\ref{fig:overlap}.
obtained with $\Psi^J$ is $\expval{P}=1.404$, between the values obtained with
$\mu=0.5$ and $\mu=1$~bohr$^{-1}$, consistently with the FN-DMC energies
and the overlap curve depicted in Fig.~\ref{fig:overlap}.}
These data suggest that the wave functions $\Psi^{0.5 \le \mu \le 1}$ and $\Psi^J$ are close,
and therefore that the operators that produced these wave functions (\ie, $H^\mu[n]$ and $e^{-J}He^J$) contain similar physics.