Figure algo
This commit is contained in:
parent
3d5a003050
commit
0ff8cd4b99
@ -24,9 +24,61 @@
|
||||
%\node[inst] (h0) at (0,2.5) { $\tilde{H}^{(k)} = \tilde{H}(n^{(k)})$ };
|
||||
%\node[res] (h0) at (3,2.5) { $E^{(k)}$ };
|
||||
|
||||
Na ( 3.929174,-1.038386) 0.000000
|
||||
Mg ( 2.435205,-1.172771) 0.000000
|
||||
O ( 2.101351,-2.635146) 0.000000
|
||||
F ( 3.388986,-3.404559) 0.000000
|
||||
Ne ( 4.518642,-2.417707) 0.000000
|
||||
Al ( 1.500000, 0.000000) 0.000000
|
||||
Si ( 2.250000, 1.299038) 0.000000
|
||||
N ( 0.749849,-3.285870) 0.000000
|
||||
C (-0.601539,-2.634910) 0.000000
|
||||
B (-0.935138,-1.172476) 0.000000
|
||||
Be (-0.000001,-0.000000) 0.000000
|
||||
Li (-0.793853, 1.272713) 0.000000
|
||||
H (-3.052250, 2.221211) 0.000000
|
||||
He (-2.258396, 0.948498) 0.000000
|
||||
XX (-0.663664, 2.334763) 0.000000
|
||||
XX ( 0.633384,-4.349513) 0.000000
|
||||
XX ( 4.716656,-0.313975) 0.000000
|
||||
|
||||
|
||||
node distance=2cm,on grid,>=stealth',
|
||||
Op1/.style={circle,draw,fill=yellow!40},
|
||||
Op2/.style={circle,draw,fill=orange!40},
|
||||
Op3/.style={circle,draw,fill=red!40},
|
||||
Op4/.style={circle,draw,fill=violet!40},
|
||||
DeadOp/.style={circle,draw,fill=gray!40},
|
||||
Input/.style={fill=white!40},
|
||||
Output/.style={fill=white!40}]
|
||||
\node [Op1, align=center] (G) at (3*0.587785, 3*0.809017) {$G$};
|
||||
\node [DeadOp, align=center] (Gamma) at (3*0.951057, -3*0.309017) {$\Gamma$};
|
||||
\node [Op2, align=center] (P) at (3*0, -3*1.00000) {$P$};
|
||||
\node [Op3, align=center] (W) at (-3*0.951057, -3*0.309017) {$W$};
|
||||
\node [Op4, align=center] (Sigma) at (-3*0.587785, 3*0.809017) {$\Sigma$};
|
||||
\node [Input, align=center] (In) [above=of G] {};
|
||||
\node [Output, align=center] (Out) [above=of Sigma] {};
|
||||
\node [Input, align=center] (In) [above=of G, yshift=1cm] {KS-DFT};
|
||||
\node [Output, align=center] (Out) [above=of Sigma, yshift=1cm] {BSE};
|
||||
\path
|
||||
(G) edge [->,color=gray!50] node [above,sloped,black] {$\Gamma = 1 + \fdv{\Sigma}{G} GG \Gamma$} (Gamma)
|
||||
(Gamma) edge [->,color=gray!50] node [below,sloped,black] {$P = - i GG \Gamma$} (P)
|
||||
(P) edge [->,color=black] node [above,sloped,black] {$W = v + vPW$} (W)
|
||||
(W) edge [->,color=black] node [above,sloped,black] {$\Sigma = i GW\Gamma$} (Sigma)
|
||||
(Sigma) edge [->,color=black] node [above,sloped,black] {$G = G_\text{0} + G_\text{0} \Sigma G$} (G)
|
||||
(G) edge [->,color=black] node [above,sloped,black] {$P = - i GG \quad (\Gamma = 1)$} (P)
|
||||
(In) edge [->,color=black] node [above,sloped,black] {$\varepsilon^\text{KS}$} (G)
|
||||
(Sigma) edge [->,color=black] node [above,sloped,black] {$W(\omega)$ \& $\varepsilon^\text{GW}$} (Out)
|
||||
;
|
||||
|
||||
|
||||
\end{tikzpicture}
|
||||
#+END_SRC
|
||||
|
||||
|
||||
% Nodes
|
||||
\node[arr] at (.5,19) { $\Psi^{(0)}$ };
|
||||
\node[inst] (n0) at (0,18) { Compute one-e density };
|
||||
\node[arr] at () { $\Psi^{(0)}$ };
|
||||
\node[inst] (n0) at (0,18) { Compute one-$e$ density };
|
||||
\draw[nxt] (0,19.5) -- (n0) ;
|
||||
|
||||
\node[inst] (n1) at (0,16) { Compute RSDFT Hamiltonian };
|
||||
@ -96,7 +148,5 @@
|
||||
\draw[nxt] (n14) -- (1., -5.5);
|
||||
\node[arr] at (2.2,-5) { $\Psi_\text{RSDFT-CIPSI}$ };
|
||||
|
||||
\end{tikzpicture}
|
||||
#+END_SRC
|
||||
|
||||
|
||||
|
106
Data/algorithm.tex
Normal file
106
Data/algorithm.tex
Normal file
@ -0,0 +1,106 @@
|
||||
\documentclass{standalone}
|
||||
|
||||
\usepackage{graphicx,bm,microtype,hyperref,algpseudocode,subfigure,algorithm,algorithmicx,multirow,footnote,xcolor,physics,lipsum,wasysym,physics}
|
||||
|
||||
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{arrows,positioning,shapes.geometric}
|
||||
\usetikzlibrary{decorations.pathmorphing}
|
||||
|
||||
\tikzset{snake it/.style={
|
||||
decoration={snake,
|
||||
amplitude = .4mm,
|
||||
segment length = 2mm},decorate}
|
||||
}
|
||||
|
||||
%\usepackage{tgchorus}
|
||||
%\usepackage[T1]{fontenc}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{tikzpicture}[scale=2.3]
|
||||
\begin{scope}[very thick
|
||||
,node distance=2cm,on grid,>=stealth'
|
||||
,Op1/.style={circle,draw,fill=yellow!40}
|
||||
,Ring1/.style={circle,draw,fill=red!40}
|
||||
,Ring2/.style={circle,draw,fill=blue!40}
|
||||
,Ring12/.style={circle,draw,fill=purple!40}
|
||||
,Ring1Test/.style={diamond,draw,fill=red!40}
|
||||
,Ring12Test/.style={diamond,draw,fill=purple!40}
|
||||
,Output/.style={ellipse,draw,fill=orange!40}
|
||||
,Input/.style={rectangle,draw,fill=green!40}
|
||||
]
|
||||
\node [Input, align=center] (H) at (-3.052250,2.221211) { $\Psi^{(0)}$ };
|
||||
\node [Op1, align=center] (He) at (-2.258396,0.948498) { Compute \\ one-$e$ \\ density };
|
||||
\node [Op1, align=center] (Li) at (-0.793853,1.272713) { Compute \\ RSDFT \\ Hamiltonian };
|
||||
\node [Ring1, align=center] (Be) at (-0.000001,-0.000000) { CIPSI };
|
||||
\node [Ring1, align=center] (B) at (-0.935138,-1.172476) { Compute \\ one-$e$ \\ density };
|
||||
\node [Ring1, align=center] (C) at (-0.601539,-2.634910) { DIIS$_k$ };
|
||||
\node [Ring1, align=center] (N) at (0.749849,-3.285870) { Compute \\ RSDFT \\ Hamiltonian };
|
||||
\node [Ring12, align=center] (O) at (2.101351,-2.635146) { Find \\ lowest \\ eigenvector };
|
||||
\node [Ring2, align=center] (F) at (3.388986,-3.404559) { Compute \\ one-e \\ density};
|
||||
\node [Ring2, align=center] (Ne) at (4.518642,-2.417707) { DIIS$_l$ };
|
||||
\node [Ring2, align=center] (Na) at (3.929174,-1.038386) { Compute \\ RSDFT \\ Hamiltonian };
|
||||
\node [Ring12Test, align=center] (Mg) at (2.435205,-1.172771) { $\Delta E^{(k,l)} < \tau_2$ };
|
||||
\node [Ring1Test, align=center] (Al) at (1.500000,0.000000) { $\Delta E^{(k)} < \tau_1$ };
|
||||
\node [Input, align=center] (Si) at (2.250000,1.299038) { $\Psi_\text{T}$ };
|
||||
\node [Output, align=center] (X1) at (-0.663664,2.334763) { $E^{(0)}$ };
|
||||
\node [Output, align=center] (X2) at (0.633384,-4.349513) { $E^{(k)}$ };
|
||||
\node [Output, align=center] (X3) at (4.716656,-0.313975) { $E^{(k,l)}$ };
|
||||
\path
|
||||
(H) edge [->,color=black ] node [above,black] {} (He)
|
||||
(He) edge [->,color=black ] node [above,black] { $n^{(0)}$ } (Li)
|
||||
(Li) edge [->,color=black ] node [below,black,sloped,align=left] { $H^{(k)}$ }
|
||||
node [above,black,sloped] { $k\leftarrow 0$ }(Be)
|
||||
(Be) edge [->,color=black ] node [above,sloped,black] { $\Psi^{(k)}$ } (B)
|
||||
(Al) edge [->,color=black ] node [above,sloped,black] { no} (Be)
|
||||
(B) edge [->,color=black ] node [below,sloped,black] { $n^{(k)}$ } (C)
|
||||
(C) edge [->,color=black ] node [below,sloped,black] { $\tilde{n}^{(k)}$ } (N)
|
||||
(N) edge [->,color=black ] node [below,sloped,black] { $H^{(k,l)}$ }
|
||||
node [above,sloped,black] { $l\leftarrow 0$ } (O)
|
||||
(O) edge [->,color=black ] node [below,sloped,black] { $\Psi^{(k,l)}$ }(F)
|
||||
(F) edge [->,color=black ] node [below,sloped,black] { $n^{(k,l)}$ } (Ne)
|
||||
(Ne) edge [->,color=black ] node [above,sloped,black] { $\tilde{n}^{(k,l)}$ } (Na)
|
||||
(Na) edge [->,color=black ] node [above,sloped,black] { $E^{(k,l)}$ } (Mg)
|
||||
(Mg) edge [->,color=black ] node [right,black] { yes } (Al)
|
||||
(Mg) edge [->,color=black ] node [right,black] { no } (O)
|
||||
(Al) edge [->,color=black ] node [above,sloped,black] {yes} (Si)
|
||||
(Li) edge [->,color=black,snake it ] node [above,sloped,black] {} (X1)
|
||||
(N) edge [->,color=black,snake it ] node [above,sloped,black] {} (X2)
|
||||
(Na) edge [->,color=black,snake it ] node [above,sloped,black] {} (X3)
|
||||
;
|
||||
|
||||
%\node[arr] at (2.5,-1)
|
||||
%\node[arr] at (-1.,2) { $l\leftarrow l+1$ };
|
||||
%\node[arr] at (-1.3,1.5) { $\tilde{H}^{(k,l)}$ };
|
||||
%\node[tst] (n14) at (1,-4)
|
||||
%\node[arr] at (-4.,4.5) { $k\leftarrow k+1$ };
|
||||
%\node[arr] at (-3.6,4) { $\tilde{H}^{(k)}$ };
|
||||
%\node[arr] at (2.2,-5)
|
||||
|
||||
%\node [Input, align=center] (In) [above=of G] {};
|
||||
%\node [Output, align=center] (Out) [above=of Sigma] {};
|
||||
%\node [Input, align=center] (In) [above=of G, yshift=1cm] {KS-DFT};
|
||||
%\node [Output, align=center] (Out) [above=of Sigma, yshift=1cm] {BSE};
|
||||
%\path
|
||||
%(G) edge [->,color=gray!50] node [above,sloped,black] {$\Gamma = 1 + \fdv{\Sigma}{G} GG \Gamma$} (Gamma)
|
||||
%(Gamma) edge [->,color=gray!50] node [below,sloped,black] {$P = - i GG \Gamma$} (P)
|
||||
%(P) edge [->,color=black] node [above,sloped,black] {$W = v + vPW$} (W)
|
||||
%(W) edge [->,color=black] node [above,sloped,black] {$\Sigma = i GW\Gamma$} (Sigma)
|
||||
%(Sigma) edge [->,color=black] node [above,sloped,black] {$G = G_\text{0} + G_\text{0} \Sigma G$} (G)
|
||||
%(G) edge [->,color=black] node [above,sloped,black] {$P = - i GG \quad (\Gamma = 1)$} (P)
|
||||
%(In) edge [->,color=black] node [above,sloped,black] {$\varepsilon^\text{KS}$} (G)
|
||||
%(Sigma) edge [->,color=black] node [above,sloped,black] {$W(\omega)$ \& $\varepsilon^\text{GW}$} (Out)
|
||||
%;
|
||||
\end{scope}
|
||||
\end{tikzpicture}
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
|
||||
|
||||
% Nodes
|
||||
|
||||
|
||||
|
Binary file not shown.
@ -358,12 +358,12 @@ It is possible to use DFT for short-range interactions and CIPSI for
|
||||
the long-range. This scheme has been recently
|
||||
implemented.\cite{GinPraFerAssSavTou-JCP-18}
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{figure*}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{algorithm.pdf}
|
||||
\includegraphics[width=0.7\linewidth]{algorithm.pdf}
|
||||
\caption{Algorithm showing the generation of the RSDFT-CIPSI wave
|
||||
function}
|
||||
\end{figure}
|
||||
\end{figure*}
|
||||
|
||||
|
||||
% Overlap with reoptimized
|
||||
@ -373,7 +373,7 @@ implemented.\cite{GinPraFerAssSavTou-JCP-18}
|
||||
\section{Influence of the range-separation parameter on the fixed-node
|
||||
error}
|
||||
\label{sec:mu-dmc}
|
||||
\begin{table}[h]
|
||||
\begin{table}
|
||||
\caption{Fixed-node energies of the water molecule.}
|
||||
\label{tab:h2o-dmc}
|
||||
\centering
|
||||
@ -398,7 +398,7 @@ implemented.\cite{GinPraFerAssSavTou-JCP-18}
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{h2o-dmc.pdf}
|
||||
\caption{Fixed-node energies of the water molecule for different
|
||||
@ -406,7 +406,7 @@ implemented.\cite{GinPraFerAssSavTou-JCP-18}
|
||||
\label{fig:h2o-dmc}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{f2-dmc.pdf}
|
||||
\caption{Fixed-node energies of difluorine for different
|
||||
@ -444,7 +444,7 @@ in the CBS limit we expect the minimum of the FN-DMC energy to be
|
||||
obtained for the FCI wave function, at $\mu=\infty$.
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{overlap.pdf}
|
||||
\caption{Overlap of the RSDFT-CIPSI wave functions with the
|
||||
@ -604,21 +604,21 @@ of the RSDFT-CIPSI trial wave functions for energy differences.
|
||||
\end{table}
|
||||
\end{squeezetable}
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{g2-dmc-dz.pdf}
|
||||
\caption{Histogram of the errors in atomization energies with the double-zeta basis set.}
|
||||
\label{fig:g2-dmc-dz}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{g2-dmc-tz.pdf}
|
||||
\caption{Histogram of the errors in atomization energies with the triple-zeta basis set.}
|
||||
\label{fig:g2-dmc-tz}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\columnwidth]{g2-dmc-qz.pdf}
|
||||
\caption{Histogram of the errors in atomization energies with the quadruple-zeta basis set.}
|
||||
|
Loading…
Reference in New Issue
Block a user