Figure algo

This commit is contained in:
Anthony Scemama 2020-07-21 20:14:24 +02:00
parent 3d5a003050
commit 0ff8cd4b99
4 changed files with 170 additions and 14 deletions

View File

@ -24,9 +24,61 @@
%\node[inst] (h0) at (0,2.5) { $\tilde{H}^{(k)} = \tilde{H}(n^{(k)})$ };
%\node[res] (h0) at (3,2.5) { $E^{(k)}$ };
Na ( 3.929174,-1.038386) 0.000000
Mg ( 2.435205,-1.172771) 0.000000
O ( 2.101351,-2.635146) 0.000000
F ( 3.388986,-3.404559) 0.000000
Ne ( 4.518642,-2.417707) 0.000000
Al ( 1.500000, 0.000000) 0.000000
Si ( 2.250000, 1.299038) 0.000000
N ( 0.749849,-3.285870) 0.000000
C (-0.601539,-2.634910) 0.000000
B (-0.935138,-1.172476) 0.000000
Be (-0.000001,-0.000000) 0.000000
Li (-0.793853, 1.272713) 0.000000
H (-3.052250, 2.221211) 0.000000
He (-2.258396, 0.948498) 0.000000
XX (-0.663664, 2.334763) 0.000000
XX ( 0.633384,-4.349513) 0.000000
XX ( 4.716656,-0.313975) 0.000000
node distance=2cm,on grid,>=stealth',
Op1/.style={circle,draw,fill=yellow!40},
Op2/.style={circle,draw,fill=orange!40},
Op3/.style={circle,draw,fill=red!40},
Op4/.style={circle,draw,fill=violet!40},
DeadOp/.style={circle,draw,fill=gray!40},
Input/.style={fill=white!40},
Output/.style={fill=white!40}]
\node [Op1, align=center] (G) at (3*0.587785, 3*0.809017) {$G$};
\node [DeadOp, align=center] (Gamma) at (3*0.951057, -3*0.309017) {$\Gamma$};
\node [Op2, align=center] (P) at (3*0, -3*1.00000) {$P$};
\node [Op3, align=center] (W) at (-3*0.951057, -3*0.309017) {$W$};
\node [Op4, align=center] (Sigma) at (-3*0.587785, 3*0.809017) {$\Sigma$};
\node [Input, align=center] (In) [above=of G] {};
\node [Output, align=center] (Out) [above=of Sigma] {};
\node [Input, align=center] (In) [above=of G, yshift=1cm] {KS-DFT};
\node [Output, align=center] (Out) [above=of Sigma, yshift=1cm] {BSE};
\path
(G) edge [->,color=gray!50] node [above,sloped,black] {$\Gamma = 1 + \fdv{\Sigma}{G} GG \Gamma$} (Gamma)
(Gamma) edge [->,color=gray!50] node [below,sloped,black] {$P = - i GG \Gamma$} (P)
(P) edge [->,color=black] node [above,sloped,black] {$W = v + vPW$} (W)
(W) edge [->,color=black] node [above,sloped,black] {$\Sigma = i GW\Gamma$} (Sigma)
(Sigma) edge [->,color=black] node [above,sloped,black] {$G = G_\text{0} + G_\text{0} \Sigma G$} (G)
(G) edge [->,color=black] node [above,sloped,black] {$P = - i GG \quad (\Gamma = 1)$} (P)
(In) edge [->,color=black] node [above,sloped,black] {$\varepsilon^\text{KS}$} (G)
(Sigma) edge [->,color=black] node [above,sloped,black] {$W(\omega)$ \& $\varepsilon^\text{GW}$} (Out)
;
\end{tikzpicture}
#+END_SRC
% Nodes
\node[arr] at (.5,19) { $\Psi^{(0)}$ };
\node[inst] (n0) at (0,18) { Compute one-e density };
\node[arr] at () { $\Psi^{(0)}$ };
\node[inst] (n0) at (0,18) { Compute one-$e$ density };
\draw[nxt] (0,19.5) -- (n0) ;
\node[inst] (n1) at (0,16) { Compute RSDFT Hamiltonian };
@ -96,7 +148,5 @@
\draw[nxt] (n14) -- (1., -5.5);
\node[arr] at (2.2,-5) { $\Psi_\text{RSDFT-CIPSI}$ };
\end{tikzpicture}
#+END_SRC

106
Data/algorithm.tex Normal file
View File

@ -0,0 +1,106 @@
\documentclass{standalone}
\usepackage{graphicx,bm,microtype,hyperref,algpseudocode,subfigure,algorithm,algorithmicx,multirow,footnote,xcolor,physics,lipsum,wasysym,physics}
\usepackage{tikz}
\usetikzlibrary{arrows,positioning,shapes.geometric}
\usetikzlibrary{decorations.pathmorphing}
\tikzset{snake it/.style={
decoration={snake,
amplitude = .4mm,
segment length = 2mm},decorate}
}
%\usepackage{tgchorus}
%\usepackage[T1]{fontenc}
\begin{document}
\begin{tikzpicture}[scale=2.3]
\begin{scope}[very thick
,node distance=2cm,on grid,>=stealth'
,Op1/.style={circle,draw,fill=yellow!40}
,Ring1/.style={circle,draw,fill=red!40}
,Ring2/.style={circle,draw,fill=blue!40}
,Ring12/.style={circle,draw,fill=purple!40}
,Ring1Test/.style={diamond,draw,fill=red!40}
,Ring12Test/.style={diamond,draw,fill=purple!40}
,Output/.style={ellipse,draw,fill=orange!40}
,Input/.style={rectangle,draw,fill=green!40}
]
\node [Input, align=center] (H) at (-3.052250,2.221211) { $\Psi^{(0)}$ };
\node [Op1, align=center] (He) at (-2.258396,0.948498) { Compute \\ one-$e$ \\ density };
\node [Op1, align=center] (Li) at (-0.793853,1.272713) { Compute \\ RSDFT \\ Hamiltonian };
\node [Ring1, align=center] (Be) at (-0.000001,-0.000000) { CIPSI };
\node [Ring1, align=center] (B) at (-0.935138,-1.172476) { Compute \\ one-$e$ \\ density };
\node [Ring1, align=center] (C) at (-0.601539,-2.634910) { DIIS$_k$ };
\node [Ring1, align=center] (N) at (0.749849,-3.285870) { Compute \\ RSDFT \\ Hamiltonian };
\node [Ring12, align=center] (O) at (2.101351,-2.635146) { Find \\ lowest \\ eigenvector };
\node [Ring2, align=center] (F) at (3.388986,-3.404559) { Compute \\ one-e \\ density};
\node [Ring2, align=center] (Ne) at (4.518642,-2.417707) { DIIS$_l$ };
\node [Ring2, align=center] (Na) at (3.929174,-1.038386) { Compute \\ RSDFT \\ Hamiltonian };
\node [Ring12Test, align=center] (Mg) at (2.435205,-1.172771) { $\Delta E^{(k,l)} < \tau_2$ };
\node [Ring1Test, align=center] (Al) at (1.500000,0.000000) { $\Delta E^{(k)} < \tau_1$ };
\node [Input, align=center] (Si) at (2.250000,1.299038) { $\Psi_\text{T}$ };
\node [Output, align=center] (X1) at (-0.663664,2.334763) { $E^{(0)}$ };
\node [Output, align=center] (X2) at (0.633384,-4.349513) { $E^{(k)}$ };
\node [Output, align=center] (X3) at (4.716656,-0.313975) { $E^{(k,l)}$ };
\path
(H) edge [->,color=black ] node [above,black] {} (He)
(He) edge [->,color=black ] node [above,black] { $n^{(0)}$ } (Li)
(Li) edge [->,color=black ] node [below,black,sloped,align=left] { $H^{(k)}$ }
node [above,black,sloped] { $k\leftarrow 0$ }(Be)
(Be) edge [->,color=black ] node [above,sloped,black] { $\Psi^{(k)}$ } (B)
(Al) edge [->,color=black ] node [above,sloped,black] { no} (Be)
(B) edge [->,color=black ] node [below,sloped,black] { $n^{(k)}$ } (C)
(C) edge [->,color=black ] node [below,sloped,black] { $\tilde{n}^{(k)}$ } (N)
(N) edge [->,color=black ] node [below,sloped,black] { $H^{(k,l)}$ }
node [above,sloped,black] { $l\leftarrow 0$ } (O)
(O) edge [->,color=black ] node [below,sloped,black] { $\Psi^{(k,l)}$ }(F)
(F) edge [->,color=black ] node [below,sloped,black] { $n^{(k,l)}$ } (Ne)
(Ne) edge [->,color=black ] node [above,sloped,black] { $\tilde{n}^{(k,l)}$ } (Na)
(Na) edge [->,color=black ] node [above,sloped,black] { $E^{(k,l)}$ } (Mg)
(Mg) edge [->,color=black ] node [right,black] { yes } (Al)
(Mg) edge [->,color=black ] node [right,black] { no } (O)
(Al) edge [->,color=black ] node [above,sloped,black] {yes} (Si)
(Li) edge [->,color=black,snake it ] node [above,sloped,black] {} (X1)
(N) edge [->,color=black,snake it ] node [above,sloped,black] {} (X2)
(Na) edge [->,color=black,snake it ] node [above,sloped,black] {} (X3)
;
%\node[arr] at (2.5,-1)
%\node[arr] at (-1.,2) { $l\leftarrow l+1$ };
%\node[arr] at (-1.3,1.5) { $\tilde{H}^{(k,l)}$ };
%\node[tst] (n14) at (1,-4)
%\node[arr] at (-4.,4.5) { $k\leftarrow k+1$ };
%\node[arr] at (-3.6,4) { $\tilde{H}^{(k)}$ };
%\node[arr] at (2.2,-5)
%\node [Input, align=center] (In) [above=of G] {};
%\node [Output, align=center] (Out) [above=of Sigma] {};
%\node [Input, align=center] (In) [above=of G, yshift=1cm] {KS-DFT};
%\node [Output, align=center] (Out) [above=of Sigma, yshift=1cm] {BSE};
%\path
%(G) edge [->,color=gray!50] node [above,sloped,black] {$\Gamma = 1 + \fdv{\Sigma}{G} GG \Gamma$} (Gamma)
%(Gamma) edge [->,color=gray!50] node [below,sloped,black] {$P = - i GG \Gamma$} (P)
%(P) edge [->,color=black] node [above,sloped,black] {$W = v + vPW$} (W)
%(W) edge [->,color=black] node [above,sloped,black] {$\Sigma = i GW\Gamma$} (Sigma)
%(Sigma) edge [->,color=black] node [above,sloped,black] {$G = G_\text{0} + G_\text{0} \Sigma G$} (G)
%(G) edge [->,color=black] node [above,sloped,black] {$P = - i GG \quad (\Gamma = 1)$} (P)
%(In) edge [->,color=black] node [above,sloped,black] {$\varepsilon^\text{KS}$} (G)
%(Sigma) edge [->,color=black] node [above,sloped,black] {$W(\omega)$ \& $\varepsilon^\text{GW}$} (Out)
%;
\end{scope}
\end{tikzpicture}
\end{document}
% Nodes

Binary file not shown.

View File

@ -358,12 +358,12 @@ It is possible to use DFT for short-range interactions and CIPSI for
the long-range. This scheme has been recently
implemented.\cite{GinPraFerAssSavTou-JCP-18}
\begin{figure}[h]
\begin{figure*}
\centering
\includegraphics[width=\columnwidth]{algorithm.pdf}
\includegraphics[width=0.7\linewidth]{algorithm.pdf}
\caption{Algorithm showing the generation of the RSDFT-CIPSI wave
function}
\end{figure}
\end{figure*}
% Overlap with reoptimized
@ -373,7 +373,7 @@ implemented.\cite{GinPraFerAssSavTou-JCP-18}
\section{Influence of the range-separation parameter on the fixed-node
error}
\label{sec:mu-dmc}
\begin{table}[h]
\begin{table}
\caption{Fixed-node energies of the water molecule.}
\label{tab:h2o-dmc}
\centering
@ -398,7 +398,7 @@ implemented.\cite{GinPraFerAssSavTou-JCP-18}
\end{tabular}
\end{table}
\begin{figure}[h]
\begin{figure}
\centering
\includegraphics[width=\columnwidth]{h2o-dmc.pdf}
\caption{Fixed-node energies of the water molecule for different
@ -406,7 +406,7 @@ implemented.\cite{GinPraFerAssSavTou-JCP-18}
\label{fig:h2o-dmc}
\end{figure}
\begin{figure}[h]
\begin{figure}
\centering
\includegraphics[width=\columnwidth]{f2-dmc.pdf}
\caption{Fixed-node energies of difluorine for different
@ -444,7 +444,7 @@ in the CBS limit we expect the minimum of the FN-DMC energy to be
obtained for the FCI wave function, at $\mu=\infty$.
\begin{figure}[h]
\begin{figure}
\centering
\includegraphics[width=\columnwidth]{overlap.pdf}
\caption{Overlap of the RSDFT-CIPSI wave functions with the
@ -604,21 +604,21 @@ of the RSDFT-CIPSI trial wave functions for energy differences.
\end{table}
\end{squeezetable}
\begin{figure}[h]
\begin{figure}
\centering
\includegraphics[width=\columnwidth]{g2-dmc-dz.pdf}
\caption{Histogram of the errors in atomization energies with the double-zeta basis set.}
\label{fig:g2-dmc-dz}
\end{figure}
\begin{figure}[h]
\begin{figure}
\centering
\includegraphics[width=\columnwidth]{g2-dmc-tz.pdf}
\caption{Histogram of the errors in atomization energies with the triple-zeta basis set.}
\label{fig:g2-dmc-tz}
\end{figure}
\begin{figure}[h]
\begin{figure}
\centering
\includegraphics[width=\columnwidth]{g2-dmc-qz.pdf}
\caption{Histogram of the errors in atomization energies with the quadruple-zeta basis set.}