This commit is contained in:
Anthony Scemama 2020-08-20 11:02:53 +02:00
parent a0dc2d8aa2
commit 0b307ef0d0

View File

@ -73,7 +73,7 @@
By combining density-functional theory (DFT) and wave function theory (WFT) via the range separation (RS) of the interelectronic Coulomb operator, we obtain accurate fixed-node diffusion Monte Carlo (FN-DMC) energies with compact multi-determinant trial wave functions. By combining density-functional theory (DFT) and wave function theory (WFT) via the range separation (RS) of the interelectronic Coulomb operator, we obtain accurate fixed-node diffusion Monte Carlo (FN-DMC) energies with compact multi-determinant trial wave functions.
In particular, we combine here short-range exchange-correlation functionals with a flavor of selected configuration interaction (SCI) known as \emph{configuration interaction using a perturbative selection made iteratively} (CIPSI), a scheme that we label RS-DFT-CIPSI. In particular, we combine here short-range exchange-correlation functionals with a flavor of selected configuration interaction (SCI) known as \emph{configuration interaction using a perturbative selection made iteratively} (CIPSI), a scheme that we label RS-DFT-CIPSI.
One of the take-home messages of the present study is that RS-DFT-CIPSI trial wave functions yield lower fixed-node energies with more compact multi-determinant expansions than CIPSI, especially for small basis sets. One of the take-home messages of the present study is that RS-DFT-CIPSI trial wave functions yield lower fixed-node energies with more compact multi-determinant expansions than CIPSI, especially for small basis sets.
Indeed, as the CIPSI method is relieved from describing the short-range part of the correlation hole around the electron-electron coalescence points, the number of determinants in the trial wave function required to reach a given accuracy is significantly reduced as compared to a conventional CIPSI calculation. Indeed, as the CIPSI component of RS-DFT-CIPSI is relieved from describing the short-range part of the correlation hole around the electron-electron coalescence points, the number of determinants in the trial wave function required to reach a given accuracy is significantly reduced as compared to a conventional CIPSI calculation.
Importantly, by performing various numerical experiments, we evidence that the RS-DFT scheme essentially plays the role of a simple Jastrow factor by mimicking short-range correlation effects, hence avoiding the burden of performing a stochastic optimization. Importantly, by performing various numerical experiments, we evidence that the RS-DFT scheme essentially plays the role of a simple Jastrow factor by mimicking short-range correlation effects, hence avoiding the burden of performing a stochastic optimization.
Considering the 55 atomization energies of the Gaussian-1 benchmark set of molecules, we show that using a fixed value of $\mu=0.5$~bohr$^{-1}$ provides an effective cancellation of errors as well as compact trial wave functions, making the present method a good candidate for the accurate description of large chemical systems. Considering the 55 atomization energies of the Gaussian-1 benchmark set of molecules, we show that using a fixed value of $\mu=0.5$~bohr$^{-1}$ provides an effective cancellation of errors as well as compact trial wave functions, making the present method a good candidate for the accurate description of large chemical systems.
\end{abstract} \end{abstract}
@ -86,7 +86,9 @@ Considering the 55 atomization energies of the Gaussian-1 benchmark set of molec
\label{sec:intro} \label{sec:intro}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Solving the Schr\"odinger equation for the ground state of atoms and molecules is a complex task that has kept theoretical and computational chemists busy for almost hundred years now. \cite{Schrodinger_1926} Solving the Schr\"odinger equation for the ground state of atoms and
molecules is a complex task that has kept theoretical and
computational chemists busy for almost a hundred years now. \cite{Schrodinger_1926}
In order to achieve this formidable endeavour, various strategies have been carefully designed and efficiently implemented in various quantum chemistry software packages. In order to achieve this formidable endeavour, various strategies have been carefully designed and efficiently implemented in various quantum chemistry software packages.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%