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A general form of orbital invariant explicitly correlated second-order closed-shell Møller-Plesset
perturbation theory !MP2-F12" is derived, and compact working equations are presented.
Many-electron integrals are avoided by resolution of the identity !RI" approximations using the
complementary auxiliary basis set approach. A hierarchy of well defined levels of approximation is
introduced, differing from the exact theory by the neglect of terms involving matrix elements over
the Fock operator. The most accurate method is denoted as MP2-F12/3B. This assumes only that
Fock matrix elements between occupied orbitals and orbitals outside the auxiliary basis set are
negligible. For the chosen ansatz for the first-order wave function this is exact if the auxiliary basis
is complete. In the next lower approximation it is assumed that the occupied orbital space is closed
under action of the Fock operator #generalized Brillouin condition !GBC"$; this is equivalent to
approximation 2B of Klopper and Samson #J. Chem. Phys. 116, 6397 !2002"$. Further
approximations can be introduced by assuming the extended Brillouin condition !EBC" or by
neglecting certain terms involving the exchange operator. A new approximation MP2-F12/3C,
which is closely related to the MP2-R12/C method recently proposed by Kedžuch et al. #Int. J.
Quantum Chem. 105, 929 !2005"$ is described. In the limit of a complete RI basis this method is
equivalent to MP2-F12/3B. The effect of the various approximations !GBC, EBC, and exchange" is
tested by studying the convergence of the correlation energies with respect to the atomic orbital and
auxiliary basis sets for 21 molecules. The accuracy of relative energies is demonstrated for 16
chemical reactions. Approximation 3C is found to perform equally well as the computationally more
demanding approximation 3B. The reaction energies obtained with smaller basis sets are found to be
most accurate if the orbital-variant diagonal Ansatz combined with localized orbitals is used for the
first-order wave function. This unexpected result is attributed to geminal basis set superposition
errors present in the formally more rigorous orbital invariant methods. © 2007 American Institute
of Physics. #DOI: 10.1063/1.2712434$

I. INTRODUCTION

One of the most severe limitations in ab initio quantum
chemistry is the slow convergence of electron correlation
energies with respect to the basis set size. For atoms it can be
shown that the error in the correlation energy falls off only
like lmax

−3 , where lmax is the maximum angular momentum in
the basis.1,2 If the correlation consistent basis sets cc-pVnZ
of Dunning and co-workers are used,3–7 where the cardinal
number n equals lmax, the number of basis functions NAO

grows as lmax
3 ; it follows that the error in the correlation

energy decays only at the painfully slow rate of O!NAO
−1 ". For

instance, an error of 1 mH remains in the correlation energy
of the neon atom even with a cc-pV10Z basis !506 basis
functions".8 The convergence can be improved by basis set
extrapolation techniques,2 but this works well only with large
basis sets and is computationally demanding.

The reason for the slow convergence is that the wave

function cusp for r12→0 and, more importantly, the correla-
tion hole for intermediate values of r12 are poorly repre-
sented by expansions of the wave function in terms of orbital
products !Slater determinants". This situation can be im-
proved by using explicitly correlated wave functions, that is,
wave functions that depend explicitly on the interelectronic
distances rij. The introduction of such terms into the wave
function greatly accelerates basis set convergence, as shown
for helium as early as 1929 by Hylleraas.9 The penalty for
this approach is the introduction of three- and four-electron
integrals, even at the level of MP2 theory, and these are so
excessively numerous that applications are restricted to tiny
systems. The four-electron integrals can be avoided by using
the weak orthogonality functional of Szalewicz et al.,10,11 but
even then the evaluation of the remaining three-electron in-
tegrals is extremely expensive and limits the application of
this method to very small molecules.12

Currently, the only practical approach for larger systems
is to approximate the many-electron integrals using resolu-
tions of the identity !RIs", as first proposed by Kutzelnigg
and Klopper.13 The many-electron integrals are then ex-
pressed in terms of sums of products of simpler two-electron
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integrals.13,14 There have been several recent developments
in the field, including the use of separate basis sets for the
RI,14–16 combinations of RI and density fitting !DF" ap-
proaches for efficiency17–19 and accuracy,20 the use of alter-
native correlation factors,18,21–26 the use of quadrature for the
many-electron integrals,27 avoidance of Brillouin
approximations,23 parallel implementation,28 and local
approximations.25,29 For a recent review of the status of ex-
plicitly correlated methods, see Ref. 30.

The relative importance of various approximations has
recently been demonstrated.23 The key finding was that the
choice of the correlation factor is much more important than
any other approximation. Short-ranged correlation factors
such as exp!−!r12" were found to give very much improved
results as compared to the linear r12 factor, which was used
by Hylleraas as well as in the original R12 methods of Kut-
zelnigg and Klopper. The use of a simple Slater function was
first proposed by Ten-no22 and subsequently used by various
authors.18,21–26 Other choices have also been proposed and
tested,24 but the Slater function was found to work at least as
well as other functional forms. Methods that are based on
such short-ranged correlation factors are now referred to as
F12 methods.

Short-ranged correlation factors are particularly impor-
tant for the treatment of large molecules. Recently, we have
developed local explicitly correlated LMP2-R12 !Ref. 29"
and LMP2-F12 !Ref. 25" methods which can be applied to
rather large molecules !50–100 atoms, up to 4000 basis func-
tions". The numerical accuracy and efficiency of LMP2-F12
were found to be much better than those of LMP2-R12. As
will be demonstrated in a forthcoming paper, almost linear
scaling of the computational effort with molecular size has
now been achieved for the LMP2-F12 method.

Our previous LMP2-F12 !Ref. 25" implementation was
based on the simplest possible approximation, denoted as
LMP2-F12/2*A!loc". In this approach exchange terms were
entirely neglected and an orbital-variant Ansatz in combina-
tion with localized orbitals was used. Nevertheless, amaz-
ingly accurate results were obtained. For a set of
21 molecules, the correlation energies were found to be
within 0.5% of the MP2 basis set limit, using augmented
triple zeta !aug-cc-pVTZ" basis sets. For the same basis, re-
action energies for 16 reactions agreed within 0.2 kcal mol−1

with those obtained using very much larger aug-cc-pV5Z
basis sets. However, it is known that MP2-F12/2*A some-
what overestimates the correlation energies, and therefore
some error compensation is likely.

The current paper is a result of our efforts to develop
these local F12 methods further. Rather than using the sim-
plest approximation, we now attempt to remove all approxi-
mations apart from those inherent in the wave function An-
satz and the RI; this should enable us to explore the true
limits of the method, independent of any error compensa-
tions. In order to reintroduce local approximations at a later
stage, it is important to derive the MP2-F12 equations in an
orbital invariant form. This means that the optimized energy
is invariant to unitary transformations among the occupied
orbitals, and therefore either canonical or localized orbitals
can be used. Most previous formulations were based on an

orbital invariant Ansatz for the first-order wave function,14,31

but then the equations were derived for the special case of a
canonical orbital basis, in which the Fock operator is diago-
nal. Other orbital invariant formulations can be found in
Refs. 15, 32, and 33.

The theory for MP2-R12 with auxiliary basis sets has
been presented before in various papers.14–16,33 However, due
to the numerous approximations and different notations, it is
rather difficult for researchers who are not very familiar with
these theories to get an overview and understanding of the
many approximations. We have therefore attempted to derive
the most general equations in the simplest possible form.
This allows us to discuss all methods and approximations on
an equal footing and to give a clearer insight into some of the
approximations used.

In Sec. II, we will present the general formulation of the
theory. Some technical aspects will be discussed in Sec. III.
Finally, extensive results for all methods will be presented
and discussed in Sec. IV.

II. ORBITAL INVARIANT MP2-F12 THEORY

The theory involves a number of different basis sets and
orbital spaces. For easy reference these are summarized in
Table I. The indices i, j, k, l, m, n, and o run over occupied
orbitals, a, b, c, and d over virtual orbitals, and r, s, t, and u
over all molecular orbitals !MO basis". The MOs are ex-
panded in an atomic orbital !AO" basis %" ,# ,$ ,%&.

The indices & ,! , . . . refer to a complete orthonormal
one-electron basis, which is used to represent the RI. In prac-
tice, this is approximated by a finite orbital basis !RI ap-
proximation". As first suggested by Valeev,16 it is advanta-
geous to represent the RI by a linearly independent subspace
of the union of the AO basis %" ,#& and an additional auxil-
iary basis set !ABS" %"! ,#!&. It is then possible to construct
an orthogonal orbital basis which can be decomposed into
the MO basis and its orthogonal complement. The functions
in the orthogonal complement are denoted as complementary
auxiliary !CA" orbitals and carry the indices x and y. As will
be discussed in further detail in Sec. III C, the orthogonal CA
orbitals are linear combinations of the AO and ABS basis
sets. Following Valeev, we will refer to this choice of RI
basis as the “CABS approach.” We note that Valeev16 has
denoted the union of the MO and CA spaces as CABS', but
for simplicity we will use the acronym RI.

TABLE I. Basis sets and orbital spaces used in this work.

Type Acronym Indices

Non-orthogonal atomic basis functions
Atomic orbital basis AO " ,# , . . .
Auxiliary basis set ABS "! ,#! , . . .

Orthogonal orbital spaces
Occupied orbitals Occ i , j , . . .
Virtual orbitals Virt a ,b , . . .
Any molecular orbitals MO r ,s , . . .
Complementary auxiliary orbitals CA x ,y , . . .
Complete orthonormal or RI basis RI & ,! , . . .
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One advantage of the CABS approach is that the union
of the AO and ABS bases is larger than the ABS basis alone
!unless the latter contains the AO basis", and therefore a
more accurate approximation of the RI can be expected.
Even more important is that the CABS approach leads to
considerable simplifications of the theory since many terms
cancel. As will be discussed in later sections, without CABS
these cancellations would be incomplete, and spurious con-
tributions may arise. We will therefore use the CABS ap-
proach throughout this paper.

Our theory applies to closed-shell reference functions
and is spin free; i.e., all orbital indices refer to spatial func-
tions '&()(&!r", and the two-electron functions '&!(
)(&!r1"(!!r2" are spin-free products of orbitals. Summa-
tion over repeated dummy indices is assumed throughout this
paper.

A. Definition of the first-order wave function

For closed-shell reference functions the complete set of
doubly excited spin adapted configurations can be generated
using products of excitation operators

Ê&i = )&
†)i + )̄&

†)̄i, !1"

where )i and )&
† are the usual spin-orbital annihilation and

creation operators, respectively, and the bar indicates beta
spin. The first-order interacting space is spanned by the dou-
bly excited configurations

'*ij
&!( = Ê&iÊ!j'0( , !2"

where '0()'+!0"( is the Hartree-Fock reference function.
Note that in this definition there is no restriction of & and !
to the virtual and complementary orbital spaces. The contri-
butions of ÊiiÊjj'0(, which are proportional to the reference
function, are projected out in the first-order wave function, as
defined below. The singly excited configurations *i

a and
semi-internal configurations *ij

ak and *ij
ka do not contribute to

the first-order wave function for closed-shell reference func-
tions. It should be noted that single excitations *i

& can give a
contribution if & is outside the orbital basis. Even though it
would be straightforward to include such contributions in the
first-order wave function we exclude them in the current
work by definition.

In R12 or F12 methods, the complete set of doubly ex-
cited configurations is approximated by the conventional
configurations *ij

ab and a small set of explicitly correlated
configurations *ij

kl, which are well suited to describe the cor-
relation hole near the wave function cusp for r12→0,

'*ij
ab( = ÊaiÊbj'0( , !3"

'*ij
kl( = '*ij

&!(F&!
kl , !4"

with

F&!
kl = *kl'F̂12Q̂12'&!( . !5"

The F&!
kl can be viewed as contraction coefficients which

project the full space of doubly excited configurations '*ij
&!(

to the small set '*ij
kl(. The correlation factor F̂12)F!r12"

depends on the interelectronic distance r12. In the linear R12
methods, F̂12=r12. In the current work we will use

F!r12" = exp!− !r12" , !6"

but the derivation will be independent of the form of this
function.

The projector Q̂12 ensures strong orthogonality of the
explicitly correlated functions *ij

kl to the reference function,
which is necessary to formulate pair theories.34 It can be
chosen in different ways,14,16,35–37

Ansatz 1: Q̂12 = !1 − p̂1"!1 − p̂2" , !7"

Ansatz 2: Q̂12 = !1 − ô1"!1 − ô2" , !8"

Ansatz 3: Q̂12 = !1 − ô1"!1 − ô2"!1 − v̂1v̂2" . !9"

Here, ô= 'i(*i', v̂= 'a(*a', and p̂= 'r(*r' are one-electron pro-
jection operators onto the occupied, virtual, and full orbital
spaces, respectively, and the subscripts refer to the electron
coordinates on which these act. Ansatz 1 and Ansatz 2 are
equivalent and give the same results if the MO and RI orbital
spaces are identical.14 However, if a larger RI basis is used,
they are different, and Ansatz 2, which has been used in the
MP2-R12 !Refs. 14 and 15" and MP2-F12 !Ref. 24" methods
of Klopper and co-workers, gives much better results.

Ansatz 3 !Refs. 16, 18, and 37" is entirely equivalent to
Ansatz 2 as long as no approximations are introduced. The
term 1− v̂1v̂2 has no effect on the results, but projects out the
contributions of the conventional configurations '*ij

ab( from
the explicitly correlated part. This not only minimizes cou-
plings between the conventional and explicitly correlated
first-order equations !Sec. II B", but also leads to simpler and
more transparent equations. The formalism in the current pa-
per is therefore based on Ansatz 3. Even though Ansatz 2 and
Ansatz 3 are equivalent and both have been denoted as An-
satz 2 in some previous papers,18,23,25,29 in the current work
we prefer to distinguish between them for two reasons: first,
the working equations are different, and one must be careful
when comparing our current formulation with previous pa-
pers. Second, some approximations have been proposed on
the basis of the equations for Ansatz 2,14,15 while others will
be proposed in Sec. II H using Ansatz 3. Some of these ap-
proximations are not the same in Ansatz 2 and Ansatz 3 and
lead to different results in the two cases !see Appendix".

For Ansatz 3, Q̂12'rs(=0 and it follows that Frs
kl =0 #Eq.

!5"$. Thus, the explicitly correlated configurations '*ij
kl(

= '*ij
&!(F&!

kl are orthogonal to the reference function and con-
ventional configurations, i.e., **ij

kl '+!0"(=0 and **ij
ab '*ij

kl(
=0. Note that the latter orthogonality relation is not valid for
Ansatz 2, and this is one of the reasons for the simplifications
mentioned above.

The first-order wave function can now be written in
compact form as

164102-3 Orbital invariant MP2-F12 theory J. Chem. Phys. 126, 164102 "2007!
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+!1" = 1
2 '*ij

rs(Trs
ij = 1

2!'*ij
ab(Tab

ij + '*ij
&!(F&!

kl Tkl
ij" !10"

with Trs
ij =Tsr

ji and Tak
ij =Tka

ij =0. Here, the sum over rs effec-
tively runs over kl and ab and thus includes the conventional
and explicitly correlated contributions.

Since the configurations '*ij
rs( and '*ij

sr( are pairwise
nonorthogonal, it is convenient also to define contravariant
configurations

'*̃ij
rs( = 1

6!2'*ij
rs( + '*ij

sr(" , !11"

which have the property

**̃ij
rs'+!1"( = Trs

ij . !12"

Writing the first-order wave function in this basis,

'+!1"( = 1
2 '*̃ij

rs(T̃rs
ij, !13"

and equating this to Eq. !10" yields for the corresponding
amplitudes in the contravariant basis

T̃rs
ij = 2Trs

ij − Tsr
ij . !14"

Finally, we note that the contravariant explicitly correlated
configurations can be expressed in the complete basis of dou-
bly excited contravariant configurations as

'*̃ij
kl( = '*̃ij

&!(F&!
kl . !15"

This relation is useful in the derivation of the residual equa-
tions in the next section.

B. The Hylleraas functional and the first-order
equations

The amplitudes Tab
ij and Tkl

ij are determined by minimiz-
ing the Hylleraas functional

E2 = *+!1"'Ĥ!0" − E!0"'+!1"( + 2*+!1"'Ĥ'+!0"( . !16"

This yields the linear first-order equations Rrs
ij =0 with the

residuals

Rrs
ij = **̃ij

rs'Ĥ!0" − E!0"'+!1"( + **̃ij
rs'Ĥ'+!0"( . !17"

In Møller-Plesset perturbation theory the zeroth order Hamil-
tonian is chosen to be

Ĥ!0" = +
i=1

Nel

f̂ i = +
&!

Ê&!f&!, !18"

where f̂ i is the Fock operator for electron i and

f&! = *&' f̂ '!( . !19"

Using Eq. !15" the residuals can be expressed as

Rab
ij = rab

ij , !20"

Rkl
ij = F&!

kl r&!
ij . !21"

The matrix elements r&!
ij are the residuals in the complete

orthonormal orbital basis and have the form

r&!
ij = K&!

ij + f&,t,!
ij + t&,

ij f,! − f iot&!
oj − t&!

io foj . !22"

Since excitations are only possible in virtual and comple-
mentary space orbitals, the matrix elements r&!

ij are assumed
to be zero if & or ! refers to an occupied orbital,
i.e., rkl

ij =rk!
ij =r&k

ij =0. Similarly, tkl
ij = t&k

ij = tk!
ij =0. Using

t&!
ij =-&a-!bTab

ij +F&!
kl Tkl

ij and Eq. !21", one obtains for the re-
siduals

Rab
ij = Kab

ij + facTcb
ij + Tac

ij fcb − f ioTab
oj − Tab

io foj + Tmn
ij Cab

mn

− Fab
mn#f ioTmn

oj + Tmn
io foj$ , !23"

Rkl
ij = Vkl

ij + Bkl,mnTmn
ij − Xkl,mn#f ioTmn

oj + Tmn
io foj$ + Cab

kl Tab
ij

− Fab
kl #f ioTab

oj + Tab
io foj$ , !24"

where the basic matrix elements are defined as

K&!
ij = *ij'r12

−1'&!( , !25"

Vkl
ij = K&!

ij F&!
kl = *ij'r12

−1Q̂12F̂12'kl( , !26"

Bkl,mn = F&!
kl f&,F,!

mn + F&!
kl f!,F&,

mn

= *kl'F̂12Q̂12! f̂1 + f̂2"Q̂12F̂12'mn( , !27"

Xkl,mn = F&!
kl F&!

mn = *kl'F̂12Q̂12F̂12'mn( , !28"

Cab
kl = fa,F,b

kl + Fa,
kl f,b = *kl'F̂12Q̂12! f̂1 + f̂2"'ab( . !29"

In order to derive working equations for the matrix elements
Bkl,mn, it is convenient to use

Q̂12 f̂12Q̂12 = Ŝ! f̂12Q̂12 − P̂12 f̂12Q̂12" , !30"

where f̂12= f̂1+ f̂2 and the symmetrizing operator Ŝ is defined
by ŜÔ= !Ô+ Ô†" /2. Inserting this into Eq. !27" yields

Bkl,mn = Ŝ#Akl,mn − Zkl,mn − Fab
kl Cab

mn$ , !31"

where

Akl,mn = *kl'F̂12 f̂12Q̂12F̂12'mn( , !32"

Zkl,mn = *kl'F̂12!ô1 f̂1 + ô2 f̂2"Q̂12F̂12'mn( . !33"

The matrix elements Akl,mn arise from f̂12Q̂12 #Eq. !30"$,
while the remaining terms are obtained by expanding
P̂12 f̂12Q̂12. The derivation of these expressions uses the iden-
tity !ô1 f̂2+ ô2 f̂1"Q̂12=0 and does not require any approxima-
tions for P̂12. RI approximations will be needed, however, to
resolve the remaining projectors Q̂12 #Sec. II C$.

In terms of these quantities the Hylleraas energy is ob-
tained as

E2 = T̃ab
ij !Kab

ij + Rab
ij " + T̃kl

ij!Vkl
ij + Rkl

ij" . !34"

For the optimized amplitudes the residuals vanish and

!E2"min = E!2" = T̃ab
ij Kab

ij + T̃kl
ijVkl

ij . !35"

The equations given above are independent of the Ansatz.

164102-4 Werner, Adler, and Manby J. Chem. Phys. 126, 164102 "2007!
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However, the explicit form of the basic matrix elements Vkl
ij ,

Xkl,mn, Cab
kl , Bkl,mn, and Fab

kl differs for Ansatz 2 and Ansatz 3.
As mentioned earlier, for Ansatz 3 we have Fab

kl =0, and
therefore the last terms in Eqs. !23" and !24" vanish. Cou-
plings of the two sets of equations are then introduced solely
by the matrices Cab

kl . In Ansatz 2, however, the Fab
kl are non-

zero, which leads to additional terms and couplings !see the
Appendix".

A partial decoupling of the first-order equations
#Eq.!24"$ can be achieved by defining singlet !p=1" and trip-
let !p=−1" pairs,

Rkl
ij,p = 1

2 !Rkl
ij + pRlk

ij" , !36"

Tkl
ij,p = 1

2 !Tkl
ij + pTlk

ij"!2 − -kl" , !37"

for i. j, k. l and p= ±1 !for p=−1 the diagonal terms i= j
and k= l are not included". Using Bkl,mn=Blk,nm, the equations
for p=1 and p=−1 can then be solved independently for
i. j, k. l !Ansatz 3",

Rkl
ij,p = Vkl

ij,p + +
m.n

Bkl,mn
!p" Tmn

ij,p + Cab
kl,pTab

ij,p

− +
m.n

Xkl,mn
!p" #f ioTmn

oj,p + Tmn
io,pfoj$ , !38"

where

Bkl,mn
!p" = 1

2 !Bkl,mn + pBlk,mn" . !39"

Other quantities such as Vkl
ij,p, Cab

kl,p, and Xkl,mn
!p" are defined

analogously. Note that there is no need to normalize the spin-
coupled configurations. In the spin-coupled representation,
the energy contribution of the explicitly correlated part is
given by

/E2 = +
i.j

!2 − -ij"+
p

!2 − p"+
k.l

Tkl
ij,p!Vkl

ij,p + Rkl
ij,p" . !40"

The following sections deal with approximations for the
four types of basic matrix elements Vkl

ij , Bkl,mn, Cab
kl , and Xkl,mn

using Ansatz 3.

C. RI approximations

So far, no approximations have been introduced, and
within the MP2-F12 ansatz the expressions given in the pre-
vious section are exact. However, the evaluation of the ma-
trix elements which contain the projector Q̂12 requires three-
and four-electron integrals. For example,

*ij'r12
−1ô1F̂12'kl( = *ijm'r12

−1F̂32'mlk( . !41"

In matrix elements involving the Fock operator also four-
electron integrals arise.

Note that the Dirac bracket notation 'm(*m' implies that
the integrations arising from the bra *m' and ket 'm( are in-
dependent. In order to obtain the right hand side of Eq. !41",
one of the integration variables must be renamed. More for-
mally, this can be achieved by expressing ô1 and ô2 as

ô1 = '(m!r1"(0̂13*(m!r1"' , !42"

ô2 = '(m!r2"(0̂24*(m!r2"' , !43"

where the operator 0̂ij renames the electron coordinates ri to
r j, which occur in the integration with the bra functions
*(m!ri"'.

Currently, the only practical method to avoid the many-
electron integrals is through the use of RI approximations, as
first proposed by Kutzelnigg and Klopper13 and Klopper and
Samson.14 In this approximation one makes the replacement

ô1 → ô1p̂2!, !44"

where p̂2!= '&!r2"(*&!r2"' is the resolution of the identity for
electron 2. The three-electron integrals then factorize into
sums of products of two-electron integrals, e.g.,

*ij'r12
−1ô1F̂12'kl( = *ij'r12

−1ô1p̂2!F̂12'kl(

= *ij'r12
−1'm&(*m&'F̂12'kl( . !45"

As long as the RI basis is complete, this is exact. Of course,
in practice, a finite RI basis is used and the convergence
behavior has to be checked.

The projector Q̂12 !Ansatz 3" can now be expanded as

Q̂12 = 1 − P̂12, !46"

P̂12 = ô1 + ô2 − ô1ô2 + v̂1v̂2

= 'm&(*m&' + '&m(*&m' − 'mn(*mn' + 'ab(*ab' . !47"

Using v̂i= p̂i− ôi, the projector P̂12 can be rewritten as

P̂12 = 'm&(*m&' + '&m(*&m' − 'rm(*rm' − 'mr(*mr'

+ 'rs(*rs' . !48"

Furthermore, in the CABS approach '&(*&' can be replaced
by 'r(*r'+ 'x(*x'. The latter expression then simplifies to

P̂12 = 'xm(*xm' + 'mx(*mx' + 'rs(*rs' . !49"

If the AO and RI bases are the same, the terms involving the
CA orbitals x vanish. The remainder Q̂12=1− 'rs(*rs' is just
the projector for Ansatz 1; i.e., in this case there is no differ-
ence between the Ansätze 1 and 3. The projector for Ansatz 2
differs by an additional term v̂1v̂2, but in the absence of
further approximations this has no effect on the results !see
the Appendix".

For simplicity in later expressions, we introduce the no-
tation

P̂12 = '&!(P&!*&!' , !50"

where it is assumed that the basis %& ,!& contains all orbital
spaces !i , j ,a ,b ,x , and y". The matrix elements Vkl

ij and Xkl,mn
can then be written as

Vkl
ij = Kij,kl

F − K&!
ij P&!F&!

kl , !51"

Xkl,mn = Fkl,mn
2 − F&!

kl P&!F&!
mn, !52"

where K&!
ij has been defined in Eq. !25" and where

F&!
kl = *kl'F̂12'&!( , !53"
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Fkl,mn
2 = *kl'F̂12

2 'mn( , !54"

Kij,kl
F = *ij'r12

−1F̂12'kl( . !55"

The short-hand notation K&!
ij P&!F&!

kl takes the explicit form

K&!
ij P&!F&!

kl = Krs
ij Frs

kl + Kxm
ij Fxm

kl + Kmx
ij Fmx

kl . !56"

It should be noted that the CA functions x are linear combi-
nations of the AO and ABS functions !Sec. III C". Thus,
despite the formal simplification by using CABS, the com-
putational effort is not reduced, unless the ABS contains the
AO basis set.

Most terms arising from the unity operator 1= P̂12+ Q̂12,
for instance, Kij,kl

F and Fkl,mn
2 defined above, can be evaluated

analytically. However, as will be discussed in Sec. II F, there
are some exchange terms for which this is not possible, and
then the unity must be approximated by a double RI
'&!(*&!':

Q̂12 = '&!(*&!' − 'rs(*rs' − '&m(*&m' − 'm&(*m&'

+ 'rm(*rm' + 'mr(*mr' . !57"

Separating again the MO and CA spaces leads to a cancella-
tion of the terms −'rs(*rs'. This cancellation is essential for
the applicability of some approximations we will discuss in
Sec. II H. The projector then takes the much simpler form

Q̂12 = 'ax(*ax' + 'xa(*xa' + 'xy(*xy' . !58"

Obviously, if the AO basis is used to represent the RI, i.e.,
when the CA space is empty, all matrix elements that are
evaluated using this form of the projector will vanish.

D. GBC and EBC approximations

The RI approximation #Eqs. !47"–!49"$ is sufficient to
evaluate the matrix elements Vkl

ij and Xkl,mn, which do not
contain Fock operators. However, the matrix elements Bkl,mn

and Cab
kl involve products of the correlation factor F̂12 and the

Fock operators, and matrix elements over such products can-
not be evaluated analytically. In order to factorize these prod-
ucts, additional RI approximations are needed, which intro-
duce the assumption that the action of the Fock operator on
any orbital can be represented in the RI basis,

f̂ 'i( = 'k(fki + 'x!(fx!i ,
GBC

'k(fki, !59"

f̂ 'a( = 'c(fca + 'x!(fx!a ,
EBC

'c(fca, !60"

f̂ 'y( = 'r(fry + 'x!(fx!y . !61"

In our program the ABS used to construct the CA orbitals
'x!( in these expansions can be different from the one used to
approximate the projector Q̂12. However, for the sake of sim-
plicity we will not distinguish between different RI bases in
the following and set x!=x.

In Eqs. !59" and !60" we have used the standard Bril-
louin conditions fai=0, which are fulfilled for optimized
Hartree-Fock orbitals. For the exact Hartree-Fock orbitals the

matrix elements fxi are zero, and the occupied orbital space is
closed under application of the Fock operator. For finite AO
basis sets the contributions 'x(fxi can still be expected to be
small; in fact, they are minimal if the AO basis set has been
optimized by minimization of the Hartree-Fock energy. As-
suming the generalized Brillouin condition !GBC" is equiva-
lent to neglecting these contributions. Previous work has
shown that this is an excellent approximation,23 but the un-
derlying theory of the calculations in that work has not yet
been published.38 Further support for this conclusion will be
given in the present paper.

A less well justified assumption is that the virtual orbital
space is also closed under the application of the Fock opera-
tor, which is implied by the extended Brillouin condition
!EBC", used in Eq. !60". Neglecting the matrix elements fxa
therefore leads to larger errors. Again, this error should di-
minish if the AO basis gets larger and more complete. How-
ever, there is no reason to assume that the matrix elements
fxy are small, and therefore expansions as in Eq. !61" should
be used only with great care.

If the EBC approximation is made, the coupling terms
Cab

kl vanish and the first-order equations for the conventional
and explicitly correlated amplitudes, Eqs. !23" and !24", re-
spectively, decouple.

E. Commutator approximations

The matrix elements Bkl,mn and Cab
kl involve matrix ele-

ments such as G&!
kl = *kl'F̂12 f̂12'&!(. In order to factorize

these, double RI expansions involving Eqs. !59"–!61" would
be necessary. This is very slowly converging with the size of
the RI basis, and is therefore useless in practice.

Kutzelnigg and Klopper have suggested the following
alternative approach which avoids the use of Eqs. !60" and
!61" entirely. The closed-shell Fock operator has the form

f̂ = t̂ + v̂ + 2 ĵ − k̂ , !62"

where t̂, v̂, ĵ, and k̂ are the kinetic energy, external potential,
Coulomb, and exchange operators, respectively. Of these op-
erators, only t̂ and k̂ are nonlocal and do not commute with
F̂12. One can therefore write

F̂12 f̂12 = #F̂12, t̂12$ − #F̂12, k̂12$ + f̂12F̂12, !63"

with t̂12= t̂1+ t̂2 and k̂12= k̂1+ k̂2. Defining intermediate orbit-
als

'&̃( = k̂'&( = '!(k!&, !64"

'k̄( = ! f̂ + k̂"'k( = '!(!f!k + k!k" !65"

,
GBC

'j(f jk + '!(k!k, !66"

the matrix elements G&!
kl can be expanded as

G&!
kl = U&!

kl + F&!
k̄l + F&!

kl̄ − F&̃!
kl − F

&!̃

kl
, !67"

where the commutator integrals
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U&!
kl = *kl'#F̂12, t̂12$'&!( !68"

can be evaluated analytically.18,39

In Eq. !67" the Fock operators only act on the occupied
orbitals k , l, and therefore Eq. !59" is sufficient to approxi-
mate the last term. The contributions of f jk can be readily
evaluated, and those of fxk are very small. Neglecting fxk, as
done in the “standard approximations” of Kutzelnigg and
Klopper, corresponds to the assumption that the GBC is
valid. However, it is not necessary to make this approxima-
tion since if ! f̂ + k̂" is expanded as a whole, no other extra
effort than computing the full Fock operator in the RI basis is
required. Note that f̂ + k̂ is the Fock operator without ex-
change !Hartree operator".

The exchange operators in the last two terms still act on
any orbitals & ,!, but using partial wave expansions13,40 it
has been shown for atoms that RI expansions of the product
F̂12k̂12 should converge much faster than for F̂12 f̂12.

In the following sections we will introduce the approxi-
mations 3A, 3B, and 3C, which differ solely in the way Akl,mn
and Cab

kl are evaluated. In approximation 3B the commutator
approach is used for all terms, while in approximation 3C
direct RIs are used for expanding the Fock operator in the
terms arising from F̂12 f̂12P̂12F̂12 as well as for computing
Cab

kl . Approximation 3A differs from 3B by neglecting all
contributions of the exchange commutator in Akl,mn !but the
exchange terms are kept in Cab

kl ".

F. Approximation 3B

Approximation 3B as presented here is a generalization
of approximation 2B introduced by Klopper and Samson14

and Klopper.15 It reduces to approximation 2B if the GBC is
assumed. In these methods the commutator approach #Eq.
!63"$ is used to evaluate the matrix elements Akl,mn and Cab

kl ,

Akl,mn =
3B

Ukl,mn
F − U&!

kl P&!F&!
mn + X̄kl,mn − Ỹkl,mn, !69"

Cab
kl =

3B
Uab

kl − facFcb
kl − Fac

kl fcb + Fab
k̄l + Fab

kl̄ − Fãb
kl − F

ab̃
kl

, !70"

where we define the integrals

Ukl,mn
F = *kl'#F̂12, t̂12$F̂12'mn( , !71"

X̄kl,mn = *kl'! f̂12 + k̂12"F̂12Q̂12F̂12'mn( , !72"

Ỹkl,mn = *kl'F̂12k̂12Q̂12F̂12'mn( . !73"

The commutator integrals Ukl,mn
F can again be evaluated

analytically.18,39 The matrix elements X̄kl,mn are defined ex-
actly as in Eq. !52", but computed using the intermediate
orbitals 'k̄( as defined in Eq. !65",

X̄kl,mn = Xk̄l,mn + Xkl̄,mn. !74"

The only way to approximate the exchange contributions
Ỹkl,mn is by a double RI, but the rate of convergence for the
leading term F̂12k̂12F̂12 with the highest angular momentum
in the ABS is O!lmax

−7 " for atoms,13,40 i.e., very fast. Using the

CABS form of the projector given in Eq. !58", we obtain

Ỹkl,mn = F̃xa
kl Fxa

mn + F̃ax
kl Fax

mn + F̃xy
kl Fxy

mn, !75"

where

F̃&!
kl = F&̃!

kl + F
&!̃

kl
, !76"

with intermediate orbitals '&̃(= k̂'&( #Eq. !64"$.
It has sometimes been argued that the commutator

#F̂12, k̂12$ is small and can therefore be neglected in a good
approximation. Even though it is true that the matrix ele-
ments over the commutator are much smaller than those over
the individual operator products F̂12k̂12 and k̂12F̂12, they are
still sizeable. Neglecting the exchange terms in Cab

kl leads to
large and unacceptable errors. In fact, it is a much better
approximation to neglect the matrices Cab

kl entirely !EBC ap-
proximation" than to neglect just the exchange terms.

Using Eq. !58", the matrix Zkl,mn #Eq. !33"$ can be ex-
pressed as

Zkl,mn = Fǒx
kl Fox

mn + Fxǒ
kl Fxo

mn + Fǒa
kl Foa

mn + Faǒ
kl Fao

mn, !77"

where

'ǒ( = 'y(fyo. !78"

Obviously, the matrix elements Zkl,mn vanish if the GBC is
assumed. As will be demonstrated in Sec. IV, the contribu-
tions of Zkl,mn are very small and can normally be neglected.

In approximation 2B of Klopper and Samson the GBC is
assumed; i.e., the matrix elements Zkl,mn are neglected and
the intermediate orbitals used to compute X̄kl,mn are approxi-
mated as in Eq. !66". The matrices Cab

kl are evaluated accord-
ing to Eq. !70", again using the intermediate orbitals in Eq.
!66".

G. Approximation 3C

A disadvantage of the commutator approach is that the
integrals U&!

kl are difficult and expensive to compute. Fur-
thermore, various integrals in approximation 3B involve two
RI or CA indices, and the computational effort therefore
scales quadratically with the size of the ABS. The latter
problem can be avoided using the GBC and hybrid approxi-
mations as proposed by Klopper15 !Sec. II H".

An alternative way to avoid both problems was proposed
by Kedžuch et al.33 These authors derived equations for
Bkl,mn using the CABS approach, but numerical results were
only presented for the case that the RI basis equals the AO
basis, i.e., using Ansatz 1. Furthermore, in their formalism
the coupling between explicit and conventional amplitude
equations was assumed to be zero, which is not correct if an
auxiliary basis set is used. Even though their derivation is
rather complicated and their final equations look quite differ-
ent from ours, it is straightforward to show that the expres-
sions for Bkl,mn are equivalent, provided no approximations
are made !i.e., the GBC is not assumed and Zkl,mn is not
neglected".

In approximation 3C only the term which arises from the
unit operator in Q̂12 is treated with the commutator approach,
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while the remainder is evaluated directly using the RI expan-
sion of P̂12. Thus, the expensive integrals U&!

kl are not needed
!the integrals Ukl,mn

F are much simpler". The matrix elements
Akl,mn and Cab

kl then take the form

Akl,mn =
3C

Ukl,mn
F + F

k̄l,mn

2
+ F

kl̄,mn

2
− Ỹkl,mn − F̄&!

kl P&!F&!
mn,

!79"

Cab
kl =

3C
fa&F&b

kl + Fa&
kl f&b − fcaFcb

kl − Fac
kl fcb = faxFxb

kl + Fax
kl fxb,

!80"

where, in analogy to Eq. !76",

F̄&!
kl = F&̄!

kl + F
&!̄

kl
, !81"

with '&̄(= ! f̂ + k̂"'&( !Eq. !65"".
From Eq. !80" it is obvious that the matrix elements Cab

kl

vanish if the EBC is assumed !fxa=0". As already mentioned,
in this case the residual equations #Eqs. !23" and !24"$ for the
conventional and explicit amplitudes decouple. It is impor-
tant to note that the terms −facFcb

kl −Fac
kl fcb, which arise from

the term −v̂1v̂2 in the projector of Ansatz 3, cancel with the
contributions of 'c(fca in Eq. !60", provided the orbital basis
is contained in the RI basis. This is guaranteed in the CABS
approach, which is therefore strongly recommended in order
to avoid spurious contributions caused by incomplete cancel-
lation of individually large terms.

Two remarks are important regarding the expansions in
Eq. !79", which require integrals of the types

Fx̄i
kl = !fxr + kxr"Fri

kl + !fxy + kxy"Fyi
kl , !82"

Fxī
kl

= Fxr
kl!fri + kri" + Fxy

kl !fyi + kyi" . !83"

First, Eq. !82" involves the undesirable expansion of Eq.
!61". Whether or not this will lead to slow convergence with
the size of the RI basis and to significant errors will be in-
vestigated in Sec. IV. Second, the evaluation of the integrals
Fxy

kl in Eq. !83" formally requires AO integrals with two ABS
indices. Nevertheless, a quadratic dependence of the CPU
time is avoided if robust density fitting is used to evaluate the
integrals,17,18

Fxī
kl

= Fkx
A Dlī

A
+ Dkx

A Flī
A

− Fkx
A FABFlī

B
, !84"

where

FAB = !A'F̂12'B" , !85"

JAB = !A'r12
−1'B" , !86"

Fkx
A = !A'F̂12'kx" , !87"

Dkx
A = !J−1"AB!A'r12

−1'kx" . !88"

The indices A ,B denote the fitting basis set. Since the trans-
formation is performed at the level of the three-index inte-
grals, the computational effort for the assembly according to
Eq. !84" depends only linearly on the size of the RI basis.

Furthermore, each of the required three-index integrals de-
pends only on one RI index. Note that this is not the case for

approximation 3B. In this case integrals such as F&i
k̃l are

needed, which require three-index integrals !A'r12
−1'"!#!".

The double RI needed to compute the exchange terms
Ỹkl,mn still scales quadratically with the size of the RI basis.
This term is the same in approximations 3B and 3C. In the
next section we will discuss further approximations which
avoid this problem.

H. Approximations of the exchange terms

In order to avoid quadratic scaling with the RI basis,
Klopper suggested to approximate all exchange contributions
in Akl,mn by using the AO basis for the RIs involving k̂ #Eq.
!66"$ and to neglect the matrix Ỹ entirely !in Ref. 15 this is
called P". Klopper argued that “the contributions originating
from P have been extremely small…, and when we replace
some of the indices which refer to auxiliary orbitals by stan-
dard orbitals… the matrix P vanishes completely.” Using
Ansatz 3 and CABS leads to an equivalent but perhaps
clearer justification: from Eq. !75" it is immediately obvious
that Ỹ vanishes exactly if the CA space is empty. This ap-
proximation will be denoted as HY1,

Ỹkl,mn ,
HY1

0. !89"

The neglect of Ỹ is also possible in approximation 3C and
will be denoted as 3C!HY1".

A better approximation would be to neglect only 'xy(*xy'
in Eqs. !58" and !75". This corresponds to using the approxi-
mate projector

Q̂12 , 'ax(*ax' + 'xa(*xa' !90"

and leads to the new approximation

Ỹkl,mn ,
HY2

F̃xa
kl Fxa

mn + F̃ax
kl Fax

mn !91"

denoted as HY2.
The approximations 3C!HY1" and 3C!HY2" are both

sufficient to avoid most of the quadratic dependencies of the
computational resources !CPU and storage" on the ABS !ex-
cept for the overlap, Fock and exchange matrices, which are
needed in the ABS, and one-index transformations "!→x of
the integrals which are unavoidable". However, approxima-
tion 3B!HY2" still scales quadratically. This can be avoided
by approximating the intermediate orbitals 'k̄( used to com-
pute X̄kl,mn only in the AO basis. This leads to the HX ap-
proximation

'k̄(,
HX

'j(f jk + 'r(krk. !92"

Combining HY1 and HX is analogous to Klopper’s “hybrid
approximation.”15 In the current paper, this will be denoted
as 3B!HXY1". However, it should be noted that this method
leads to slightly different results than Klopper’s hybrid ap-
proximation, which was based on Ansatz 2 !see the Appen-
dix". If HX is combined with HY2, one arrives at approxi-
mation 3B!HXY2". Note that in all cases the matrices Cab

kl are
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computed using the more accurate intermediate orbitals as
defined in Eq. !65" or !66" !depending on whether the GBC
is used or not".

Finally, HY1 combined with complete neglect of the ex-
change contributions in X̄kl,mn leads to approximation 3A,

'k̄(,
3A

'j(f jk, !93"

X̄kl,mn,
3A

fkjXjl,mn + f ljXkj,mn, !94"

Ỹkl,mn,
3A

0. !95"

We note that approximation 3A is not identical to Klopper’s
approximation 2A! since in 3A some exchange contributions
are kept in the B matrix via the contributions of the matrices
Cab

mn #Eq. !31"$. In approximation 3*A the EBC is assumed
and the matrices Cab

kl are neglected in Eqs. !23", !24", and
!31". It can then be shown that the energy corrections for the
explicitly correlated parts of approximations 3*A and 2*A!
as defined by Klopper and Samson14 are equivalent, but there
appears to be an inconsistency with the general definition of
Ansatz 2* as given in Ref. 15 !see the Appendix".

I. Diagonal approximations

In the early R12 methods of Kutzelnigg and Klopper a
non orbital-invariant Ansatz has been used, in which only the
“diagonal” explicitly correlated configurations

*ij
ij,p = 1

2 !*ij
ij + p* ji

ij" !96"

for p= ±1 were included in the first-order wave function !al-
ternatively, if the spin-coupled formulation is not used, the
configurations *ij

ij and * ji
ij would have to be included, but

pairwise couplings between these would remain". Then, only
the diagonal elements Bij,ij

!p" need to be computed and, as
shown in our previous work,25 this makes it possible to de-
vise local approximations for which the computational effort
scales only linearly with molecular size. However, this An-
satz is not invariant with respect to unitary transformations
among the occupied orbitals, and not size consistent if ca-
nonical orbitals are used. It is therefore recommended only
in combination with localized orbitals. Recently, Tew and
Klopper41 have shown that the diagonal Ansatz is particularly
useful for the calculation of weak intermolecular forces since
artifical geminal basis set superposition errors !BSSEs" intro-
duced via the coupling B matrix elements are avoided. Fur-
thermore, in Sec. IV it will be demonstrated that—
unexpectedly—the diagonal approximation leads to much
better results than the invariant methods when energy differ-
ences such as reaction energies are computed. Possibly, this
is also due to a reduction of BSSE effects.

In our previous work we have used the diagonal Ansatz
3*A #in Ref. 25 this was denoted as 2*A!loc"$, and the con-
tributions of the X matrix were entirely neglected. The jus-
tification for the latter approximation is that for canonical
orbitals the overall contribution of Xkl,mn

!p" to the residuals Rij
ij,p

is !within the GBC approximation"14

1
2Xkl,mn

!p" #1k + 1l + 1m + 1n − 2!1i + 1 j"$Tmn
ij,p. !97"

If the diagonal approximation is used, these terms cancel
identically. If, furthermore, the EBC approximation is made,
i.e., the coupling terms Cab

kl are neglected, the first-order
equations #Eq. !38"$ decouple completely and their solution
becomes trivial. With localized orbitals the Fock matrix is
not diagonal and the contributions of Xkl,mn

!p" do not cancel
exactly, but their neglect is still a very good approximation
for Ansatz 3*A.

In the current work, we will also test the diagonal ap-
proximation for the methods 3B and 3C, for which the ne-
glect of Xkl,mn

!p" is not possible. With the diagonal Ansatz the
residuals #Eq. !38"$ for the explicitly correlated configura-
tions simplify to

Rij
ij,p = Vij

ij,p + Bij,ij
!p" Tij

ij,p + Cab
ij,pTab

ij,p − Xij,kj
!p" f ikTkj

kj,p

− Xij,ik
!p" Tik

ik,pfkj; !98"

i.e., the equations for different pairs are still coupled. A com-
plete decoupling can be achieved by neglecting the off-
diagonal elements of X!p", i.e., approximating the last two
terms by −Xij,ij

!p" !f ii+ f jj"Tij
ij,p. These approximations will be

denoted, e.g., as 3C!DX", while the use of the fully coupled
equation #Eq. !98"$ will be denoted as 3C!D". If also the
EBC approximation is used, i.e., the matrices Cab

ij,p are ne-
glected, the corresponding methods are denoted as 3*C!DX"
and 3*C!D", respectively.

J. Summary of the hierarchy of approximations

The various approximations and the corresponding equa-
tions are summarized in Table II. Theoretically, the most ac-
curate approximation is 3B!+Z", while the least accurate is
3*A. For the given Ansatz, 3B!+Z" does not involve any
approximations other than the RIs. The commutator ap-
proach is used to minimize the errors caused by the RI. Ne-
glect of the very small matrix elements Zkl,mn leads to the
standard approximation 3B. If the GBC is used in all terms
that involve f̂ , the method becomes equivalent to approxima-

TABLE II. Summary of approximations. !Numbers in parentheses refer to
equation numbers."

Method Akl,mn Ỹkl,mn 'k̄(a Cab
kl Zkl,mn

3A !69" 0 !93" !70" 0
3*A !69" 0 !93" 0 0
3B!+Z" !69" !75" !65" !70" !77"
3B !69" !75" !65" !70" 0
3B !GBC" !69" !75" !66" !70" 0
3*B !69" !75" !65" 0 0
3B!HXY1" !69" 0 !92" !70" 0
3B!HXY2" !69" !91" !92" !70" 0
3C!+Z" !79" !75" !65" !80" !77"
3C !79" !75" !65" !80" 0
3*C !79" !75" !65" 0 0
3C!HY1" !79" 0 !65" !80" 0
3C!HY2" !79" !91" !65" !80" 0

a'k̄( refers to the intermediate orbitals used to compute X̄kl,mn and F̄kl,mn
2 for

approximations 3B and 3C, respectively.
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tion 2B of Klopper and Samson.14 The somewhat less accu-
rate EBC approximation leads to Cab

kl =0 and therefore to a
decoupling of the amplitude equations #Eqs. !23" and !24"$.
For simplicity, methods in which Cab

kl =0 will be denoted by a
star, i.e., 3*A, 3*B, and 3*C. Note that for consistency with
the corresponding methods of Klopper and Samson, the ap-
proximation Cab

kl =0 is only assumed in Eqs. !23", !24", and
!31". The matrix Akl,mn, defined in Eq. !32", implicitly con-
tains a further contribution which can be expressed as
Cab

kl Fab
mn, but this is not neglected. Furthermore, in approxi-

mation 3*C the EBC is not used in any other terms involving
the Fock operators.

The approximations 3A and 3*A neglect the exchange
commutator #F̂12, k̂12$ in Akl,mn entirely and the GBC ap-
proximation is always used. Intermediate approximations of
the exchange terms are introduced in approximations HY1,
HY2, and HX. The combination of HY1 and HX !HXY1" is
similar to Klopper’s hybrid approximation.15 However, since
different matrix elements are neglected in Ansätze 2 and 3,
the results are not identical !see the Appendix". More accu-
rate than HY1 is the new approximation HY2, which in com-
bination with HX gives HXY2. For simplicity, we will de-
note the recommended hybrid methods 3B!HXY2" and
3C!HY2" simply as 3B!HY" and 3C!HY", respectively.

In approximation 3C the computation of the difficult
commutator integrals U&!

kl is avoided. In addition, fewer
transformed integral classes are needed. Therefore, 3C is
computationally significantly cheaper than 3B. However, it
involves expansions such as the one in Eq. !61", and the
convergence with the RI basis is therefore expected to be
slower than for approximation 3B. In the limit of an infinite
RI basis the methods 3B and 3C should give the same re-
sults. As will be demonstrated in Sec. IV, very small differ-
ences are found in practice, and therefore 3C is usually pref-
erable.

The computational resources for methods 3A, 3*A,
3B!HXY1", 3B!HXY2", 3C!HY1", and 3C!HY2" scale lin-
early with the size of the RI basis. All other methods scale
quadratically. In summary, 3C!HY2" should therefore yield
the best compromise of accuracy and cost.

III. IMPLEMENTATION

A. Integral evaluation and transformation

The Slater function was fitted by a linear combination of
Gaussians

e−!r12 , +
i=1

n

cie
−&ir12

2
, !99"

and the coefficients ci as well as the exponents &i were de-
termined by least squares fitting

/ = -
0

2

W!r12".e−!r12 − +
i=1

n

cie
−&ir12

2 /2

r12
2 dr12, !100"

with weighting function

W!r12" = e−!3!2"1/3r12. !101"

All two-electron integrals are computed using robust
density fitting approximations.17,18 Due to the various sets of
intermediate orbitals involved, this leads to very many dif-
ferent intermediates. In order to handle this efficiently and to
minimize sources of error, we have developed a program
which allows us to define any number of different transfor-
mation sets. A recursive object oriented algorithm is used,
and previously computed intermediates are automatically re-
used whenever possible. The design is similar to an earlier
recursive integral generator developed by May.42

The three-index integrals over kinetic energy commuta-
tors involve integrals with the operator r12

2 F̂12; in previous
work these were computed from F̂12 integrals with higher
angular momentum.18 Recently, we have found that three-
index versions of the recurrence relations of Weber and
Daul43 offer greatly improved numerical stability and have
been used in all of the calculations presented here. Some
numerical problems remain for third-row atoms in large basis
sets !pentuple zeta", but these have no effect on the results
presented here. Recently, numerical errors have also been
discussed by Valeev.26 In agreement with his work we found
that the numerical errors are much reduced if the diagonal
approximation is used and if the coupling between explicit
and conventional amplitudes is neglected !EBC approxima-
tion".

B. Solution of the first-order equations

The equations for the conventional and explicitly corre-
lated amplitudes are only weakly coupled. The linear equa-
tions #Eqs. !23" and !24"$ can therefore be solved iteratively.
Updates for the conventional amplitudes are obtained as

/Tab
ij,p = − Rab

ij,p!1a + 1b − f ii − f jj"−1, !102"

where we assume that canonical virtual orbitals are used, and
1a and 1b are the corresponding orbital energies !if nonca-
nonical virtual orbitals are used, one can transform the re-
siduals to a canonical basis and backtransform the amplitude
updates to the original basis, as done, e.g., in local correla-
tion methods44". Updates for the amplitudes Tkl

ij,p are obtained
as

/Tkl
ij,p = − #!B!p""−1$kl,mnRmn

ij,p. !103"

Here and in the remainder of this section, we assume i. j,
k. l, and m.n.

In the canonical case the first-order equations can be
written as

0 = Kab
ij,p + Eab

ij Tab
ij,p + Tkl

ij,pCab
kl,p, !104"

0 = Vkl
ij,p + Bkl,mn

ij,p Tmn
ij,p + Cab

kl,pTab
ij,p, !105"

with

Eab
ij = 1a + 1b − 1i − 1 j , !106"

Bkl,mn
ij,p = Bkl,mn

!p" − Xkl,mn
!p" !1i + 1 j" . !107"

These equations can be solved noniteratively using a parti-
tioning technique. First, one solves for Tkl

ij ,
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Tkl
ij,p = − #!B̃ij,p"−1$kl,mnṼmn

ij,p, !108"

with

Ṽmn
ij,p = Vmn

ij,p − Cab
mn,pKab

ij,p/Eab
ij , !109"

B̃kl,mn
ij,p = Bkl,mn

ij,p − Cab
kl,pCab

mn,p/Eab
ij . !110"

The correlation energy can then be written as the sum of the
conventional MP2 energy EMP2

!2" and the F12 correction
/EF12

!2" ,

E!2" = EMP2
!2" + /EF12

!2" , !111"

/EF12
!2" = +

i.j
!2 − -ij"+

p
!2 − p"+

k.l
Ṽkl

ij,pTkl
ij,p. !112"

The disadvantage of this method, which has also been used
by Klopper and Samson14 as well as Valeev26 is that Bkl,mn

ij,p

must be constructed and inverted for each pair !ij , p", leading
to a very steep scaling of O!Nocc

6 Nvirt
2 ". Valeev26 stated a scal-

ing of O!Nocc
8 ", but this refers only to the inversion but not

the construction of Bkl,mn
ij,p .51

In the iterative method the matrix B is independent of
the pair indices ij and therefore needs to be inverted only
once for each p !alternatively, the LU decomposition can be
computed once". Thus, if one assumes that the number of
iterations is independent of the molecular size, the scaling is
only O!Nocc

4 Nvirt
2 ". Depending on the method, the construc-

tion of the B matrix scales as O!Nocc
4 NRI

2 " or O!Nocc
4 NRINAO".

Therefore, the overall scaling is O!N6", where N is a mea-
sure for the molecular size.

It should be noted that in the iterative method the cou-
pling of the explicit and conventional residual equations
leads to a change of the conventional amplitudes Tab

ij , and
/E2 as defined in Eq. !40" is not equal to the total energy
correction /EF12

!2" . We therefore first solve the conventional
MP2 !or LMP2" equations #i.e., Eq. !23" with Cab

kl =0$ to
obtain the conventional correlation energy. The conventional
amplitudes Tab

ij are then used as a starting guess when solving
the full set of equations, and /EF12

!2" is then obtained as the
difference of the final total energy and the conventional MP2
energy.

C. CABS treatment

In the CABS approach the RI is approximated in the
union of the AO and ABS basis sets. In practice, orthogonal
RI or CA orbitals are never constructed explictly. The or-
thogonal complement of the AO basis can be obtained by
projecting the AO basis out of the ABS

'"̃!( = !1 − '$(#SAO
−1 $$%*%'"'"!( . !113"

The overlap matrix of this space is

#SCA$"!#! = #SABS$"!#! − *"!'$(#SAO
−1 $$%*%'#!( . !114"

The CA basis may be !almost" linearly dependent, and then
singularities are removed by singular value decomposition
!SVD", yielding a positive definite SCA. In the SVD the
eigenvectors of SCA which correspond to eigenvalues smaller
than a certain threshold are removed from the basis. By de-

fault, we choose this threshold to be max!10−6 ,smax410−8",
where smax is the largest eigenvalue of SCA. We note that the
CABS approach for the double RI, which involves quite a
large number of matrix multiplications, is more sensitive to
numerical errors than the remaining RI expansions. There-
fore, a larger threshold of smax410−6 was used in this case.
This threshold has very little effect on the correlation ener-
gies.

The projection 'x(*x' onto the CA space can be written as

'x(*x' = '"̃!(#SCA
−1 $"!#!*#̃!'

= '"!(S̄"!#!*#!' + '$(S̄$%*%' − S̄#!$!'#!(*$' + '$(*#!'" ,

!115"

where

S̄"!% = #SCA
−1 $"!#!*#!'$(#SAO

−1 $$%, !116"

S̄"!#! = #SCA
−1 $"!#!, !117"

S̄$% = #SAO
−1 $$0*0'"!(S̄"!%. !118"

If the full AO+CA !RI" space is required, #SAO
−1 $$% is added

to S̄$%, and then a similar expansion holds for '&(*&'. If the
ABS contains the AO basis as a subset, exactly the same
results are obtained with and without the CABS approach. In
this case the above procedure allows the elimination of the
AO basis functions from the ABS basis, which can lead to
significant savings. Otherwise, the same integrals are needed
with and without CABS, and therefore the computational
effort is not much affected.

As pointed out in various places of this paper, the CABS
approach is important to guarantee the exact cancellations of
various terms. These cancellations would be incomplete
without CABS !unless the ABS contains the AO basis". Fur-
thermore, use of the SVD ensures numerical stability of the
RI expansions.

IV. RESULTS

In order to test the performance of the various methods,
we used the same test molecules as in our previous work.25

The geometries were optimized at the MP2 level using the
aug-cc-pVTZ basis set. Results for a subset of these mol-
ecules have also been presented in the recent review of Klop-
per et al.30 using the same geometries. In all calculations we
employed the augmented correlation consistent aug-cc-pVnZ
basis sets of Kendall et al.45 In the Hartree-Fock calculations
as well as for the computation of the exchange and Fock
operators, density fitting with the V5Z/JKFIT auxiliary basis
of Weigend46 has been used. For the density fitting of the
remaining two-electron integrals in the MP2-F12 calcula-
tions, the aug-cc-pVnZ/MP2FIT sets of Weigend et al.47

were employed. Unless otherwise noted, the cc-pVnZ/JKFIT
basis sets were also used as RI auxiliary basis sets since we
found in our previous work25 that these converge well and
yield very stable results for reaction energies. The CABS
approach was used throughout, with the default thresholds
given in Sec. III C. The exponent of the Slater function in the
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correlation factor was chosen to be 1.4a0
−1. This value was

found to be close to optimum for the augmented correlation
consistent basis sets. The Slater function was approximated
by an expansion of six Gaussians, and the expansion coeffi-
cients were fitted as described in Sec. III A. The resulting
exponents and coefficients are shown in Table III. For the
noninvariant diagonal approximations the orbitals have been
localized using the Pipek-Mezey48 method.

First, we will demonstrate the accuracy of the various
approximations as a function of the basis set. In order to
minimize errors due to density fitting and the RI approxima-
tions, these calculations have been performed with large aux-
iliary basis sets !see headers of the tables". The results for
methods 3*A, 3A, 3*B, 3B!GBC", 3B, 3C, 3B!+Z", and
3C!+Z" are presented in Table IV. As expected, the errors of
all approximations diminish quickly with increasing basis
set. The effect of the GBC approximation is very small, even
for the double zeta basis. The error introduced by neglect of
the Z terms is even an order of magnitude smaller, and these
terms will therefore be neglected in all further calculations.
However, since the remaining GBC terms require practically

no additional effort and are needed for the equivalence of the
3B and 3C approximations in the limit of a complete RI
basis, they are included by default in these two methods.

Figure 1 shows the convergence of the correlation ener-
gies with increasing basis set for urea, NH2CONH2. The
convergence behavior seen in this figure is very typical for
all other molecules studied in this work. The MP2-F12/3B
and MP2-F12/3C energies differ only by a few µH and can-
not be distinguished on the scale of the figure. Therefore,

TABLE III. Exponents and fitting coefficients for the Slater function.

i &i ci

1 274.649 57 0.050 14
2 49.652 31 0.080 45
3 13.286 54 0.127 74
4 4.065 03 0.203 16
5 1.220 90 0.300 57
6 0.323 35 0.213 45

TABLE IV. Comparison of valence correlation energies !−Ecorr /mH" for various MP2-F12 approximations for different basis sets. #Using density fitting with
aug-cc-pV5Z/MP2FIT basis. The cc-pV5Z/JKFIT basis and the CABS approach were used for the RI. AVnZ refers to the aug-cc-pVnZ basis sets of Kendall
et al. !Ref. 45". See text for other details.$

Molecule AO basis 3*A 3A 3*B 3B!GBC" 3B 3C 3B!+Z" 3C!+Z"

H2O AVDZ 306.931 304.588 297.125 294.929 295.044 295.054 295.017 295.027
AVTZ 301.468 301.168 298.946 298.649 298.634 298.631 298.631 298.629
AVQZ 300.939 300.840 300.144 300.054 300.043 300.045 300.045 300.047
AV5Z 300.822 300.806 300.529 300.513 300.510 300.515 300.510 300.516

H2O2 AVDZ 582.747 579.357 563.720 560.466 560.380 560.381 560.299 560.301
AVTZ 571.792 571.367 566.833 566.408 566.391 566.390 566.393 566.392
AVQZ 570.683 570.534 569.083 568.947 568.925 568.936 568.928 568.938
AV5Z 570.459 570.419 569.861 569.820 569.815 569.829 569.815 569.829

HNCO AVDZ 667.087 666.462 646.386 645.613 645.477 645.465 645.362 645.350
AVTZ 658.577 658.183 652.939 652.523 652.456 652.447 652.451 652.442
AVQZ 657.134 656.910 655.313 655.096 655.065 655.073 655.067 655.076
AV5Z 656.769 656.676 656.082 655.985 655.978 655.984 655.978 655.984

HCOOCH3 AVDZ 926.039 923.788 896.330 894.044 894.038 894.049 893.864 893.874
AVTZ 911.460 911.030 903.685 903.228 903.212 903.204 903.212 903.204
AVQZ 909.161 909.021 906.694 906.557 906.523 906.531 906.526 906.534
AV5Z 908.610 908.582 907.683 907.648 907.640 907.648 907.640 907.649

NH2CONH2 AVDZ 934.749 933.411 905.101 903.617 903.792 903.792 903.654 903.654
AVTZ 921.373 921.036 913.615 913.243 913.213 913.199 913.207 913.193
AVQZ 919.049 918.907 916.618 916.481 916.442 916.450 916.445 916.453
AV5Z 918.471 918.431 917.566 917.522 917.513 917.519 917.513 917.519

FIG. 1. Convergence of the correlation energy with aug-cc-pVnZ basis sets
for NH2CONH2. The horizontal line indicates the CBS limit, estimated ac-
cording to the procedure described in the text.

164102-12 Werner, Adler, and Manby J. Chem. Phys. 126, 164102 "2007!

Downloaded 27 Feb 2013 to 150.203.35.130. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



only the MP2-F12/3B ones are shown. As known from pre-
vious work, the 3B energies converge from above towards
the basis set limit, while the 3A energies converge from be-
low. Surprisingly, the 3A ones converge better, and in many
cases already the aug-cc-pVTZ value is very close to the
basis set limit. Clearly, this is due to some error compensa-
tion. The better convergence of 3A energies is more pro-
nounced for molecules containing oxygen atoms than for
pure hydrocarbons.

The convergence behavior discussed above suggests that
estimates of the complete basis set !CBS" limits can be ob-
tained by averaging the 3A and 3B correlation energies with
certain weight factors. Following Samson and Klopper,32 we
determined weight factors f3A and f3B !f3A+ f3B=1" such that
for a given molecule the averaged value is the same for the
aug-cc-pVQZ and aug-cc-pV5Z basis sets. This leads to

f3A = !B5 − B4"/!A4 − A5 + B5 − B4" , !119"

where An and Bn are the MP2-F12/3A and MP2-F12/3B cor-
relation energies for the aug-cc-pVnZ orbital basis. Using
this procedure, we find for most molecules values of f3A
between 0.7 and 0.8; only for hydrocarbons such as C2H4
and C2H6 the weights are somewhat smaller. For compari-
son, similar estimates have been computed from the MP2-
F12/3A!D" and MP2-F12/3C!D" energies. The average abso-
lute difference of the two estimates is 0.042 mH; the
maximum deviation amounts to 0.078 mH.

The various hybrid approximations are compared in
Table V. The effect of the HX approximation is very small.
The HY1 and HY2 approximations reduce the absolute val-
ues of the correlation energies. As expected, the HY2 ap-

proximation is much more accurate than the HY1 approxi-
mation. The HXY2 energies are also shown in Fig. 1, and
this demonstrates clearly that the error due to this approxi-
mation is negligible as compared to the basis set error.

The convergence of the correlation energies with the size
of the RI basis is shown for some molecules in Table VI. In
our previous work we have found that for the 2*A!loc"
method the cc-pVnZ/JKFIT basis sets of Weigend46 work
very well. The same is confirmed here for the 3B and 3C
methods. As can be seen in Table VI, the convergence is
faster than with the uncontracted aug-cc-pVnZ basis sets. It
should be noted that the s , p sets are the same in all
cc-pVnZ/JKFIT bases. We found, however, that larger s , p
sets have virtually no effect on the results. The convergence
is best for the 3A method; there is no significant difference
for methods 3B and 3C. This is very satisfying since 3C is
computationally much cheaper !typically a factor of 2" than
3B.

The correlation energies for all 21 molecules obtained
with the aug-cc-pVTZ basis set and the corresponding DF
and RI basis sets !RI: cc-pVTZ/JKFIT and DF: aug-cc-
pVTZ/MP2FIT" are listed in Table VII. More extensive data
for the aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ, and aug-
cc-pV5Z basis sets can be found in the supplementary
material.49 The estimated basis set limits are given in the last
column. For all molecules the 3A method yields with the
cc-pVTZ basis correlation energies which are too large by
about 0.3%–0.4%, while the 3B and 3C methods underesti-
mate the correlation energies by 0.6%–0.7%. Even with the
aug-cc-pVDZ basis the correlation energies are within 2% of
the basis set limits. The convergence will even be better with

TABLE V. Comparison of valence correlation energies !−Ecorr /mH" for various hybrid approximations. #Using
density fitting with aug-cc-pV5Z/MP2FIT basis. The cc-pV5Z/JKFIT basis and the CABS approach were used
for the RI. AVnZ refers to the aug-cc-pVnZ basis sets of Kendall et al. !Ref. 45". See text for other details.$

Molecule AO basis 3B 3B!HX" 3B!HXY1" 3B!HXY2" 3C 3C!HY1" 3C!HY2"

H2O AVDZ 295.044 295.274 292.542 294.590 295.054 292.343 294.374
AVTZ 298.634 298.568 298.214 298.507 298.631 298.275 298.570
AVQZ 300.043 300.020 299.982 300.014 300.045 300.007 300.040
AV5Z 300.510 300.502 300.497 300.501 300.515 300.510 300.515

H2O2 AVDZ 560.380 560.820 555.462 559.514 560.381 555.069 559.086
AVTZ 566.391 566.262 565.560 566.147 566.390 565.684 566.274
AVQZ 568.925 568.876 568.796 568.866 568.936 568.855 568.926
AV5Z 569.815 569.800 569.789 569.799 569.829 569.818 569.827

HNCO AVDZ 645.477 645.807 640.280 644.400 645.465 639.974 644.064
AVTZ 652.456 652.361 651.595 652.228 652.447 651.677 652.313
AVQZ 655.065 655.022 654.929 655.010 655.073 654.980 655.061
AV5Z 655.978 655.964 655.950 655.963 655.984 655.969 655.983

HCOOCH3 AVDZ 894.038 894.499 886.986 892.634 894.049 886.589 892.193
AVTZ 903.212 903.063 902.043 902.888 903.204 902.180 903.028
AVQZ 906.523 906.467 906.339 906.450 906.531 906.402 906.514
AV5Z 907.640 907.622 907.602 907.620 907.648 907.629 907.646

NH2CONH2 AVDZ 903.792 904.186 896.769 902.323 903.792 896.423 901.937
AVTZ 913.213 913.075 912.070 912.902 913.199 912.189 913.025
AVQZ 916.442 916.391 916.268 916.375 916.450 916.327 916.434
AV5Z 917.513 917.497 917.477 917.495 917.519 917.500 917.517
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new correlation consistent basis sets, optimized by Peterson
for the MP2-F12/3C method.50 With these new basis sets,
which will be published elsewhere, the double zeta results
will be almost as good as the current triple zeta ones. In
addition, the accuracy of the Hartree-Fock values will be
significantly improved since the total energy and not just the
correlation energy was optimized.

Despite the remarkably fast convergence of the correla-
tion energies with basis set size, the absolute errors of the
aug-cc-pVTZ values still amount to several mH. For ex-

ample, the error of the 3C energy for urea is about
3 kcal/mol. It is therefore important to investigate how large
and systematic errors of energy differences are. For this pur-
pose we have computed reaction energies for the same 16
reactions as in Ref. 29. The reactions are listed in Table VIII.
In order to separate effects arising from the Hartree-Fock
contributions, only the errors of the correlation energy con-
tributions are considered here. Since the absolute values of
the reaction energies can be easily computed from the data in
Table VII, we will discuss only the errors relative to the

TABLE VI. Convergence behavior of valence correlation energies !−Ecorr /mH" with RI basis for different
methods. !Using density fitting with aug-cc-pV5Z/MP2FIT basis and the aug-cc-pVTZ AO basis."

Molecule RI basisa 3A 3B 3C RI basisb 3A 3B 3C

H2O VTZ/JKFIT 301.214 298.688 298.682 AVQZ!u" 301.277 298.730 298.714
VQZ/JKFIT 301.166 298.670 298.685 AV5Z!u" 301.175 298.674 298.665
V5Z/JKFIT 301.168 298.634 298.631 AV6Z!u" 301.161 298.669 298.659

H2O2 VTZ/JKFIT 571.508 566.530 566.543 AVQZ!u" 571.597 566.586 566.567
VQZ/JKFIT 571.369 566.464 566.476 AV5Z!u" 571.382 566.471 566.456
V5Z/JKFIT 571.367 566.391 566.390 AV6Z!u" 571.363 566.441 566.432

HNCO VTZ/JKFIT 658.319 652.554 652.540 AVQZ!u" 658.414 652.623 652.573
VQZ/JKFIT 658.176 652.500 652.507 AV5Z!u" 658.191 652.506 652.494
V5Z/JKFIT 658.183 652.456 652.447 AV6Z!u" 658.172 652.479 652.465

HCOOCH3 VTZ/JKFIT 911.207 903.345 903.355 AVQZ!u" 911.357 903.454 903.407
VQZ/JKFIT 911.026 903.275 903.286 AV5Z!u" 911.048 903.295 903.273
V5Z/JKFIT 911.030 903.212 903.204 AV6Z!u" 911.016 903.258 903.238

NH2CONH2 VTZ/JKFIT 921.210 913.340 913.331 AVQZ!u" 921.342 913.428 913.365
VQZ/JKFIT 921.036 913.280 913.287 AV5Z!u" 921.052 913.282 913.266
V5Z/JKFIT 921.036 913.213 913.199 AV6Z!u" 921.025 913.245 913.231

aJK-density fitting basis sets of Weigend !Ref. 46".
bUncontracted aug-cc-pVnZ basis sets !Ref. 45".

TABLE VII. Valence correlation energies !−Ecorr /mH" for different methods using AO-basis aug-cc-pVTZ. !DF
and RI basis sets are used. They correspond to the AO basis."

Molecule 3*A 3A 3B 3C 3B!HY" 3C!HY" CBSa

H2 34.297 34.244 34.095 34.095 34.093 34.092 34.242
CH4 219.894 219.655 218.133 218.122 218.101 218.100 219.017
NH3 265.381 265.106 263.125 263.106 263.061 263.073 264.505
H2O 301.521 301.221 298.689 298.683 298.577 298.634 300.786
C2H2 347.551 347.094 344.200 344.190 344.115 344.148 346.081
C2H4 374.103 373.797 370.879 370.865 370.814 370.825 372.617
C2H6 411.347 411.062 408.066 408.055 408.008 408.015 409.591
CO 406.670 406.354 402.630 402.620 402.468 402.552 405.393
H2CO 450.465 450.129 446.268 446.270 446.122 446.204 449.065
CH3OH 487.004 486.633 482.613 482.606 482.476 482.539 485.304
H2O2 571.959 571.533 566.543 566.556 566.327 566.463 570.350
H2CCO 611.552 611.176 605.907 605.937 605.746 605.853 609.396
C2H4O 651.328 651.018 645.581 645.579 645.413 645.495 648.909
CH3CHO 642.916 642.576 637.181 637.189 637.011 637.105 640.532
C2H5OH 680.418 680.031 674.527 674.525 674.366 674.441 677.779
HNCO 658.762 658.363 652.585 652.570 652.395 652.476 656.534
HCONH2 687.658 687.322 681.424 681.409 681.218 681.313 685.262
CO2 690.691 690.328 684.002 683.994 683.777 683.885 688.557
HCOOH 721.898 721.513 715.086 715.091 714.834 714.980 719.527
HCOOCH3 911.696 911.259 903.375 903.384 903.101 903.257 908.316
NH2CONH2 921.603 921.261 913.368 913.358 913.106 913.236 918.148

aEstimates of the basis set limit as explained in the text.
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values obtained from the estimated CBS energies. The accu-
racy of these reference values is estimated to be better than
0.05 kcal/mol. This is consistent with the fact that the reac-
tion energies for the two different estimates discussed above
differ only by 0.01–0.02 kcal/mol.

Figure 2 shows the errors of the 3A and 3C correlation
contributions to the reaction energies. The results for ap-
proximation 3B are virtually identical to those of 3C and
therefore not shown. Unexpectedly, it is found that the for-
mally most rigorous methods 3B and 3C yield the largest
absolute errors !up to about 0.4 kcal/mol". If the coupling
between the equations for the explicit and conventional am-
plitudes is neglected !3*A and 3*C", the maximum errors
decrease to about 0.25 kcal/mol. And if also the diagonal
approximation is used, the maximum error decreases to
about 0.1 kcal/mol. This is significantly smaller than the ba-
sis set error of the Hartree-Fock reaction energies25 for the
same basis set. Qualitatively, this behavior is similar for the
3A, 3B, and 3C families of methods, and it therefore seems
not to be related to approximations in the treatment of the
exchange terms. The result is also independent of the choice
of the RI basis. The errors are largest for the reactions !7",
!8", !12", and !13", which are addition reactions involving
H2O, NH3, or CO. The errors are negative, which means that
the correlation energies of the larger product molecules are
overestimated relative to those of the smaller reactants. This
points to a similar explanation as given in a recent paper of
Tew and Klopper,41 in which they found that binding ener-
gies of rare gas dimers were significantly overestimated
with MP2-F12/A but accurately predicted with
MP2-F12/2*A!D". They attributed this effect to geminal ba-
sis set superposition errors, caused by couplings via the off-
diagonal elements of the B matrix.

The results for the aug-cc-pVDZ and aug-cc-pVQZ basis
sets are qualitatively similar. Table IX shows the error statis-
tics for different basis sets and methods. For comparison,
also the errors of the standard MP2 reaction energies, as well
as those of extrapolated MP2 energies are shown. The
MP2-F12/3*C!D" results for basis aug-cc-pVnZ are seen to

be more accurate than the extrapolated values obtained from
the aug-cc-pVnZ and aug-cc-pV!n+1"Z energies. The
MP2-F12/3*C!D" / aug-cc-pVTZ are even more accurate
than the MP2#45$ extrapolated values. Clearly, the accuracy
obtained with 3*C!D" / aug-cc-pVTZ is sufficient for all prac-
tical purposes. Even with the aug-cc-pVDZ basis, chemical
accuracy !1 kcal/mol" is achieved for the correlation contri-
butions, but in this case the errors of the Hartree-Fock reac-
tion energies are unacceptably large. This situation will be
improved with the new basis sets50 mentioned earlier.

Finally, we note that the hybrid approximations have
only a negligible effect on the reaction energies. The differ-
ences between approximations 3C and 3C!HY2" can hardly
be distinguished on the scale of Fig. 2, and the average errors
deviate from the ones in Table IX by at most 0.02 kcal/mol.
Due to the additional HX approximation necessary to avoid
quadratic scaling of the CPU time with the size of the RI
basis, the differences between 3B and 3B!HXY2" are slightly
larger but still entirely negligible as compared to other errors.

V. SUMMARY AND CONCLUSIONS

A general form of orbital invariant explicitly correlated
second-order closed-shell Møller-Plesset perturbation theory
!MP2-F12" has been derived, and compact and transparent

TABLE VIII. Test reactions.

No. Reaction

1 C2H2+H2 → C2H4

2 C2H4+H2 → C2H6

3 C2H6+H2 → 2CH4

4 CO+H2 → H2CO
5 H2CO+H2 → CH3OH
6 H2O2+H2 → 2H2O
7 C2H2+H2O → CH3CHO
8 C2H4+H2O → C2H5OH
9 CH3CHO+H2 → C2H5OH
10 CO+NH3 → HCONH2

11 CO+H2O → CO2+H2

12 HNCO+NH3 → NH2CONH2

13 CH3OH+CO → HCOOCH3

14 HCOOH+NH3 → HCONH2+H2O
15 CO+H2O2 → CO2+H2O
16 H2CCO+H2CO → C2H4O+CO

FIG. 2. Errors of the MP2-F12/3A !upper panel" and MP2-F12/3C !lower
panel" correlation contributions of the reaction energies relative to the CBS
estimates. AO basis: aug-cc-pVTZ; DF basis: aug-cc-pVTZ/MP2FIT; RI
basis: cc-pVTZ/JKFIT.
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working equations have been presented. A hierarchy of well
defined levels of approximation has been introduced. They
differ from the exact theory by the neglect of terms involving
matrix elements over the Fock operator. The effect of the
various approximations !GBC, EBC, and exchange" has been
tested for 21 molecules, and the accuracy of relative energies
has been demonstrated for 16 chemical reactions. Even
with the aug-cc-pVDZ basis set, chemical accuracy
!51kcal mol−1" is achieved.

The new approximation 3C, which is based on the recent
work of Kedžuch et al.,33 has been tested for the first time
with auxiliary RI basis sets. The convergence of the correla-
tion energies with the size of the RI basis is found to be
similar as for the computationally more demanding 3B
method. In the limit of a complete RI basis, both methods
become equivalent. In practice, differences of the absolute
errors are found to be very small, and energy differences
computed with the 3B and 3C methods are virtually identi-
cal. The 3C method is not only easier to implement but also
numerically more stable and more efficient than 3B since the
difficult single commutator integrals involving the kinetic
energy operators are avoided. Using our implementation with
density fitting for the integrals, the 3C method is typically a
factor of 2 faster than the 3B method.

Based on the CABS approach, new well defined hybrid
approximations have been proposed for the 3B and 3C meth-
ods. In these methods a quadratic dependence of the CPU
time on the size of the RI basis is avoided. The absolute
errors of the correlation energies due to these approximations
are significantly smaller than those of the hybrid approxima-
tions proposed earlier by Klopper,15 and errors of relative
energies are entirely negligible.

Surprisingly, it has been found that the theoretically
most rigorous methods, namely, 3B and 3C, yield the least
accurate reaction energies when smaller basis sets are used.
Much more accurate results are obtained if coupling terms in

the first-order equations are neglected. In particular, the non-
orbital invariant diagonal approximations in combination
with localized orbitals give highly accurate results.

The finding that the simplest methods, namely, 3*A!D"
and 3*C!D", yield the most accurate energy differences is of
practical importance since the diagonal approximations
are most suitable for the introduction of local
approximations.25,29 The local approximations make it pos-
sible to treat quite large molecules !,100 atoms". However,
the 16 simple reactions investigated here are certainly still
insufficient to draw general conclusions. A more extensive
study for more than 50 reactions is currently under way.
Conformational energy differences and activation energies
will be studied as well. All calculations reported in this work
have been performed with MOLPRO.52
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APPENDIX: EQUIVALENCE OF ANSATZ 2 AND
ANSATZ 3

The relation of the matrix elements for Ansatz 2 and
Ansatz 3 can be obtained using

Q̂12
!2" = Q̂12

!3" + v̂1v̂2, !A1"

where Q̂12
!3") Q̂12 is the projector for Ansatz 3. Using the

general definitions in Eqs. !5" and !26"–!29" yields

Vkl
ij,!2" = Vkl

ij,!3" + Kab
ij Fab

kl , !A2"

Bkl,mn
!2" = Bkl,mn

!3" + Dab
kl Fab

mn + Cab
kl,!3"Fab

mn + Fab
kl Cab

mn,!3", !A3"

Xkl,mn
!2" = Xkl,mn

!3" + Fab
kl Fab

mn, !A4"

Cab
kl,!2" = Cab

kl,!3" + Dab
kl , !A5"

Fab
kl,!2" = Fab

kl , !A6"

where

Dab
kl = facFcb

kl + Fac
kl fcb. !A7"

Note that Dab
kl Fab

mn=Dab
mnFab

kl . For the sake of simplicity we
also define

Ťab
ij = facTcb

ij + Tac
ij fcb, !A8"

T̄rs
ij = f ioTrs

oj + Trs
iofoj . !A9"

Inserting these expressions into Eqs. !23" and !24" and using
Dab

mnTab
ij =Fab

mnŤab
ij yields, after some rearrangements,

TABLE IX. Root mean square and maximum absolute errors !in parenthe-
ses" of the reaction energies for different methods and basis sets. All values
are in kcal mol−1.

Method aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ

MP2 1.71 !3.47" 0.57 !1.18" 0.26 !0.50"
MP2!CBS"a 0.45 !0.81" 0.22 !0.35" 0.08 !0.17"

3A 0.79 !1.42" 0.25 !0.43" 0.10 !0.18"
3*A 0.48 !1.02" 0.14 !0.26" 0.04 !0.08"
3*A!DX" 0.35 !0.77" 0.05 !0.10" 0.03 !0.06"

3B 0.52 !1.10" 0.22 !0.39" 0.09 !0.15"
3*B 0.33 !0.71" 0.12 !0.23" 0.04 !0.07"
3*B!DX" 0.36 !0.73" 0.07 !0.15" 0.03 !0.05"

3C 0.54 !1.13" 0.22 !0.41" 0.09 !0.15"
3C!D" 0.34 !0.80" 0.13 !0.28" 0.06 !0.09"

3*C 0.35 !0.75" 0.12 !0.24" 0.04 !0.07"
3*C!D" 0.35 !0.76" 0.07 !0.16" 0.03 !0.05"
3*C!DX" 0.36 !0.74" 0.07 !0.16" 0.03 !0.05"
aExtrapolated using the aug-cc-pVnZ and aug-cc-pV!n+1"Z basis sets, as-
suming En=ECBS+A /n3.
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Rab
ij,!2" = Kab

ij + Ťab
ij,!2" − T̄ab

ij,!2" + Cab
mn,!3"Tmn

ij,!2"

+ Dab
mnTmn

ij,!2" − Fab
mnT̄mn

ij,!2" !A10"

Rkl
ij,!2" = Vkl

ij,!3" + Bkl,mn
!3" Tmn

ij,!2" − Xkl,mn
!3" T̄mn

ij,!2"

+ Cab
kl,!3"!Tab

ij,!2" + Fab
mnTmn

ij,!2"" + Fab
kl Rab

ij,!2". !A11"

The last term is a multiple of the first equation and vanishes
for the solution, i.e., Rab

ij,!2"=0. Using

Tkl
ij,!3" = Tkl

ij,!2" ) Tkl
ij , !A12"

Tab
ij,!3" = Tab

ij,!2" + Fab
mnTmn

ij,!2", !A13"

it follows

Ťab
ij,!2" − T̄ab

ij,!2" + Dab
mnTmn

ij − Fab
mnT̄mn

ij = Ťab
ij,!3" − T̄ab

ij,!3", !A14"

and we obtain the result

Rab
ij,!2" = Rab

ij,!3", !A15"

Rkl
ij,!2" = Rkl

ij,!3" + Fab
kl Rab

ij,!3". !A16"

Thus, provided the residual equations for Ansatz 2 are solved
with amplitudes Tab

ij,!2", it follows that the equations for An-
satz 3 are solved with Tab

ij,!3". The solutions Tkl
ij are the same in

both cases. The equivalence of the energies follows from

E!2" = T̃ab
ij,!2"Kab

ij + T̃kl
ijVkl

ij,!2" = T̃ab
ij,!3"Kab

ij + T̃kl
ijVkl

ij,!3". !A17"

#Eqs. !14" and !35"$. This derivation is independent of the
actual approximations used for the matrix elements and is
therefore valid for Ansatz 3B and Ansatz 3C as long as no
further approximations are introduced.

However, if the hybrid approximations are used, the re-
sults of the two Ansätze are no longer identical. In Ansatz
3B!HY1" we neglect Ỹkl,mn

!3" #Eq. !75"$, while in Klopper’s
hybrid approximation the corresponding quantity

Ỹkl,mn
!2" = Ỹkl,mn

!3" + F̃ab
kl Fab

mn !A18"

is neglected. The difference F̃ab
kl Fab

mn does not cancel when
expressing the 2B equations in terms of the 3B quantities
since this approximation is not made in the matrices Cab

kl,!3".
Therefore, the equations are no longer equivalent.

Finally, we consider approximation 3*, for which the
matrices Cab

kl,!3" and Zkl,mn
!3" are neglected. The B matrix then

takes the form

Bkl,mn
!3!" = ŜAkl,mn

!3" . !A19"

Neglecting Cab
kl,!3" in Eqs. !A3" and !A5" leads for Ansatz 2*

to the definitions

Bkl,mn
!2!" = Bkl,mn

!3!" + Fab
kl Dab

mn, !A20"

Ckl,ab
!2!" = Dab

kl . !A21"

The first-order equations for Ansatz 2* then become

0 = Kab
ij + Ťab

ij,!2!" − T̄ab
ij,!2!" + Dab

mnTmn
ij,!2!" − Fab

mnT̄mn
ij,!2!",

!A22"

0 = Vkl
ij,!3" + Bkl,mn

!3!" Tmn
ij,!2!" − Xkl,mn

!3" T̄mn
ij,!2!" + Fab

kl #Kab
ij + Ťab

ij,!2!"

− T̄ab
ij,!2!" + Dab

mnTmn
ij,!2!" − Fab

mnT̄mn
ij,!2!"$ . !A23"

Again, the term in square brackets in the second equation
equals the first equation, and if this is removed the equation
becomes identical to the one for Ansatz 3*. Obviously, simi-
lar relations to those in Eqs. !A12" and !A13" are then valid
for Ansatz 2*, and in this case the Tab

ij,!3*" are equal to the
conventional MP2 amplitudes. It is then easy to show that
the energies for Ansatz 2* and 3* are the same.

For the special case of canonical orbitals we can define

Bkl,mn
ij,!2" = Bkl,mn

!2" − !1i + 1 j"Xkl,mn
!2" , !A24"

Ckl,ab
ij,!2" = Cab

kl,!2" − !1i + 1 j"Fab
kl , !A25"

Bkl,mn
ij,!3!" = Bkl,mn

!3!" − !1i + 1 j"Xkl,mn
!3"

= Bkl,mn
ij,!2" − 1

2 !Fab
kl Cmn,ab

ij,!2" + Fab
mnCkl,ab

ij,!2"" . !A26"

The first-order equations for Ansätze 2* and 3* can then both
be written in the simple forms

0 = Kab
ij + Eab

ij Tab
ij , !A27"

0 = Vkl
ij,!3" + Bkl,mn

ij,!3!"Tmn
ij . !A28"

The definitions of Vkl
ij,!3" #Eq. !A2"$ and Bkl,mn

ij,!3*" #Eq. !A26"$ in
terms of the quantities for Ansatz 2 are exactly the same as in
Eqs. !45" and !46", respectively, of Klopper and Samson,14

and therefore the energy corrections for the explicitly corre-
lated parts are equivalent. Note that no artifical symmetriza-
tion of Bkl,mn

ij,!3*" was necessary in our derivation.
However, Klopper and Samson arrived at the definition

of their quantity B̃kl,mn
!ij" !our Bkl,mn

ij,!3*"" in a different way. They
argued that their Eq. !46" is obtained by modifying solely
one of the coupling matrices Ckl,ab

ij,!2" in their Eq. !12" #which
corresponds to our Eq. !110"$. This means that the coupling
matrix in just one of the two first-order equations is modi-
fied. If this is done in the equation for the explicitly corre-
lated amplitudes, one arrives at

0 = Kab
ij + Eab

ij Tab
ij,!2!" + Cmn,ab

ij,!2" Tmn
ij,!2!", !A29"

0 = Vkl
ij,!3" + !Bkl,mn

ij,!2" − Fab
kl Cmn,ab

ij,!2" "Tmn
ij,!2!", !A30"

where the solution Tab
ij,!2*" of Eq. !A29" has been used to

derive Eq. !A30". After !artificial" symmetrization of Bkl,mn
ij,!2"

−Fab
kl Cmn,ab

ij,!2" the second equation becomes identical to Eq.
!A28", and yields the correct explicitly correlated amplitudes
Tmn

ij,!2*". These can be used to compute the correct energy
correction /EF12

!2" , as defined in Eq. !112", and the total cor-
relation energy can be obtained by adding the conventional
MP2 energy EMP2

!2" . However, if one would instead also solve
the first equation for the amplitudes Tab

ij,!2*" and compute the
correlation energy straightforwardly as

E!2" = T̃ab
ij,!2!"Kab

ij + T̃kl
ij,!2!"Vkl

ij,!2" !A31"

a different result would be obtained. Therefore, modifying
the matrices Cab

kl,!2" in just one of the two equations is inher-
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ently inconsistent. In Ref. 15 Klopper noted that the modified
matrices Cab

kl,!2" are only used in the equation for the conven-
tional amplitudes. But this does not even lead to an equiva-
lent equation for the explicitly correlated amplitudes, and
therefore the definitions of Ansatz 2* in Refs. 14 and 15 are
inconsistent.
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