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Simple coupled-cluster singles and doubles method with perturbative
inclusion of triples and explicitly correlated geminals:
The CCSD„T…R12 model

Edward F. Valeeva� and T. Daniel Crawford
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA

�Received 21 March 2008; accepted 14 May 2008; published online 27 June 2008�

To approach the complete basis set limit of the “gold-standard” coupled-cluster singles and doubles
plus perturbative triples �CCSD�T�� method, we extend the recently proposed perturbative explicitly
correlated coupled-cluster singles and doubles method, CCSD�2�R12 �E. F. Valeev, Phys. Chem.
Chem. Phys. 8, 106 �2008��, to account for the effect of connected three-electron correlations. The
natural choice of the zeroth-order Hamiltonian produces a perturbation expansion with rigorously
separable second-order energy corrections due to the explicitly correlated geminals and
conventional triple and higher excitations. The resulting CCSD�T�R12 energy is defined as a sum of
the standard CCSD�T� energy and an amplitude-dependent geminal correction. The method is
technically very simple: Its implementation requires no modification of the standard CCSD�T�
program and the formal cost of the geminal correction is small. We investigate the performance of
the open-shell version of the CCSD�T�R12 method as a possible replacement of the standard
complete-basis-set CCSD�T� energies in the high accuracy extrapolated ab initio thermochemistry
model of Stanton et al. �J. Chem. Phys. 121, 11599 �2004��. Correlation contributions to the heat of
formation computed with the new method in an aug-cc-pCVXZ basis set have mean absolute basis
set errors of 2.8 and 1.0 kJ /mol when X is T and Q, respectively. The corresponding errors of the
standard CCSD�T� method are 9.1, 4.0, and 2.1 kJ /mol when X=T, Q, and 5. Simple two-point
basis set extrapolations of standard CCSD�T� energies perform better than the explicitly correlated
method for absolute correlation energies and atomization energies, but no such advantage found
when computing heats of formation. A simple Schwenke-type two-point extrapolation of the
CCSD�T�R12 /aug-cc-pCVXZ energies with X=T,Q yields the most accurate heats of formation
found in this work, in error on average by 0.5 kJ /mol and at most by 1.7 kJ /mol. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2939577�

I. INTRODUCTION

The current view of the quantum many-electron problem
is that its efficient solution is only possible with the explicit
use of the interparticle coordinates rij.

1,2 Not only can the
Coulomb hole3 of the exact wave function be modeled more
efficiently in terms of rij �Ref. 4� but also the Kato–Pack–
Brown cusp conditions5,6 can be emulated. Compared to the
standard “rij-free” wave functions, the explicitly correlated
counterparts are unencumbered by the need for empirical ex-
trapolation schemes and can attain much smaller basis set
errors. R12 �or F12� methods7–9 of Kutzelnigg et al. are cur-
rently the only viable explicitly correlated approaches gener-
ally applicable to systems of chemical interest. Their effi-
ciency stems from the use of the resolution of the identity
�RI� to factorize the many-electron integrals that appear in
such theories. Thus only up to two-electron integrals need to
be evaluated in closed form. The original R12 formulation
utilized the orbital �Hartree–Fock� basis to approximate the
one-particle identity operator.8,10 Modern R12 technology
uses a separate basis for the RI, either composed of Gaussian
orbitals,11,12 grids,13 or both.14

The most widely studied R12 method is the explicitly
correlated second-order Møller–Plesset energy �MP2-R12�.
Although the MP2 correlation energies lack accuracy needed
for many chemical applications, the relative simplicity of the
MP2-R12 method stimulated rapid development of the basic
R12 methodology to its modern state, including the develop-
ment of RI �Refs. 11–13� and density fitting techniques,15–17

investigation of correlation factors,18–23 ansätze,13,18,22–24 ba-
sis sets,25–27 and the sundry elaborate but necessary R12
technicalia.11,13,20,28–30

Noga et al. were first to report31–33 R12 versions of the
coupled-cluster method.34–38 The CC-R12 method employs
the wave operator ansatz that includes the formal double ex-
citations into the geminal pairs in addition to the conven-
tional excitations,

� = eT̂�0� �1�

T̂ = T̂1 + T̂2 + T̂3 + ¯ + T̂�, �2�

where we introduced the standard cluster operators,a�Electronic mail: evaleev@vt.edu.
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T̂1 = ta
i ãi

a, T̂2 =
1

�2!�2 tab
ij ãij

ab, etc., �3�

as well as the geminal cluster operator,

T̂� =
1

�2!�2 txy
ij �̃ij

xy , �4�

defined in terms of geminal excitation generators,

�̃ij
xy = 1

2 R̄��
xy ãij

��. �5�

The latter involve a correlation factor f�r12� augmented by a

strong orthogonality projector Q̂12,

R��
xy � ����Q̂12f�r12��xy�

= 	0, if both � and � are in the orbital basis

r��
xy � ����f�r12��xy�, otherwise.



�6�

�In this paper we will denote the occupied spin orbitals as
i , j ,k , l ,m ,n, the unoccupied �virtual� spin orbitals represent-
able in the Hartree–Fock basis set as a ,b ,c ,d, and any
Hartree–Fock orbital as p ,q ,r ,s. � ,� ,� ,� will stand for any
virtual orbital and � ,� ,� ,	 will denote any spin orbital. We
will denote the virtual spin orbitals not representable in the
Hartree–Fock basis as �� ,�� ,�� ,��. Finally, indices x ,y will
represent orbitals from the geminal generating set, which in
this work will include all active occupied orbitals �this is
known as kl-ansatz�.� The geminal-producing orbital pair xy
is usually a product of any occupied orbitals �“kl-ansatz”�,
but any set of orbitals will suffice.22 Equation �6� corre-

sponds to the definition Q̂12= �1− Ô1��1− Ô2�− V̂1V̂2, where

Ô and V̂ are the projectors on the occupied and virtual orbital
spaces. Such choice ensures both strong orthogonality and
the orthogonality of the geminal doubles to the conventional
double excitations.

The CC-R12 energy is obtained the reference expecta-

tion value of the similarity-transformed operator H̄=e−T̂ĤeT̂

=e−T̂�F̂+Ŵ�eT̂, where F̂ and Ŵ are the Fock and fluctuation
operators, respectively,

E = �0�H̄�0�

= �0�Ĥ�0� + �0��F̂,T̂��0� + �0��Ŵ,T̂��0�

+ �0� 1
2 ��Ŵ,T̂�,T̂��0�

= E0 + ta
i Fi

a + 1
4 tab

ij ḡij
ab + 1

8 txy
ij R̄��

xy ḡij
�� + 1

2 ta
i tb

j ḡij
ab. �7�

Corresponding projections onto singly, doubly, and higher-
rank excited determinants,

� a
i � � ãi

a�0� , �8�

� ab
ij � � ãij

ab�0� , �9�

etc., as well as the geminal functions produced by the gemi-
nal generators �Eq. �5��

� xy
ij � � �̃ij

xy�0� , �10�

determine the conventional amplitudes

0 = � a
i �H̄�0� , �11�

0 = � ab
ij �H̄�0� , �12�

etc., and the geminal cluster amplitudes,

0 = � xy
ij �H̄�0� . �13�

Compared to the standard CC methods, the CC-R12
method requires solving the additional set of equations �Eq.
�13�� as well as more involved standard amplitude equations
due to the geminal terms. Although for high-rank CC meth-
ods the addition of the geminal terms does not worsen the
formal scaling with the size of the system, the cost estimate
for the CCSD-R12 method is significantly greater than that
of the standard CCSD counterpart.39 Nevertheless, Noga et
al. first implemented a full CCSD-R12 method using the
standard approximation8 �SA� which simplified the theory
substantially at the cost of demanding an orbital basis satu-
rated to at least 3Locc, where Locc is the maximum angular
momentum of occupied atomic orbitals. The computational
and, especially, programming costs of the unabridged CC-
R12 methods are very high. Automated determination of op-
timized computational pathways for ground and excited-state
CC-R12 method will be soon discussed elsewhere by
Shiozaki et al.39

At least for the foreseeable future, its high computational
and implementational complexities are likely to limit the full
CC-R12 method to benchmark computations on small sys-
tems, and the development of simplified CC-R12 methods
has been the focus of intense recent activity. First, Klopper
and co-workers proposed an approximation to the full
CCSD-R12 method, dubbed the CCSD�R12� model.40–42 The
�R12� approximation defines the geminal amplitude equa-
tions to contain the fluctuation potential transformed using
only the conventional excitation operators �similar approxi-
mation is involved in CCn models43� as well as dropping all
terms quadratic in the geminal amplitude from the
T2-amplitude equations. A more radical approximation to the
CC-R12 method is the very recent CCSD�T�-F12h group of
methods of Adler et al.,44 which can be considered a radi-
cally simplified version of the diagonal orbital-invariant
CCSD�F12� approach of Tew et al.42

The common feature of the above methods is that the
geminal terms are introduced a priori via the CC-R12 wave
function ansatz. One of us recently explored an approach in
which the geminal terms are included a posteriori, as a per-
turbation to the standard CC wave function.45,46 This ap-
proach is technically attractive since the coupled-cluster am-
plitude equations are unmodified. The main objective of this
paper is to demonstrate how the CCSD�2�R12 method can be
extended to include the effect of higher excitations, also per-
turbatively. The result is a perturbative, explicitly correlated
version of the highly accurate CCSD�T� method, dubbed the
CCSD�T�R12 approach. We have tested the efficiency of the
method by computing the CCSD�T� contributions to the at-
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omization energies and heats of formations of the standard
high-accuracy extrapolated ab initio thermochemistry
�HEAT� set of molecules.47–49

II. FORMALISM

Consider the matrix representation of the CCSD Hamil-

tonian, H̄=e−T̂1−T̂2ĤeT̂1+T̂2, in a basis that includes the refer-
ence and external spaces, P and Q,

H̄ = �H̄PP H̄PQ

H̄QP H̄QQ

� , �14�

where space P includes the reference determinant 0, singles
S, and doubles D and space Q may include the explicitly
correlated geminal substitutions 
 as well as standard triples
T and higher excitations. Perturbation expansion of the exact

eigenvalues and eigenvectors of H̄ can be constructed
straightforwardly by Löwdin partitioning.50 We first decom-
pose the Hamiltonian into the zeroth- and first-order compo-
nents,

H̄�0� = �H̄PP 0

0 H̄QQ
�0� � , �15�

H̄�1� = � 0 H̄PQ

H̄QP H̄QQ
�1� � , �16�

where H̄QQ=H̄QQ
�0� +H̄QQ

�1� . The zeroth-order left- and right-
hand eigenvectors are defined in terms the ground-state
EOM-CCSD eigenvectors, L and R, as

L�0� = �L
0
� , �17�

R�0� = �R
0
� . �18�

The zeroth-order energy is, then, simply the ground-state
CCSD energy. The first-order energy vanishes, whereas the
second-order energy contribution takes the following form:45

E�2� = L†H̄PQ�E�0�SQQ − H̄QQ
�0� �−1H̄QPR , �19�

where we introduced the metric for space Q because the
geminal functions as defined in Eq. �10� are not orthonormal.

Equation �19� is the common starting point for the most
popular coupled-cluster method, CCSD�T�, which accounts
for the effect of three-electron correlations by defining space
Q to contain only the triple excitations.51 This approach be-
longs to a broader family of methods that include perturba-
tively the effects of higher-rank correlations on already cor-
related reference states.52–65. Equation �19� can also account
for the basis set incompleteness of the two-electron basis by
defining Q to include explicitly correlated geminals
�CCSD�2�R12 and related methods45,46�. In this work we aim
to recover both the three-body correlation and the two-
electron basis set incompleteness effects. Thus Q will be a
union of T and 
 spaces. �More general scenarios, where Q
includes also quadruple and higher excitations, can be de-

scribed by trivial extensions of the present formalism. Exten-
sions to higher-rank CC reference states, e.g., CCSDT, are
also relatively straightforward.� This definition still leaves us
with an infinite number of choices for partitioning the Hamil-
tonian. As we shall see, the partitioning determines the na-
ture of coupling between the two effects.

A. Coupling between triple and geminal excitations

Although the introduction of geminal terms is intended
to correct only the incompleteness of the two-electron basis
set, it should also indirectly affect the correction due to the
three-electron terms. The manner in which the coupling be-
tween the two effects is expressed will depend on the parti-
tioning of the Hamiltonian. Here we discuss two limiting
cases.

Block-diagonal H̄QQ
�0� . Choose H̄�0� such that H̄T


�0� and

H̄
T
�0� blocks are zero. Because the overlap matrix SQQ is also

block diagonal,

� ijk
abc� mn

xy � = 0, �20�

the result is a separable second-order contribution from the
triple and geminal substitutions,

E�2� = ET
�2� + E


�2�, �21�

ET
�2� = L†H̄PT�E�0�1TT − H̄TT

�0��−1H̄TPR , �22�

E

�2� = L†H̄P
�E�0�S

 − H̄



�0��−1H̄
PR . �23�

The coupling between the triples and geminals will appear
for the first time in the third-order energy. Introducing the
first-order left- and right-hand eigenvectors,

LQ
�1� = L†H̄PQ�E�0�SQQ − H̄QQ

�0� �−1, �24�

RQ
�1� = �E�0�SQQ − H̄QQ

�0� �−1H̄QPR , �25�

the third-order energy becomes

E�3� = LQ
�1�H̄QQ

�1� RQ
�1� = ET

�3� + E

�3� + ET


�3� + E
T
�3�, �26�

ET
�3� = LT

�1�H̄TT
�1�RT

�1�, �27�

E

�3� = L


�1�H̄


�1�R


�1�, �28�

E
T
�3� = L


�1�H̄
T
�1�RT

�1�, �29�

ET

�3� = LT

�1�H̄T

�1�R


�1�. �30�

Block-diagonal H̄QQ
�1� . This can be achieved by including

H̄T
 and H̄
T into the zeroth-order Hamiltonian. If, for ex-
ample, we define the zeroth- and first-order perturbation op-
erators as

H̄ = H̄�0,0� + H̄�1,0� + H̄�0,1�, �31�

H̄�0,0� = P̂PH̄P̂P + P̂TH̄P̂
 + P̂
H̄P̂T + P̂TF̂P̂T + P̂
F̂P̂
,

�32�
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H̄�1,0� = P̂TH̄P̂P + P̂PH̄P̂T + P̂T�H̄ − F̂�P̂T, �33�

H̄�0,1� = P̂
H̄P̂P + P̂PH̄P̂
 + P̂
�H̄ − F̂�P̂
, �34�

we can formulate a double perturbation theory in which the
effect of triples and geminals is considered separately.
Straightforward manipulations produce the energy correc-
tions to the CCSD energy,

E�1,0� = 0, �35�

E�0,1� = 0, �36�

E�2,0� = L†H̄PT�E�0�Ŝ − H̄�0��TT
−1H̄TPR , �37�

E�1,1� = L†H̄PT�E�0�Ŝ − H̄�0��T

−1H̄
PR

+ L†H̄P
�E�0�Ŝ − H̄�0��
T
−1H̄TPR , �38�

and so on.
The interaction between the geminal and triples pertur-

bation expansions appears in a different manner in the two
approaches. While the double perturbation theory allows a
finer-grained control of the coupling, the single perturbation
theory is technically simpler at the second-order level. The
latter advantage is due to the simpler blocked structure of the
zeroth-order Hamiltonian that makes the formal matrix in-
version in Eq. �19� computationally feasible. There is no
other apparent advantage to either method at the second
order.

Before we abandon the second partitioning type in favor
of the first, we will examine whether the difference between
the two approaches is expected to be significant enough for a
further investigation. The key difference between the two
approaches is how the triples-geminal blocks of the Hamil-
tonian are treated. Assigning them fully to the zeroth order
produces the double perturbation theory variant, whereas
designating them fully to the first-order leads to the “block-
diagonal” variant. Let us consider the leading orders in the
commutator expansion for the matrix elements of these
blocks,

� ijk
abc�H̄� mn

xy � = � ijk
abc�Ĥ + �Ĥ,T̂� + ¯ � mn

xy � , �39a�

� ijk
abc�Ĥ� mn

xy � = � ijk
abc�Ŵ� mn

xy �

= − P�mn�C�ijk�C�abc��m
i �n

j ḡab
k�R̄c�

xy , �39b�

� ijk
abc��Ĥ,T̂�� mn

xy � = � ijk
abc��F̂,T̂� + �Ŵ,T̂�� mn

xy � , �39c�

� ijk
abc��F̂,T̂�� mn

xy � = P�mn�C�ijk�C�abc��m
i �n

j f l
�tab

kl R̄c�
xy �39d�

� ijk
abc��Ŵ,T̂�� mn

xy � = P�mn�C�ijk�C�abc�

���m
i �n

j �− P�bc��ta
l ḡbl

k�R̄c�
xy − td

kḡab
d�R̄c�

xy

+ P�ab�tad
kl ḡbl

d�R̄c�
xy � �39e�

−� 1
2 tab

lo ḡlo
k�R̄c�

xy + 1
2 tab

kl ḡcl
��R̄��

xy �
+ P�ij��m

i tab
jl ḡnl

k�R̄c�
xy + P�ab��m

i tad
jk ḡbn

d�R̄c�
xy

�39f�

+�P�ab��m
i �n

j tad
kl ḡbl

d�R̄c�
xy � , �39g�

� mn
xy �H̄� ijk

abc� = � mn
xy �Ĥ� ijk

abc�

= − P�mn�C�ijk�C�abc��i
m� j

nḡk�
abR̄xy

c�, �39h�

where P�mn� produces all permutations of indices m and n,
with appropriate parity prefactors, C�ijk� produces all cyclic
permutations of indices i, j, and k, etc. Their action is best
demonstrated by these examples,

P�ij�ti
atj

b = ti
atj

b − tj
ati

b, �40a�

C�ijk�ti
atj

btk
c = ti

atj
btk

c + tj
atk

bti
c + tk

ati
btj

c. �40b�

The non-hermitian character of H̄ is manifested in Eqs.
�39a�–�39h�.

Equations �39a�–�39h� can be evaluated using the R12
technology that uses RI expansion in a basis set sufficiently
complete to angular momentum LRI. To determine the suffi-
cient LRI, we consider the partial wave �PW� expansion of
Eqs. �39a�–�39h� for the case of an atom. The only expres-

sion with nontruncating PW expansion is ḡcl
��R̄��

xy , which is
known as the intermediate V in R12 theory,

Vpq
xy � 1

2 ḡpq
��R̄��

xy . �41�

In the kl-ansatz, V can be evaluated “exactly” via RI expan-
sion in a basis complete to 3Locc �Locc is the maximum orbital
momentum of the occupied orbitals� according to the usual
R12 prescription.9 Most of the other matrix elements have
truncating PW expansions. For example, PW expansion of

ḡab
k�R̄c�

xy truncates at min�lx+ ly + lk , la+ lb+ lc�, where lx is the
angular momentum of x, etc. Thus all such matrix elements
truncate for the kl-ansatz if the RI basis is complete through

3Locc. Another example is f l
�R̄c�

xy : Its PW expansion truncates
at Locc. Thus, LRI needs to be max�3Locc ,2Locc+Lvir� to
evaluate Eqs. �39a�–�39h� accurately.

To estimate the magnitude of the coupling between the
geminals and triples, we can consider the same approach
used in Ref. 45 to screen out less important terms. The key
idea is that the terms that remain in the old R12 approach,
standard approximation �SA�, are likely to be most impor-
tant. Only V-intermediate-containing terms survive in the
SA,

� ijk
abc�H̄� mn

xy � =
SA

P�mn�C�ijk�C�abc��m
i �n

j tab
kl Vcl

xy , �42�
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� mn
xy �H̄� ijk

abc� =
SA

0. �43�

Although the T-
 block of H̄ does not vanish rigorously
under the SA, its matrix elements are second order in the
sense of a standard perturbation analysis of the coupled-
cluster theory and should be small.

Our analysis suggests that the coupling between the
geminals and triples in our perturbation theory should be
weak, i.e., E�1,1� in Eq. �38� should be small. It also suggests
that the difference between various partitioning schemes
should depend weakly on how the geminal-triples and
triples-geminals blocks are handled. The weakness of the
geminal-triples coupling permits us to choose the partition-
ing that is simplest from a technical standpoint. In this work

we choose the following definition of H̄�0�:

H̄�0� = P̂PH̄P̂P + P̂Q�F̂N + E�0��P̂Q, �44�

where we have used the normal-ordered Fock operator F̂N

� F̂− �0�F̂�0�. This definition is convenient because it leads
to the CCSD�T� family of methods51,54,55,66 if Q�T, and to
the CCSD�2�R12 method when Q�
. More importantly, the
QQ block zeroth-order operator in Eq. �44� is block diagonal
without any need for projection,

� ijk
abc�F̂� mn

xy � = 0, � mn
xy �F̂� ijk

abc� = 0. �45�

Hence, the geminal and triples contributions to the second-
order energy separate �Eq. �21��. This definition of the
zeroth-order Hamiltonian is clearly the most natural and
technically simplest.

B. Evaluation of second-order energies

The two contributions to the second-order energy correc-
tion, Eqs. �22� and �23�, can be evaluated exactly. The result-
ing method would be denoted as CCSD�2�T,R12 according to
the existing convention.45,59,62 The triples contribution,

ET
�2� = − 

klm,cde
�

ia

�i
a� i

a�H̄�1�� klm
cde� + 

ijab

�ij
ab� ij

ab�H̄�1�� klm
cde��

�� klm
cde�F̂N

−1� klm
cde�� klm

cde�H̄�1��0� , �46�

is equivalent to the energy correction in the asymmetric,54 or
�,55 CCSD�T� method. By substitution of the � amplitudes
with their t counterparts we obtain the standard CCSD�T�
energy expression,

ET
�2� = −

1

3!2 
ijk,abc

�C�ijk�C�abc��ti
aḡjk

bc + tij
abFk

c + til
abḡjk

cl

− tij
adḡkd

bc��Dijk
abc�C�ijk�C�abc��tab

il ḡcl
jk − tad

ij ḡbc
kd�� , �47�

where Dijk
abc� fa

a+ fb
b+ fc

c− f i
i− f j

j − fk
k. The second-order gemi-

nal energy correction,

E

�2� = − 

kl,x1y1x2y2
��0�H̄�1�� kl

x1y1� + 
ia

�i
a� i

a�H̄�1�� kl
x1y1�

+ 
ijab

�ij
ab� ij

ab�H̄�1�� kl
x1y1��� kl

x1y1�F̂N
−1� kl

x2y2�� kl
x2y2�H̄�1��0� ,

�48�

has appeared in the CCSD�2�R12 method.45 This expression
involves nonfactorizable three-electron integrals in the first-
order matrix elements and up to four-electron integrals in the
zeroth-order elements. Analytical evaluation of these inte-
grals is, although possible, not practical. These many-
electron integrals can be straightforwardly reduced via the
R12 technology to at most two-electron integrals. No other
approximation is necessary to evaluate Eq. �48� efficiently.

Following Ref. 45, we will utilize additional approxima-
tions to screen out the less important �but more complex�
terms. Henceforth we refer to these protocols as screening
approximations.

�1� Lambda amplitudes in Eq. �48� are replaced with their
standard t counterparts. This is the same approximation
that was involved in evaluating the �T� correction.

�2� Generalized �f i
��=0� and extended �fa

��=0� Brillouin
conditions are assumed to hold.

�3� Matrix elements of H̄ include only those terms that are
at most second order in the standard perturbation analy-
sis of the coupled-cluster energy �CCPT�.

�4� Matrix elements of H̄�1� include only those terms that
do not vanish in the SA.8

Application of the above screening approximations to the
CCSD�2�R12 method results in the CCSD�2�R12 method.45

The latter is much simpler than its exact counterpart and is
very similar to the MP2-R12 method. The CCSD�2�R12

method appears to be a dramatic improvement on CCSD
�Refs. 45 and 46�, and matches performance of more com-
plicated iterative R12 coupled-cluster methods.67 Thus, the
available evidence provides no reason to avoid screening ap-
proximations, especially considering their technical merits.
In the future it may become necessary to reconsider this po-
sition: For example, when near degeneracies are encountered
replacement of � amplitudes with their t counterparts may
introduce substantial errors.54,56 In this work we have limited
our analysis to molecules near their equilibrium geometries,
hence screening approximations should be appropriate.

The geminal correction within screening approximations
becomes

E

�2� =

ScrA
1
4 Ṽij

x1y1tx1y1

ij , �49a�

where

− 1
2 �B̃�ij��x1y1

x2y2tx2y2

ij = Ṽx1y1

ij . �49b�

Equations �49a� and �49b� involves the familiar intermedi-
ates of the MP2-R12 theory,

�B̃�ij��x1y1

x2y2 = Bx1y1

x2y2 − �f i
i + f j

j�Xx1y1

x2y2, �50�
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Bx1y1

x2y2 = R̄��
x2y2f�

�R̄x1y1

�� , �51�

Xx1y1

x2y2 = 1
2 R̄��

x2y2R̄x1y1

�� , �52�

along with the new first-order interaction matrix,

Ṽij
xy = Vij

x1y1 + ti
aVaj

x1y1 + tj
aVia

x1y1 + 1
2 tij

abVab
x1y1. �53�

When a restricted Hartree–Fock �RHF� or unrestricted
Hartree–Fock �UHF� reference wave function is used, the ti

a

amplitudes are second order in perturbation, hence the sec-
ond and third terms on the right-hand side of Eq. �53� are
omitted for consistency.

The geminal correction obtained by Eqs. �49a� and �49b�
is almost identical to the R12 correction of the MP2-R12

theory. The latter is obtained by replacing intermediate Ṽ
with V. As shown in Ref. 45, the presence of the extra

T-amplitude-dependent terms in Ṽ allows the R12 correction
in CCSD�2�R12 to account for the interference effect,68,69 i.e.
the difference in the basis set error of MP2 and CCSD
energies.70,71

Also note that the geminal correction in Eqs. �49a� and
�49b� has a symmetric form �i.e., same effective intermediate

Ṽ appears in both equations�. The original geminal correction
of the CCSD�2�R12 method was, in contrast, asymmetric.45

The difference between E

�2� computed via the two methods is

quadratic in T amplitudes and should be small. We recom-
mend using the symmetric form due to its aesthetic appeal.

The current approach has also recently been
reformulated46 in a variational �Lagrangian� form that allows
to use fixed geminal first-order coefficients determined ac-
cording to the prescription of Ten-no.13 The diagonal fixed-
coefficient ansatz can alleviate the problems due to the gemi-
nal superposition error72 at the cost of a small decrease in
absolute precision. In this work, however, we fully optimized
the geminal amplitudes.

Following the established convention,45,59,62 we denote
the method defined by Eqs. �21�, �47�, �49a�, and �49b� as
CCSD�2�T , R12. We will also use the “CCSD�T�R12” moniker
to emphasize its direct relation to the CCSD�T� method.

III. TECHNICAL DETAILS

Hartree–Fock orbitals were expanded in standard
correlation-consistent basis sets of Dunning73 and Kendall et
al.74 The RI basis sets consisted of the primitive 15s9p7d5f
and 9s7p5d sets for C–F and H, respectively, derived by
uncontracting the standard cc-pV5Z basis sets and appending
extra polarization functions.75 A Slater-type correlation factor
exp�−1.3r12� was represented as a least-squares fit to six
Gaussian-type geminals; the optimal exponents and coeffi-
cients are �303.393, 54.8852, 14.6991, 4.506 31, 1.360 66,
0.364 39� and �0.051 084 4, 0.081 916, 0.129 811, 0.205 298,
0.299 458, 0.207 455�, respectively. All integrals necessary
for the explicitly correlated calculations were evaluated us-
ing the recurrence relations of Weber and Daul76 as imple-
mented by an integral code generator LIBINT.77 The comple-
mentary auxiliary basis set �CABS� method in its CABS+
variant12 was used to factorize the many-electron integrals.

The intermediate B was simplified using approximation C of
Kedzuch et al.29,30 The linear system in Eq. �49b� may be-
come ill conditioned, especially if the orbital basis set is
large and the molecule includes elements on the right side of
the Periodic Table �O, F�. We avoid numerical problems due
to ill conditioning by using a singular-value decomposition
solver �see also Ref. 23 for a discussion of some numerical
issues in R12 methods�.

All computations were performed with developmental
versions of the MPQC �Ref. 78� and PSI3 �Ref. 79� programs.
A recent version of MPQC capable of the calculations de-
scribed in this paper can be accessed anonymously from the
main trunk of the code repository at http://
mpqc.sourceforge.net/. The necessary PSI3 updates will be
included in an upcoming release.

The computational cost of the CCSD�T�R12 method
equals the cost of the CCSD�T� energy plus that of the R12
correction of the CCSD�2�R12 method. Although the latter
involves solving a linear system of o2 rank for each ij-pair,
i.e., an O�o8� step, the total cost of this step is negligible
compared to the rest of the operations. The worst scaling is
therefore the O�o3v4� cost of computing the triples correc-
tion. The most expensive operations in the R12 correction
algorithm scale as O�o4N2�, where N is the size of the aux-
iliary basis set. The cost of such terms can be further reduced
to O�o4nN�, but this was not done in this work. The current
computational implementation of the R12 correction in MPQC

is suboptimal for small-scale computational environments: It
employs integral-direct algorithms that scale well on modern
distributed-memory massively parallel machines but increase
the computational cost.80 Our coupled-cluster program in
PSI3, however, can run efficiently on single processors only.
Thus the current implementation of the CCSD�T�R12 method,
although of production-level quality, is suboptimal.

IV. RESULTS

The immediate goal of this work is to develop a practical
explicitly correlated coupled-cluster method that can be used
as a black-box replacement for the standard CCSD�T�
method. A natural first target application of such model is
computational thermochemistry, for which the basis set error
is often a dominant component of the total error. Thus ther-
mochemical computations not only pose a stringent test for
the CCSD�T�R12 method but also can immediately take ad-
vantage of the new approach.

The electronic-structure community has developed many
robust model chemistries suited for thermochemical
computations,47–49,81–93 most recent of which essentially use
the same two features: Basis set extrapolation along the
correlation-consistent series and the assumption of additivity
of small corrections. In this work we chose the HEAT model
for our tests.47–49 The HEAT model is free of bias toward the
experimental data, does not include empirical contributions
to the energy, and extends the treatment of electron correla-
tion to the coupled-cluster singles, double, triples, and qua-
druples �CCSDTQ� level. The HEAT energy at 0 K is de-
fined as a sum,
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EHEAT = EHF + ECCSD�T� + ECCSDT + ECCSDTQ + Erel

+ EZPE + EDBOC + ESO, �54�

where Erel, EZPE, EDBOC, and ESO are the scalar relativistic,
zero-point, diagonal Born–Oppenheimer, and spin-orbit in-
teraction corrections �see Ref. 47 for complete details�. The
HEAT model defines two protocols for computing heats of
formation at 0 K, one using atomic enthalpies of formation
and molecular atomization energies �I� and another referred
to as the elemental reaction approach �II� which recalibrates
the standard state of carbon to be the CO molecule. The two
approaches result in excellent agreement with the experimen-
tally derived values from the Active Thermochemical Tables:
Mean absolute errors are only 0.30 and 0.25 kJ /mol, respec-
tively. The corresponding maximum absolute errors �MAEs�
are 0.72 and 0.82 kJ /mol. �These values for approach I were
taken from Ref. 48, which used updated AcTC values. The
errors for approach II were recomputed using the original
computed heats of formation from Ref. 47 and the new
AcTC data.�

Our focus here is the second component of the HEAT
energy, the CCSD�T� correlation energy estimated in the

complete basis set limit. We do not attempt to compute the
complete basis set limit of the total CCSD�T� energy �the
sum of the first two terms on RHF of Eq. �54�� because the
Hartree–Fock energy can be computed precisely by other
means, e.g., basis set extrapolation in polarization-consistent
basis sets94 or, even better, by avoiding global basis sets
completely and using adaptive numerical approaches.95–97

Although the original HEAT study used wave functions
based on spin UHF reference functions, in several cases it
was necessary to use a spin-restricted open-shell HF �ROHF�
reference. For consistency, all computations in this work
used ROHF-based wave functions. Although we used the
same molecular geometries as Ref. 47, the CCSD�T� corre-
lation energies computed in this work cannot be compared
directly to the original results. The complete-basis-set limits
of the CCSD�T� correlation energies were estimated by two-
point Helgaker extrapolation98,99 from the
CCSD�T� /aug-cc-pCVXZ energies with X=Q ,5.

We evaluated the basis set error of the CCSD�T� corre-
lation energy in three ways: �1� The relative basis set error of
the CCSD�T� correlation energy,

TABLE I. Statistical analyses of the relative basis set errors �%� of the
CCSD�T� correlation energy obtained with the standard, extrapolated, and
explicitly correlated methods for the HEAT test set.

Methoda

Xb

D T Q 5

̄

CCSD�T� 25.70 8.51 3.37 1.73
�X−1,X�Helgaker ¯ 1.27 −0.38 ¯

�X−1,X�Schwenke ¯ −1.42 −0.23 ¯

CCSD�T�R12 6.07 2.12 0.78 ¯

�X−1,X�R12 ¯ 0.10 −0.06 ¯

std

CCSD�T� 3.65 1.39 0.61 0.31
�X−1,X�Helgaker ¯ 0.54 0.13 ¯

�X−1,X�Schwenke ¯ 0.44 0.14 ¯

CCSD�T�R12 1.11 0.38 0.15 ¯

�X−1,X�R12 ¯ 0.23 0.07 ¯

̄abs

CCSD�T� 25.70 8.51 3.37 1.73
�X−1,X�Helgaker ¯ 1.32 0.38 ¯

�X−1,X�Schwenke ¯ 1.42 0.23 ¯

CCSD�T�R12 6.07 2.12 0.78 ¯

�X−1,X�R12 ¯ 0.17 0.07 ¯

max

CCSD�T� 33.45 11.18 4.58 2.34
�X−1,X�Helgaker ¯ 1.91 0.64 ¯

�X−1,X�Schwenke ¯ 2.42 0.51 ¯

CCSD�T�R12 7.76 2.88 1.09 ¯

�X−1,X�R12 ¯ 0.84 0.18 ¯

a�X−1,X�Helgaker and �X−1,X�Schwenke refer to the complete basis set esti-
mates obtained by Helgaker �Ref. 98� or Schwenke �Ref. 101� extrapola-
tions, respectively, of the CCSD�T� energies. �X−1,X�R12 is the energy ob-
tained by Schwenke extrapolation of the CCSD�T�R12 energies �see text�.
bThe aug-cc-pCVXZ orbital basis set.

TABLE II. Statistical analyses of the CCSD�T� correlation contributions to
atomization energies �kJ/mol� obtained with the standard, extrapolated, and
explicitly correlated CCSD�T� methods for the molecules in the HEAT test
set.

Methoda

Xb

D T Q 5

̄

CCSD�T� 55.46 22.12 8.97 4.59
�X−1,X�Helgaker ¯ 8.08 −0.63 ¯

�X−1,X�Schwenke ¯ 3.71 −0.27 ¯

CCSD�T�R12 26.20 5.65 1.71 ¯

�X−1,X�R12 ¯ −4.83 −0.77 ¯

std

CCSD�T� 25.72 11.17 4.77 2.44
�X−1,X�Helgaker ¯ 6.16 0.68 ¯

�X−1,X�Schwenke ¯ 5.73 0.71 ¯

CCSD�T�R12 15.04 3.42 1.18 ¯

�X−1,X�R12 ¯ 3.08 0.46 ¯

̄abs

CCSD�T� 55.46 22.12 8.97 4.59
�X−1,X�Helgaker ¯ 8.14 0.74 ¯

�X−1,X�Schwenke ¯ 5.38 0.61 ¯

CCSD�T�R12 26.20 5.65 1.72 ¯

�X−1,X�R12 ¯ 4.88 0.78 ¯

max

CCSD�T� 99.95 44.38 18.52 9.48
�X−1,X�Helgaker ¯ 23.49 1.96 ¯

�X−1,X�Schwenke ¯ 17.50 1.38 ¯

CCSD�T�R12 54.50 12.01 4.41 ¯

�X−1,X�R12 ¯ 10.56 1.71 ¯

a�X−1,X�Helgaker and �X−1,X�Schwenke refer to the complete basis set esti-
mates obtained by Helgaker �Ref. 98� or Schwenke �Ref. 101� extrapola-
tions, respectively, of the CCSD�T� energies. �X−1,X�R12 is the energy ob-
tained by Schwenke extrapolation of the CCSD�T�R12 energies �see text�.
bThe aug-cc-pCVXZ orbital basis set.
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�1 =
ECBS − E

ECBS
, �55�

�2� the basis set error of the CCSD�T� correlation contribu-
tion to the atomization energy,

�2 = ECBS
AE − EAE, �56�

and �3� the basis set error of the CCSD�T� correlation con-
tribution to the heat of formation computed using the el-
emental reaction approach,47

�3 = ECBS
f − Ef . �57�

Trivial zero errors �e.g., �1 for H� were excluded from the
statistical analyses. The results for the CCSD�T� correlation
energies are presented in Tables I–III.

The basis set errors of the standard CCSD�T� energies
are, as expected, large and very slowly convergent. Even
with the largest basis set, aug-cc-pCV5Z, the MAEs of the
CCSD�T� contributions to the atomization energies and heats
of formations are 4.59 and 2.05 kJ /mol, respectively. These

values are much larger than the corresponding overall MAEs
of the HEAT model, 0.30 and 0.25 kJ /mol. Simple two-point
basis set extrapolations reduce the average errors substan-
tially. For example, the errors in X=D and X=T atomization
energy contributions are 55.46 and 22.12 kJ /mol, respec-
tively, whereas Schwenke extrapolation of these data reduces
the error to 5.38 kJ /mol, a reduction by a factor of 4.1. As
expected, the effectiveness of extrapolation using basis sets
with higher X is increased dramatically: The �T,Q� Schwenke
extrapolation reduces the error of the atomization contribu-
tion from 8.97 to 0.61 kJ /mol �a factor of 14.7 reduction�.
However, the benefit of extrapolation seems to diminish for
the heats of formation. The �D,T� and �T,Q� Schwenke ex-
trapolations reduce the errors of the corresponding unex-
trapolated results only by factors of 1.7 and 4.9, respectively
�see Table III�. This effect is somewhat surprising because
the number of electron pairs broken up in the atomization
process is substantially greater.

Interestingly enough, the benefit of extrapolation for the
raw correlation energies �see Table I� seems to mirror that for
atomization energies. Therefore, a significant reduction of
the basis set error of the correlation energy may translate into
only a modest reduction of the error in a relative energy.
Although detailed analysis of this phenomenon is outside the
scope of this study, we rationalize its origin as follows. As
noted before,100 empirical basis set extrapolations are very
good at reducing the average error, but have a difficult time
reducing the standard deviation of errors. The ratio of the

standard deviation of basis set errors std to the mean error ̄
is roughly 0.5 for atomization energies and below 0.2 for
absolute correlation energies, it exceeds 1.0 for heats of for-
mation. Therefore it seems reasonable that the statistical na-

TABLE IV. Statistical analyses of the basis set errors �%� of the �T� corre-
lation energy contribution relative to the CBS CCSD�T� correlation energy.

Methoda

Xb

D T Q 5

̄

CCSD�T� 1.32 0.35 0.15 0.08
�X−1,X�Helgaker ¯ −0.05 −0.00 ¯

�X−1,X�Schwenke ¯ −0.03 −0.00 ¯

std

CCSD�T� 0.20 0.05 0.02 0.01
�X−1,X�Helgaker ¯ 0.03 0.01 ¯

�X−1,X�Schwenke ¯ 0.02 0.01 ¯

̄abs

CCSD�T� 1.32 0.35 0.15 0.08
�X−1,X�Helgaker ¯ 0.05 0.01 ¯

�X−1,X�Schwenke ¯ 0.03 0.01 ¯

max

CCSD�T� 1.59 0.43 0.18 0.10
�X−1,X�Helgaker ¯ 0.10 0.02 ¯

�X−1,X�Schwenke ¯ 0.07 0.02 ¯

a�X−1,X�Helgaker and �X−1,X�Schwenke refer to the complete basis set esti-
mates obtained by Helgaker �Ref. 98� or Schwenke �Ref. 101� extrapola-
tions, respectively, of the CCSD�T� energies.
bThe aug-cc-pCVXZ orbital basis set.

TABLE III. Statistical analyses of the CCSD�T� correlation contributions to
heats of formation �kJ/mol� obtained with the standard, extrapolated, and
explicitly correlated CCSD�T� methods for the HEAT test set. Heats of
formation computed using the “elemental reaction” approach of HEAT
model chemistry �Ref. 47�. Since this method defines H2, N2, O2, F2, and
CO as the “standard states” for elements H, N, O, F, and C, respectively,
these molecules were not included in these statistics.

Methoda

Xb

D T Q 5

̄

CCSD�T� 11.63 7.08 3.40 1.74
�X−1,X�Helgaker ¯ 5.17 0.71 ¯

�X−1,X�Schwenke ¯ 5.01 0.80 ¯

CCSD�T�R12 8.17 1.82 0.90 ¯

�X−1,X�R12 ¯ −1.42 0.32 ¯

std

CCSD�T� 18.41 9.58 4.12 2.11
�X−1,X�Helgaker ¯ 6.57 0.60 ¯

�X−1,X�Schwenke ¯ 6.16 0.64 ¯

CCSD�T�R12 15.61 3.15 0.91 ¯

�X−1,X�R12 ¯ 3.35 0.61 ¯

̄abs

CCSD�T� 16.96 9.10 4.00 2.05
�X−1,X�Helgaker ¯ 6.04 0.74 ¯

�X−1,X�Schwenke ¯ 5.51 0.82 ¯

CCSD�T�R12 14.01 2.83 0.96 ¯

�X−1,X�R12 ¯ 2.96 0.52 ¯

max

CCSD�T� 52.73 25.19 10.72 5.49
�X−1,X�Helgaker ¯ 19.44 2.07 ¯

�X−1,X�Schwenke ¯ 20.87 2.33 ¯

CCSD�T�R12 35.30 7.16 2.38 ¯

�X−1,X�R12 ¯ 7.59 1.66 ¯

a�X−1,X�Helgaker and �X−1,X�Schwenke refer to the complete basis set esti-
mates obtained by Helgaker �Ref. 98� or Schwenke �Ref. 101� extrapola-
tions, respectively, of the CCSD�T� energies. �X−1,X�R12 is the energy ob-
tained by Schwenke extrapolation of the CCSD�T�R12 energies �see text�.
bThe aug-cc-pCVXZ orbital basis set.
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ture of the residual errors resulting from the extrapolation is
the culprit behind the �relatively� poor improvement in heats
of formation from the basis set extrapolation.

As expected, the performance of the new CCSD�T�R12

method is always better than that of the standard CCSD�T�
method. Although the degree of reduction in MAE due to the
explicitly correlated terms is essentially independent of X
when we consider the raw correlation energy, at least a triple-
zeta basis set should be used with R12 methods if the target
is an atomization energy and a heat of formation. For ex-
ample, introduction of R12 terms decreases the MAE for the
heat of formation from 16.96 only to 14.01 kJ /mol with a
double-zeta basis. The improvement is much more substan-
tial with triple and quadruple zeta basis sets. Similarly to
recent studies,44,45,67 the basis set errors of the explicitly cor-
related CC method obtained with a triple-zeta basis are
roughly equivalent to those of the standard CC counterpart
obtained with a quintuple-zeta basis. This result holds not
only for the raw correlation energies but also for the tougher-
to-compute atomization energies and heats of formation.

The CCSD�T�R12 method also performs well relative to
the extrapolation approaches. Although the �T,Q� extrapola-
tion produces smaller MAEs than the
CCSD�T�R12/aug-cc-pCVQZ method, the �D,T� extrapola-
tion is less accurate on average than the
CCSD�T�R12/aug-cc-pCVTZ result. This comparison espe-
cially favors the explicitly correlated method when consider-
ing the heats of formation. For example, the MAE of the
CCSD�T�R12/aug-cc-pCVTZ heats of formation is roughly
twice better than that of the �D,T� extrapolated heats of for-
mation. Given comparable performance, the CCSD�T�R12

method should be preferred to the approaches based on basis

set extrapolation because it is less empirical. There is clearly
room to improve the performance of R12 methods further by
basis set optimization and general R12 methodology im-
provements, whereas the extrapolation methods are more
mature and less likely to be improved further.

We have also experimented with basis set extrapolation
of the explicitly correlated energies. We adopted the follow-
ing Schwenke-type extrapolation expression:

EX−1,X = �EX − EX−1�cX−1,X + EX−1. �58�

The unknown coefficient is set such that the average basis set
error of extrapolated CCSD�T�R12 correlation energies of a
set of five molecules �H2, N2, O2, F2, and CO� is zero. The
resulting values are cD,T=1.510 and cT,Q=1.630. Although
this extrapolation of the CCSD�T�R12 energies seems to im-
prove radically the raw correlation energies �see Table I�, its
benefit for atomization energies and heats of formation is
modest. However, it should be possible to improve upon
these preliminary results. For example, it is not clear to what
extent reoptimization of the Slater-geminal exponent will
change the optimal extrapolation parameters.

Lastly, we investigated whether the basis set incomplete-
ness of the triples is important enough to warrant special
treatment. The CCSD�T�R12 method only corrects the basis
set incompleteness of the two-electron basis set via the in-
troduction of the geminals and includes only the standard
�nonexplicitly correlated� �T� energy correction. To this end,
we computed the basis set errors of the �T� energy using the

TABLE V. Statistical analyses of the �T� contribution to atomization ener-
gies �kJ/mol� for the molecules in the HEAT test set.

Methoda

Xb

D T Q 5

̄

CCSD�T� 8.60 2.07 0.89 0.50
�X−1,X�Helgaker ¯ −0.68 0.03 ¯

�X−1,X�Schwenke ¯ −0.53 0.03 ¯

std

CCSD�T� 4.77 1.18 0.53 0.30
�X−1,X�Helgaker ¯ 0.38 0.08 ¯

�X−1,X�Schwenke ¯ 0.30 0.08 ¯

̄abs

CCSD�T� 8.60 2.07 0.89 0.50
�X−1,X�Helgaker ¯ 0.68 0.07 ¯

�X−1,X�Schwenke ¯ 0.53 0.07 ¯

max

CCSD�T� 19.76 4.81 2.14 1.19
�X−1,X�Helgaker ¯ 1.49 0.19 ¯

�X−1,X�Schwenke ¯ 1.16 0.19 ¯

a�X−1,X�Helgaker and �X−1,X�Schwenke refer to the complete basis set esti-
mates obtained by Helgaker �Ref. 98� or Schwenke �Ref. 101� extrapola-
tions, respectively, of the CCSD�T� energies.
bThe aug-cc-pCVXZ orbital basis set.

TABLE VI. Statistical analyses of the �T� contributions to heats of forma-
tion �kJ/mol� for the HEAT test set. Heats of formation computed using the
elemental reaction approach of HEAT model chemistry �Ref. 47�. Since this
method defines H2, N2, O2, F2, and CO as the standard states for elements H,
N, O, F, and C, respectively, these molecules were not included in these
statistics.

Methoda

Xb

D T Q 5

̄

CCSD�T� 4.35 1.08 0.52 0.29
�X−1,X�Helgaker ¯ −0.29 0.10 ¯

�X−1,X�Schwenke ¯ −0.22 0.10 ¯

std

CCSD�T� 3.45 0.80 0.36 0.20
�X−1,X�Helgaker ¯ 0.35 0.07 ¯

�X−1,X�Schwenke ¯ 0.29 0.07 ¯

̄abs

CCSD�T� 4.48 1.11 0.52 0.29
�X−1,X�Helgaker ¯ 0.37 0.10 ¯

�X−1,X�Schwenke ¯ 0.30 0.10 ¯

max

CCSD�T� 10.11 2.35 1.15 0.64
�X−1,X�Helgaker ¯ 0.91 0.30 ¯

�X−1,X�Schwenke ¯ 0.74 0.30 ¯

a�X−1,X�Helgaker and �X−1,X�Schwenke refer to the complete basis set esti-
mates obtained by Helgaker �Ref. 98� or Schwenke �Ref. 101� extrapola-
tions, respectively, of the CCSD�T� energies.
bThe aug-cc-pCVXZ orbital basis set.
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same three metrics, �1, �2, and �3 used to analyze the
CCSD�T� correlation energies. The only difference is that �1

was defined relative to the total CCSD�T� correlation energy,

�1
�T� =

ECBS
�T� − E�T�

ECBS
CCSD�T� . �59�

The results are reported in Tables IV–VI.
The main conclusion is that the basis set error of the �T�

energy is always significantly smaller than the error of the
corresponding CCSD�T�R12 energy. For example, the mean
absolute basis set errors of the X=T and X=Q �T� contribu-
tions to the heats of formation are 0.35 and 0.15 kJ /mol,
respectively, whereas the errors in the corresponding the
CCSD�T�R12 values are 2.83 and 0.96 kJ /mol. Clearly, there
does not seem to be urgent need to tackle the basis set in-
completeness of the three-electron basis with these relatively
small basis sets. For benchmark calculations, especially on
systems where the triples energy correction is substantial, it
may be necessary to use explicitly correlated three-electron
basis.

V. CONCLUSIONS

We have extended the recently proposed perturbative ex-
plicitly correlated coupled-cluster singles and doubles
method, CCSD�2�R12 �Ref. 45� to account for the effect of
connected three-electron correlations. The result is a new
method, dubbed CCSD�T�R12, that can be viewed as an ex-
plicitly correlated R12 version of the CCSD�T� method. Its
correlation energy is a sum of the standard CCSD�T� corre-
lation energy and the explicitly correlated geminal correction
defined by Eqs. �49a� and �49b�. Evaluation of the geminal
correction only requires the standard V, B, and X intermedi-
ates of MP2-R12 theory, as well as the converged CCSD
t-amplitudes. Technical implementation of the CCSD�T�R12

method does not involve any modification of an existing
CCSD�T� program and relatively simple modification of an
MP2-R12 program. We have implemented RHF-, ROHF-,
and UHF-based versions of the CCSD�T�R12 method in de-
velopmental versions of the open-source programs MPQC and

PSI3.
We have tested the performance of the CCSD�T�R12

method as a possible replacement of the standard complete-
basis-set CCSD�T� energies in the HEAT model of Stanton et
al. Correlation contributions to the atomization energies and
heats of formation computed with the new explicitly corre-
lated method are much more precise �i.e., have smaller basis
set errors� than their standard CCSD�T� counterparts �see
Fig. 1�. The mean absolute basis set errors for these quanti-
ties computed at the CCSD�T�R12/aug-cc-pCVTZ level are
5.7 and 2.8 kJ /mol, respectively, which is only slightly
worse than the 4.6 and 2.1 kJ /mol errors of the more expen-
sive CCSD�T�/aug-cc-pCV5Z energies. Increasing the basis
to aug-cc-pCVQZ decreases the MAEs of the CCSD�T�R12

energies to 1.7 and 1.0 kJ /mol, respectively.
Simple two-point basis set extrapolations of standard

CCSD�T� energies perform better than the explicitly corre-
lated method for absolute correlation energies and atomiza-
tion energies, but we find no such advantage when comput-
ing heats of formation. In fact, the �D,T� extrapolation of
CCSD�T� energies produces heats of formation that are
roughly a factor of 2 less precise than the directly computed
CCSD�T�R12/aug-cc-pCVTZ energy.

We have also investigated whether simple extrapolation
can improve the explicitly correlated energies computed with
small basis sets even further. Although the absolute energies
were improved substantially, relative energies, such as at-
omization energies and heats of formation, benefit little.
Nevertheless, a simple Schwenke-type two-point extrapola-
tion of the CCSD�T�R12/aug-cc-pCVXZ energies with X
=T,Q yields the most accurate heats of formation found in
this work, in error on average by 0.5 kJ /mol and at most by
1.7 kJ /mol. These errors are already comparable to the un-
certainty in the CBS CCSD�T� energies of the HEAT ap-
proach: Bomble et al. reported that including X=6 energies
in extrapolation can change the CCSD�T� contributions to
heat of formation by 0.38 kJ /mol for CO and 0.64 kJ /mol
for CN.48 Therefore any additional effort will be counterpro-
ductive until we establish unequivocally �e.g., to 0.1 kJ /mol
precision� the CBS CCSD�T� limits for the HEAT model. We

FIG. 1. �Color online� Mean absolute deviations of
CCSD�T� contributions to the atomization energies and
heats of formation obtained with the standard and ex-
plicitly correlated methods.
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believe that an explicitly correlated method such as
CCSD�T�R12 is the only means to attain that goal.

We found no evidence for the importance of incomplete-
ness of the three-electron basis. The basis set error of the �T�
energy in our tests was significantly smaller than the residual
basis error of CCSD�T�, CCSD�T�R12, or extrapolated
energies.

The overall conclusion of this work is that the
CCSD�T�R12 method is a simple-to-implement, robust, first-
principles explicitly correlated variant of the CCSD�T�
method. It should be immediately useful in computational
thermochemistry as an alternative to empirical basis set
extrapolation.
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