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Abstract

Recently developed linear R12-type explicitly correlated methodology promises few-percent basis set errors with small, double-f qual-
ity, Hartree–Fock basis sets. We present an MP2-R12 method which achieves the two-electron basis limit as closely as desired using any
finite Hartree–Fock basis set. We found that the two-electron correlation energy can be computed precisely from a very approximate
Hartree–Fock function. The error in the two-electron correlation energy due to the finite Hartree–Fock basis set was averaged over a
set of 20 small molecules. The mean error was found to be small, at most 1% for a double-f basis set, and quickly decaying.
� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Explicitly correlated wave function methods [1] have
only recently reached the efficiency necessary for chemical
applications on molecules with more than a few atoms.
These methods promise to reduce the basis set error in
the electron correlation energy to below 1 kcal/mol1. Such
level of precision is completely out of reach of conventional
methods, primarily due to the inefficient description of the
wave function at short interelectronic distances (Coulomb
hole). Valence MP2 energy of the water molecule, for
example, is in error by 25 and 11 kcal/mol with standard
correlation consistent cc-pVTZ and cc-pVQZ basis sets,
respectively [2]. The energy extrapolation, e.g., due to Hel-
gaker et al. [3], can reduce the basis set error to below
1 kcal/mol. Such corrections, however, must be calibrated
for each property, have limited accuracy [4], and require
a quadruple-f basis set calculation [5] to attain better than
1 kcal/mol precision for the energy.

The explicitly correlated methods allow smaller basis set
errors than the conventional methods because the two-elec-
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1 1 kcal/mol is known as chemical accuracy, because it corresponds

roughly to the value of kT at room temperature.
tron basis includes terms with explicit dependence on r12.
Such basis set can model the Coulomb hole more efficiently
than the products of one-particle functions [6]. Unfortu-
nately, four- and, sometimes, five-electron integrals appear
in explicitly correlated methods. Linear R12 methods of
Kutzelnigg, Klopper, and co-workers are currently most
practical explicitly correlated methods for chemical compu-
tations due to the ingenious use of the resolution of the
identity (RI) and other approximations to avoid computa-
tion of three- and higher-electron integrals [7,8]. Remaining
four-center two-electron integrals, although non-standard,
can be readily evaluated in Gaussian basis using standard
(recursive) techniques [9,10]. Density fitting can lower the
cost of integrals even further [11,12], by analogy with the
conventional methodology.

Linear R12 methods which do not use the Hartree–Fock
basis set for RI (ABS [13], CABS [14], and numerical
quadratures [15]) can be used with an arbitrary set of Har-
tree–Fock orbitals. Unfortunately, the basis set error is still
significant with small Hartree–Fock basis sets, e.g., 10% for
valence cc-pVDZ MP2-R12 energy of Ne atom [13]. The
origin of this error is manifold: (1) resolution of the identity
for the integrals, (2) extended and generalized Brillouin
conditions, (3) exchange commutator approximation, and
(4) residual two-particle basis incompleteness. Recent
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2 The off-diagonal (OBS-VBS, OBS-complete basis, and VBS-complete
basis) blocks of the Fock operator must be formally included in the
perturbation operator [20]. Contribution from the second-order wave
function to the energy then becomes zero. One-particle (non-Brillouin)
contributions to the first-order wave function also vanishes.
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analysis of these contributions [16] identified (4) as the pri-
mary source of the error.

The two-particle basis incompleteness error can be
reduced by using Gaussian-type ðexpð�ar212ÞÞ, Slater-type
(exp(�ar12)), or other types of geminals [17,18,16,19].
Non-linear correlation factors can be far superior with
small Hartree–Fock basis sets, e.g., few percent basis set
errors were observed at the MP2 level with double-f quality
basis sets using a single Slater-type geminal [18,16,19]. A
simple justification goes along the following lines. The
MP1-R12 pair correlation functions are expanded in terms
of conventional bi-products of virtual orbitals and r12-mul-
tiplied bi-products of occupied orbitals:

j/iji ¼
X

a<b

tijabjabi þ
X

k<l

cijklQ̂12r12jkli; ð1Þ

where Q̂12 ensures the strong orthogonality. When the Har-
tree–Fock basis set is too small, the reference MP1 descrip-
tion of the Coulomb hole is not adequate and the r12 terms
must compensate for the deficiency. Unfortunately, the glo-
bal r12 term cannot efficiently reproduce local features such
as the Coulomb hole. Slater and Gaussian geminals are
more effective with small, double-f quality basis sets be-
cause these factors are more localized.

The complete two-electron basis can, in principle, be
approached as closely as desired using linear R12-type
approaches with general correlation factors, while the Har-
tree–Fock basis is kept fixed. This goal can be achieved via
any of the following routes, among others:

(1) the set of virtual orbitals is expanded systematically
toward completeness;

(2) the set of explicitly correlated terms is expanded sys-
tematically by increasing the number of geminals per
pair function;

(3) explicitly correlated terms are constructed as
Q̂12gðr12Þ j xyi and the basis set supporting x and y

is expanded systematically.

Any two-electron approximation to the N-electron
Schrödinger equation (e.g., first-order Møller–Plesset or
singles and doubles coupled cluster equations) can thus be
solved exactly if we use exact Hartree–Fock orbitals. It is
not practical to obtain �exact� Hartree–Fock orbitals using
global basis sets for arbitrary molecules. Thus the error will
be introduced due to the finite Hartree–Fock basis set. The
magnitude of the error will depend on the Hartree–Fock
basis and the correlation model. The following question
looms: how large is this error for typical basis sets?

Many previous studies provide useful hints. Adamowicz
and Sadlej have demonstrated that optimal parameters of
the two-electron basis of Gaussian geminals can be
obtained safely with crude reference SCF orbitals [20]. Sev-
eral groups have formulated Slater determinant-based
methods to use a separate basis set for virtual orbitals
[21–23], following basic ideas of Huzinaga et al. [24]. Fol-
lowing the approach of [21], Jurgens-Lutovski and Almlöf
demonstrated that the MP2 energy computed with a small
orbital basis set (OBS) and a large virtual basis set (VBS) is
nearly identical to the standard MP2 value obtained with
the large basis set. The small-large OBS differences in abso-
lute second-order energies for water decreased from 0.88 to
0.12 mEh as the VBS was increased. Wolinski and Pulay
drew similar conclusions [23].

The goal of this study is to analyze the error in the sec-
ond-order Møller–Plesset energy due to the OBS as the
two-electron basis set limit is approached as closely as
possible.

2. Computational method

The first-order wave function was expanded according
to Eq. (1). The MP2-R12 energy expression remains iden-
tical to previous work2. Standard approximation A 0 was
utilized, i.e. terms [K1 + K2, r12] were discarded [8]. Gener-
alized and extended Brillouin conditions [8,16] were also
assumed. The intermediates were computed according to
the CABS approach modified accordingly: Eq. (15) of
[14] becomes

Cab
ij X

kl
ab ¼ ðCXÞklij � Cmn

ij X
kl
mn � Cma

ij X
kl
ma � Cam

ij X
kl
am

� Cab
ij X

kl
ab � Cma0

ij Xkl
ma0 � Ca0m

ij Xkl
a0m. ð2Þ

The CABS basis {a 0} was constructed using the CABS ap-
proach, ensuring orthogonality to occupied and virtual
orbitals.

Standard correlation consistent [25] and polarization
consistent [26] families of basis sets were obtained from
the EMSL Gaussian Basis Set database [27]. The K19s2i
basis set is described in Ref. [13]. The CABS for each cal-
culation was constructed from the union of the OBS, the
VBS, and the K19s2i basis. Virtual orbitals were con-
structed from an AO VBS as follows: (1) the AO basis
set was orthogonalized; (2) the occupied SCF orbitals were
projected out using the SVD-based procedure described in
[14]; (3) the resulting orbitals were rotated to diagonalize
the Fock matrix. This procedure does not require OBS to
be a subset of VBS, unlike the approach of [22,23].

A set of 20 molecules, suggested by Helgaker, Olsen and
Jørgensen, was used to estimate the average errors in total
and pair second-order energies due to the finite OBS.
Twelve orbital and 4 virtual basis sets of varying sizes were
used for each molecule. The relative error for a given VBS
is defined as

dEðOBS;VBSÞ ¼ EðOBS;VBSÞ � Eðpc-3-aug;VBSÞ
Eðpc-3-aug;VBSÞ ; ð3Þ
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where E is the total or spin-adapted pair correlation
energy.

All computations were performed with the MPQC
package, version 2.3 [28].

3. Results and discussion

Statistical averages for the OBS errors are presented in
Tables 1–4. The errors were computed as described in the
previous section.

The first, and most important, observation is that the
mean and RMS errors due to the OBS are small, but not
negligible. The RMS errors are largest with the smallest,
pc-1 and pc-1-aug, basis sets: 1% for the total energy and
less than 2% for the pair energies. These errors are signifi-
cantly larger than the error due to the residual incomplete-
ness of the two-particle basis with the largest VBS. The
latter error is very conservatively estimated at 0.4%, which
is the computed RMS average of the E(OBS,aug-cc-
pV5Z) � E(OBS,K19s2i) difference. Standard approxima-
tions of linear R12-type theories can be responsible for
similar (1–2%) errors [16]. It is clear that the OBS error
cannot be neglected always.
Table 1
Mean relative OBS errors (%) in the MP2-R12 correlation energies for the
test set of molecules

OBS VBS

aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z K19s2i

cc-pVDZ 0.253 0.228 0.243 0.340
cc-pVTZ 0.122 0.108 0.132 0.151
cc-pVQZ 0.043 0.042 0.044 0.063
aug-cc-pVDZ �0.346 �0.322 �0.302 �0.192
aug-cc-pVTZ �0.065 �0.078 �0.054 �0.028
aug-cc-pVQZ �0.022 �0.030 �0.029 �0.007
pc-1 �0.650 �0.727 �0.776 �0.683
pc-2 �0.012 �0.081 �0.118 �0.117
pc-3 0.003 0.003 0.003 0.003
pc-1-aug �0.732 �0.819 �0.867 �0.770
pc-2-aug �0.020 �0.084 �0.122 �0.119
pc-3-aug 0.000 0.000 0.000 0.000

Table 2
RMS relative OBS errors (%) in the MP2-R12 correlation energies for the
test set of molecules

OBS VBS

aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z K19s2i

cc-pVDZ 0.670 0.668 0.677 0.716
cc-pVTZ 0.245 0.229 0.241 0.253
cc-pVQZ 0.089 0.089 0.092 0.101
aug-cc-pVDZ 0.404 0.414 0.405 0.308
aug-cc-pVTZ 0.084 0.086 0.065 0.039
aug-cc-pVQZ 0.026 0.034 0.032 0.011
pc-1 0.930 0.982 1.033 0.955
pc-2 0.087 0.118 0.147 0.142
pc-3 0.006 0.006 0.006 0.006
pc-1-aug 0.907 0.981 1.038 0.942
pc-2-aug 0.053 0.096 0.133 0.128
pc-3-aug 0.000 0.000 0.000 0.000
The OBS error, however, decreases rapidly as the basis
set is expanded, e.g., triple-f quality basis sets result in
under 0.5% RMS errors. The rate of decay is approxi-
mately exponential. The OBS error changes little as VBS
is varied. This is a clear indication that the one- and two-
particle parameters of the wave function are only weakly
coupled.

Comparison of correlation consistent and polarization
consistent families reveals a few surprises. The double-f
correlation consistent basis sets yield smaller errors than
the pc-1 sets and thus seem to be a better choice. Differ-
ences between cc-pVTZ and pc-2 sets are less pronounced
but still hint that the correlation consistent series is pre-
ferred for the orbital expansion.

There is no reason to expect a normal (Gaussian) distri-
bution of the OBS error. Further statistical analysis of the
computed sample of OBS errors suggests strongly non-
Gaussian distributions when large OBS are employed.
The OBS error distributions for small OBS are significantly
closer to Gaussian, e.g., Skew and Kurt for the OBS errors
in (OBS = aug-cc-pVDZ, VBS = K19s2i) pair energies are
�0.196 and 0.693, respectively. It is therefore reasonable to
assume that the �true� distribution of the OBS error is
Table 3
Mean relative OBS errors (%) in the MP2-R12 pair energies for the test set
of molecules

OBS VBS

aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z K19s2i

cc-pVDZ 0.319 0.255 0.263 0.374
cc-pVTZ 0.161 0.148 0.172 0.195
cc-pVQZ 0.055 0.053 0.058 0.078
aug-cc-pVDZ �0.411 �0.428 �0.412 �0.289
aug-cc-pVTZ �0.081 �0.092 �0.068 �0.038
aug-cc-pVQZ �0.027 �0.036 �0.034 �0.009
pc-1 �0.984 �1.086 �1.151 �1.037
pc-2 �0.098 �0.186 �0.225 �0.223
pc-3 0.004 0.005 0.004 0.005
pc-1-aug �0.966 �1.081 �1.149 �1.034
pc-2-aug �0.097 �0.176 �0.219 �0.214
pc-3-aug 0.000 0.000 0.000 0.000

Table 4
RMS relative OBS errors (%) in the MP2-R12 pair energies for the test set
of molecules

OBS VBS

aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z K19s2i

cc-pVDZ 1.438 1.429 1.427 1.434
cc-pVTZ 0.422 0.418 0.420 0.430
cc-pVQZ 0.175 0.172 0.173 0.176
aug-cc-pVDZ 0.702 0.678 0.661 0.600
aug-cc-pVTZ 0.133 0.129 0.107 0.088
aug-cc-pVQZ 0.041 0.050 0.047 0.026
pc-1 1.713 1.706 1.737 1.672
pc-2 0.379 0.402 0.415 0.411
pc-3 0.021 0.020 0.020 0.020
pc-1-aug 1.404 1.413 1.454 1.377
pc-2-aug 0.307 0.326 0.343 0.335
pc-3-aug 0.000 0.000 0.000 0.000
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Gaussian for small OBS. The OBS error for more complex
systems can therefore be estimated from the computed
averages.

The computed OBS error estimates are relevant to the
recent and future work on explicitly correlated methods.
The linear R12-type methods with general geminal factors
(Slater-type and others) are capable of recovering more
than 95% of correlation energy even with a double-f basis
sets [17,18,16,19]. Present results demonstrate that (1) a sig-
nificant part of this error should be attributed to the effect
of the finite OBS basis and (2) below 1% error may not be
achievable with a double-f quality OBS. We can also con-
clude that a triple-f basis set is more than sufficient to
achieve a 99% precision for the two-body correlation
energy. These rules can be summarized as follows: the
improvement of the two-particle basis must be accompa-
nied by increasing the orbital basis set to keep the OBS
error comparable or below the two-particle basis incom-
pleteness error.
4. Conclusions

A generalization of the MP2-R12 method which uses a
separate basis for virtual orbitals can be used to approach
systematically the two-particle basis set limit as closely as
desired while keeping the Hartree–Fock basis fixed. This
approach was used to compute the error in the second-
order energy due to the finite OBS, statistically averaged
for a set of 20 small molecules. The OBS error is small,
on the order of 1%, and decays quickly as OBS becomes
complete. For small, double-f quality basis sets, the error
is not negligible relative to the other sources of the error
in correlation energy.

The most important conclusion of this study is that very
precise two-electron correlation energies (�98–99%) can be
computed from Hartree–Fock orbitals expanded in small,
double-f quality, basis sets. Although the error due to the
finite Hartree–Fock basis is small, it is not entirely negligi-
ble compared to the error due to approximations in explic-
itly correlated methods. The dominant source of error,
however, is still the incomplete two-particle basis.

The presented MP2-R12 method is clearly not the best
practical route towards precise two-electron correlation
energies. The r12 factor is not the optimal factor far from
the asymptotic regime, i.e. it only makes sense to use the
r12 factor with a large space of virtual orbitals. Other gem-
inal factors are much more efficient in the small-basis
regime. Generalization of the present MP2-R12 method
to other geminal factors is straightforward and has also
been recently implemented. Initial results for open-shell
systems will be published shortly.
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[9] W. Klopper, R. Röhse, Theor. Chim. Acta 83 (1992) 441.
[10] E.F. Valeev, H.F. Schaefer, J. Chem. Phys. 113 (2000) 3990.
[11] F.R. Manby, J. Chem. Phys. 119 (2003) 4607.
[12] S. Ten-no, F.R. Manby, J. Chem. Phys. 119 (2003) 5358.
[13] W. Klopper, C.C.M. Samson, J. Chem. Phys. 116 (2002) 6397.
[14] E.F. Valeev, Chem. Phys. Lett. 395 (4–6) (2004) 190.
[15] S. Ten-no, J. Chem. Phys. 121 (2004) 117.
[16] A.J. May, E. Valeev, R. Polly, F.R. Manby, Phys. Chem. Chem.

Phys. 7 (2005) 2710.
[17] B.J. Persson, P.R. Taylor, J. Chem. Phys. 105 (1996) 5915.
[18] S. Ten-no, Chem. Phys. Lett. 398 (2004) 56.
[19] D.P. Tew, W. Klopper, J. Chem. Phys. 123 (2005) 074101.
[20] L. Adamowicz, A.J. Sadlej, Chem. Phys. Lett. 48 (1977) 305.
[21] S. Havriliak, H.F. King, J. Am. Chem. Soc. 105 (1983) 4.
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