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Explicitly correlated R12 methods using a single short-range correlation factor �also known as F12
methods� have dramatically smaller basis set errors compared to the standard wave function
counterparts, even when used with small basis sets. Correlations on several length scales, however,
may not be described efficiently with one correlation factor. Here the authors explore a more general
MP2-R12 method in which each electron pair uses a set of �contracted� Gaussian-type geminals
�GTGs� with fixed exponents, whose coefficients are optimized linearly. The following features
distinguish the current method from related explicitly correlated approaches published in the
literature: �1� only two-electron integrals are needed, �2� the only approximations are the resolution
of the identity and the generalized Brillouin condition, �3� only linear parameters are optimized, and
�4� an arbitrary number of �non-�contracted GTGs can appear. The present method using only three
GTGs and a double-zeta quality basis computed valence correlation energies for a set of 20 small
molecules only 2.2% removed from the basis set limit. The average basis set error reduces to 1.2%
using a near-complete set of seven GTGs with the double-zeta basis set. The conventional MP2
energies computed with much larger quadruple, quintuple, and sextuple basis sets all had larger
average errors: 4.6%, 2.4%, and 1.5%, respectively. The new method compares well to the published
MP2-R12 method using a single Slater-type geminal �STG� correlation factor. For example, the
average basis set error in the absolute MP2-R12 energy obtained with the exp�−r12� correlation
factor is 1.7%. Correlation contribution to atomization energies evaluated with the present method
and with the STG-based method only required a double-zeta basis set to exceed the precision of the
conventional sextuple-zeta result. The new method is shown to always be numerically stable if
linear dependencies are removed from the two-particle basis and the zeroth-order Hamiltonian
matrix is made positive definite. © 2006 American Institute of Physics. �DOI: 10.1063/1.2403852�

I. INTRODUCTION

Standard wave functions based on Slater determinants
cannot be affordably computed to a precision necessary for
computational studies of thermochemistry, kinetics, or spec-
troscopy. For example, Bak et al. found that first-principles
computation of atomization energies accurate to 1 kcal/mol
require a basis set of sextuple-zeta quality.1 Such extended
basis sets are practical only for the smallest molecules. The
large and slowly decaying basis set error of conventional
wave functions is due to their failure in the regions where
electrons approach each other closely.2 Explicitly correlated
wave functions are more appropriate to model such short-
range electron correlations because of their appropriate ex-
plicit dependence on the interelectronic distances.

The explicitly correlated wave function methods can be
roughly divided into two groups. The first group of methods,
traditional explicitly correlated approaches, expands the
wave function in terms of N-electron basis functions, of
which the vast majority depend on at least one interelectronic
distance. Examples are the Hylleraas,3,4 James-Coolidge,5

Hylleraas-configuration interaction �CI�,6 Gaussian-type
geminals methods,7–11 etc. The second group of methods

uses an N-electron basis set which consists primarily of
Slater determinants augmented by a few explicitly correlated
basis functions. The only examples of such methods are the
R12 methods of Kutzelnigg and co-workers12–18 as well as
the explicitly correlated MP2 method of Taylor and
co-workers.19,20 Considering, for simplicity, the MP2-R12
method, the first-order pair function is expanded in terms of
conventional orbital products and terms which include the
correlation factor, f12� f�r12�,

��̃ij
�1�� = �

a�b

Tij
ab�ab� + �

k�l

Cij
klQ̂12f12�kl� , �1�

where I used the standard tensor notation �e.g., see Refs. 18
and 21�. The number of the standard terms then is O�o2v2�,
whereas the explicitly correlated terms number only O�o4�.
The explicitly correlated terms are strongly orthogonal to the
conventional terms,

	ab�Q̂12f12�kl� = 0, �2�

which can be ensured by choosing Q̂12 appropriately.
Success of R12 and related methods hinges on the fact

that standard Slater determinant expansions are precise, ex-
cept at small interelectronic distances, where they cannot
compensate for the singularity of the Coulomb potential. The
behavior at small r12 is naturally corrected by terms linear ina�Electronic mail: evaleev@vt.edu
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r12 which exactly represent the wave function cusp22,23 at
r12=0, i.e., setting f12 to r12 in Eq. �1�. Addition of one such
term to a conventional CI expansion for the ground state of
He atom speeds up the convergence of the basis set error
from O�L−3� to O�L−7�,12 where L is the maximum angular
momentum of the basis set. The key technical features of the
R12 methods are the resolution of the identity12,24–26 and the
standard approximation12,13,27 due to which only two-
electron integrals are needed. R12 methods enhanced with
local correlation techniques,28 density fitting,29,30 and parallel
algorithms31 are efficient enough to handle molecules with
tens of atoms.32,33 Such robustness is without precedent
among explicitly correlated methods.

For small basis sets, however, a linear r12 factor is not
ideal. Although in principle even a double-zeta basis set is
sufficient to compute correlation energies in error by less
than 1%,34 practice showed that MP2-R12 energies com-
puted with an aug-cc-pVXZ basis were only as precise as the
standard MP2/aug-cc-pV�X+1�Z energy.17,35 Ten-no was
first to demonstrate that a Slater-type geminal36 �STG� was
much more effective in combination with small-basis Slater
determinant expansions and thus removed the primary source
of the basis set error in linear R12 calculations.27 For valence
correlation energies, the basis set error in the MP2-R12/aug-
cc-pVDZ energy computed with a single STG is roughly
equivalent to the error in the standard MP2/aug-cc-pVQZ
energy. Other exponential factors35 perform comparably to
the STG.

Despite the impressive performance of R12 methods
with short-range correlation factors, several areas of concern
exist. First, the optimal nonlinear parameter which deter-
mines the effective range of the correlation factor depends on
the molecular system. Tew and Klopper found that for large
basis sets it is less of a concern than for small basis sets.35

When smaller basis sets were used, especially the double-
zeta basis, they found that the energy was sensitive to the
exponent. Second, using the same correlation factor for ev-
ery pair of electrons may not guarantee consistent precision,
as the core electrons are likely to need a shorter-range cor-
relation factor than valence electrons. Thus it is clear that
whether the correlation range is optimized or not, a single
correlation factor may not offer consistent performance
across the Periodic Table and for all chemical changes. Last,
the description of electrons alongside other quantum par-
ticles �positrons and protons� will likely require more than
one correlation range as well.

Here I propose to examine an R12 approach in which
every pair of electrons utilizes several correlation factors of
varying correlation range. In this work these correlation fac-
tors are of Gaussian form, although other factors can be cho-
sen. A decade ago Persson and Taylor pioneered a similar
approach called Gaussian-type geminal �GTG�-MP2,19 and
recently Polly et al. reinvestigated20 their approach in the
context of local correlation. The method of Polly et al. has
the following two features which distinguish it from the
present method: �1� the weak orthogonality functional
�WOF� approximation37 is invoked to avoid computation of
four-electron integrals, and �2� many-electron integrals are
evaluated analytically. Taylor and co-workers reported high

precision of their method �3% basis set error using the aug-
cc-pVDZ basis set and six GTGs� but also note the imprac-
tical computational cost due to the three-electron integrals.

The present method will retain the framework of R12
theory, i.e., �1� no approximations, other than the reliable
generalized Brillouin condition,13,27 will be invoked �the im-
pact of the generalized Brillouin condition is minimal for a
linear r12 factor27 and for short-range correlation factors �see
an upcoming Ref. 38�� and �2� three- and four-electron inte-
grals will be evaluated via the resolution of the identity �RI�.
Therefore it should be possible to apply this method to sys-
tems as large as those accessible with the original MP2-R12
method. Because many-electron integrals are avoided com-
pletely and WOF is not assumed, the new method should be
more practical and reliable than the approach of Taylor and
co-workers.

This objective of this study is to test the precision of the
new MP2-R12 method for valence and all-electron second-
order correlation energies of second-row atoms, and valence
energies of a set of small molecules. The present method will
be benchmarked against the standard MP2 method and its
explicitly correlated variants using both r12 and STG corre-
lation factors.

II. METHODOLOGY

A. Formalism

Following Eq. �1�, the first-order pair function is ex-
panded as

��̃ij
�1�� = �

a�b

Tij
ab�ab� + �

�

NCF

�
k�l

Cij
kl���Q̂12f12

����kl� . �3�

There are NCF correlation factors, f12
���, each of which is a

linear combination of n� Gaussian geminals,

f12
��� = �

�

n�

U�
� exp�− ��r12

2 � . �4�

Exponents �� and coefficients U�
� are fixed at predetermined

values. Any square-integrable nonsingular function of r12 can
be represented accurately via Eq. �4� given a sufficiently
complete set of GTGs. One can therefore easily use this an-
satz to approximate results obtained with other correlation
factors, such as r12 and exp�−�r12�.

27,35 In this sense, the
ansatz defined by Eqs. �3� and �4� is universal.

Equation �3� specifies a straightforward generalization of
the standard MP2-R12 approach. For a complete discussion
of modern R12 methodology one should consult several
reviews.16–18,39,40 For the sake of brevity I will outline only
essential technical details of the current method.

Projector Q̂12 ensures the strong orthogonality of the ex-
plicitly correlated terms to the conventional double substitu-
tions

Q̂12 = �1 − Ô1��1 − Ô2� − V̂1V̂2, �5�

where Ô and V̂ are projectors on the occupied and virtual

orbital spaces, respectively. This form of Q̂12 has been advo-
cated by Wind et al.,41 Valeev,25 and, most recently, Klopper
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et al. in the context of explicitly correlated coupled cluster
method.17 In the complete basis set limit projector �Eq. �5��
is equivalent to that of ansatz 2 of Klopper and Samson,24

although their technical expressions for matrix elements dif-
fer substantially.

To compute first-order wave function and second-order
energy, matrix elements of the zeroth- and first-order Hamil-
tonians and overlap operator are needed. They are expressed
in terms of the following intermediates:

Vkl���
ij = 	kl�f12

���Q̂12
1

r12
�ij� , �6�

Xkl���

ij��� = 	kl�f12
���Q̂12f12

����ij� , �7�

Bkl���

ij��� = 	kl�f12
���Q̂12�F̂1 + F̂2�Q̂12f12

����ij� , �8�

Akl���
ab = 	kl�f12

���Q̂12�F̂1 + F̂2��ab� . �9�

Note that these intermediates are analogous to the standard
intermediates of the linear R12 theory but their column
and/or row dimensions are NCF times larger. The many-
electron integrals which appear in the intermediates in Eqs.
�6�–�9� were approximated using the complementary auxil-
iary basis set �CABS� approach of Valeev.25 The generalized
�but not the extended� Brillouin condition13 was assumed in
the evaluation of matrix B. No other approximations were
involved, i.e., the current method can be described as MP2-
R12/B. The final expression for the first-order wave function
and the second-order energy are identical to the original
MP2-R12 method,

Ckl���
ij = − �

�
�

m�n

�B̃�ij��kl���

mn���Ṽmn���
ij , �10�

E�2� = �
i�j

eij
MP2 + �

i�j

eij
R12, �11�

eij
R12 = − �Ṽ†�B̃�ij��−1Ṽ�ij

ij , �12�

where

Ṽ = V + CT �13�

B̃�ij� = B − X��i + � j� − A†���ij��−1A , �14�

Tab
ij = −

	ab�1/r12�ij�
�a + �b − �i − � j

, �15�

���ij��ab
cd = �	a

c	b
d − 	a

d	b
c���a + �b − �i − � j� . �16�

Canonical Hartree-Fock orbitals were assumed in the deriva-
tion of Eq. �10� and in the expressions for the intermediates.

B. Computational cost

The computational expense of the energy evaluation for-
mally scales as O�o8NCF

3 � due to the need to invert matrix

B̃�ij�. The prefactor for this step, however, is very small. For

atoms and small molecules considered in this study the total
cost of the energy computation is dominated by the integrals
evaluation and the AO→MO transformation. The worst
scaling integrals include a correlation factor in the bra and
the ket, i.e., integrals of operators exp�−��r12

2 �exp�−�
r12
2 �

and �exp�−��r12
2 � , �T̂1 ,exp�−�
r12

2 ���. Such expressions do
not appear in the MP2-R12 method that uses one correlation
factor. These integrals, however, factorize into products of
two-dimensional integrals and should be relatively inexpen-
sive to evaluate. �The current version of the integrals engine
does not yet exploit the factorizability of the integrals but
will �hopefully� do so in the future.� The observed scaling of
the cost of computing and transforming integrals is therefore
closer to linear than quadratic and the impact of using sev-
eral correlation factors is somewhat limited. Furthermore, in
the context of explicitly correlated CC methods, the cost of
the integrals is small compared to the cost of solving the
conventional amplitude equations and the scaling of the total
cost of the calculation with NCF will be effectively sublinear.

C. Numerical issues

When a large set of Gaussian geminals is used, compu-
tations may become numerically meaningless. Specifically,

the overlap matrix and/or matrix B̃ may become �near�singu-
lar or even indefinite. Although both may originate in the
large RI error or the loss of precision in the integral evalua-
tion, the overlap matrix becomes singular naturally when the
set of explicitly correlated two-particle basis functions

Q̂12f12
����kl� approaches linear dependence. This phenomenon

is completely analogous to the onset of linear dependence in
conventional electronic structure computations using a very
large one-electron basis set.

Computations with correlated core electrons are most
susceptible to the linear dependency problem. This can be
understood easily. Subvalence electron pairs tend to be more
compact than the valence pairs; therefore the effective inte-
gration range over the interelectronic distance will be much
smaller than for valence pairs. But at small r12 all Gaussian
geminals with sufficiently small exponents are quadratic,

exp�− �r12
2 � = 1 − �r12

2 + O�r12
4 � . �17�

Thus to correlate subvalence electron pairs and avoid the
linear dependency problem one must include a set of high-
exponent Gaussian geminals only. In this work I chose to use
the same set of Gaussian geminals for all pairs, valence and
otherwise, and deal with the linear dependence problem us-
ing a standard orthogonalization procedure. Canonical
orthogonalization,42 for example, can be applied straightfor-
wardly.

�1� A linearly independent orthonormal set of basis vectors
U is constructed from the two-electron overlap matrix
X such that

U†XU = I . �18�

In canonical orthogonalization procedure, U is obtained
from the eigenvalues x and eigenvectors V of matrix
X as

244106-3 Explicitly correlated electronic structure J. Chem. Phys. 125, 244106 �2006�
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U = x�
1/2V�. �19�

Subscript � in Eq. �19� denotes discarding eigenvalues
smaller than the maximum eigenvalue times some
small threshold, �. In this work I used �=10−8.

�2� The pair energy correction in Eq. �12� is replaced with

eij
R12 = − �V̄†�B̄�ij��−1V̄�ij

ij , �20�

obtained by transforming matrices Ṽ and B̃�ij� to the
orthonormal basis,

V̄ = U†Ṽ , �21�

B̄�ij� = U†B̃�ij�U . �22�

The number of linearly dependent vectors discarded in
step 1 depends on the threshold, �, and the particular system
under study. For example, the number of linearly dependent
vectors in the B–Ne series increased from two to six when
nine GTGs and the aug-cc-pCVDZ basis set were utilized.
Heavier elements unsurprisingly have more linear dependen-
cies because the orbitals become more compact as the
nuclear charge increases. Linear dependencies in the two-
electron basis were also observed in molecular computations
of valence correlation energies with seven Gaussian gemi-
nals, especially for molecules with heavier elements �N, O,
F�, e.g., N2H2, O2H2, CO2, etc. The onset of linear depen-
dence can be delayed by using non-even-tempered sets of
GTGs. Further examination of these issues is under way.

Erratic convergence or even divergence with respect to
the number Gaussian geminals was also observed when

negative eigenvalues appeared in the spectrum of matrix B̄�ij�

�the geminal-geminal block of the zeroth-order Hamil-
tonian�. In the worst case, the negative eigenvalues can lead
to positive pair energies, which is clearly unphysical. Be-
cause the origin of the negative eigenvalues is loss of nu-
merical precision in computation of matrix elements, it
makes sense to simply eliminate the negative part of the

eigenspectrum as follows. First, matrix B̄�ij� is diagonalized,

B̄�ij� = UbU†, �23�

and the negative eigenvalues are eliminated to yield b+ and
U+. Back transformation then produces the positive-definite
zeroth-order Hamiltonian,

B̄+
�ij� = U+

†b+U+. �24�

Elimination of linear dependencies in the two-electron
basis and negative eigenspectrum of zeroth-order Hamil-
tonian do not change the asymptotic scaling of the cost of the
calculations described here. These procedures do increase the
total computational cost, but the absolute increase of the cost
was negligible for the systems under consideration.

I should also note that these issues are related to the
convergence problems encountered in the CC-R12 methods
due to the numerical issues with the zeroth-order Hamil-
tonian. The idea of extremal electron pairs was introduced by
Klopper and co-workers18,43 to overcome such problems. Ex-
tremal electron pairs are defined as two-particle functions

which diagonalize some operator, e.g., r12
2 . The motivation

behind the extremal pairs was to handle a singular or indefi-
nite zeroth-order Hamiltonian by taking only its diagonal in
the basis of extremal pairs. The extremal pair concept may
potentially be useful in the context of the present method as
well, especially when applied in the coupled-cluster frame-
work. However, even in the MP2-R12 framework the use of
the diagonal ansatz can be beneficial. Preliminary tests for
atoms obtained with a diagonal ansatz, without the extremal
pairs, indicate that the numerical issues disappear �see
Sec. III A�.

D. Technical details

All computations were performed with the developmen-
tal version of the MPQC package.44 Spin-unrestricted formu-
lations of the second-order methods were utilized. Standard
correlation consistent basis sets of Dunning45 and Kendall
et al.46 were obtained from the EMSL Gaussian basis set
database.47 The RI basis sets were taken from Ref. 48 and
truncated at angular momentum �3,2� for �B–Ne,H�. The RI
basis sets are thus composed of the primitive 15s9p7d5f and
9s7p5d spherical harmonic Gaussian sets for the heavy ele-
ments and hydrogen, respectively. The angular momentum
truncation was due to technical limitation of the LIBINT2 in-
tegrals library at the time. The error due to the finite RI basis
set was estimated from linear R12calculations with a much
more complete RI basis set composed of the primitive
19s14p8d6f4g3h2i and 9s6p4d3f2g sets for B–Ne and H,
respectively. The RI error was confirmed negligible ��0.1%
for all cases�.

Even-tempered sets of three, five, seven, and nine GTGs
were used in this study. The set of nine GTGs included the
following geminal exponents: 0.1, 0.3333, 1.0, 3.333, 10.0,
33.33, 100.0, 333.3, and 1000.0. The 3GTG, 5GTG, and
7GTG sets were based on the same exponents but restricted
to intervals �1.0,10.0�, �0.3333,33.33�, and �0.1,100.0�, re-
spectively. In STG computations, the Slater-type geminal
was expanded in terms of six Gaussian-type geminals with
fitting coefficients given in Ref. 35.

The set of small molecules from Ref. 49, used to bench-
mark performance, was referred to as HJO20. The experi-
mental geometries were used in all computations, as given in
Tables 15.7 and 15.9 of Ref. 49.

Complete basis set limit for valence correlation energies
of the atoms was estimated by the �X+1/2�−3 extrapolation50

from atomic UMP2/aug-cc-pV5Z and UMP2/aug-cc-pV6Z
energies. The complete basis set �CBS� all-electron atomic
energies were also estimated by an extrapolation from
UMP2/aug-cc-pCVQZ and UMP2/aug-cc-pCV5Z energies.
The CBS limits for molecular valence energies were esti-
mated in Ref. 34 using a triple-basis MP2-R12 approach. For
the sake of brevity, these molecular MP2 CBS energies as
well as absolute energies for all computations are freely
available in electronic form from the EPAPS repository at
epaps.aip.org.51
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III. RESULTS

Present study is focused mainly on absolute correlation
energies. Because the error in absolute electronic energy
scales linearly with the size of the system, the basis set in-
completeness in a broad selection of systems can only be
analyzed in terms of the relative error

� =
ECBS − E

ECBS
, �25�

where E and ECBS are the correlation energies computed with
the given and complete basis set, respectively �ECBS can only
be estimated by explicitly correlated computations or basis
set extrapolation�. The relative error in Eq. �25� is defined to
be positive/negative when the correlation energy is
underestimated/overestimated.

The ultimate goal of this work is precise computation of
relative energies, i.e., chemical energy differences. Chemical
energy differences of interest to thermochemistry and kinet-
ics cannot be meaningfully evaluated at the MP2 level. Such
studies will require an R12 version of a highly correlated
method, such as multireference CI or coupled cluster. In the
absence of a CC-R12 implementation using the new ansatz,
the potential precision of the new explicitly correlated ansatz
must be judged indirectly. One approach is to compare rela-
tive basis set errors in the absolute second-order energies.
From the available literature data1 one can estimate that the
augmented quadruple- and sextuple-zeta basis sets are nec-
essary to attain the “chemical” accuracy of 1 kcal/mol for
reaction enthalpies and atomization energies, respectively. It
is thus reasonable to gauge the basis set error of a method
against the errors in conventional MP2/aug-cc-pVQZ and
MP2/aug-cc-pV6Z absolute energies. If, for example, the ba-
sis set error in a given explicitly correlated computation is
the same as the error in the standard MP2/aug-cc-pVQZ en-
ergy, one can reasonably assume this level of theory to com-
pute reaction enthalpies to chemical accuracy. Precision of
the new MP2-R12 methods was also benchmarked against
the standard MP2 approach for the second-order correlation
contribution to the atomization energies. A more thorough
application of the new method to reaction enthalpies and
atomization energies will be published in the future.

A. Atoms

Valence second-order correlation energies for the
second-row atoms are presented in Figs. 1 and 2.

Clearly, it is exceedingly difficult to reduce basis set er-
ror in the standard MP2 energy by a brute-force extension of
the basis set. For example, the conventional MP2 energies
computed with the augmented quadruple- and sextuple-zeta
basis sets are in error by 5%–7% and 1.5%–2.5%, respec-
tively. This reduction of the basis set error by a factor of 3
comes at the expense of an 
2.4-fold increase in basis set
size and a roughly 30-fold cost increase.

By comparison, explicitly correlated energies have much
higher precision. It takes only an aug-cc-pVTZ basis in con-
junction with the r12 correlation factor to match or exceed
precision of the standard aug-cc-pVQZ computation �Fig. 2�.
These results fit earlier observations24,35 that the basis set

error in the MP2-R12/aug-cc-pV�X−1�Z energy is roughly
equivalent to that in the standard MP2/aug-cc-pVXZ energy.

r12 is the least efficient correlation factor. Either a single
Slater geminal or a set of three Gaussian-type geminals is
sufficient to exceed the precision of the MP2/aug-cc-pVQZ
energy using only an aug-cc-pVDZ basis set. Furthermore,
the analogous energies obtained with the aug-cc-pVTZ basis
set exceed the precision of the MP2/aug-cc-pV6Z energy.
These results are even more impressive considering that the
correlation-consistent basis sets were developed for the use
with the standard correlation methods, not the explicitly cor-
related variety.

FIG. 1. Valence Møller-Plesset second-order energies for second-row atoms
computed with conventional and explicitly correlated wave functions. The
notation and complete details of all computations are explained in Sec. II D.

FIG. 2. Valence Møller-Plesset second-order energies for second-row atoms
computed with conventional and explicitly correlated wave functions. The
notation and complete details of all computations are explained in Sec. II D.
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The most precise energies with either aug-cc-pVDZ or
aug-cc-pVTZ sets are obtained with a set of seven primitive
GTGs: the average errors are 1.99% and 1.01%, respectively.
Notably, the aug-cc-pVDZ 7GTG energies for F and Ne at-
oms are as precise as the standard aug-cc-pV6Z energies,
although the precision for lighter atoms is not as high. The
aug-cc-pVTZ 7GTG valence energies are the most precise
atomic valence energies obtained in this study.

The basis set error as a function of the number of GTGs
decreases monotonously. This is not surprising because the
MP2-R12/B energy usually approaches the CBS limit from
above. Therefore as the number of GTGs in a telescoping
series �i.e., the 3GTG set is included in the 5GTG set� is
increased, the energy decreases and the basis set error re-
duces. Convergence with respect to the number of geminals
is quick. For example, the 7GTG-5GTG difference is very
small ��0.4% for all atoms under consideration�. Thus the
7GTG energies can be considered converged.

If the set of Gaussian geminal correlation factors in Eq.
�4� is extended to completeness in a regular manner, the
second-order energy is shown to converge to some limiting
value near the CBS limit. Such regular convergence is not
possible with only one correlation factor, e.g., a Slater-type
geminal. Therefore the choice of exponent in the Slater
geminal becomes important. When larger basis sets �aug-cc-
pVTZ and aug-cc-pVQZ� are used, the energy depends only
weakly on the STG exponent.35 This dependence is much
more pronounced, however, with the aug-cc-pVDZ basis.
The two exponents I chose, 1.0 and 1.5, result in monotoni-
cally increasing and decreasing MP2-R12/aug-cc-pVDZ er-
rors along the B–Ne series. These exponents therefore
bracket the “optimal” exponent which would produce maxi-
mally flat error profile.

The MP2-R12 method which uses GTGs as the correla-
tion factors compares favorably to the MP2-R12 method us-
ing a single Slater-type geminal. The 5GTG set is already
sufficient to exceed the performance of either STG correla-
tion factor, regardless of the basis set. The 7GTG set yields
even lower basis set errors.

The basis set error has a weak but pronounced variation
across the atomic series. For the conventional MP2 method,
the heavier atoms correspond to greater errors. The trend for
the explicitly correlated method depends strongly on the cor-
relation factor. For the linear r12 correlation factor the basis
set error is relatively flat. As discussed above, the row varia-
tion of the MP2-R12 STG energies depends on the geminal
exponent. MP2-R12 nGTG energies generally have largest
errors for the middle atoms in the series �N and O�.

All-electron correlation energies for second-row atoms
are presented in Figs. 3 and 4. Generally speaking, most
conclusions drawn from the valence-only results apply to the
all-electron data as well. A linear r12 correlation factor is
outperformed by both Slater and Gaussian geminals. Sets of
Gaussian-type geminals produce significantly lower basis set
errors than a single Slater-type geminal. The convergence
with respect to the number of Gaussian-type geminals is
slower than in the valence case: the error decreases signifi-
cantly from 7GTG to 9GTG.

The numerical problems described in Sec. II C were ob-

served in all-electron computations. For example, the MP2-
R12�9GTG�/aug-cc-pVDZ computation on a neon atom re-
vealed six linearly dependent functions in the alpha-beta
geminal space and up to two negative eigenvalues in the

spectrum of B̃�ij�. Nonphysical pair energies were obtained
unless linear dependencies were eliminated and the positive-
definite spectrum of the zeroth-order Hamiltonian was en-
forced. All energies computed with the use of these

FIG. 3. All-electron Møller-Plesset second-order energies for second-row
atoms computed with conventional and explicitly correlated wave functions.
The notation and complete details of all computations are explained in
Sec. II D.

FIG. 4. All-electron Møller-Plesset second-order energies for second-row
atoms computed with conventional and explicitly correlated wave functions.
The notation and complete details of all computations are explained in
Sec. II D.
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techniques were physically reasonable.
It is hard to resist the urge to speculate about the poten-

tial manifestations of the two numerical problems in future
explicitly correlated computations. Clearly, all-electron com-
putations on heavier elements are likely to encounter these
problems, perhaps even when only one correlation factor is
used. It is also likely that iterative explicitly correlated meth-
ods, such as coupled cluster, will be more sensitive to the
presence of linear dependencies and nonphysical spectrum of
the zeroth-order Hamiltonian. Two solutions seem tenable.
One could use different sets of correlation factors for each
electron pair. Intracore electron pairs only need very short-
range correlation factors, whereas valence pairs need
also longer-range correlation factors. Second approach is
to use the analog of the original “diagonal” ansatz of linear
R12 theory,

��̃ij
�1�� = �

a�b

Tij
ab�ab� + �

�

NCF

Cij
ij���Q̂12f12

����ij� . �26�

This ansatz is less susceptible to the linear dependence prob-
lems because dimension of the geminal space for each pair is
NCF, not NCFO�o2�. For example, initial all-electron compu-
tations for B–Ne series revealed no numerical problems
when the diagonal ansatz was used. Note that both ap-
proaches will unfortunately break the invariance of the en-
ergy with respect to orthogonal transformations of the occu-
pied and unoccupied orbitals.

B. Molecules

The qualitative behavior of basis set errors in molecular
valence correlation energies �Figs. 5 and 6� is similar to that
in atoms. The basis set errors in molecular aug-cc-pVQZ and

FIG. 5. Valence Møller-Plesset
second-order energies for molecules in
the HJO20 set computed with conven-
tional and explicitly correlated wave
functions. The notation and complete
details of all computations are ex-
plained in Sec. II D.

FIG. 6. Valence Møller-Plesset
second-order energies for molecules in
the HJO20 set computed with conven-
tional and explicitly correlated wave
functions. The notation and complete
details of all computations are ex-
plained in Sec. II D.
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aug-cc-pV6Z MP2 energies are approximately the same as
those in atoms, 2.9%–5.9% and 0.8%–1.9%, respectively. r12

is by far the worst among the correlation factors: it takes an
aug-cc-pVTZ basis to reduce the basis set error below the
MP2/aug-cc-pVQZ level. Three GTGs are sufficient, how-
ever, to best the precision of the conventional MP2/aug-cc-
pVQZ energy. The method with a single Slater-type geminal
with �=1.0 can approach the precision of the standard MP2/
aug-cc-pV6Z energy, but not quite match it. The precision of
the best standard MP2 calculation is matched or exceeded
when five or seven Gaussian-type geminals are used along an
only aug-cc-pVDZ basis. Note that for the molecules with
only one nonhydrogen atom �H2, CH2, CH4, NH3, H2O, and
HF� the precisions of the MP2/aug-cc-pV6Z energy and the
MP2-R12�7GTG�/aug-cc-pVDZ 7GTG energies are compa-
rable, but for the “heavier” molecules the explicitly corre-
lated method is superior.

The MP2-R12/aug-cc-pVTZ energies computed with ei-
ther one STG or three GTGs are much more precise than the
MP2/aug-cc-pV6Z energies. Because even three Gaussian-
type geminals were superior to the conventional MP2 com-
putations, the larger, 5GTG and 7GTG, sets were not used
with the triple-zeta basis.

The basis set error varies slightly and nontrivially across
the molecular set for all employed methods. It is notable that
the variation pattern is the same for all methods and therefore
is characteristic of the set of molecules and perhaps the cor-
relation consistent basis sets.

Valence molecular MP2-R12 computations using sets of
five and seven Gaussian-type geminals exhibit the same nu-
merical issues that were observed in all-electron atomic com-
putations. Their effect on the energy is particularly pro-
nounced for molecules with heavier elements �O and F�. For
the MP2-R12 5GTG and 7GTG energies the variation of the
basis set error across the set had a distinctly different pattern
from all other methods. When the energies were recomputed
using techniques described in Sec. II C, all nonphysical re-
sults disappeared and the variation pattern became “normal.”

I also briefly analyzed basis set errors in the second-
order correlation contributions to atomization energies �Table

I�. When Slater- or Gaussian-type correlation factors are
used, the mean MP2-R12/aug-cc-pVDZ basis set errors are
smaller than that of the best conventional approach, MP2/
aug-cc-pV6Z. The Slater-type geminal with �=1 seems to be
the best choice for MP2-R12/aug-cc-pVDZ computations: it
offers the lowest maximum absolute error and the smallest
standard deviation. However, the errors increase significantly
when � is raised to 1.5. Thus the exponent of the Slater-type
geminal must be chosen carefully for computations with
small basis sets. Nevertheless, these results again underscore
the near-optimal character of the Slater-type geminal for R12
methods. Although mean errors in GTG-based MP2-R12/
aug-cc-pVDZ method are comparable to that of STG coun-
terparts, the standard deviation and maximum absolute errors
are larger in the former. It is likely that an optimized, non-
even-tempered set of GTG will decrease the maximum error
and the standard deviation.

It is important to note that the largest absolute errors in
STG- and GTG-based energies correspond to molecules con-
taining O and F atoms �e.g., O3 and F2�. It is clear that even
with the explicitly correlated methods the basis set error var-
ies significantly as the nuclear charges changes. Computa-
tions on heavier elements may pose a formidable challenge
to the R12 methodology.

IV. CONCLUSIONS

Explicitly correlated methods using short-range correla-
tion factors are spectacularly capable to yield highly precise
valence correlation energies using only small basis sets,
something that a linear r12 factor could not do. There is a
strong possibility that more complex situations, e.g., elec-
tronic structure of systems with d and f electrons and corre-
lation between electrons and nuclei, among many, will re-
quire more flexible correlation factors. Here I examined an
explicitly correlated MP2 method which can be considered a
marriage of the Gaussian geminal-based methods to the lin-
ear R12 methodology of Klopper and co-workers. The cur-
rent method is similar to the earlier efforts of Taylor and
co-workers in that a fixed set of �linear combinations of�

TABLE I. Statistical analysis of the basis set errors in the second-order Møller-Plesset atomization energies for the HJO20 set of molecules computed with
MP2 and MP2-R12 methods. The basis set error is defined as �= �ECBS

�2� −E�2�� /ECBS
�2� , where E�2� and ECBS

�2� are the second-order correlation contributions to the
atomization energy computed with a given method and the CBS limit estimate, respectively. The notation and complete details of all computations are

explained in Sec II D. �̄, �max, �̄abs, �rms, and � denote the mean error, the maximum absolute error, the mean absolute error, the rms error, and the standard
deviation, respectively.

Basis set Correlation factor �̄ �max �̄abs �rms �

aug-cc-pVDZ R12 5.20 6.75 5.20 5.32 1.17
aug-cc-pVDZ 3GTG 0.24 2.56 0.71 0.94 0.94
aug-cc-pVDZ 5GTG −0.46 2.33 0.73 0.94 0.84
aug-cc-pVDZ 7GTG −0.66 2.88 0.85 1.11 0.92
aug-cc-pVDZ STG��=1.0� 0.04 1.18 0.39 0.51 0.53
aug-cc-pVDZ STG��=1.5� 0.44 2.26 0.66 0.84 0.73
aug-cc-pVTZ 3GTG −0.25 1.26 0.32 0.45 0.38
aug-cc-pVTZ STG��=1.0� −0.38 1.11 0.40 0.46 0.27
aug-cc-pV5Z a 1.44 1.96 1.44 1.48 0.36
aug-cc-pV6Z a 0.85 1.19 0.85 0.88 0.24

aThe standard MP2 method.
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Gaussian-type geminals generates the geminal subspace that
augments the standard orbital products. However, in this
work the matrix elements are computed using the robust
standard approximations of the R12 theory �the resolution of
the identity and the generalized Brillouin condition�. The re-
sulting approach avoids the need for nonlinear optimization
�although the exponents of the set of Gaussian geminals must
be chosen with care� and needs only two-electron integrals.
Systematic expansion of the set of GTGs to completeness
converges the energy from above to a correlation-factor-
independent limit. Such limit can in general lie below the
CBS limit due to the error introduced by the finite Hartree-
Fock basis;34 however, it is found here to lie slightly above
the basis set limit.

The most important conclusion is that for the broad
sample of atomic and molecular cases considered here the
new MP2-R12 method can exceed the precision of standard
aug-cc-pVQZ and aug-cc-pV6Z MP2 energies using respec-
tive sets of three and seven primitive �i.e., noncontracted�
Gaussian-type geminals in conjunction with only an aug-cc-
pVDZ basis set. This suggests that chemical-accuracy-type
precision for standard reaction enthalpies and atomization
energies may be approached using the new approach with an
aug-cc-pVDZ basis only. That such high precision can be
attained with very small basis set bodes well for a locally
correlated version of the present method.

Performance of the new method compares favorably to
that of the MP2-R12 method using a single Slater-type gemi-
nal for absolute energies. For the vast majority of cases,
5GTG and 7GTG energies were more precise than the STG
results. The 7GTG energies were almost converged in va-
lence energy computations. It must be stressed �again� that a
single Slater-type geminal can approach the valence basis set
limit very closely. Present results strongly underscore the
near-optimal character of the Slater-type geminal for MP2-
R12 computations of electron correlation energies.

Correlation contribution to the atomization energies
computed with the STG- and GTG-based MP2-R12/aug-cc-
pVDZ methods were also more precise than the conventional
aug-cc-pV6Z/MP2 results. The STG-based method seems to
be the best choice for such computations. The present GTG-
based MP2-R12 method can be improved in the future, for
example, by using a non-even-tempered set of GTG expo-
nents.

Scaling of the computational cost with the number of
correlation factors is formally cubic, although the dominant
step is quadratic. The relative cost of these steps is, however,
expected to be small in highly correlated computations, such
as coupled cluster. Besides, the necessary number of corre-
lation factors will also depend on the particulars of the prob-
lem under consideration, e.g., a sufficient precision for the
chemically accurate reaction energies can likely be reached
with a single correlation factor. For more demanding situa-
tions, preoptimization of the correlation factor set can be
used to maximize the precision while keeping the computa-
tion cost minimal.

Atomic all-electron and molecular valence calculations
using large sets of Gaussian-type geminals suffer from nu-
merical problems due to the linear dependencies in the two-

electron basis and a non-positive-definite zeroth-order
Hamiltonian. When linear dependencies are removed and the
zeroth-order Hamiltonian matrix is made positive definite,
computed energies seem to be numerically stable even when
large sets of Gaussian geminals are used. This issue clearly
needs further study. The concept of extremal electron pairs in
combination with the “diagonal” ansatz may provide the so-
lution to this problem.

Studies of the last four years24–27,29,35,36 have completed
a critical mass of evidence that explicitly correlated linear
R12-type methods are a dramatic yet practical improvement
for standard electronic �and molecular� structure computa-
tions. The current study provides background for future de-
velopment of explicitly correlated methodology for light-
and heavy-element electronic structure and non-Born-
Oppenheimer computations.52 Work along these lines is un-
der way.
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