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Second order coalescence conditions of molecular wave functions
David P. Tewa�
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Kato’s cusp condition gives the exact first order dependence of molecular wave functions on
interparticle separation near the coalescence of two charged particles. We derive conditions correct
to second order in interparticle separation, which concern second order derivatives of the wave
function at the coalescence point. For identical particle coalescence, we give equations correct to
third order. In addition to a universal, particle dependent term, a system and state dependent term
arises in the higher order conditions, which we interpret as an effect of Coulombic screening. We
apply our analysis to the standard orbital-based methods of quantum chemistry and discuss the
implications for Jastrow- and R12-type correlation factors. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2945900�

I. INTRODUCTION

The eigenfunctions of the nonrelativistic electronic
Schrödinger equation are continuous throughout configura-
tion space and the first order partial derivatives are bounded,
but discontinuous at the Coulomb-type singular points of the
potential.1,2 In his fundamental work proving these state-
ments, Kato also characterized the resulting cusps in molecu-
lar wave functions at the derivative discontinuities. In atomic
units, Kato’s cusp conditions may be stated as

� ��˜

�r12
�

r12=0
= ���r12 = 0� , �1�

where � is a configurational eigenfunction of the fixed nuclei
Schrödinger equation and r12 is the interparticle separation. �
takes the value of minus the nuclear charge, Z, for electron-
nucleus coalescence and 1

2 for electron-electron coalescence.
The tilde indicates an average over a sphere around the sin-
gularity. The importance of Kato’s cusp conditions for trial
wave functions is well known, for example, when computing
properties such as cross sections for double ionization of
atoms by electron or photon impact,3 or positron-molecule
scattering,4 or relativistic energy corrections.5 Even when
computing nonrelativistic energies, incorporation of these
derivative discontinuities in trial wave functions greatly re-
duces the necessary number of variational parameters.6 In-
deed, the absence of an adequate description of electron-
electron cusps is responsible for the slow convergence of
standard orbital-based methods with basis size7,8 and the in-
creasingly popular explicitly correlated methods were devel-
oped to overcome this problem.9–14

Fournais et al. have sharpened Kato’s cusp condition to
include the effect of three-particle coalescence.15 Expressing
the fixed nucleus configurational wave function as �=eF�,
Fournais et al. proved, that the first order partial derivatives
of � are everywhere continuous if

F = − �
I=1

N

�
i=1

n

ZIriI +
1

2 �
i�j=1

n

rij + C0�
I=1

N

�
i�j=1

n

ZIriI · r jI

�ln�riI
2 + rjI

2 � , �2�

where C0= �2−�� /6� and I runs over the N nuclei and i , j
run over the n electrons. The logarithmic terms arise to sat-
isfy the three-particle singularity at the coalescence of a
nucleus and two electrons. Indeed, terms of this type were
first proposed by Fock16 and have been confirmed to be nu-
merically important for helium by Myers et al.17 Although
the results of Fournais et al. may be viewed as conditions on
the second order derivatives at the singularities, they do not
determine the structure of the wave function to quadratic r12

dependence, away from the nuclear positions. Furthermore,
the first order partial derivatives of � itself are continuous at
singularities where the wave function is zero and the above
Jastrow factor eF does not determine the form of the wave
function close to these points. For regions of the configura-
tion space that are away from three-particle coalescence,
Pack and Byers Brown18 derived the coalescence condition
valid for �=0 as follows:

� �2�˜

1

�r12
2 �

r12=0

= �� ��˜

1

�r12

�
r12=0

, �3�

where � is the same as for Eq. �1� and the superscript on the
tilde denotes a spherical average weighted with a spherical
harmonic Y1m. In addition, they generalized this and Kato’s
result beyond the fixed nuclei approximation, where � is then
given by Z1Z2�, � being the reduced mass of the coalescing
particles. The integrated forms of Eqs. �1� and �3� are

� = �r12=0�1 + �r12� + r12 · a + O�r12
2 � , �4�
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� = r12 · � ��

�r12
�

r12=0
�1 +

�

2
r12� + r12 · b · r12 + O�r12

3 � .

�5�

Pack and Byers Brown showed that the vector function a and
the traceless tensor function b vanish for identical particle
coalescence and noted that the spherical average in Eq. �1� is
not necessary for this case. In this work, we extend the re-
sults of Pack and Byers Brown and examine the structure of
the exact wave function to second and higher orders in the
interparticle separation, deriving general expressions valid
for the coalescence of any two charged particles with finite
mass. We hope that a detailed understanding of the higher
order r12 terms will lead to refinements of trial function
forms and a further reduction of the number of variational
parameters. We are particularly interested in improving the
design of correlation factors, both for use in Jastrow-type
wave functions and for the R12 class of methods, where
orbital-based wave functions are augmented with terms that
depend explicitly on the interparticle separation. This paper
is organized as follows: In Sec. II, we present our extension
of the analysis of Pack and Byers Brown and discuss the
structure of the exact wave function and one- and two-
particle density matrices. In Sec. III, we apply our analysis to
orbital-based approaches, discussing the implications for
Jastrow-type and R12 methods.

II. GENERAL THEORY

In atomic units, the nonrelativistic, time-independent
Schrödinger equation for a system of any n charged particles
with charges Zi and masses mi, in the absence of an external
field, is

�− �
i=1

n
�i

2

2mi
+ �

i	j=1

n
ZiZj

rij
�
 = E
 . �6�

The wave function 
 is a function of the 3n configurational
degrees of freedom r1 , . . . ,rn and the n spin degrees of free-
dom �1 , . . . ,�n. An admissible 
 must simultaneously sat-
isfy Eq. �6� and the total spin eigenvalue equation, while
exhibiting the correct Pauli symmetry upon the permutation
of the coordinates of any two identical particles. It is well
known that the full space-spin wave function can be con-
structed from linear combinations of appropriate degenerate
spin-free eigenfunctions of Eq. �6�, ��r1 , . . . ,rn�.19,20 The
coalescence conditions on the full wave function apply to
each of the degenerate spin-free eigenfunctions and in the
following analysis we consider these spatial functions.

We are interested in the region of configuration space
where particles 1 and 2 are close together and all other par-
ticles are well separated from these two and from each other:
0�r12�� and ri1, ri2, rij � for i, j=3, n. We follow the
analysis of Pack and Byers Brown.18 We transform the space
fixed position coordinates r1, r2 to the center of mass and
relative coordinates, s= �m1r1+m2r2� /M and r=r1−r2,
where M =m1+m2. The kinetic energy operator becomes

−
�s

2

2M
−

�r
2

2�
− �

i=3

n
�i

2

2mi
, �7�

where �=m1m2 /M. In order to express the potential operator
in terms of s and r, we introduce the cosines cos �i, between
the vectors ris=ri−s and r. In terms of these cosines, the
scalars ri1 and ri2 may be expressed as

ri1
2 = ris

2 + �m2

M
�2

r2 − 2
m2

M
risr cos �i, �8�

ri2
2 = ris

2 + �m1

M
�2

r2 + 2
m1

M
risr cos �i. �9�

In the region of interest, the potential terms involving ri1 and
ri2 may be replaced with partial wave expansions in terms of
Legendre polynomials Pl of the cosines as follows

1

ri1
=

1

ris
�
l=0

� � m2r

Mris
�l

Pl�cos �i� . �10�

The expression for 1 /ri2 is similarly defined, replacing 1
with 2, and cos �i with −cos �i. The Legendre polynomials
have the symmetry property Pl�−z�= �−1�lPl�z�. The full
Schrödinger equation becomes

�−
�s

2

2M
−

�r
2

2�
− �

i=3

n
�i

2

2mi
+

Z1Z2

r
+ �

i	j=3

n
ZiZj

rij

+ �
i=3

n
Zi

ris
�
l=0

� 	Z1� m2r

Mris
�l

+ Z2�− m1r

Mris
�l
Pl�cos �i��� = E� . �11�

Each term is straightforwardly assigned an order in � and we
consider the Hamiltonian terms of order less than or equal to
zero, where only spherically symmetric potential terms arise,

�−
�r

2

2�
+

Z1Z2

r
+ Ŝ + O����� = E� . �12�

Ŝ is independent of r �zeroth order in ��,

Ŝ = −
�s

2

2M
− �

i=3

n
�i

2

2mi
+ �

i	j=3

n
ZiZj

rij
+ �

i=3

n
Zi

ris
�Z1 + Z2� . �13�

The leading term in O��� is

�
i=3

n
Zi

ris
	Z1

m2r

Mris
− Z2

m1r

Mris

cos �i, �14�

which cancels if particles 1 and 2 are equivalent. Pack and
Byers Brown considered the terms in Eq. �12� that contribute
to less than zeroth order and derived the first order coales-
cence conditions, which ensure that the singularity that arises
in the potential at r=0 is exactly canceled by a singularity in
the kinetic energy. Their arguments generalize to include the
zero order term. The most general bound solution to Eq. �12�
may be written as
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��r,s,r3, . . . ,rn� = �
l=0

�

�
m=−l

l

rlf lm�r,s,r3, . . . ,rn�Ylm��,�� ,

�15�

where r, �, and � are the spherical polar coordinates of r and
the Ylm are the spherical harmonics. Substitution into Eq.
�12� yields

�
l=0

�

�
m=−l

l

rl� 1

2�
	 �2

�r2 +
2�l + 1�

r

�

�r



−
Z1Z2

r
− Ŝ + E − O���� f lmYlm = 0. �16�

Due to the linear independence of the Ylm, the equality must
hold for all l and m. Since � is analytic, except at the Cou-
lomb singularities, we may expand the f lm as a Taylor series
in r up to some order v

f lm�s,r,r3, . . . ,rn� = �
k=0

v

rkf lm
k �s,r3, . . . ,rn� �17�

and equate each power of r �order of �� to zero individually,
which gives

�
k=0

v

�k�k + 2l + 1�f lm
k − 2�f lm

k−1 − 2��Ŝ − E�f lm
k−2

− 2�O��0�f lm
k−3�rk−2 = 0, �18�

where �=Z1Z2� and f lm
0 �0. Thus,

f lm
1 =

�

�l + 1�
f lm

0 , �19�

f lm
2 =

�

�2l + 3�� �2

��l + 1�
+ Ŝ − E� f lm

0 . �20�

For equivalent particles, f lm
3 is also determined

f lm
3 =

���3l + 4�
3�l + 1��2l + 3��l + 2�� �2

��3l + 4�
+ Ŝ − E� f lm

0 . �21�

Equation �19� is the first order coalescence condition as de-
rived by Pack and Byers Brown. Equations �20� and �21� are
second and third order coalescence conditions and are new.
Note that the conditions apply to every f lm, which belong to
the spherical harmonic Ylm for the relative angular momen-
tum of the coalescing particles. The above coalescence con-
ditions may be cast in differential form by identifying

f lm
0 =

1

l!
� �l�˜

l

�rl
�

r=0
. �22�

The tilde with superscript l denotes a weighted average over
a sphere around the coalescence point, with weighting func-
tion Ylm. Equation �19� may then be written as

� �l+1�˜

l

�rl+1
�

r=0
= �� �l�˜

l

�rl
�

r=0
. �23�

The conditions of Kato �1� and Pack and Byers Brown �3�
correspond to l=0 and 1, respectively. For l=0, there is a

discontinuity in the first order derivative and for l=1 the
discontinuity is in the second order derivative. Equations
�20� and �21� represent conditions on the higher order deriva-
tives of � as follows:

� �l+k�˜

l

�rl+k
�

r=0
=

�l + k�!
l!

cl
k�bl

k + Ŝ − E�� �l�˜

l

�rl
�

r=0
, �24�

with k=2 and k=3, respectively. Only the k=3 case results in
a derivative discontinuity. It should be noted that these for-
mulas only apply to terms in � up to O�rl+2�, or O�rl+3� for
identical particles, where l is the lowest for which f lm

0 �0. To
determine terms of higher order, coupling between the f lm

must be accounted for.
The new conditions �20� and �21�, or equivalently Eq.

�24�, contain a contribution that is a simple multiple of f lm
0

and a term that is determined by the operation of Ŝ−E on f lm
0 .

The former is independent of the system, depending only on
the nature of the particles, whereas the latter is system and
state dependent and varies throughout configuration space.

The presence of Ŝ−E clearly prevents a priori knowledge of
the exact eigenfunctions. However, an understanding of the
correct structure is certainly beneficial for constructing trial
functions. We give details of the general form of � before

addressing the operator Ŝ−E. The general form of the exact
wave function is obtained by substituting the expressions for
f lm

1 and f lm
2 �and f lm

3 if the coalescing particles are equivalent�
into the wave function expansion of Eqs. �15� and �17�.

� = rl �
m=−l

l

Ylm�1 + cl
1r

+ cl
2r2�bl

2 + Ŝ − E� + cl
3r3�bl

3 + Ŝ − E��f lm
0

+ rl+1 �
m=−�l+1�

l+1

Yl+1m�1 + cl+1
1 r

+ cl+1
2 r2�bl+1

2 + Ŝ − E��f l+1m
0

+ rl+2 �
m=−�l+2�

l+2

Yl+2m�1 + cl+2
1 r�f l+2m

0 + O�rl+4� . �25�

The value of l is determined from the condition that f lm
0 �0

and for nonequivalent particles, the equation is only valid to
O�rl+2�. All odd powers of r in the square brackets of Eq.
�25� represent derivative discontinuities in the wave function
at the singularity. It may be readily verified that Eq. �25�
gives the correct expansion for hydrogenic wave functions at
the nucleus. For electron-nucleus coalescence in many-
electron systems, the lowest l for which f lm

0 �0 is l=0, ex-
cept for certain excited states where the electron density at
the nucleus is zero. For electron-electron coalescence, we
must differentiate between singlet and triplet spin coupled
electron pairs: For singlet pairs, the spatial function is sym-
metric with respect to permutation of the electron configura-
tions and only Ylm with even l can contribute; for triplet
pairs, only odd l contribute. The lowest relative angular mo-
mentum of the two singlet coupled electrons for which f lm

0

�0 is l=0 �unless the coalescence point happens to be at a
node, in which case l=2, as discussed by Kutzelnigg and
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Morgan21�. For triplet pairs, there is a Fermi node at coales-
cence and l=1. Thus there is always a relative angular mo-
mentum of two electrons with the same spin, near the coa-
lescence point. The structure of the wave function close to
electron-positron coalescence is very similar to that of
electron-nucleus coalescence, with l=0 and every spherical
harmonic contributing. In Table I, we have listed the values
of cl

k and bl
k for these common situations in molecular phys-

ics.
The structure of the exact p-particle spinless reduced

density matrix, �p, is also of interest,

�p�rp�,rp�

= �n

p
� � drqd�pd�q
*�rp��p,rq�q�
�rp�p,rq�q� ,

�26�

where the subscripts p and q denote electrons 1¯p and
p+1¯n, respectively. We confine our discussion to the fixed
nucleus approximation. Bingel has derived formulas to first
order in r for the spinless one- and two-particle reduced den-
sity matrices:22,23

�1�r�,r� = �1�r�,0��1 − Zr� + nA*�r�� · r + O�r2� �27�

=�1�0,0��1 − Zr� − Zr� + nr� · A�0�

+ nA*�0� · r + O�r�2,r2� , �28�

where A*�r��=�drqd��d�q
*�r��� ,rq�q�a�� ,rq�q� and a
is equivalent to that of Eq. �4�, except that here it depends on
spin.22,24

�2�r�r2�,rr2� = �2�r�r2�,0r2��1 − Zr�

+ 1
2n�n − 1�A*�r�r2�,r2� · r + O�r2� , �29�

=�2�0r2�,0r2��1 − Zr� − Zr�

+ 1
2n�n − 1�r� · A�r2�,0r2�

+ 1
2n�n − 1�A*�0r2�,r2� · r + O�r�2,r2� ,

�30�

with

A*�r�r2�,r2� =� drqd��d�2�d�q
*�r�r2����2�,rq�q�

�a�r2��2,rq�q� .

To obtain these equations, Bingel simply inserted the inte-
grated form of Kato’s cusp conditions into Eq. �26�, implic-
itly assuming that configurations where more than two par-
ticles coalesce, which are included in the integration, do not
contribute to first order. Using the fact that �=eF�, where F
is given in Eq. �2�, we may verify that integration over the
region of the coalescence of a singlet electron pair and a
nucleus leads to terms of O�r2� �note that the first order
partial derivatives of � are continuous and no terms of O�r�
in interparticle separations are present�. Furthermore, since
there is a Fermi node at all higher order coalescence points,
the first order partial derivatives of the wave function are
continuous and these singularities introduce terms of O�r2�
at worst. Therefore Bingel’s formulas for the nuclear cusp of
one- and two-particle spinless reduced density matrices are
correct. To the author’s knowledge, no formulas have yet
been presented for electron-electron coalescence of singlet
and triplet pairs. This omission is somewhat surprising and
we therefore present the formula here. It is always possible
to separate the wave function into two contributions 

=
++
−, where electrons 1 and 2 are singlet or triplet spin
coupled, respectively.25 Integration over all spin coordinates
decouples the two-particle density matrix into

�2�r1�r2�,r1r2� = �2
+�r1�r2�,r1r2� + �2

−�r1�r2�,r1r2� . �31�

Transforming to the center of mass and relative coordinates
and inserting Eq. �25�, we obtain

�2
+�r1�r2�,sr� = �2

+�r1�r2�,s0��1 + 1
2r� + O�r2� , �32�

�2
+�s�r�,sr� = �2

+�s�0,s0��1 + 1
2r� + 1

2r� + O�r�2,r2� , �33�

�2
−�r1�r2�,sr� = � ��2

−

�r
�

r=0
· r�1 +

1

4
r� + O�r3� , �34�

�2
−�s�r�,sr� = r� · � �2�2

−

�r��r
�

r=r�=0
· r�1 +

1

4
r� +

1

4
r�

+ O�r�3,r3� . �35�

The structure of the higher order terms in r may be inferred
from that of Eq. �25�. Our analysis is insufficient to deter-
mine the system dependent operator that characterizes the s
dependence of these terms because the decoupling of the Ylm

in our derivation is only valid for rqs	r. A more general
analysis that treats three-particle coalescence points would
be required.

Let us now turn to the system, state, and configuration

dependence of the Ŝ−E terms in Eq. �25�. The operator Ŝ
describes the first order damping of the Coulomb interaction
between the coalescing particles due to the rest of the sys-
tem. It contains the electrostatic interaction of the coalesced
particles with the rest of the system, as well as kinetic and
potential terms for the coordinates r3¯rn and the kinetic
energy of the center of mass coordinate. The combined op-

TABLE I. Coefficients in Eq. �25� for two-particle coalescence involving
electrons �e�, nuclei �n�, and positrons �p�.

Case l cl
1 cl

2 bl
2 cl

3 bl
3 cl+1

1 cl+2
1

e-n 0 −�Z 1
3� �Z2 − 1

2�Z

e-e 0 1
2

1
6

1
2

1
18

1
8

1
6

e-e 1 1
4

1
10

1
4

14
720

1
14

1
8

e-p 0 − 1
2

1
6

1
2 − 1

4
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erator Ŝ−E may be used to define an average screening
length � for a short range screened interaction e−r/�Z1Z2 /r:

Z1Z2 /�= ��Ŝ−E���. In contrast to the derivative discontinui-
ties, the effect of Coulombic screening is always present in
orbital-based wave functions. Trial functions that combine
orbitals with an explicit r dependence are a natural starting
point for constructing approximate solutions with the correct
structure to higher orders in r. The remainder of this paper
focuses on attempts in this direction.

III. ORBITAL-BASED TRIAL WAVE FUNCTIONS

In the following, we examine the Hartree–Fock �HF�
wave function and Møller–Plesset �MP� correlated wave
functions. We review the known first order dependence on r
and discuss the second order terms, highlighting the approxi-
mate system, state, and configuration dependence. We com-
pare the structure of these wave functions with that of the
exact eigenfunctions and discuss how correlation factors may
be used to improve the correlation treatment.

A. Hartree–Fock wave functions

The structure of the HF wave function at the nuclear
cusp may be determined by examining the one-electron ei-

genvalue equation F̂1�p�r1 ,�1�=�p�p�r1 ,�1� for the canoni-
cal spin orbitals. Applying the arguments already presented,
we find that the structure of the canonical orbitals at the
nuclei is identically given by Eqs. �19� and �20�, where �p

replaces E and Ŝ becomes

Ŝ1 = − �
I=2

N
ZI

r1s
+ �

j=1

n � dr2d�2
� j

r2s
�1 − P̂12�� j . �36�

The first order coalescence condition �19� is the same for the
HF orbitals and the exact wave function and therefore all
trial solutions constructed from exact HF orbitals satisfy the
nuclear cusp explicitly. Since the Fock operator and the
Kohn–Sham �KS� operator in density functional theory differ
only in the exchange contribution, the KS density also trivi-
ally reproduces the exact nuclear cusp. The HF approxima-

tion to Eq. �20� is defined by replacing Ŝ−E with Ŝ1− F̂1. The
configurational dependence of the the second order coeffi-

cients is then easily computed since Ŝ1�p=vp�p+O�r1�,
where

vp = − �
I=2

N
ZI

r1s
+ �

j=1

n � dr2d�2
� j

r2s
�� j − f00

0,j�p/f00
0,p� , �37�

and the constants f00
0,i refer to the Taylor expansion �17� for

spin-orbital �i. The operator Ŝ1− F̂1 accounts for the mean
field electronic screening, but neglects the effect of correla-
tion on the second order terms.

The structure of the HF wave function at electron-
electron coalescence may be determined from the pair func-

tion eigenvalue equation �F̂1+ F̂2��pq
� = ��p+�q��pq

� , where
the orbital pair �p�q is singlet or triplet coupled to give the
spatial functions �pq

+ or �pq
− , respectively. It is always pos-

sible to express the restricted closed-shell HF determinants

such that in the constituent orbital products, each pair of
electrons is either singlet or triplet coupled in this way and
we confine our discussion to this case. The structure of the
HF pair functions in the region of electron coalescence is
given by

�
k=0

v

�k�k + 2l + 1�f lm
k,pq� − �Ŝ0 − �p − �q�f lm

k−2,pq�

− O��0�f lm
k−4,pq��rk−2 = 0, �38�

where f lm
k,pq��s� refers to the Taylor expansion �17� for �pq

�

and

Ŝ0 = −
1

4
�s

2 − �
I=1

N
2ZI

rIs
+ �

j=1

n/2 � dr3
� j

r3s
�4 − P̂13 − P̂23�� j ,

�39�

where �p�r3 ,�3�=�p�r3��p��3�. Thus f lm
1,pq�= f lm

3,pq�=0 and

f lm
2,pq� =

1

2�2l + 3�
�Ŝ0 − �p − �q�f lm

0,pq�. �40�

The well known result that HF pair functions contain only
even powers of r is manifest and no derivative discontinui-
ties are present. The universal bl

2 term is also absent. All
wave functions built from orbital pair functions alone exhibit
the same deficiencies. Similarly, neither the HF nor the KS
noninteracting two-particle reduced density matrices contain
the linear r terms in Eqs. �32�–�35�. In this HF approxima-

tion to Eq. �20�, the operator Ŝ−E is approximated with Ŝ0

− F̂1− F̂2, where it should be noted that the exchange contri-

bution to Ŝ0 is nonlocal and couples all of the pair functions
through

� dr3
� j

r3s
�P̂13 + P̂23�� j f lm

0,pq�

=� dr3
� j

r3s
��pf lm

0,jq� + �qf lm
0,pj�� . �41�

B. Jastrow factors

Jastrow-type wave functions of the form eJ
HF play an
important role as precursors to the fixed-node diffusion
Monte Carlo method for treating electron correlation.26 The
Jastrow factor J should introduce the universal cl

1, bl
2, and cl

3

terms, which are absent irrespective of whether or not the HF
orbitals are allowed to relax. Recently, Scott et al. have dem-
onstrated that the location of the nodes is linked to the first
order coalescence conditions27 and it is not unreasonable to
assume that the higher order r dependence also has some
bearing on the location of the nodes. Our analysis empha-
sizes the limitations of simple multiplicative choices for J.
Since the cl

1 and cl+2
1 coefficients differ, it is not possible to

satisfy the derivative discontinuities in both the f lm and f l+2m

terms. Furthermore, it is only possible to simultaneously sat-
isfy the singlet and triplet coalescence conditions if every
pair of electrons of a given set of orbital products can be
assigned as being singlet or triplet coupled. This is not usu-
ally attempted and instead the pairs are classified as �� or
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��. While it is correct to apply triplet coalescence conditions
to �� pairs, it is not sufficient to simply apply the singlet
coalescence conditions to �� pairs, although this approach is
certainly pragmatic.28

For the energetically dominant Y00 singlet case, compar-
ing Eqs. �19�–�21� with the HF case suggests the choice J
=�i�j� 1

2rij −
1

24rij
2 +O�rij

3 ��. The second order r dependence is
then only lacking through the neglect of correlation in the

screening operator and the energy Ŝ0−�p−�q, which is de-
pendent on the form of the orbitals used. To correct the third
order r dependence, both the universal b0

3 term and the
orbital-dependent term must be accounted for. Extending J
by + 1

144rij
3 introduces b0

3, but the correct c0
3 coefficient for the

screening term cannot be obtained in this way and the rij
3

term must therefore acquire a system, state, and configura-

tional dependence equivalent to − 1
36r3�Ŝ0−�p−�q�, if we ne-

glect the effect of correlation on the screening operator and
the energy. The analogous choice for the Y1m triplet case is

J=�i�j� 1
4rij −

1
160rij

2 +O�rij
3 ��, with + 7

2880rij
3 − 1

180r3�Ŝ0−�p−�q�.

C. Møller–Plesset wave functions

The MP methods and the related coupled-cluster meth-
ods are the dominant wave function based treatments of elec-
tron correlation. Let us examine the first order perturbative
correction uij

� to the spatial HF pair function �ij
� near elec-

tron coalescence. uij
� is strongly orthogonal to the set of oc-

cupied pair functions.29 That is, uij
�= P̂uij

�, where P̂ is the
strong orthogonality projection operator. uij

� is given by29

�F̂1 + F̂2 − �i − � j�uij
� + P̂

1

r12
�ij

� = 0. �42�

Let uij
�= P̂wij

�, where wij
� does not satisfy the strong orthogo-

nality requirements. Since �F̂ , P̂�=0, we may determine wij
�

using the above equation, but removing the projection opera-
tor. Making the usual expansion for wij

�, we obtain

�
k=0

v

�k�k + 2l + 1�wlm
k,ij� − �Ŝ0 − �i − � j�wlm

k−2,ij�

− O��0�wlm
k−4,ij� − f lm

k−1,ij��rk−2 = 0. �43�

Therefore the functions wlm
k,ij� satisfy

wlm
1,ij� =

1

2�l + 1�
f lm

0,ij�, �44�

wlm
2,ij� =

1

2�2l + 3�
�Ŝ0 − �i − � j�wlm

0,ij�, �45�

wlm
3,ij� =

1

6�l + 2�
�Ŝ0 − �i − � j�

�� 1

2�2l + 3�
f lm

0,ij� +
1

2�l + 1�
wlm

0,ij�� . �46�

These conditions should be compared with Eqs. �19�–�21�,
which correspond to infinite order in the perturbation

parameter. The cl
1 derivative discontinuity appears to first

order in the perturbation parameter, but the bl
2 and bl

3 terms
are absent, occurring at second and third orders, respectively.

D. R12 correlation factors

R12 explicitly correlated methods30 augment the one-
electron orbital basis with geminal functions of the form

P̂f�r��ij
� to satisfy the cl

1 derivative discontinuity, often with
f�r�=e−�r. Equation �44� is the known first order coalescence
condition and has been used to predetermine the coefficients
of the contributions of the geminal basis functions to the
singlet and triplet pair functions in MP2 calculations,31

which are −1 /2� and −1 /4�, respectively. Equations �45�
and �46� may be used to determine appropriate values of �
for describing the short-range correlation. We argue that for
this analysis the function f�r�= �1−e−�r� should be used.32

Due to the projector P̂, this only effects a sign change on the
geminal basis. Expanding the functions 1

2��l+1� �1−e−�r�f lm
ij� to

third order in r, we obtain

	 1

2�l + 1�
r −

1

2��l + 1�
r2 +

1

4�l + 1�
r3

���2

3
+

1

�2l + 3�
�Ŝ0 − �i − � j��
 f lm

0,ij�. �47�

Equating the second and third order terms with Eqs. �45� and
�46� and averaging over s lead to the following expressions
for � in singlet and triplet geminal functions:

f00
0,ij+��2 + 3

4� + 5
6 �Ŝ0 − �i − � j��f00

0,ij+� = 0, �48�

�
m=−1

1

f1m
0,ij−��2 + 5

12� + 7
15�Ŝ0 − �i − � j��f1m

0,ij−� = 0. �49�

Values of � determined by these expressions are appropriate
for describing the short-range correlation in each pair func-
tion uij

�. Different values of � are obtained for different or-
bital pairs. For coupled-cluster wave functions and higher

orders of perturbation theory, the basis functions P̂f�r��ij
�

are only appropriate to the extent that ���HF. Furthermore,
basis functions of this form cannot simultaneously satisfy the
cl

1 and cl+2
1 terms of the exact first order wave function. This

deficiency could be removed by using additional geminal

basis functions of the form P̂f�r�Y2m�ij
�.
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