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The basis set limit Mgller-Plesset second-order equilibrium bond lengths of He,, Be,, and Ne,,
accurate to 0.01a,, are computed to be 5.785a, 5.11a,, and 6.05a,. The corresponding binding
energies are 22.4+0.1, 2180+20, and 86+2 wE,, respectively. An accuracy of 95% in the binding
energy requires an aug-cc-pV6Z basis or larger for conventional Mgller-Plesset theory. This
accuracy is obtained using an aug-cc-pV5Z basis if geminal basis functions with a linear correlation
factor are included and with an aug-cc-pVQZ basis if the linear correlation factor is replaced by
exp(—7yry,) with y=1. The correlation factor r;, exp(—vyr,) does not perform as well, describing the
atom more efficiently than the dimer. The geminal functions supplement the orbital basis in the
description of both the short-range correlation, at electron coalescence, and the long-range
dispersion correlation and the values of y that give the best binding energies are smaller than those
that are optimum for the atom or the dimer. It is important to sufficiently reduce the error due to the
resolution of the identity approximation for the three- and four-electron integrals and we
recommend the complementary auxiliary basis set method. The effect of both orbital and geminal
basis set superposition error must be considered to obtain accurate binding energies with small
orbital basis sets. In this respect, we recommend using exp(—yr;,) with localized orbitals and the

original orbital-variant formalism. © 2006 American Institute of Physics.

[DOL: 10.1063/1.2338037]

I. INTRODUCTION

AD initio computation is now a reliable method for in-
vestigating thermochemistry. Using modern computing tech-
niques quantum chemists are able to obtain highly accurate
numerical solutions to the Schrodinger equation and the er-
rors arising from the approximations in their methods are
often orders of magnitude less than the values being
computed.l_10 The energetics of weak interactions such as
van der Waals (vdW) attractions, however, pose a significant
challenge to computational chemistry, since they can be as
small as 10—1000 uE,, which is in the range of the errors of
many conventional computational methods.

Most ab initio methods are based on the expansion of the
electronic wave function in terms of antisymmetrized prod-
ucts of one-particle functions, Slater determinants, where the
one-particle functions are expanded as linear combinations
of basis functions and are chosen such that the Hartree-Fock
(HF) energy is minimized. The number of these Slater deter-
minants is systematically increased until convergence is ob-
tained to within a desired threshold. A given one-particle
basis defines a set of Slater determinants, and the hierarchy
of coupled-cluster methods CCSD, CCSDT, CCSDTQ, etc.,
affords rapid convergence within this space, if the true wave
function is well represented by a single Hartree-Fock refer-
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ence Slater determinant.'' For the accurate reproduction of
experimental binding energies of vdW complexes, it is con-
sidered that, in many cases, CCSD(T) is sufficient.'>"?

However, the convergence with respect to the size of the
one-particle basis is extremely slow, the error is observed to
reduce as N~ for an optimal one-particle basis of N basis
functions characterized by a maximum principal quantum
number n.'* For a method with a computational cost that
scales as N* with the size of the one-particle basis, each new
decimal place in the energy requires a factor of 10 000 more
computer time. Consequently, uE; accuracy is in general
unattainable by the conventional methods. Indeed, for accu-
rate vdW binding energies it has been shown that at least
augmented  quintuple-zeta quality basis sets are
re:quire:d,13’15_17 and most calculations are thus focused on
small systems with rare gas dimers receiving the most
attention.'”

The basis set convergence problem may be partially al-
leviated through extrapolation techniques, which estimate the
basis set limit using empirical formulas for the decay of the
error in the energy with the cardinal number of the basis
set. 141017 Alternatively, special bond functions may be intro-
duced to saturate the basis in the chemically important bond-
ing regions, which accelerates the convergence of the bind-
ing energy.]8 The basis set requirement for both of these
methods is nonetheless large. Among the most accurate val-
ues for the binding energy of He, is from a quantum Monte

© 2006 American Institute of Physics
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Carlo calculation,'® but surprisingly few calculations have
been performed on larger vdW complexes using this method.

It is well known that the slow convergence of conven-
tional methods is due to the inability of the smooth one-
particle basis functions to accurately describe the cusp in the
wave function at the point where two electronic coordinates
coincide.**? Explicitly correlated methods such as the
Gaussian geminal and R12 methods introduce a set of gemi-
nal basis functions, explicitly dependent on the interelec-
tronic distance r12.23 ** Since these basis functions are
designed to reproduce the electronic cusp, the energy conver-
gence is greatly accelerated and wE; accuracy can be ob-
tained in practical time. Both of these methods have been
applied successfully to the computation of vdW binding
energieszs’% and have been used to assess various extrapola-
tion formulas.'* However, the application of these methods
to larger complexes has been limited. Indeed, most of the
applications of RI12 methods have been devoted to
benchmarking.”’30

Through recent advances in R12 methodology,31 it has
now become evident that R12 methods are capable of deliv-
ering near basis set limit accuracy using relatively small con-
ventional basis sets and that they are now a competitive way
of obtaining 95% of the correlation energy within a given
post-HF method. The two most important advances in this
respect are the introduction of an auxiliary basis set for the
resolution-of-the-identity (RI) approximation in the evalua-
tion of the three- and four-electron integrals that arise in R12
methods® and the introduction of geminal basis functions
that depend on functions of 7, rather than on linear r12.33 We
refer to the R12 methods with these new geminal basis func-
tions as the F12 methods. In particular, the two correlation
factors

frp) =exp(=yr), (1)

f(rip) = ripexp(= yr) (2

are very well suited to the description of the electronic cusp,
with exponents v in the ranges of 1-2 and 0.4-0.8, respec-
tively, for valence shell electrons of neutral species.34 For
reference within this paper we denote the F12 methods using
correlation factors (1) and (2) as F12(1) and F12(2), respec-
tively.

The R12 methodologies are well suited to the study of
weak interactions since highly accurate correlation energies
are required to be confident of meaningful energy differ-
ences. It is the purpose of this paper to investigate the per-
formance of the new geminal basis functions on van der
Waals dimers. In this exploratory study we focus on the
Mgller-Plesset second order perturbation (MP2) energies,
since if the F12 method is successful for MP2 it is then very
likely to be equally successful for coupled-cluster methods.
For our test cases, we chose He,, Be,, and Ne,, which are
held together by dispersion forces.

A. MP2-R12 and dispersion

A common approach to van der Waals interactions is to
take as zeroth order a correlated treatment of the isolated
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monomers and include the interaction between the mono-
mers as a perturbation. In this description, dispersion arises
from the long-range correlation of the electronic motion
within monomer A with that within monomer B, such that
the fluctuating dipoles align, leading to attraction. In our cal-
culations we take the mean-field, HF description of the dimer
as our zeroth order reference, and include the instantaneous
interactions between the electrons as a perturbation. It no
easy task to quantitatively assign the terms in the MP2 en-
ergy of the dimer to terms belonging to the MP2 energy of
the isolated monomers, and those due to the interaction be-
tween them. It is, however, clear that the long-range correla-
tion of the electronic motion is absent in both zeroth order
treatments and is included in our calculations in the MPI
wave function of the dimer. It enters the MP2 energy through
the matrix elements (ij|r}2'|ab>, where ij are occupied spin
orbitals and ab are virtual orbitals.

Let us consider the simple example of He,, with occu-
pied HF orbitals o,= (sA+sB)/\’2 and o,=(s4— sB)/\Z and
virtual orbitals o, (pA pB)/\2 and o, (pA+pB)/\'2 where
the overlap between basis functions on A and B is neglected.
Orbital rotation reveals the equivalence of this HF determi-
nant with that corresponding to the orbital occupation sis%
Similarly the determinant for the configuration O'gO';,(TuO'u is
equivalent to sApAsBpB It is easily verified that the orbital
replacement 0,0, — 0, o' includes two kinds of correlation,
corresponding  to matrix elements (54847 2|papa) and
(s485|772|papp)- The first is associated with the motion of two
electrons within monomer A and the second is associated
with dispersion, correlating the motion of an electron near A
with that of an electron near B, such that there is an attraction
between the instantaneous dipoles on A and B.

In explicitly correlated R12 methods, geminal basis
functions w,|ij) are considered in addition to the usual or-
bital pairs. These geminals may be viewed as closed sums of
the complete set of orbital pairs with the same symmetry as
ij, which includes the orbitals represented by the finite one-
particle basis and those outside this basis. The geminal func-
tions are designed to efficiently span the space of high angu-
lar momentum functions, absent from a given finite basis, by
reproducing the electron cusp.22 However, since the correla-
tion factors extend to larger r,, the geminals are also seen to
compensate for a lack of diffuse functions and contribute to
long-range correlation.”*

For our simple example of He, above, we expect that the
geminal basis functions will contribute to both types of ma-
trix elements, and therefore to both the short-range and the
long-range dispersion correlation. For He,, however, since
the occupied o orbitals are composed mainly of s orbitals,
we do not expect the geminals to be very efficient at describ-
ing dispersion effects. In addition, there is no R12 contribu-
tion to the dispersion terms arising from the p orbitals or-
thogonal to the nuclear axis, since there are no , or ,
occupied orbitals and therefore no geminals with the correct
symmetry. This is no longer true for Ne, and we expect the
geminal basis functions to have a larger contribution to the
vdW interactions. Using a similar analysis, Ten-no comments
that the long-range behavior of the correlation factor should
decay at least as fast as 7], so that the ;5 behavior of the
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vdW energy is not compromised.35 For linear ry, this require-
ment is not fulfilled, but the correlation factors in Egs. (1)
and (2) decay exponentially and are expected to yield the
correct asymptotic behavior.

We are interested in examining the performance of R12
and F12 for the three van der Waals dimers He,, Be,, and
Ne,. The paper is organized as follows: In Sec. II we briefly
summarize the sources of deviation from the basis set limit
in R12 and F12 methodologies. In Sec. III we present a sum-
mary of the computational details of the calculations per-
formed in this paper. In Sec. IV we concern ourselves with
the question of how large a basis is required for the MP2-
R12 and MP2-F12 methods in order to provide accurate
binding energies for our test complexes at a fixed bond
length. We examine the sources of error discussed in Sec. II,
and investigate the dependence of the MP2-F12 method on
the exponent . In Sec. V we examine the dependence of the
predicted equilibrium bond length on the basis set and the
correlation factor. In Sec. VI we compare the orbital-
invariant formalism®® with the original orbital-variant for-
malism with regard to the linear and nonlinear correlation
factors. In particular, we examine the effect of the geminal
basis set superposition error and the effect of the long-range
behavior of the correlation factor on the vdW binding energy.
In Sec. VII we summarize the findings of our investigations.

Il. THE ACCURACY OF THE R12 METHOD

The MP2-R12 energy deviates from the basis set limit in
several respects. Firstly, since a finite orbital basis is used in
the HF calculation, the HF contribution to the energy devi-
ates from the true (basis set limit) energy and approximate
HF orbitals are taken as the reference rather than the true
orbitals. Secondly, the geminal functions do not exactly com-
pensate for all the deficiencies of the one-particle basis, but
merely provide an appropriate description of the electronic
cusp, which is the feature most difficult to describe with
one-particle functions. Therefore the MP2-R12 energy is at
variance with the basis set limit to the extent that the one-
particle basis plus geminals (projected onto the one-particle
space) fails to span the entire one-particle space. As the one-
particle basis increases, this error decreases: the one-particle
basis takes care of the overall shape of the wave function and
the geminal basis takes care of the cusp. The final source of
deviation from the basis set limit is the approximate way in
which the three- and four-electron integrals are computed.
This deviation comprises of both the RI approximation and
the assumption that the generalized Brillouin condition is
satisfied for the HF orbitals.

May et al. have recently performed an extensive study of
these deviations for the correlation energies of several atomic
and molecular systems.3 7 They conclude that by far the larg-
est source of deviation is the incomplete representation of the
one-particle space, showing that this error is greatly reduced
when the new geminal functions are employed. Since we
require uFE} accuracy for our vdW calculations, it is impor-
tant for us, likewise, to assess the magnitude of all of the
deviations from the basis set limit.

The HF contribution to the vdW binding energy is easily
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computed and we report the convergence of these values
with respect to the basis set for all the presented examples.
The error in the correlation energy due to using an approxi-
mate, finite set of HF orbitals and eigenvalues is the intrinsic
basis set error of the MP2-R12 method. The remaining de-
viations are independent of the one-particle basis set. The
choice of geminal basis functions has a large effect on the
deviation from the basis set limit, and we compare linear r|,
with the two functions in Egs. (1) and (2) with various values
of v. We do not present any estimate of the effect of the
generalized Brillouin approximation, but we point to the
work of May et al., which reports that it is smaller than the
RI error in their calculations. Finally, we assess the effect of
the RI approximation by using the successively larger uncon-
tracted aug-cc-pVXZ basis sets for the auxiliary basis until
the RI error is effectively removed.

lll. COMPUTATIONAL DETAILS

All MP2-R12 and MP2-F12 calculations are performed
with ansatz 2. For our investigations of equilibrium binding
energies and structures we use approximation B and for rea-
sons of clarity we adopt approximation A for our discussion
of the original orbital-variant method (see Ref. 32 for details
of ansatz 2 and approximations A and B; we use the hybrid
approach of Ref. 38). In ansatz 2, the explicitly correlated
pair functions take the form

wialif) = (1= 0)(1 = 0y f1lif), (3)

where é=2k|k>(k| is the projector onto the space spanned by
the occupied HF orbitals and where |ij) denotes the symme-
trized product of two such HF orbitals ¢; and ¢;. The invo-
cation of approximation B implies that no terms are ne-
glected, whereas the contributions involving the exchange
operator and the eigenvalue-weighted overlap of the gemi-
nals are neglected in approximation A. The auxiliary basis
sets for the RI approximation are used within the comple-
mentary auxiliary basis set (CABS) approach of Valeev,”
where the set of functions used for the RI approximation is
the union of the orbital basis and the auxiliary basis.

We approximate the correlation factor f, of Eq. (1) by a
linear combination of six Gaussian-type geminals, and simi-
larly, the correlation factor f}, of Eq. (2) by a linear combi-
nation of six products of r, with Gaussian-type geminals,
weighting the fit to bias small r,. The expansion coefficients
and exponents are those of Ref. 34. All MP2-R12 and MP2-
F12 calculations were carried out with a local version of the
DALTON program.40

It is important to include diffuse functions in the one-
particle basis for MP2-R12 and MP2-F12 calculations,34 and
we therefore use the augmented Dunning correlation consis-
tent basis sets. For He we use the aug-cc-pVXZ basis sets
with X=T-6.*" For Be we augment the cc-pVXZ basis sets
X=T-5 (Ref. 42) with one extra set of diffuse functions for
each angular momentum quantum number [ represented in
the basis. For each /, the exponent of the extra diffuse func-
tions «,,; is chosen such that the ratio «,,;: a,=a,: «,_;,
where «,, is the smallest exponent of the n sets of functions
with angular momentum / present in the cc-pVXZ basis set
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TABLE I. Computed HF, MP2, MP2-R12, and MP2-F12/aug-cc-pVXZ binding energies of He, at 5.79a,, together with the removed BSSE and the RI error
for an uncontracted aug-cc-pVYZ auxiliary basis where Y=X+1. All energies are in pEj,.

HF MP2 RI2 F12(2) (y=0.4) F12(1) (y=1.0)
X El))(ind EgSSE El))(ind EgSSE El))(ind EgSSE Eﬁl E}b(ind EgSSE Eﬁl Ei)(ind EJI;SSE E}lgl
T -18.2 -1.1 17.6 -4.6 19.6 -10.8 0.1 18.8 -32 -0.3 22.1 22 1.0
Q -183 -13 19.5 -2.9 20.9 9.2 -03 20.5 29 -0.1 22.1 -1.6 0.2
5 -183 -07 20.7 -17 222 -72 -0.8 213 -16 0.0 222 -0.9 0.1
6 -183 -0.1 21.6 -038 22.0 -4.8 22.0 -0.5 - 224 -0.1

and «,,_; is the next smallest. Since in the cc-pVXZ basis sets
there is only one set of functions with the highest angular
momentum, we arbitrarily choose the ratio to be equal to
one-third. For Ne we use the aug-cc-pVXZ basis sets with
X=T-6.** All our calculations involving Be and Ne are
with a frozen core.

The auxiliary basis sets employed are the corresponding
uncontracted aug-cc-pVXZ sets. It became necessary to use
auxiliary basis sets larger than aug-cc-pV6Z to sufficiently
reduce the error due to the RI approximation. We therefore
construct an 18s10p6dSf4g3h2i basis for He, a
21s12p7d5f4g3h2i for Be, and a 21s14p8d7f5g4h3i2k for
Ne from the s functions of the well tempered basis sets
(WTBSs),** using the rule ¢'=¢°(1+3)/3 to generate the
exponents for functions with angular momentum / from the s
function exponents. We extended each WTBS by one s func-
tion at the low exponent end and always chose the set of
smallest s exponents to generate the set of / exponents.

IV. BINDING ENERGIES

Let us first concentrate on the prediction of the MP2
binding energy for a vdW complex with a given bond length.
The main aim of this work is to compare the performance of
MP2-F12 with MP2-R12 for vdW energies, and to examine
the size of one-particle basis required to provide accurate
vdW energies in both cases. An accurate value is obtained if
the energies of both the dimer and the monomer are con-
verged to well below the value for the binding energy. Since
this is usually not the case in ab initio calculations and sig-
nificant errors remain in both energies, an effort is made to
reduce the error in the binding energy through the counter-
poise correction.*® The same orbital basis is thus used for the
monomer as for the dimer in the hope that the error due to
the incomplete basis is consistent for the monomer and
dimer, and therefore cancels in the binding energy. For ex-
plicitly correlated methods there is also a basis set superpo-

sition error (BSSE) arising from the geminal functions. We
do not attempt to remove this geminal BSSE from our cal-
culations, but we discuss this issue further in Sec. VI A. In
the following sections we report counterpoise corrected bind-
ing energies, together with the value of the removed orbital
BSSE. The chosen bond lengths are 5.79a, for He,, 5.11a,
for Be,, and 6.05a, for Ne,, each of which is close to the
basis set limit MP2 equilibrium bond length.

For each of the vdW dimers He,, Be,, and Ne, we per-
form MP2-R12 and MP2-F12 calculations on the dimers and
the atoms using systematically larger orbital and auxiliary
basis sets. For a given aug-cc-pVXZ orbital basis, we com-
pute the counterpoise corrected binding energies Effind, the
BSSE Ejg, and the error due to the RI approximation Ej;
when an uncontracted aug-cc-pV(X+1)Z auxiliary basis is
used. These quantities are given by the following formulas:

X.Y X.Y
Exa=Ebne:  Enma=2EX"(A)) - E} (Az) (4)
E¥sse=Epsse  Ensse=2E)"(Ay) - 2E7(A), (5)
E=Ex™, EN=E%h-Eya (6)

where EX’Y(Az) denotes the energy of monomer A computed
in the basis of the dimer A,, using an orbital basis aug-cc
-pVXZ and an uncontracted auxiliary basis aug-cc-pVYZ.
Y=o0 denotes our large auxiliary basis sets described in the
previous section. Note that a bound dimer is characterized by
a positive binding energy and that the BSSE correction al-
Ways reduces the binding energy and is already included in
EY.. The RI error Ex; can have any sign, a positive value
indicating that E| ffufd“ is overestimated due to the RI error.
We present the results from MP2, MP2-R12, and MP2-
F12 calculations of the binding energy in Tables I-III. We
present MP2-F12 results for the two functions f, in Egs. (1)
and (2), with exponents y=1.0 and 0.4, respectively. In the
following three sections we comment on these results and

TABLE II. Computed HF, MP2, MP2-R12, and MP2-F12/aug-cc-pVXZ binding energies of Be, at 5.11a, together with the removed BSSE and the RI error
for an uncontracted aug-cc-pVYZ auxiliary basis where Y=X+1. All energies are in wE,,.

HF MP2 RI2 F12(2) (y=0.4) F12(1) (y=1.0)
X Ei)(ind E)lgSSE Ei)(ind E’éSSE Ei)(ind E)éSSE E)él Ei)(ind E’éSSE E)lgl Ei)(ind E}éSSE E)él
T -7617 -4 1397 -351 1641 -104 -15 1996 -66 0.0 2076 -86 0.0
Q ~7584 -3 1825 -142 2063 -59 0.2 2153 -50 0.1 2159 -45 0.0
5 ~7578 -2 2008 -93 2143 -58 2178 -20 o 2181 -23
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TABLE III. Computed HF, MP2, MP2-R12, and MP2-F12/aug-cc-pVXZ binding energies of Ne, at 6.054a,, together with the removed BSSE and the RI error
for an uncontracted aug-cc-pVYZ auxiliary basis where Y=X+1. All energies are in pEj,.

HF MP2 RI12 F12(2) (y=0.4) F12(1) (y=1.0)
X Egind EgSSE Eé(ind EgSSE Ei)(ind EgSSE Eﬁl E)b(ind EgSSE Eﬁl E)b(ind EgSSE Eﬁl
T -56.7 -39.1 55.0 -76.1 87.4 -186.3 -84 65.5 -48.1 0.2 90.5 -33.3 16.8
Q -55.3 -14.6 71.6 -423 83.2 -70.2 -33 78.7 -18.3 -0.8 92.7 -18.2 3.0
5 -56.3 —4.7 78.6 -20.3 82.6 ~14.7 -12 82.7 -75 -0.5 86.7 -59 0.7
6 -56.3 -0.7 818 -89 84.4 -8.1 .- 84.8 -23 .- 86.4 -13 o

give an estimation of the total size of the deviation from the
basis set limit for our best results and evaluate the size of the
basis required to obtain 95% of the binding energy. We com-
pare linear r|, with the two new correlation factors and com-
ment upon the relative performance of each, paying particu-
lar attention to the dependence of the MP2-F12 results on the
exponent .

A. He-He

We see from Table I that the HF contribution to the
binding energy is converged to within 0.1 wFE;. However, for
the atom, the difference in the computed HF energy between
the aug-cc-pV5Z and aug-cc-pV6Z basis sets is 46 wE,. The
deviation from the basis set limit for the dimer is almost
precisely twice that of the atom. It seems clear that the
source of this error is the description of the nuclear cusp,
which has a negligible effect on the vdW binding energy.
The accuracy of the HF contribution, even at the aug-cc-
pVTZ level, is more than sufficient for our purposes.

The computed binding energies for the MP2, MP2-R12,
and MP2-F12 methods all increase in magnitude as the basis
set increases. Since we observe that the correlation energy is
always underestimated, it follows that the error in the dimer
is dominant over that of the atom. It is apparent from Table I
that MP2-F12(1) converges to the basis set limit much faster
than MP2-R12. This is particularly evident from the BSSE
corrections, since large BSSE values indicate that the energy
of the atom is far from converged. Noting that the MP2
values contain the HF BSSE, at the aug-cc-pV6Z level the
MP2-F12(1) BSSE is below 0.1 wE,, compared to 0.5 and
4.7 pE, for MP2-F12(2) and MP2-R12, respectively. Even
though the MP2-F12(2) BSSE is an order of magnitude
smaller than that of MP2-R12, the binding energies converge
slower than those from MP2-R12 and are only a slight im-
provement over those from conventional MP2. We conclude
that while both MP2-F12 methods yield much improved cor-
relation energies over MP2-R12, MP2-F12(2) does not pro-
vide a sufficiently balanced treatment of the atom and the
dimer, leading to less error cancellation in the binding en-
ergy, in contrast to MP2-R12 and MP2-F12(1).

The size of auxiliary basis required to sufficiently reduce
the RI error is also of interest. In Table I we present Ejj,
the RI error remaining when an uncontracted aug-cc-pV
(X+1)Z auxiliary basis is used for a calculation with an
aug-cc-pVXZ orbital basis. For MP2-F12 the three- and four-
electron integrals are shorter range due to the exponentially
damped ry, contribution; the integrals are more compact and

require less terms in the RI expansion for a given accuracy.
This is a further clear advantage of MP2-F12 over MP2-R12.

It is important to assess the importance of the exponent y
in Egs. (1) and (2) for the MP2-F12 vdW binding energies.
In Fig. 1 we present the dependence of E’b(ind on vy for X=T
—6. The values for MP2-F12(1) and (2) recover the MP2 and
MP2-R12 results, respectively, when v is zero. The variation
in the binding energy with <y originates from the relative
accuracy in the description of the dimer and the atom. Con-
sistent changes in the deviations from the basis set limit for
all values of vy would give flat lines in Fig. 1. The values of
E};,q all display the same behavior as y increases from zero,
increasing initially, reaching a maximum at a relatively small
value of v, then decreasing to a minimum at intermediate
values of 7, and thereon increasing as vy increases. The range
of binding energies obtained by varying vy shrinks as the
basis set increases, primarily since the region around the
cusp not captured by the orbital description shrinks and the
value of y becomes less important. MP2-F12(1) is much less
dependent on 7y than MP2-F12(2). Taking the aug-cc-pVTZ
basis results as the worst case example, the difference in
energy between the maxima and minima of the undulating
binding energy is 3.7 uE, for MP2-F12(2), compared to
0.8 uE;, for MP2-F12(1).

The observed dependence of EL , on 7y is unexpected
and warrants special attention. It is known that it is important
to consider separately the singlet and triplet pair contribu-
tions to the binding energy of He,, since there is only a
singlet pair contribution to the energy of the dissociated
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FIG. 1. The MP2-F12/2B binding energy of He, computed using correlation
factors exp(—yr;,) (full line) and r,, exp(—yr,) (dashed line) with various
v and basis sets: (X) aug-cc-pVTZ, (@) aug-cc-pVQZ, (0) aug-cc-pV5Z,
and (<) aug-cc-pV6Z.
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atoms.'” The values of v that give the maximum singlet pair
energies for the monomer and the dimer are almost identical
and are 0.9 and 0.6 for (1) and (2), respectively. However,
the values that give the maximum triplet pair energies for the
dimer are much smaller, 0.4 and 0.2 for (1) and (2), respec-
tively, which is consistent with our study of the optimum
correlation factor for ortho- and parahelium in Ref. 34. For
MP2-F12(1) there is a balanced description of the singlet
pair contributions to the atom and dimer and the interaction
energy is fairly flat over the range of 0.6-0.9. The improve-
ment of the description of the wave function near triplet pair
coalescence is responsible for the increase in the vdW bind-
ing energy for smaller values of y in Fig. 1. MP2-F12(2),
however, gives a less balanced description of the atom and
dimer over the range of 0.2-0.4, increasingly favoring the
atom.

As vy decreases to zero, correlation factor (2) converges
to linear r,. Similarly, the structure of correlation factor (1)
also diminishes and the term in linear r;, dominates over the
chemically important range of rj,. Thus, for small values of
v, the correlation factors describe the immediate region of
the electron coalescence, but do not capture intermediate or
long-range correlation effects efficiently. At small vy there is
therefore little bias of the dimer over the atom, or vice versa
and, since the orbital basis is optimized for atom, the binding
energy is underestimated at small vy in an identical manner to
MP2-R12 and conventional MP2.

The behavior at large y remains to be understood. It is
both counterintuitive and somewhat alarming that the de-
scription of the atom deteriorates faster than that of the dimer
as vy increases, resulting in greatly overestimated binding en-
ergies for MP2-F12(1) with y>2 using the aug-cc-pVTZ
basis. The reason for this failure is that, although the conven-
tional orbital BSSE is removed from our calculations, the
BSSE arising from the geminal functions is not (see Sec.
VI A for a detailed discussion). Transforming to localized
orbitals and examining the y dependence of the dimer F12
pair energy contributions reveals that the excitations of the
type wia|s454) — W1a|s4s5) become increasingly important as
v increases. Since this excitation is only present in the dimer
basis and not in the atom, the dimer is therefore stabilized
relative to the atom, leading to overbinding. We argue that as
v increases, the efficiency of the geminals at describing long-
range correlation decreases and the importance of the above
excitation increases since it represents a long-range interac-
tion. The geminal BSSE begins to be a problem for (1) for
v>1.5. Since the ratio between the values of 7y for (1) and
(2) that give the same values for (fi,|rialfia)/{fialf12) is
equal to 5/3, we argue that the problems for (2) will begin
for y>0.9. We show in Sec. VI A that this spurious behavior
can be avoided by using local orbitals and reverting to the
original orbital-variant formalism.

The basis set limit of the binding energy is estimated to
be 22.4 wE, and we attach an uncertainty of 0.1 wFE,. This
is lower than many earlier computations of the basis set limit
interaction energy of He, since they were performed at a
bond length of 5.60(10.18’47’48 This value is in very good
agreement with the value of 22.3 uE;, computed by van
Mourik et al. using conventional MP2 and a t-aug-cc-pV6Z
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FIG. 2. The MP2-F12/2B binding energy of Be, computed using correlation
factors exp(—yry,) (full line) and r, exp(—7yr;,) (dashed line) with various
v and basis sets: (X) aug-cc-pVTZ, (@) aug-cc-pVQZ, and (O)
aug-cc-pV5Z.

basis.** Their estimation of the basis set limit, however,
looks suspect, probably due to the use of aug-cc-pVDZ val-
ues in their extrapolation formula.'* It is remarkable that, for
the new MP2-F12 method with correlation factor exp(—ry,),
the vdW binding energy is within 95% of this value using the
aug-cc-pVTZ basis. This level of accuracy requires the aug-
cc-pV5Z basis set with the MP2-R12 method, and the aug-
cc-pV6Z basis for conventional MP2. We highlight the im-
portance of the CABS approach in removing the RI error.

B. Be-Be

We see from Table II that the energy difference between
the HF binding energies computed with the aug-cc-pVQZ
and the aug-cc-pV5Z is 6 uE;, but that HF binding energy
computed using the aug-cc-pVTZ is in error by over 39 uFE,,
which corresponds to an error of 2% in the MP2 binding
energy. The HF BSSE is negligible.

Convergence of the MP2 binding energies is from below
in all cases and the basis set limit of the atom is reached
more easily than that of the dimer. It is clear from Table II
that the convergence of the conventional MP2 values is ex-
tremely slow, with a 10% error still remaining in the binding
energy computed with an aug-cc-pVSZ basis. MP2-R12 is a
great improvement over conventional MP2, particularly for
the larger basis sets where, for example, the MP2-R12/aug-
cc-pVQZ value is better than the MP2/aug-cc-pV5Z value.
The MP2-R12/aug-cc-pVTZ binding energy, however, is in
error by 25%. Both of the MP2-F12 methods improve sig-
nificantly on the MP2-R12 values for all basis sets, but the
improvement is most evident at the aug-cc-pVTZ level,
where MP2-F12(1) recovers 95% of the binding energy, with
2% of the remaining error arising from the HF contribution.
The MP2-F12(1) values are seen to be superior to MP2-
F12(2) at all levels and we highlight the smaller Epgqp val-
ues. The RI errors are negligible for all of the explicitly
correlated methods and, in contrast to He,, the size of the RI
basis is not critical for 95% accuracy.

In Fig. 2 we present the dependence of the MP2-F12(1)
and MP2-F12(2) binding energies on the exponent vy for the
aug-cc-pVXZ basis sets X=T-5. We see that, for all three
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basis sets, MP2-F12(1) is superior to MP2-F12(2) and that
the binding energy computed using (1) is less dependent on
v than that using (2). In addition we report that the values of
v for which the maximum MP2 correlation energy is recov-
ered are between 1.0 and 1.2, and 0.4 and 0.5 for (1) and (2),
respectively, increasing over these ranges as the basis set
increases. The optimum vy is a few percent smaller for the
dimer than for the atom, which indicates that the orbital basis
lacks sufficient diffuse functions that are important for the
long-range correlation in the dimer.

The curves in Fig. 2 therefore indicate that the descrip-
tion of the dimer deteriorates faster than that of the atom as 7y
increases from 1.0 or 0.4 for (1) and (2), respectively, and the
binding energy decreases. Due to the relatively strong inter-
action, long-range correlation is much more important in the
dimer than in the atom and the energy of the dimer is more
sensitive to contracting the geminals by increasing y than
that of the atom. This effect is much larger than the small
increase in the binding energy due to the extra excitations
between the geminals in the dimer and the geminal BSSE
does not cause problems for the calculation of the binding
energy of Be,.

Conversely, as vy decreases from 1.0 to 0.5 for (1) and
from 0.4 to 0.2 for (2), the description of the atom deterio-
rates faster than that of the dimer and EJ, , increases slightly.
Decreasing y reduces the efficiency with which the elec-
tronic cusp is described, but increases the flexibility for de-
scribing longer-range correlation. For very small values of y
the lack of structure in the correlation factor removes this
advantage, the description of the dimer becomes worse than
that of the atom and Ej, ; decreases.

The basis set limit of the binding energy for Be, is esti-
mated to be 2180 wE, and we attach an uncertainty of
+20 wkE,. It is remarkable that, for the new MP2-F12 method
with correlation factor exp(—r;,), the vdW binding energy is
within 95% of this value using the aug-cc-pVTZ basis. This
level of accuracy requires the aug-cc-pVQZ basis set with
the MP2-R12 method, and is not reached using an aug-cc-
pV5Z basis with conventional MP2.

C. Ne—Ne

We see from Table III that the HF binding energy oscil-
lates slightly as the basis set increases from X=T to X=5
before converging. The HF binding energy for Ne, is thrice
that of He,, but the individual HF energies of the dimer and
atom are 50 times larger. The convergence of the HF binding
energy of Ne, is much more demanding than that of He,.
Indeed, the difference between the HF energies of the dimer
computed with an aug-cc-pV5Z and aug-cc-pV6Z basis is
550 wEy, but this is associated with the nuclear cusp and
cancels in the binding energy, which is converged to less
than 0.1 pFE,.

The MP2-R12 and MP2-F12(1) binding energies also
oscillate as the basis set increases and the oscillations are
larger than those due to the HF contribution. The conven-
tional MP2 values converge slowly from below as one would
expect and the MP2-F12(2) values are an improvement over
those of conventional MP2, also converging from below, but
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FIG. 3. The MP2-F12/2B binding energy of Ne, computed using correlation
factors exp(—yry,) (full line) and r, exp(—7yr;,) (dashed line) with various
v and basis sets: (X) aug-cc-pVTZ, (@) aug-cc-pVQZ, (CJ) aug-cc-pV5Z,
and (O) aug-cc-pV6Z.

are much more slowly convergent than those of MP2-R12.
Indeed, it is remarkable that, even though convergence is
somewhat erratic, the MP2-R12 values are within 3% of the
basis set limit for all basis sets considered. In this instance
MP2-R12 gives better values for Ej, than both of the
MP2F12 methods. However, the size of the BSSE removed
from the binding energy is much larger for MP2-R12 than
for either MP2-F12(1) or MP2-F12(2), indicating that the
individual energies of the atom and the dimer are far from
converged. We conclude that the MP2-R12 gives a more bal-
anced treatment of the atom and dimer than either MP2-
F12(1) or MP2-F12(2).

In Fig. 3 we present the dependence of the MP2-F12
binding energies on the exponent vy in Egs. (1) and (2) for the
aug-cc-pVXZ basis sets X=T—-6. An undulating pattern is
observed, very similar to that of He,. In addition we report
that the optimum values of 7y for both the atom and the dimer
are almost identical and are 1.7 and 0.7 for MP2-F12(1) and
MP2-F12(2), respectively. We see that MP2-F12(2) gives a
better description of the atom than the dimer close to this
value of v, which was also observed for He,. For smaller
values of 7y the bias due to the incomplete basis shifts to-
wards the dimer due to the importance of diffuse functions.
For both correlation factors, the dependence of the binding
energy on 7y decreases as the basis set increases.

For MP2-F12(1), we see that as vy increases the binding
energy increases exponentially, reaching 400 uE, at y=2.0
for the aug-cc-pVTZ basis, more than 300% overbound. This
catastrophic failure is due to the unremoved BSSE arising
from the larger geminal basis in the dimer than in the atom.
The geminal BSSE is much larger than for He, both because
there are many more geminal basis functions that contribute
and because the individual energies are much further from
convergence than in the case of He,. The geminal BSSE
does not cause problems for MP2-F12(2) over the computed
range of 0= y=<0(.8, but is expected to cause difficulties for
v>0.8. We show in Sec. VI A that the spurious behavior is
removed if we use localized orbitals with the original orbital-
variant formalism.

The RI error is also of interest, we report that the small
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TABLE IV. Computed MP2, MP2-R12, and MP2-F12/aug-cc-pVXZ equilibrium bond distances of He, in a.

F12(2) y F12(1) y
X MP2 RI12 0.2 0.4 0.6 0.5 1.0 1.5
T 5.92 5.86 5.80 5.86 5.89 5.80 5.80 5.81
Q 5.86 5.83 5.80 5.81 5.86 5.80 5.80 5.80
5 5.82 5.81 5.80 5.80 5.83 5.80 5.79 5.79
6 5.80 5.80 5.785 5.79 5.80 5.785 5.785 5.785

values for Ej; are due to a large cancellation of the indi-
vidual RI errors for the dimer and monomer. For the aug-cc-
pVTZ basis, the differences in the correlation energy of the
dimer computed with an uncontracted auxiliary aug-cc-
pVQZ basis compared with that computed with the large
auxiliary basis are some 500 pE; for MP2-R12 and 300 wE,
for both MP2-F12 methods, an order of magnitude larger
than those observed for He, and Be,. If the errors due to the
RI approximation are not properly controlled, large varia-
tions in the interaction energy may be introduced. We rec-
ommend the CABS approach.39

The basis set limit of the binding energy for Ne, is esti-
mated to be 86 uE; and we attach an uncertainty of 2 wE;,.
This is in very good agreement with the value of 85.5 uE,
obtained by van Mourik et al. using conventional MP2 with
a t-aug-cc-pV6Z basis.”” Due to the large geminal BSSE for
the MP2-F12(1) method, the binding energy is overestimated
for small basis sets and 95% accuracy is not reached before
the aug-cc-pV5Z level. For MP2-R12 on the other hand, this
accuracy is reached with the aug-cc-pVTZ basis and we
expect that once the issue of geminal BSSE is dealt with,
MP2-F12(1) will perform at least as well as MP2-R12.

V. BOND LENGTHS

Accurate predictions of equilibrium bond distances re-
quire that the deviations from the basis set limit are suffi-
ciently independent of the bond length, so as not to bias the
potential curve, shifting the minimum. The size of energy
bias B in, E, ap', required to shift the maximum in EJ
(minimum in the potential) by +Agq is related to the force
constant k,

B= kKA. (7)

As before we are interested in comparing the performance of
MP2-F12 with MP2-R12, and investigating the size of one-
particle basis required to provide reliable equilibrium bond
length predictions to within 0.02a,. For the MP2-F12
method it is important to determine whether the choice of
exponent 7y in the correlation factor significantly affects equi-
librium bond lengths.

For each of the vdW dimers He,, Be,, and Ne, we
compute the minimum of the counterpoise corrected MP2-
R12 and MP2-F12 potential curves using the available
aug-cc-pVXZ orbital basis sets. We use the large
18s10p6d5f4g3h2i, 21s12p7d5f4g3h2i, and
21514p8d7f5g4h3i2k auxiliary basis sets for He, Be, and
Ne, respectively, which are sufficient to reduce the effect of
the RI approximation on the bond length to below 0.0054 in

all cases. For MP2-F12(1) we use three exponents y=0.5,
1.0, and 1.5 and for MP2-F12(2) we use y=0.2, 0.4, and 0.6.
We present the results from MP2, MP2-R12, and MP2-F12
calculations in Tables IV-VIL.

In the following three sections we comment on these
results, comparing the performance of MP2-R12 and of
MP2-F12. We discuss the effect of each source of deviation
from the basis set limit on the potential curve, paying par-
ticular attention to the dependence of the MP2-F12 results on
the exponent 7.

A. He-He

We see from Table IV that the relative rates of conver-
gence of the computed MP2, MP2-R12, and MP2-F12 equi-
librium bond lengths to the basis set limit follow a similar
pattern to that of the binding energies in Table 1. The
convergence of conventional MP2 is very slow and the aug-
cc-pV6Z value is still more than 0.01a, underbound. As ex-
pected, MP2-R12 converges significantly faster than conven-
tional MP2, but the new MP2-F12(1) is a great improvement
over MP2-R12. The basis set limit bond length is estimated
to be 5.785a,, with a vibrational frequency of approximately
28 cm™!. This is in good agreement with the values of
5.791a, and 26.5 cm™! obtained by van Mourik ef al. using
conventional MP2 and a t-aug-cc-pV6Z basis.”’

We are interested in the minimum basis required to ob-
tain an equilibrium bond length prediction to within 0.02a;
we must therefore examine the various sources of deviation
from the basis set limit and the bias that they introduce. The
energy bias required to shift the minimum by +0.02q, is
+0.2 uE, ap'.

Let us first consider the HF contribution. Taking the aug-
cc-pV6Z basis as a reference, the aug-cc-pVTZ values bias
the potential curve by —0.2 wE}, aal, which shortens the equi-
librium bond length by 0.003a,. The bias remaining when an
aug-cc-pVQZ basis is used lengthens the equilibrium bond
by 0.001q,. Clearly the dominant contribution to the position
of the minimum is the correlation energy.

In all cases the convergence to the basis set limit bond
length is from above, which is consistent with the fact that
the correlation contribution to the binding energy is underes-
timated near the equilibrium for these finite basis sets, as
discussed in Sec. IV A. The HF contribution is repulsive and
decreases in magnitude as the bond length r increases. At the
equilibrium, the linear dependence of the correlation contri-
bution on r exactly cancels the gradient of the HF contribu-
tion and introduces quadratic terms in r resulting in the mini-
mum. If the same fraction of the correlation contribution is
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TABLE V. Computed MP2, MP2-R12, and MP2-F12/aug-cc-pVXZ equilibrium bond distances of Be, in ay.

FI12(2) y F12(1) y
X MP2 RI12 0.2 0.4 0.6 05 1.0 15
T 5.33 5.22 5.14 5.17 5.17 5.14 5.15 5.15
Q 5.18 5.12 5.11 5.12 5.12 5.11 5.12 5.12
5 5.14 5.11 5.11 5.11 5.11 5.11 5.11 5.11

recovered for all separations, the HF contribution is not
exactly canceled, introducing a bias that shifts the minimum
to a longer bond length. This is the dominant factor in the
trend in the computed equilibrium bond lengths. Treating the
HF and correlation contributions as first and second orders in
the bond length r, respectively, we may estimate the fraction
a of the correlation energy required to obtain the equilibrium
bond length correct to A=0.02q, as

F

=—, 8
“ F+kA ®

where F=—dE}Y /dr is evaluated at the equilibrium r, and is
found to be 45 uE; aal. The required percentage of the cor-
relation energy contribution to the binding energy is then
estimated to be 97%, which corresponds to a binding energy
of 21.2 wE, at equilibrium. There is also an additional bias
arising from the variation in the accuracy of the correlation
energy with bond length, which can act either to partially
compensate for or to accentuate the bias due to the HF re-
pulsion. However, we would expect that such a bias would
be small if 97% of the correlation energy is obtained close to
equilibrium.

The trends displayed in Table IV are largely explained
by the above considerations. From Fig. 1 we see that for all
basis sets, the percentage of binding energy recovered using
MP2-F12(1) and MP2-F12(2) decreases as 7y increases from
0.5 to 1.5 and from 0.2 to 0.4, respectively. In Table IV we
see that the computed minima lengthen as 7y increases. For
MP2-F12(1) more than 97% of the correlation contribution
to the binding energy is recovered for 0.5 < y=< 1.5 even with
the aug-cc-pVTZ basis and the structures are universally of
high quality. MP2-F12(2) performs much worse, especially
at larger values of 7, as reflected in too long bond lengths.
However, comparing the MP2-R12 and MP2-F12(2) values
for Ef. , in Table I, we see that even though MP2-R12 re-
covers a larger percentage of the binding energy, MP2-
F12(2) with y=0.4 yields equilibrium bond lengths closer to
the basis set limit. We observe that the percentage of the
correlation contribution to the binding energy recovered with
a finite basis decreases slightly for MP2-F12(2) with y=0.4
as the bond length increases, which acts to shorten the com-
puted minimum. This is in contrast to MP2-R12, MP2-
F12(1) for all y, and MP2-F12(2) with y=0.6, where the
percentage increases as the separation increases.

The bias that would be added to the potential curve if the
RI error were not properly removed is also interesting. In all
cases, the bias due to the RI error is only significant for the
aug-cc-pVTZ basis. For MP2-F12(1) the RI bias is —0.3,
—-0.4, and -0.6 ®E, aal for y=0.5, 1.0, and 1.5, respectively,

acting to shorten the bond length by almost 0.01a,. For MP2-
F12(2) the bias is larger and changes sign, being —0.6, 0.3,
and 0.8 uEy, agl for y=0.2, 0.4, and 0.6, respectively. For
MP2-R12 the RI bias is 0.8 uEy a(_)l for the aug-cc-pVTZ
basis and acts to lengthen the bond by 0.01a.

We find that MP2-F12(1) is superior to MP2-R12 and
MP2-F12(2) in several respects. High quality structures,
within 0.02a, of the basis set limit, are obtained with an
aug-cc-pVTZ basis and the potential is relatively insensitive
to the value of y chosen. This is because more than 97% of
the binding energy is obtained with this level for all values of
v in the computed range. This is in contrast to MP2-F12(2)
where both the binding energies and the structures deterio-
rate significantly as vy increases, when the aug-cc-pVTZ basis
is used.

B. Be-Be

We see from Table V that all of the explicitly correlated
methods converge to give an equilibrium bond distance of
5.11ay. The vibrational frequency is approximately 138 cm™!
and if an accuracy of 0.02a is required, then the bias due to
the deviations from the basis set limit must be smaller than
65 uE, aal. We report that the aug-cc-pVTZ HF potential
differs significantly from the aug-cc-pV5Z curve, introduc-
ing a bias of 53 uE, aal, which lengthens the minimum by
0.02ay. The bias and its consequence are an order of magni-
tude smaller for the aug-cc-pVQZ basis. The gradient of the
repulsive HF potential at 5.11a is 6590 wE, a, L

Using Eq. (8) we estimate that 99% of the correlation
contribution to the binding energy must be recovered in or-
der to obtain the equilibrium structure to within 0.02a,. This
corresponds to a binding energy of 2080 wE, (assuming a
HF contribution of —=7580 wE}). We see that this is achieved
for MP2-R12 and both MP2-F12 methods over the range of
v presented, when an orbital basis of aug-cc-pVQZ quality
or better is used. In fact, for the MP2-F12(1) method, this is
achieved even with the aug-cc-pVTZ basis and the bond
lengths are too long mainly due to the error in the HF con-
tribution.

The trend in Table V is largely explained by the depen-
dence of Effmd on vy displayed in Fig. 2. Since the percentage
of the binding energy recovered for a given basis decreases
as vy increases, the computed bond lengths increase. We ob-
serve that the MP2-F12(1) values increase less than those of
MP2-F12(2). This is because for large v, the computed dimer
energy decreases too rapidly as the bond length increases due
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TABLE VI. Computed MP2, MP2-R12, and MP2-F12/aug-cc-pVXZ equilibrium bond distances of Ne, in a.

FI12(2) y F12(1) y
X MP2 R12 0.2 0.4 0.6 05 1.0 15
T 6.26 6.14 6.06 6.15 6.18 6.04 6.08 6.30
Q 6.14 6.06 6.04 6.07 6.11 6.03 6.05 S
5 6.10 6.06 6.06 6.06 6.08 6.06 6.05 6.05
6 6.08 6.06 6.05 6.05 6.06 6.05 6.05 6.05

to the more contracted geminals capturing less long-range
correlation. This adds a bias to the potential that acts to
shorten the computed minima.

All three of the explicitly correlated methods provide
bond lengths accurate to within 0.02a, when an aug-cc-
pVQZ basis is used. The errors arising with the aug-cc-pVTZ
are dominated by the unconverged HF contribution. The bias
that would be introduced if an uncontracted aug-cc-pVYZ
auxiliary basis were used with Y=X+1 for an aug-cc-pVXZ
orbital basis is completely negligible.

C. Ne—Ne

We see from Table VI that with the aug-cc-pV6Z basis
the MP2-F12(1) and MP2-F12(2) methods converge to give
an equilibrium bond length of 6.05a, and the vibrational fre-
quency is approximately 23 cm™'. Our basis set limit results
are in good agreement with the values of 6.066a, and
22.5 cm™! obtained by van Mourik ef al. using conventional
MP2 and a t-aug-cc-pV6Z basis.* The maximum bias due to
basis set incompleteness must be below 1.9 uFE, a(_)1 for
structures accurate to within 0.02a, and the HF contribution
must be computed with an aug-cc-pV5Z basis or better in
order to achieve this accuracy. Taking the aug-cc-V6Z curve
as a reference, the incompleteness of the aug-cc-pVTZ and
aug-cc-pVQZ basis sets introduces biases of —1.7 and
-2.3 uEy, a(_)', respectively, which acts to shorten each com-
puted minima by 0.01a,. The corresponding bias for the aug-
cc-pV5Z basis is an order of magnitude smaller and acts to
lengthen the minimum by 0.001a,,.

The repulsive force of the HF potential is 138 wFEy, aal
and therefore the correlation contribution must be accurate to
within 3% to reduce the basis set incompleteness bias to
below 3.9 uE, aal, which corresponds to a binding energy
between 81.2 and 89.8 uE,. However, since this bias acts to
lengthen the computed minima when the binding energy is
underestimated, it partially cancels with the bias due to the
HF contribution for the aug-cc-pVTZ and aug-cc-pVQZ ba-
sis sets. When the binding energy is overestimated, this bias
acts to shorten the bond length.

In Table VI we see that for MP2-F12(2) the trend in the
computed minima with vy is consistent with the percentage of
binding energy recovered, as displayed in Fig. 3. As y in-
creases, the percentage decreases and the minimum length-
ens due to the incompletely removed HF repulsion. For
MP2-F12(1) with the aug-cc-pV5Z basis, the opposite trend
is observed, because the binding energy is overestimated. For
the aug-cc-pVTZ and aug-cc-pVQZ basis sets the geminal
BSSE has a large effect on the bond length predictions for

large . The percentage of the correlation contribution to the
binding energy increases as the bond length increases, which
adds a bias to the potential that acts to lengthen the mini-
mum. The value for the aug-cc-pVQZ basis with y=1.5 is
missing from Table VI because the potential had a disconti-
nuity since an eigenvalue of the B matrix that dropped below
zero was eliminated.

All three of the explicitly correlated methods provide
bond lengths accurate to within 0.02a¢, when an aug-cc-
pV5Z basis is used. The errors arising with the aug-cc-pVTZ
and aug-cc-pVQZ basis sets have contributions from the HF
and correlation terms, which leads to fortuitously good struc-
tures when they partially cancel. The geminal BSSE causes
severe problems for the MP2-F12(1) method with large y
leading to much too long equilibrium bond lengths.

VI. THE ORIGINAL ORBITAL-VARIANT FORMALISM

All of the results presented in the previous sections are
computed using ansatz 2 and approximation B in the usual
orbital-invariant formalism.*® From the point of view of pair
clusters, the MP2-R12 wave function is represented by the
substitution

lij) = 1ij) + 25 diflab) + 2 cfjwislkl), 9)
a<b k<l
where i,j,k,l denote occupied orbitals, a,b virtual orbitals,
and w, is defined in Eq. (3). In other words, the adjustment
of the orbital pair |ij) due to the electron interaction is rep-
resented by the additional sets of orbital pair functions |ab)
and w,|kl). In the original MP2-R12 method only the domi-
nant R12 contributions w,|ij) are included, and the formal-
ism is therefore not invariant to unitary transformations of
the occupied orbitals.

In most current applications, the orbital-variant formal-
ism has been rejected in favor of the orbital-invariant formal-
ism. There are two main reasons for this: Firstly, when there
are degeneracies between the molecular orbitals, as in meth-
ane, for example, it is undesirable that the MP2-R12 energy
should depend on the specific representation of the degener-
ate orbitals; secondly, the approximate way in which matrix

elements such as (x,xswi,f12wi2lxaxs) contribute to the
pair energies leads to erroneous long-range interactions be-
tween monomer fragments A and B.

In our MP2-F12 calculations on He, and Ne, using the
orbital-invariant method we encounter difficulties arising
from geminal BSSE. In Sec. VI A we examine the geminal
BSSE in detail and show that the primary deficiencies are
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removed if we revert to the original orbital-variant formalism
and use localized orbitals. In Sec. VI B we examine the ef-
fect of the long-range behavior of linear and nonlinear cor-
relation factors by comparing the orbital-variant and invari-
ant methods. In order to simplify our discussion in the
following sections we restrict our calculations to approxima-
tion A, where the B%) matrix is independent of the orbital
pair (ij), but the results are indicative of both approximations
A and B.

A. Removing geminal BSSE

All R12 and F12 methods utilize geminal functions con-
structed from a correlation factor multiplied by a pair of
occupied orbitals. Since, for a monomer with n occupied
orbitals, there are n(n+1)/2 singlet and n(n—1)/2 triplet
geminals in the monomer basis and n(2n+1) singlet and
n(2n—1) triplet geminals in the dimer basis, geminal BSSE
is always present in our binding energies. The method of
counterpoise correction, used to reduce the orbital BSSE,
involves increasing the number of basis functions in the cal-
culation of the monomer energy to match that of the dimer.
Although this is possible in R12 methods, it would involve
using the full set of dimer geminals in the monomer calcu-
lation and is not an attractive solution. The alternative is to
reduce the basis of the dimer to match the monomer. Local-
izing the HF orbitals to monomer centers A and B, we can
remove the interactions between the geminals centered on A
with those centered on B. Likewise, we can remove the in-
teractions between the mixed AB geminals with those cen-
tered on A and B, but we should not remove the interactions
of the set of mixed geminals with themselves since they may
be considered to belong exclusively to the dimer. The clean-
est way to achieve this is to use the original orbital-variant
method with localized orbitals.

Now let us examine the effect of geminal BSSE on the
binding energy of our three vdW dimers. We transform to
local orbitals by symmetry, simply taking plus and minus
combinations of the bonding and antibonding pairs of ca-
nonical orbitals.”® Since the overlap between orbitals on A
with orbitals on B is not zero, the orbital localized on A

Exponent yin exp(-yt4)

025 05 075 1 125 15 175 2
25 T T T T T T

24 |

23

22

21

Binding energy (uE,)

20 } o
’,":,‘"

19 | i

18 = <l

01 02 03 04 05 06 07 08
Exponent yin ry-exp(-yr)

FIG. 4. The orbital-invariant (X) and local-orbital-variant (@) MP2-F12/2A
binding energies of He, computed using correlation factors exp(—yr;,) (full
line) and r;, exp(—7yr;») (dashed line) as a function of vy, with the aug-cc-
pVTZ basis.
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FIG. 5. The orbital-invariant (X) and local-orbital-variant (@) MP2-F12/2A
binding energies of Be, computed using correlation factors exp(—yr;,) (full
line) and ry, exp(—yr;,) (dashed line) as a function of vy, with the aug-cc-
pVTZ basis.

contains a tail on B and vice versa. We distinguish the local-
ized orbitals from atomic orbitals with a tilde. For both He,
and Be, (frozen core) the transformation to local orbitals
only affects the singlet pair interactions and removing the
interactions of geminals wy,|5,5,) with w,|5555) and
W1a|5455) with wy,|5,5,) and w,|555) is entirely equivalent
to the orbital-variant method in the basis of localized orbit-
als. For the binding energy of Ne, the contributions to the
dimer from both the singlet and triplet geminal interactions
contributes to BSSE. For Ne, the orbital-variant method us-
ing localized orbitals not only removes the terms contribut-
ing to BSSE but also many geminal interactions that act to
improve the correlated description of both the atom and the
dimer. In Figs. 4—6 we present the results of MP2-F12/2A
calculations for the localized orbital-invariant and orbital-
variant methods for both correlation factors (1) and (2), us-
ing the aug-cc-pVTZ basis sets for various values of the
exponent . The effect of geminal BSSE is naturally much
smaller if larger orbital basis sets are employed.

From Fig. 4 we see that the geminal BSSE has essen-
tially zero effect on the MP2-F12 binding energy of He, for
values of y below 1.0 or 0.4 for correlation factors (1) and
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FIG. 6. The orbital-invariant (X) and local-orbital-variant (@) MP2-F12/2A
binding energies of Ne, computed using correlation factors exp(—yr;,) (full
line) and ry, exp(—yr,) (dashed line) as a function of y, with the aug-cc-
pVTZ basis.
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(2), respectively. For the orbital-invariant MP2-F12(1)/2A
method, the binding energy increases for larger values of y
in the same way as observed for approximation 2B in
Sec. IV A. Removing the interactions between the dimer
geminal basis functions that contribute to BSSE removes this
spurious behavior and the energy of the dimer deteriorates
faster than that of the atom as 7 increases, as one would
expect. An analysis of the two kinds of interactions that are
removed shows that the dominant contributions arise from
excitations of the kind wy,|5,5,) — w1,|5,55), indicating a
deficiency in the orbital basis for describing long-range cor-
relation. The fact that this is relatively unimportant for MP2-
F12(2) and for small values of y for MP2-F12(1) indicates
that in these cases the orbital-variant geminal basis suffi-
ciently captures the long-range effects. The geminal BSSE
for the MP2-R12 method is 0.3 wE;,.

From Fig. 5 we see that the effect of geminal BSSE on
the binding energy of Be, is negligible compared to the
greater sensitivity of the energy of the dimer to y over that of
the atom. In contrast to He, the geminal BSSE decreases as
v increases and has equal contributions from both kinds of
mixed center excitations. This is consistent with the observa-
tion that the aug-cc-pVTZ orbital basis is far from complete
in all respects, not just in the space of very diffuse functions.
We argue that smaller values of 7y admit larger couplings
between the geminal functions on different centers, contrib-
uting to the short-range correlation of the dimer. This prog-
nosis is supported by the fact that the geminal BSSE is
10 uE, for MP2-F12(1) and MP2-F12(2) with y=0.25 and
v=0.10, respectively, and that the value of 44 uFE, for the
MP2-R12 method is much larger.

From Fig. 6 we see that the local-orbital-variant values
for the binding energy of Ne, are significantly different from
the orbital-invariant energies, for both large and small values
of . The reduction of the geminal BSSE removes the gross
overbinding of the MP2-F12(1) method for large values of 7,
caused by similar interactions to those described for He,.
However, since only the interactions of each geminal basis
function with itself are taken into account, the descriptions of
both the atom and the dimer deteriorate. The atom is de-
scribed more accurately than the dimer, as one would expect,
leading to underestimated binding energies. MP2-F12(1)
then performs much better than MP2-F12(2), consistent with
the studies of He, and Be,. In sec. IV C we observe that
MP2-R12 performs much better than either MP2-F12 meth-
ods using the orbital-invariant formalism. This situation is
reversed for the local-orbital-variant method and MP2-R12
does not predict binding, when the aug-cc-pVTZ basis is
employed.

B. Long-range vdW interactions

The fact that linear ry, correlation factor increases to
infinity with the interelectronic distance has caused consid-
erable concern over the computation of long-range interac-
tions using R12 methodologies. The original orbital-variant
MP2-R12 method was observed not to predict binding for
He, and the potential energy curve for Be, gave a repulsion
of 400 wE, at large bond lengths.36 These failures are asso-
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ciated with spuriously large contributions to the B matrix and
are rectified if we use either the orbital-invariant method*® or
the orbital-variant method with local orbitals.”® The new cor-
relation factors (1) and (2) decay to zero at long range and
these problems are not expected to arise for the original
orbital-variant method.

Let us first review the performance of the MP2-R12
method for the equivalent situations of He, and Be, (frozen
core), comparing the orbital-invariant method with the
orbital-variant method with local and canonical orbitals. The
energy of the monomer is the same for each method since
there is only one geminal function. The triplet pair contribu-
tion to the energy of the dimer is similarly unaffected by the
change in method and we need only consider the singlet pair
energy contributions to the dimer. There are three singlet
geminal functions and we have the following relations be-
tween the canonical and local representations:

~ o~ ,f_ ~ o~ ~ ~
W12|0'g0'g> = %W12(|SASA> + \’2|SASB> + |SBSB>)» (10)
Wialogo,) = 3win(V2[545,) = V2[55). (11)
wploy,o,) = %W12(|§A§A> — \2[5455) + [555R)).- (12)

We remind the reader that |5,5) denotes the symmetrized
pair function. The R12/2A contribution to the MP2 energy is
given by

EQ,=-Tr(V'B'V) (13)

where the matrices B and V are defined by

1 .y . .y ]
_ - iq' mn iq' .nm iq' ki iq' Ik
Bkl,mn - 5']("5;' - 22 (rkl tiq’ + Tk tiq’ + rmntiq’ + rnmtiq’)
. !

q

1 ij mn ij
+ 52 (il + g, (14)
ij

. . . ,
Visij= 6,0, = > (i 82,]“]/ +ry! g,],l,qr) + 2 ke, (15)
mn

!
mq

where i, j, k, I, m, n are occupied orbitals and ¢’ runs over
the auxiliary basis set and

roy= {2V, (2)rile1)e(2)), (16)
g ={e,(De, (2l (1)e,(2), (17)
toy = <¢p(1)¢p(2)|[f1 + T, ]| 0 (1) gy(2)). (18)

The original orbital-variant formalism is equivalent to setting
the off-diagonal elements of the B and V matrices to zero. At
large separations we may neglect the overlap between func-
tions on A with functions on B and therefore drop the tilde
and assume that By qa=Bpgpg and Vg aa=Vpppp. In the
local-orbital representation, the V and B matrices are then
diagonal, containing only the interactions of each of
Wi2|S4S4)» Wia|s485) and wy,|sgsp) with themselves. Within
this approximation, the local-orbital-variant and orbital-
invariant methods give identical results,
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FIG. 7. The orbital-invariant and local-orbital-variant MP2-R12/2A (dashed
line), canonical-orbital-variant MP2-R12/2A (solid line), and orbital-
invariant and local-, and canonical-orbital-variant MP2-F12(1)/2A y=1.0
(dotted line) potential curves for He, using the aug-cc-pVTZ basis.

(2) _

% %
ER12 - _ 2 AAAA _ AB,AB (19)

Basaa  Bapas
The canonical-orbital-variant method, on the other hand,
gives

2 2
_ Viaaa (Vasaa+ Vap.ap)

(20)

Basaa Basaa+ Bapas

When the linear-r;, correlation factor is used, the matrix el-
ements r;‘l'l give spuriously large values for B,p 45 due to the
unphysical long-range nature connecting centers A and B.
For the orbital-invariant formalism this is largely canceled by
small values for Vyp 5 due to the vanishing g,. For the
original canonical-orbital-variant formalism this is no longer
true and Egl)z is underestimated, leading to underbinding or
even repulsion.

In Fig. 7 we present the potential energy curves for the
MP2-R12/2A canonical- and local-orbital-variant methods
and the orbital-invariant method using the aug-cc-pVTZ ba-
sis with the large 18s10p6d5f4g3h2i auxiliary basis. In ad-
dition we plot the three corresponding MP2-F12(1)/2A
curves using y=1.0. We see that for MP2-R12, the orbital-
invariant and local-orbital-variant methods indeed give the
same curves, but that the canonical-orbital-variant method
does not predict binding. It is remarkable that all three curves
for the MP2-F12(1) method lie on top of each other. This is
because the matrix elements Byg 45 and Vup 45 are at least
three orders of magnitude smaller than Byg 44 and Vyg a4,
respectively, for all bond lengths. This is not the case for
smaller values of 7, or for MP2-F12(2), and the canonical-
orbital-variant method predicts slightly less binding than the
local-orbital-variant method, but they agree at long range,
indicating that these matrix elements are slightly overesti-
mated at short bond lengths when too diffuse correlation fac-
tors are used. The B,p,p matrix element computed using
MP2-R12/2A, however, is two orders of magnitude too large.
For large values of vy the orbital-invariant and local-orbital-
variant MP2-F12 methods differ due to geminal BSSE as
discussed in the previous section.

In Fig. 8 we present the MP2-R12/2A and MP2-
F12(1)/2A (y=1.0) orbital-invariant and canonical- and
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FIG. 8. The orbital-invariant and local- and canonical-orbital-variant MP2-
R12/2A (solid line), canonical-orbital-variant MP2-R12/A (dashed line), and
orbital-invariant and local- and canonical-orbital-variant MP2-F12(1)/2A
v=1.0 (dotted line) potential curves for Be, using the aug-cc-pVTZ basis.

local-orbital-variant potential energy curves for Be, using the
aug-cc-pVTZ basis with the large 21512p7d5f4g3h2i auxil-
iary basis set. We see that for Be, all three MP2-R12/2A
methods lie on the same curve and that the potential from the
original canonical-orbital-variant method is not repulsive at
large separations, in contradiction to expectation based on
the work of one of us in Ref. 36, where a repulsion of
400 uE, is observed at a separation of 20a,. In this early
work the MP2-R12/A method is used, where the orbital basis
is used for the auxiliary basis and we include the curve for
this method using the aug-cc-pVTZ basis in Fig. 8 for refer-
ence. The only difference between the MP2-R12/A and MP2-
R12/2A methods is the removal of the RI error. We report
that the matrix element B,p4p is two orders of magnitude
larger for MP2-R12/A than for MP2-R12/2A, due to the RI
error, and this is the cause of the long-range repulsion pre-
dicted by the canonical-orbital-variant method. This failure is
unimportant for the orbital-invariant method since the V4p 45
are very small and even though the AB contribution is too
large, it is has a negligible effect on the potential energy. In
contrast to He,, the long-range nature of the linear r, corre-
lation factor does not result in the incorrect behavior of the
MP2-R12 potential for Be,. It is therefore no surprise that all
three MP2-F12(1)/2A methods give the same curves for Be,.
This is true for both correlation factors and all values of 7.

The situation for Ne, is more complicated since there are
many more geminal basis functions. The orbital-invariant po-
tential energy curves suffer from geminal BSSE, particularly
the MP2-F12(1) curves for large v, and the local-orbital-
variant method should be taken as the reference. In the
same way as for He, and Be,, the AB contributions to the
Ne, binding energy are correctly included in the local-
orbital-variant method, but incorrectly included in the
canonical-orbital-variant method. In Fig. 9 we present the
orbital-invariant and local-orbital-variant MP2-R12/2A
and the local- and canonical-orbital-variant MP2-F12(1)/2A
(y=1.0) potential curves for Ne, using the aug-cc-pVTZ or-
bital basis and the large 21s14p8d7f5g4h3i2k auxiliary ba-
sis. We see that the orbital-invariant MP2-R12/2A curve
gives a good description of the vdW interaction, but the
local-orbital-variant method does not predict binding. This is
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FIG. 9. The orbital-invariant (solid line), local-orbital-variant MP2-R12/2A
(dashed line), and local- and canonical-orbital-variant MP2-F12(1)/2A
y=1.0 (dotted line) potential curves for Ne, using the aug-cc-pVTZ basis.

because many of the geminal-geminal interactions that stabi-
lize the dimer, but do not contribute to BSSE, are neglected
and the diagonal terms do not sufficiently describe the cor-
related wave function. It is therefore likely that the geminal
BSSE is small for MP2-R12/2A. The canonical-orbital-
variant results are not plotted since this method predicts a
repulsion of over 1000 uE, at the equilibrium bond length,
due to the spuriously large B matrix elements. For MP2-
F12(1)/2A, the local- and canonical-orbital-variant curves lie
on top of each other, for all values of y investigated, indicat-
ing that, as for He, the damped nature of the correlation
factor results in a correct description of the vdW interactions
since geminals of the type wy,| x4x5) do not lead to spuri-
ously large interactions. This is not true for correlation factor
(2), where the canonical-orbital-variant method predicts less
binding than the local-orbital-variant method.

VIl. CONCLUSION

If the conventional MP2 method is used, the computa-
tion of the binding energies of the vdW dimers He,, Be,, or
Ne, to within 95% of the basis set limit requires an orbital
basis set of aug-cc-pV6Z quality or larger. Even at this level,
the error in the correlation energy of He, is 1 mE); and there
is a large cancellation of errors to give the accurate value of
only 0.8 uE;, below the basis set limit binding energy,
22.4 wE;. The use of geminal basis functions with an ex-
plicit dependence on the interelectronic distance ry, greatly
reduces the individual errors in the correlation energies of
the monomer and dimer. For He,, the deviation from the
basis set limit of the MP2-R12 correlation energy is approxi-
mately 50 wE, when the aug-cc-pV6Z basis is used. The
convergence to the basis set limit binding energy is much
faster and 95% accuracy is obtained with an aug-cc-pV5Z
basis for all three dimers.

The use of geminals with the nonlinear correlation fac-
tors exp(—7yr;,) and rj, exp(—yr;,) improves the individual
descriptions of the dimer and monomer even further, particu-
larly for small basis sets. For Be,, this leads to greatly im-
proved binding energies over a wide range of the exponent 7.
More than 95% of the correlation contribution is obtained
with the aug-cc-pVTZ basis, although the aug-cc-pVQZ
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level HF contribution is required for an overall 95% accu-
racy. For the very weakly bound dimers He, and Ne,, the
improvement of the nonlinear correlation factors over linear
r1» is much more dependent on 7. The correlation factor
exp(—7yry,) generally performs better than r, exp(—7yr,) and
95% accuracy can be obtained using an aug-cc-pVQZ basis
if an appropriate value of vy is chosen.

The values of 7y that give the best binding energies are
smaller than the values that yield the maximum correlation
energy of the atom and the dimer. Due to the nonlinear struc-
ture of the correlation factors, the geminal basis functions act
both to improve the description of the short-range correla-
tion, at electron coalescence, and to improve the description
of long-range correlation. The geminal basis functions are
designed to efficiently describe the region of electron coales-
cence and, for He, and Ne,, the accurate description of the
long-range vdW correlation becomes critical for the binding
energies, since the small errors remaining in the short-range
correlation largely cancel.

The dual function of the correlation factors leads to com-
plicated y dependence. In particular, for larger values of 7,
the long-range correlation is not well described by a single
geminal, but is instead described through interactions be-
tween geminals on different centers. This geminal BSSE re-
sults in greatly overestimated binding energies if small or-
bital basis sets with insufficient diffuse functions are used.
The cleanest way to remove geminal BSSE is to transform to
local orbitals and to use the original orbital-variant formal-
ism, where only the interaction of each geminal with itself is
included. Although in general this results in a loss of accu-
racy for all v, the dependence of the binding energy on 7y is
much more stable and using correlation factor exp(—r;,) and
an aug-cc-pVQZ basis recovers 95% of the basis set limit
binding energies of both He, and Ne,, which represents the
remarkable accuracies of 1 and 5 uFE,, respectively. In the
absence of a more sophisticated method of removing gemi-
nal BSSE, we favor the local-orbital-variant method over the
orbital-invariant formalism for use with small basis, although
the issues concerning degenerate orbitals remain.

The improvement of the nonlinear correlation factors
over linear ry, for the binding energies is mirrored in the
computation of equilibrium bond lengths. With the exception
of the effect of geminal BSSE, the percentage of correlation
that the geminals recover does not depend critically on bond
length and the faster convergence of the correlation energy
leads to a more rapid convergence of the minimum in the
potential energy curve. The size of basis set required to ob-
tain bond lengths to a given precision depends on the size of
the HF repulsive force.

The new nonlinear correlation factors have two further
advantages over linear ry,. The first is that the size of the
auxiliary basis required for the RI approximation is signifi-
cantly smaller, due to the more compact nature of the inte-
grals being approximated. Indeed, if the CABS approach
were not used, the RI error would be the limiting factor for
the accuracy of the MP2-R12 calculations. The final advan-
tage is that the nonlinear correlation factors decay to zero at
long range and do not violate the asymptotic ’"Iz6 behavior of
the vdW interactions. Although, in our MP2-R12 culations,
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these unphysical terms are small, their approximate inclusion
via the canonical-orbital-variant method leads to severe un-
derbinding for He, and Ne,. This is avoided if these terms
are included properly through either using local orbitals or
employing the orbital-invariant method. The new correlation
factors afford similar difficulties if they are too diffuse, but
the correlation factor exp(—r,) yields excellent results for all
methods.

The accurate reproduction of rotation-vibration spectra
and differential scattering cross sections of vdW complexes
requires that the potential energy surface be computed at the
CCSD(T) level of correlation treatment, or higher. The fact
that basis sets larger than aug-cc-pV5Z are required for ac-
curate energies has severely restricted the range of systems
that may be treated. We have demonstrated that, for MP2, the
R12 methodology utilizing the new correlation factors is ca-
pable of recovering 95% of the binding energy with an aug-
cc-pVQZ basis. We expect that a similar behavior will be
observed for CCSD(T)-F12, which would greatly extend the
range of vdW systems that may be treated accurately. Work
is already underway in this direction.
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