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New correlation factors for explicitly correlated electronic wave functions
David P. Tew and Wim Kloppera!
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Hochschule (TH)], D-76128 Karlsruhe, Germany
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We have investigated the correlation factors exp!−!r12", r12 exp!−!r12", erfc!!r12", and r12 erfc!!r12"
in place of the linear-r12 term for use in explicitly correlated electronic-structure methods. The
accuracy obtained with all of these correlation factors is significantly greater than that obtained with
the plain correlation factor r12. Polarization functions that are more diffuse than those of standard
basis sets give even better results. The correlation factor exp!−!r12" is very close to the optimum
correlation factor for helium and outperforms the others. © 2005 American Institute of Physics.
#DOI: 10.1063/1.1999632$

I. INTRODUCTION

The quantum chemical methods that expand the wave
function in terms of products of one-particle basis functions
converge very slowly with the size of the one-particle basis.1

The smooth one-particle basis functions are unable to effi-
ciently describe the cusps in the wave function that appear at
the coalescence of two electronic coordinates.2 Twenty years
ago the linear-r12 methods were introduced in order to over-
come this deficiency.2,3 In linear-r12 methods additional two-
particle basis functions are used to expand the wave func-
tion. The two-particle functions depend explicitly on the
interelectronic distance r12 and describe the electronic cusps
efficiently. This dramatically improves the convergence be-
havior with the one-particle basis, enabling the computation
of energies with near basis-set limit accuracy at an accessible
computational cost. The linear-r12 methods have been very
successful in the accurate calculation of the electronic struc-
ture of small molecules, and have been used extensively.4–7

These benchmark results have been used to calibrate other
numerical methods of quantum chemistry, in particular, they
have been instrumental in the development of basis-set ex-
trapolation techniques.8–16

Due to the slow convergence with one-particle basis it is
necessary to use basis sets of at least quadruple-zeta quality
in order to recover 90% of the correlation energy of a con-
ventional method. In linear-r12 methods the improved con-
vergence means that the same accuracy can be achieved with
a much smaller basis. Since r12 methods exhibit the same
scaling with basis-set size as the corresponding conventional
methods, linear-r12 methods have the potential to be more
efficient than conventional methods even when moderate ac-
curacy is required.

The early implementations of linear-r12 theory were only
appropriate for use with very large basis sets. The three- and
four-electron integrals, which arise due to the geminal basis
functions, are computed through the insertion of an approxi-
mate resolution of the identity !RI", which is only valid for

large basis sets. More recently this constraint has been re-
moved by two sets of workers via independent routes. Tay-
lor, Persson, and Dahle replaced the linear-r12 term with a
linear combination of Gaussian-type geminals, fitted to linear
r12. In this way they were able to compute all the necessary
many-electron integrals exactly, avoiding the use of the ap-
proximate resolution of the identity.17–20 Klopper and Sam-
son provided an alternative solution by introducing a suffi-
ciently large auxiliary basis for the RI approximation so that
the integrals are always evaluated accurately, independent of
the size of basis used to expand the Hartree-Fock orbitals
used in the correlation method.21 However, the results of
both of these linear-r12 methods were disappointing for small
basis sets.

In their investigations on the valence-shell MP2 correla-
tion energy of a selection of small molecules, Klopper and
Samson showed that the MP2-R12 energies calculated with a
correlation-consistent polarized valence double-zeta !cc-
pVDZ" basis set are of similar quality to those calculated
using standard MP2 with a correlation-consistent polarized
valence triple-zeta !cc-pVTZ" basis. The improvement of
MP2-R12 over standard MP2 is equivalent to increasing the
cardinal number of the standard MP2 basis by one unit only,
which is a much smaller effective gain compared to the im-
provement of MP2-R12 over standard MP2 for the
correlation-consistent polarized valence quintuple-zeta !cc-
pV5Z" basis.

The fact that the gain in accuracy due to the linear-r12

terms is most significant in the limit of large basis sets may
be understood through the following argument. Consider a
basis set saturated up to an angular momentum quantum
number Lmax and then truncated. The error in the correlation
energy calculated by standard methods is proportional to
!Lmax+1"−3, whereas for linear-r12 methods it is proportional
to !Lmax+1"−7 !cf. Fig. 1 of Ref. 21". The reduction of the
error due to the linear-r12 terms is therefore proportional to
!Lmax+1"4. In other words, the gain in accuracy relative to
standard electron-correlation methods grows quickly with
the size of the basis. In a basis with Lmax=5, the explicitly
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correlated linear-r12 calculation is as much as three orders of
magnitude more accurate than the corresponding standard
electron-correlation method !64=1296".

Much effort has been spent on improving the efficiency
of linear-r12 methods, for example, through using density-
fitting techniques,22 numerical quadratures,23 and better RI
approximations.24,25 However, in order for the explicitly cor-
related methods to compete with the standard methods aimed
at computing 90% of the correlation energy, the poor perfor-
mance for small basis sets must be addressed. It has recently
been shown by Ten-no26 and shortly thereafter by May and
Manby27,28 that the accuracy of explicitly correlated methods
can be greatly improved by replacing the factor r12 of the
linear-r12 methods with the function exp!−!r12". We consider
that the question regarding the optimum form for a correla-
tion function is an important one and we have therefore in-
vestigated several other correlation factors.

The paper is set out as follows. In Sec. II we discuss the
optimum form of correlation factor for use in the r12 methods
introduced by Kutzelnigg and Klopper. In Sec. III we present
a detailed investigation of the optimum correlation factor for
helium. In Secs. IV and V we test four correlation factors,
the one proposed by Ten-no and three new functions. We
present results of MP2 calculations on a series of small mol-
ecules using these correlation factors. In Sec. VI we discuss
the basis sets appropriate for use with these correlation fac-
tors and we summarize the conclusions of all of our investi-
gations in Sec. VII.

II. THE OPTIMUM CORRELATION FACTOR

We know from several studies of the electronic cusp
conditions that the wave function at the singlet and triplet
cusps, respectively, satisfy29,30

# = #r12=0!1 + 1
2r12 + O!r12

2 "" , !1"

# = w · r12!1 + 1
4r12" + O!r12

3 " , !2"

where w is a vector and is dependent on all the electronic
coordinates. The linear behavior at the cusp for the coales-
cence of a given spin pair of electrons is independent of the
molecular system, but the higher-order terms O!r12

2 " depend
in principle on all of the electronic degrees of freedom and
therefore on the physical system. In our linear-r12 methods
we introduce geminals into the expansion of the wave func-
tion through the terms

#̃0%1 + &
i$j=1

n

crij' . !3"

#̃0 is the approximate ground-state Hartree-Fock wave func-
tion, rij is the distance between electrons i and j, and c is a
variational parameter. For systems which are well repre-
sented by a single reference the #̃0 is a reasonable approxi-
mation to the exact wave function and the cusp is well de-
scribed with c= 1

2 or 1
4 . The higher-order terms are missing

from these linear correlation factors and at regions further
away from the cusp, this description becomes increasingly
inappropriate.

It is clear that if we allow the correlation factor J to be a
function of all electronic degrees of freedom, then we are
free to write the exact wave function as #= #̃0J. The opti-
mum J is then simply # / #̃0, and is therefore different for
every molecular system and every basis set used to compute
#̃0. In order to maintain the computational efficiency of the
existing methods we restrict our correlation factors to the
form

J!(rij)" = &
i$j=1

n

cf12!rij" , !4"

where f12 is the same function for all rij. We now discuss the
optimum function f12 for a correlation factor of this form in
r12 calculations.

In r12 methods we subdivide the formal !infinite" set of
one-particle solutions to the Fock operator (%&)' into two
distinct subsets (%p)N and (%()', where (%i)N is spanned by
the finite basis set used in a computation and (%()' is the
complementary set. #̃0 is the slater determinant of the n or-
bitals, contained in (%p)N, which minimize the energy. Using
the notation of second quantization the approximate corre-
lated wave function #̃ is expanded as

#̃ = &
ijk¯()*¯

jijk¯()*¯ai
(aj

)ak
* ¯ #̃0

+ &
ijk¯abc¯

tijk¯abc¯ai
aaj

bak
c ¯ #̃0, !5"

where ijk run over the occupied orbitals, abc run over the
unoccupied orbitals contained in (%p)N, and ()* run over all
unoccupied orbitals contained in (%&)'. The first summation
is simply the operator representation of #̃0J!(rij)" and the
second term is that of standard methods. The configurations
included in the expansion and the way in which the coeffi-
cients t and j are computed depend on the correlation
method. There is significant overlap between the two terms
in Eq. !5" and in the limit of infinite one-particle basis the
first term becomes redundant !indeed in the implementation
of r12 methods a projection operator is inserted in order to
ensure orthogonality between the two terms". The form of J
in Eq. !4" means that only single and double excitations are
present in the first term. If, for example, we allow J to de-
pend on products of two rij, or on the distance of the coales-
cence to a nucleus, then triple excitations would be present.

If we project the exact wave function # onto the space
spanned by #̃0J!(rij)" for a given approximate #̃0 and all
possible functions J!(rij)", then the resulting correlation fac-
tor is optimum in the sense that the geminal basis functions
#̃0f12!rij" are optimally suited to fitting #, provided that a
sufficiently complete basis is available for the remaining
contributions to #. For a reasonable basis #̃0 is a good ap-
proximation to the exact Hartree-Fock solution #0 and the
dependence of J on #̃0 is not strong. Therefore, we define an
optimum correlation factor for each molecular system as the
projection of # onto the space spanned by #0J!(rij)" for all
possible J of the form in Eq. !4".
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There are several points to be raised concerning the op-
timum correlation factor. Firstly, we have made no reference
to the energy in our definition of J. For r12 calculations using
a given correlation method and basis set, the optimum J de-
fined above does not guarantee a minimum energy with re-
spect to all correlation factors of the form in Eq. !4". This is
because the function space spanned by a finite basis is in-
complete, and a lower energy may be obtained by adjusting J
to compensate for these basis-set deficiencies !at the electron
cusp or otherwise". We also observe that the same function
f12 is used for singlet and triplet pairs. The optimum f12 will
be a compromise between these two contributions, but it will
be dominated by the singlet pairs since antisymmetry ensures
that the wave function vanishes at the triplet pair coales-
cence. In addition, while the linear r12 correlation factor is
universally applicable, the quality of a given function f12 is
likely to depend on the molecular system. Since we desire a
single f12 for use in all systems we are relying on the as-
sumption that the second- and higher-order terms in Eqs. !1"
and !2" are similar in all atoms and molecules. We expect
that this is a reasonable assumption for valence-shell electron
pairs. Lastly, we note that the optimum correlation factor in
the context of the r12 methods introduced by Kutzelnigg and
Klopper differs slightly from the optimum correlation factor
for use in other explicitly correlated methods, such as the
trans-correlated method31,32 or quantum Monte Carlo.33

III. A STUDY OF HELIUM

Helium and the isoelectronic series of atomic cations are
the simplest atomic systems exhibiting electronic correlation.
For this reason they have been the subject of much theoret-
ical study, and highly accurate approximate solutions to the
Schrödinger equation have been computed as early as 1929
!due to Hylleraas34". The basic physics of correlation in mol-
ecules is found in helium, and the singlet and triplet elec-
tronic cusps are conveniently exhibited separately by the 1S
and 3S states, respectively. Helium has been successfully
used as an accessible model for more complicated systems,
most notably in the construction of correlation energy func-
tionals in density-functional theory,35,36 and in the basis-set
convergence behavior of wave-function-based correlation
methods.37 In this section we study the optimum singlet and
triplet correlation factors for helium and the isoelectronic
series of atomic cations in order to gain insight into more
complex systems. In particular, we are looking for new cor-
relation factors that are much better than linear r12.

A. Optimum correlation factors for two-electron atoms
and cations

Following Hylleraas we expand an approximate wave
function for helium S states in terms of the coordinates r1, r2,
and r12, where r1 and r2 are the distances of electrons 1 and
2 from the nucleus, and r12 is the distance between the elec-
trons. Transforming to elliptic coordinates s=r2+r1, t=r2
−r1, and u=r12 we write

#̃ = &
i

cis
pitqiuri exp!− ks" . !6"

Singlet states 1S require that the qi are even and triplet 3S
states require that the qi are odd. The basis is defined by nsum
such that pi+qi+ri+nsum and the exponent k and the coeffi-
cients ci are variational parameters. For the details of the
Hamiltonian and the required integrals we refer the reader to
Ref. 34. The energy of the ground-state 1S is
−2.903 724 337Eh and the energy of the lowest 3S is
−2.175 229 378Eh. The convergence of the energy with nsum
is rapid and nsum=10 gives an error of 0.02 ,Eh for the 1S
state and 0.5 ,Eh for the 3S state which is essentially exact
for our purposes. Using the same basis functions the lowest-
energy 1S and 3S Hartree-Fock !HF" wave functions are
given by

1#̃0 = *1
2 !-1!r1"-1!r2" + -1!r1"-1!r2"" , !7"

3#̃0 = *1
2 !-1!r1"-2!r2" − -2!r1"-1!r2"" , !8"

-b!ra" = &
i=0

n

cb,ira
i exp!− kra" , !9"

and can be computed using the Hamiltonian given by Hyl-
leraas in the usual manner. We do not optimize k, but use the
value obtained from the nsum=10 Hylleraas CI calculation.
The energy of the ground-state 1S is −2.861 679 996Eh and
the energy of the lowest 3S is −2.174 250 778Eh. The con-
vergence of the HF energy with n is less rapid than the Hyl-
leraas CI convergence, and n=8 is required to converge to
within 0.1 ,Eh of the exact value !n=8 corresponds to
nsum=16". Using our highly accurate wave functions #̃ and
#̃0 we compute the optimum J as follows.

Let us rewrite Eq. !5" in first quantized form and expand
J!r12" as a polynomial series of powers of r12, truncated at m,

#̃ = #̃0J!r12" + #̃! + #̃0&
i=1

m

cir12
i−1 + #̃!. !10"

We are free to define #̃! such that ,#̃0r12
i - #̃!.=0 for all

i=0,1 , . . . . Multiplying on the left by #̃0r12
j−1 and integrating

results in a set of linear equations for the coefficients ci,

ai = &
j=1

m

Sijcj , !11"

Sij = ,#̃0r12
i−1-#̃0r12

j−1. , !12"

ai = ,#̃0r12
i−1-#̃. . !13"

Through increasing nsum, n, and m we obtain convergence of
the form of J over the range of r12 for which #̃ and #̃0 are
valid. We perform our calculations using 16-byte precision
and present results using nsum=10, n=12, and m=30. While
the form of J has converged, the individual coefficients in the
power-series expansion beyond the quadratic terms are not
stable. The resulting optimum correlation factors for the
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lowest-energy 1S and 3S states of helium and the isoelec-
tronic series of atomic cations, Z=3, . . . ,8, are given in Figs.
1 and 2. The magnitude of the correlation factor decreases as
the nuclear charge Z increases. The lines are cut at the point
beyond which the convergence is less than the width of the
lines in the figures and the linear correlation factors are in-
cluded for comparison.

The optimum correlation factors follow the expected lin-
ear behavior at the coalescence r12→0, and are damped for
large r12. The 1S correlation factors seem to decay towards
zero, while those of the 3S states seem to tend to a constant.
Both the 1S and 3S correlation factors have contributions at
fairly long range, the maximum of the 1S correlation factor
for helium is at 2.26a0. For both the 1S and 3S states the form
of the correlation factor is insensitive to the nuclear charge.
If one scales each correlation function such that the maxima
coincide, one sees that the shape of the correlation factors for
each atomic cation are very similar, but not identical.

The computed optimum 1S and 3S correlation factors

strongly suggest that functions f12=exp!−!r12" and f12
=r12 exp!−!r12" are likely to perform well in r12 calculations.
The function exp!−!r12" has already been proposed by
Ten-no and is indeed a great improvement on linear r12 in
MP2 calculations.26 The short-range region of the 1S and 3S
correlation factors are well reproduced by both c exp!−!r12"
and cr12 exp!−!r12", as we illustrate in Table I and Fig. 3. In
Table I we present the parameters c and ! for the two func-
tions fitted to the 1S and 3S correlation factors for helium. We
give c and ! resulting from numerical fits over the range
r12=0→x with x=0.1a0 , . . . ,2.5a0. In Fig. 3 we depict the
fits with x=0.1. The 1S correlation factor is particularly well
represented by cr12 exp!−!r12" at short range. The behavior
of the correlation factors beyond 2.0a0 is not well reproduced
by either function.

In Table II we give the parameters c and ! for both fitted
numerically to the 1S and 3S correlation factors for each cat-
ion. The exponent for the 3S correlation factor is larger than
that of the 1S state, indicating that the correlation hole is

TABLE I. Exponents ! and coefficients c, in atomic units, of numerical fits to the 1S and 3S correlation factors
for helium over the range 0→x with x=0.1a0 . . .2.5a0.

0→x

Singlet Triplet

cr12 exp!−!r12" c exp!−!r12" cr12 exp!−!r12" c exp!−!r12"

c ! c ! c ! c !

0.1 0.493 0.403 0.607 0.813 0.286 0.691 0.204 1.404
0.2 0.493 0.402 0.603 0.819 0.286 0.689 0.202 1.422
0.3 0.493 0.402 0.598 0.826 0.286 0.686 0.199 1.439
0.4 0.493 0.402 0.593 0.834 0.286 0.682 0.197 1.456
0.5 0.493 0.403 0.586 0.844 0.286 0.678 0.196 1.472
0.6 0.494 0.404 0.580 0.855 0.285 0.673 0.194 1.488
0.8 0.494 0.407 0.565 0.881 0.284 0.663 0.191 1.519
1.0 0.495 0.412 0.551 0.911 0.282 0.651 0.189 1.547
1.2 0.497 0.416 0.536 0.943 0.280 0.637 0.187 1.574
1.5 0.499 0.422 0.517 0.995 0.276 0.616 0.184 1.611
2.0 0.502 0.429 0.489 1.088 0.266 0.577 0.181 1.664
2.5 0.505 0.434 0.466 1.191 0.255 0.539 0.179 1.709

FIG. 1. The optimum correlation factor for the ground-state 1S of helium
and the isoelectronic series of atomic cations from Z=3, . . . ,8. The height of
the function J!r12" decreases as Z increases. The dashed line is the linear
correlation factor 1

2r12.

FIG. 2. The optimum correlation factor for the lowest-energy 3S state of
helium and the isoelectronic series of atomic cations from Z=3, . . . ,8. The
height of the function J!r12" decreases as Z increases. The dashed line is the
linear correlation factor 1

4r12.
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smaller. The HF 3S solution is much closer to the exact 3S
wave function than the 1S HF solution is to the true ground-
state wave function due to the presence of the exchange hole.
Table II shows that the exponents ! increase linearly with
nuclear charge Z for both the 1S and 3S cases. For
c exp!−!r12" the prefactor c is related to ! through the re-
quirement that the linear term is 1

2 or 1
4 , and is therefore also

linearly dependent on Z. This indicates that different expo-
nents are appropriate for core and valence electrons. How-
ever, the effective nuclear charge experienced by valence
electrons does not vary much between neutral molecules. It
is likely that a single exponent will be sufficient for valence-
only correlation factors, although anions and cations may
require adjusted exponents.

B. Performance of the new correlation factors
for helium

It is desirable to investigate the performance of the new
correlation factors in the context of CI calculations on he-
lium. Within the Hylleraas framework all integrals are
known analytically, and the additional complications of the
RI approximation are absent. Also, for CI calculations it is
not necessary to project the r12 contribution onto specific
excitations.

In the Hylleraas coordinate system the conventional CI
expansion of the singlet and triplet S states in terms of prod-
ucts of one-electron functions becomes

# = &
l=0

n−1

&
i$j=0

n−l−1

clij!r1
i r2

j ± r1
j r2

i "!r12
2 − r1

2 − r2
2"l

.exp!− k!r1 + r2"" , !14"

where clij are the CI coefficients and the exponent k opti-
mizes the orbitals.38 The corresponding HF wave functions,
1#0 and 3#0, are expressed in a similar way and are given in
Eqs. !7"–!9". The size of the basis is determined by n, which
is the principal quantum number in hydrogen-type functions
and determines the maximum angular quantum number lmax
=n−1. We fix the exponent k such that the HF wave function
is optimized. In this context the r12 method is to add an
additional two-particle basis function #0J!r12", where we
choose f12 in Eq. !4" to be one of

f12 = exp!− !r12" , !15"

f12 = r12 exp!− !r12" . !16"

The coefficients clij and the coefficient in #0J!r12" are deter-
mined through solving the secular equations for the ground
state, and no difficulties with linear dependencies are en-
countered.

In Figs. 4 and 5 we present the results of calculations
using the two correlation factors in Eqs. !15" and !16" for the
basis sets with lmax=2,3 ,4 ,5, and with varying !. The re-
sults with a linear correlation factor correspond to the point
where !=0 in Fig. 5. We only present the results from cal-
culations on the singlet state. In the above CI expansion there
is only one exponent, whereas two exponents are needed for
a good representation of the triplet for moderate lmax. For the
3S state the r12 contributions are largest when ! is small,
indicating that a diffuse r12 term attempts to compensate for
the inflexible basis, rather than to fit the cusp. In Fig. 4 the
value at !=0 is that of the conventional CI method, which
has one less basis function than the f12 method. The curve is
discontinuous at this point and the conventional CI value
does not lie in the range of the graph. The value of the

FIG. 3. The functions c exp!−!r12" !dashed line" and cr12 exp!−!r12" !dotted
line" with c and ! fitted numerically to the optimum correlation function
!solid line" over the range 0→0.1a0 for the 1S state of helium.

TABLE II. Exponents ! and coefficients c, in atomic units, of numerical fits to the 1S and 3S correlation factors
for the helium and the series of isoelectronic atomic cations. The fitting range is from coalescence to the value
of r12 at half the maximum height.

Atomic no.

Singlet Triplet

cr12 exp!−!r12" c exp!−!r12" cr12 exp!−!r12" c exp!−!r12"

c ! c ! c ! c !

2 0.496 0.415 0.541 0.932 0.279 0.634 0.186 1.580
3 0.488 0.722 0.303 1.641 0.267 0.947 0.118 2.400
4 0.484 1.030 0.210 2.350 0.262 1.262 0.086 3.235
5 0.482 1.336 0.161 3.057 0.260 1.579 0.068 4.091
6 0.481 1.641 0.131 3.764 0.257 1.884 0.056 4.913
7 0.480 1.947 0.110 4.471 0.250 2.161 0.048 5.636
8 0.479 2.252 0.095 5.178 0.256 2.510 0.042 6.632
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correlation energy as ! tends to zero is precisely the value for
the linear-r12 method, and is the same as in Fig. 5 where
there is no discontinuity.

Figures 4 and 5 show that both new correlation factors
are significant improvements over the linear-r12 correlation
factor when an appropriate ! is used especially for the small
basis sets lmax=2,3. For both correlation factors with small
basis sets there are two minima in the correlation energy, one
at !→0 and one at a positive value. The correlation factors
with small ! are very diffuse, and rather than closely fitting
the cusp, make up for the lack of flexibility of the CI basis to
describe the longer-range correlation. For the larger basis
sets the minima at !→0 disappear. At the positive minima
the correlation energy computed with a given lmax using the
two correlation factors is basically the same.

The values of ! at the minima for both functions are in
most cases slightly larger than the exponent predicted from a
fit to the optimum correlation factor. Since the long-range
behavior of the functions !15" and !16" differs significantly
from the optimum correlation factor, a more compact corre-
lation function is preferred. As one enlarges the basis the
region at the cusp that is poorly described by the CI expan-
sion shrinks and the optimum exponent !opt increases.

For both functions the correlation energy becomes less
sensitive to ! as the basis set increases, and the range of ! for
which the correlation energy is better than the linear-r12
value widens. The dependence of the correlation energy on !
appears to be fairly similar for the two functions, with a
scaling factor of around 1.7 relating them. Taylor expanding
each function and fixing both linear terms at 1

2 reveals that
the second-order terms of the two functions are related by
scaling ! by a factor of two, and that the terms of order n are
related by scaling ! by a factor of n1/!n−1". We argue that
since the quadratic terms are in part already included in the
conventional CI expansion, the cubic terms are responsible
for the scaling behavior, with 31/2+1.7.

In summary we conclude that both correlation functions
are more efficient at describing the cusp than linear r12, and
that results of essentially the same quality may be obtained
from both. The function exp!−!r12" gives a more compact
representation of the cusp than r12 exp!−!r12". This leads to a
better separation of the short- and long-range correlation ef-
fects and less sensitivity to the exponent !. This is advanta-
geous since the optimum exponent ! will depend on the
chemical system.

IV. THE MP2-F12 METHOD

Ten-no has demonstrated that the nonlinear correlation
factor exp!−!r12" is a great improvement over the linear cor-
relation factor for MP2 calculations.26 The results of the pre-
vious section indicate that the correlation factor
r12 exp!−!r12" is also likely to perform well in MP2 calcula-
tions. Ten-no reports two implementations of the correlation
factor exp!−!r12", one where the required integrals are com-
puted explicitly by replacing the Boys function with a novel
function and one where exp!−!r12" is fitted with a linear
combination of Gaussian-type geminals. The results from
both methods are very similar. We would like to test a range
of correlation factors and therefore adopt the latter strategy.
The acronym MP2-R12 is used exclusively for second-order
perturbation theory with linear-r12 terms. When we use a
nonlinear correlation factor we denote the method MP2-F12.

Motivated by the success of Ten-no’s correlation factor
Eq. !15" and our new correlation factor Eq. !16" we also
investigate two other correlation factors, namely,

f12 = erfc!!r12" , !17"

f12 = r12 erfc!!r12" . !18"

The error function behaves slightly differently from the ex-
ponential function, and we are interested in comparing the
performance of the functions, particularly because the error
function may be implemented directly if it is successful. The

FIG. 4. The error in the correlation energy of helium as function of the
exponent ! of the correlation factor exp!−!r12", as obtained with the CI basis
with lmax=2,3 ,4 ,5, symbols ., !, !, and ", respectively.

FIG. 5. The error in the correlation energy of helium as function of the
exponent ! of the correlation factor r12 exp!−!r12", as obtained with the CI
basis with lmax=2,3 ,4 ,5, symbols ., !, !, and ", respectively.
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apparent advantage of Eqs. !16" and !18" is that for !→0, the
linear-r12 method is obtained, whereas only the standard
electron-correlation method is obtained for the correlation
factors of Eqs. !15" and !17" in this limit.

We approximate the correlation factors f12 of Eqs. !15"
and !17" by a linear combination of Gaussian-type geminals,
and similarly, the correlation factors f12 of Eqs. !16" and !18"
by a linear combination of products of r12 with Gaussian-
type geminals

f̃12 = &
k=1

N

ck exp!− (kr12
2 " , !19"

f̃12 = &
k=1

N

ckr12 exp!− (kr12
2 " . !20"

The required integrals with the factors r12 exp!−)r12
2 " were

available from earlier work,39 those with exp!−)r12
2 " were

implemented in the course of the present work by means of
minor modifications of the code developed in Ref. 39.

The expansion coefficients ck and exponents (k were
determined for N=1,2 , . . . ,6 by minimizing the function

T = /
0

'

(f12 − f̃12)2 exp!− )r12
2 "r12

2 dr12. !21"

The factor r12
2 is the Jacobian and we include a weighting

function exp!−)r12
2 " with )=2.0a0

−2. The corresponding ex-
pansion coefficients and exponents for the correlation fac-
tors, exp!−!r12", r12 exp!−!r12", erfc!!r12", and r12 erfc!!r12",
are given in Tables III–VI, respectively. In Table VII we
present the representative results for how the MP2-F12 en-
ergy depends on N, the number of terms in the expansion.
For N/3, the results are essentially converged. It is interest-
ing to note that the corresponding fits without the weighting
function converge much more slowly, indicating that the be-
havior of f12 for small r12 is energetically dominant.

In the following, all MP2-R12 and MP2-F12 calcula-
tions are performed with N=6, for ansatz 2, and almost ex-
clusively in approximation B !see Ref. 21 for details on an-
satz 2 and approximation B; we use the hybrid approach of
Ref. 40". In ansatz 2, the explicitly correlated pair functions
take the form

!1 − Ô1"!1 − Ô2"f12-i!1"- j!2" , !22"

where Ô=&k-k.,k- is the projector onto the space spanned by
the occupied Hartree-Fock orbitals and where -i and - j are

TABLE III. Exponents (k and coefficients ck of fits to the function
exp!−!r12" with !=1.0a0

−1 in terms of N functions of the form exp!−(kr12
2 ".

Parameter N k=1 k=2 k=3 k=4 k=5 k=6

(k /a0
−2 1 0.6853

2 0.4254 4.520
3 0.3303 2.321 16.28
4 0.2783 1.591 7.637 45.74
5 0.2447 1.225 4.924 19.88 112.7
6 0.2209 1.004 3.622 12.16 45.87 254.4

ck 1 0.7354
2 0.5640 0.3102
3 0.4683 0.3087 0.1529
4 0.4025 0.3090 0.1570 0.088 98
5 0.3532 0.3072 0.1629 0.093 21 0.056 19
6 0.3144 0.3037 0.1681 0.098 11 0.060 24 0.037 26

TABLE IV. Exponents (k and coefficients ck of fits to the function
r12 exp!−!r12" with !=1.0a0

−1 in terms of N functions of the form r12 exp!
−(kr12

2 ".

Parameter N k=1 k=2 k=3 k=4 k=5 k=6

(k /a0
−2 1 0.5230

2 0.3383 2.652
3 0.2670 1.503 7.928
4 0.2272 1.077 4.270 18.85
5 0.2011 0.8520 2.941 9.710 39.80
6 0.1824 0.7118 2.252 6.474 19.66 77.92

ck 1 0.6498
2 0.4806 0.3307
3 0.3880 0.3184 0.1768
4 0.3259 0.3108 0.1755 0.1102
5 0.2804 0.3026 0.1785 0.1100 0.074 50
6 0.2454 0.2938 0.1815 0.1128 0.075 02 0.052 80

TABLE V. Exponents (k and coefficients ck of fits to the function erfc!!r12"
with !=1.0a0

−1 in terms of N functions of the form exp!−(kr12
2 ".

Parameter N k=1 k=2 k=3 k=4 k=5 k=6

(k /a0
−2 1 1.701

2 1.370 8.312
3 1.256 4.702 28.77
4 1.198 3.495 14.06 80.56
5 1.161 2.888 9.417 35.75 199.1
6 1.136 2.521 7.177 22.32 82.04 451.5

ck 1 0.7658
2 0.6232 0.2676
3 0.5466 0.2623 0.1308
4 0.4948 0.2604 0.1327 0.075 85
5 0.4563 0.2577 0.1363 0.078 86 0.047 74
6 0.4260 0.2543 0.1393 0.082 44 0.050 94 0.03157

TABLE VI. Exponents (k and coefficients ck of fits to the function
r12 erfc!!r12" with !=1.0a0

−1 in terms of N functions of the form
r12 exp!−(kr12

2 ".

Parameter N k=1 k=2 k=3 k=4 k=5 k=6

(k /a0
−2 1 1.492

2 1.266 5.257
3 1.185 3.351 14.61
4 1.143 2.643 8.308 34.11
5 1.117 2.269 6.008 18.08 71.71
6 1.099 2.037 4.815 12.39 36.03 140.5

ck 1 0.6939
2 0.5564 0.2815
3 0.4835 0.2677 0.1493
4 0.4350 0.2602 0.1460 0.092 97
5 0.3993 0.2535 0.1468 0.091 91 0.062 78
6 0.3716 0.2472 0.1478 0.093 46 0.062 82 0.044 42
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two such orbitals. The invocation of approximation B im-
plies that no terms were neglected !but we shall also report a
few results for approximation A!, in which terms involving
the exchange operator are omitted".

The calculations were performed in the correlation-
consistent basis sets cc-pVXZ,41 aug-cc-pVXZ,42 or
cc-pCVXZ.43 The auxiliary basis sets for the RI approxima-
tion were taken from Ref. 21. We used the different sets of
Ref. 21 for calculations with and without frozen core, but in
the present work, we used them in the framework of the
complementary-auxiliary-basis-set !CABS" approach of
Valeev.25 In this approach, the auxiliary basis is first orthogo-
nalized against the orbital basis and then the remaining func-
tions are mutually orthonormalized. Hence, the final !ortho-
normal" basis used for the RI approximation consists of the
orbital basis plus that part of the auxiliary basis that is or-
thogonal on the orbital basis. All MP2-F12 as well as all
MP2-R12 calculations were carried out with a local version
of the DALTON program.44

Finally, we note that the evaluation of the necessary in-
tegrals is not time consuming. Since we expand the Cartesian
overlap distributions in Hermite functions, the sums over the
N terms in the fitting function of Eqs. !19" and !20" only
occur at the level where the two-electron integrals over Her-
mite functions are computed. More specifically, only the cal-
culation of the integrals Rk

tuv !with k=2,3 ,4 ,6" as given in
Eqs. !25"–!28" of Ref. 39 is affected. The number of integrals
R2

tuv and R3
tuv scales linearly with the number N in the expan-

sion while the number of integrals R4
tuv and R6

tuv scales qua-
dratically. However, the latter two types of integrals only
occur for the orbital basis, not for the auxiliary basis.

V. THE PERFORMANCE OF THE MP2-F12 METHOD

In Figs. 6 and 7 we present the MP2-F12 valence-shell
correlation energy of Ne, calculated using the 2B approach
with augmented correlation-consistent basis sets
aug-cc-pVXZ with X=2, . . . ,4. The results using the corre-
lation factors exp!−!r12" and r12 exp!−!r12" are presented in
Fig. 6 as a function of !, and the corresponding results from
erfc!!r12" and r12 erfc!!r12" are presented in Fig. 7. The
points at which the curves for r12 exp!−!r12" and
r12 erfc!!r12" touch the ordinate !with zero slope" are the
MP2-R12 values.

It is clear that all the MP2-F12 results represent signifi-
cant improvements over the MP2-R12 energies. The minima
of the curves for functions exp!−!r12" and r12 exp!−!r12" lie
slightly below those of erfc!!r12" and r12 erfc!!r12". The best
MP2-F12/aug-cc-pVXZ energies are below the
MP2-R12/aug-cc-pV!X+1"Z energies for all X. Hence the
gain in accuracy of the correlation factors exp!−!r12" and
r12 exp!−!r12" over MP2-R12 is greater than that of increas-
ing the cardinal number of the basis in MP2-R12 calculations
by one unit.

From Fig. 6 we see that for the functions exp!−!r12" and
r12 exp!−!r12" the dependence of the correlation energy with
! is very similar to that of the CI calculations in Sec. III B.

TABLE VII. Valence-shell second-order Møller-Plesset correlation energy
#−E!2" in $ of the Ne atom, obtained in the aug-cc-pVQZ basis, as function of
the number !N" of terms in the expansion of the correlation factor.

N

f12

exp!−!r12"
!=1.62a0

−1
r12 exp!−!r12"

!=0.68a0
−1

erfc!!r12"
!=1.51a0

−1
r12 erfc!!r12"
!=0.41a0

−1

1 305.11 316.16 311.88 316.18
2 316.54 317.81 317.17 317.37
3 317.98 318.32 317.68 317.91
4 318.32 318.40 317.74 318.02
5 318.43 318.42 317.75 317.98
6 318.46 318.42 317.75 317.97

FIG. 6. Valence-shell second-order Møller-Plesset correlation energy of the
Ne atom as function of the exponent ! of the correlation factors exp!−!r12"
!dashed lines" or r12 exp!−!r12" !solid lines", as obtained in the aug-cc-
pVDZ !.", aug-cc-pVTZ !!", and aug-cc-pVQZ !!" basis sets.

FIG. 7. Valence-shell second-order Møller-Plesset correlation energy of the
Ne atom as function of the exponent ! of the correlation factors erfc!!r12"
!dashed lines" or r12 erfc!!r12" !solid lines", as obtained in the aug-cc-pVDZ
!.", aug-cc-pVTZ !!", and aug-cc-pVQZ !!" basis sets.
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Energetically there is very little to choose between the two
correlation factors, but the MP2 correlation energy computed
using exp!−!r12" is less sensitive on the exponent !. From
Fig. 7 we see that the dependence of the correlation energy
with ! for the functions erfc!!r12" and r12 erfc!!r12" follows a
similar pattern, with tighter curves than the corresponding
exponential functions, as one would expect.

For each correlation factor and basis we determine the
optimal exponents !opt by locating the minima of the curves
in Figs. 6 and 7. In Tables VIII–X we report !opt and the
corresponding MP2-F12/2B energies. We also include the
MP2-F12/2A! energy at !opt and the corresponding MP2-
R12 and standard MP2 results. The results become less de-
pendent on the exponent ! for larger basis sets and the aug-
cc-pV5Z and augmented correlation-consistent polarized
valence sextuple-zeta !aug-cc-pV6Z" curves are very flat.
Taking the function r12 exp!−!r12" as an example !Table IX",
in the aug-cc-pVDZ basis, the MP2-R12/2B error amounts to
42.8 mEh. It is reduced to only 11.7 mEh at the MP2-F12/2B
level. The same is observed for the larger basis sets, where
the MP2-R12/2B error is also reduced by about a factor of
three. Furthermore, we observe that energies below the lim-
iting value of E!2"=−320.1 mEh are obtained at the
MP2-F12/2A! level, which is not variational due to the ne-
glect of the terms that involve the exchange operator !cf. Ref.
21". Thus, one should not attempt to optimize the exponent !
of the new correlation factor at the 2A! level !the same is
true for the 2A level".

Rather than investigating the new approach with very
large basis sets, we are particularly interested in whether the
new correlation factors give improved results for medium-
sized basis sets of triple- and quadruple-zeta quality. The

results using the four correlation factors in Eqs. !15"–!18" for
Ne and a selection of small molecules are reported in Tables
XI–XIV. The tables show that the pattern observed for Ne is
indeed representative of the molecules investigated. In all
cases the MP2-F12 results are great improvements over the
MP2-R12 results when ! is chosen appropriately. The opti-
mum value of ! changes a little with the molecule being
computed, with the same trend for all correlation factors. The
greater the electronegativity of the atoms in the molecule, the
greater the optimum value of ! is, as one would expect from
the conclusions of Sec. III A.

The functions exp!−!r12" and r12 exp!−!r12" perform
better than the functions erfc!!r12" and r12 erfc!!r12" over the
set of molecules investigated, and since the performance of
exp!−!r12" is less sensitive to the exponent !, this seems to
be the best choice. For all systems, the MP2-F12/aug-cc-
pVTZ energies !with optimized !" lie below the MP2-R12/
aug-cc-pVQZ energies. The same holds for the MP2-F12/
aug-cc-pVQZ energies if we compare them with the energies
reported in Ref. 40. These are very encouraging results.

VI. BASIS-SET INVESTIGATIONS

All of the results in the previous section are computed
using augmented correlation-consistent basis sets
aug-cc-pVXZ, and we recommend that augmented basis sets
should be used for MP2-F12 methods, unless a basis set
specifically optimized for this purpose is available. We illus-
trate this point through the following study, taking the corre-
lation factor r12 exp!−!r12" applied to Ne as an example.

In Fig. 8 we compare the results of valence-shell MP2-
F12/2B calculations for the cc-pVXZ basis sets !X=3,4"
with and without augmentation. The effect of the diffuse
functions is to lower the energy at every ! as expected, and
also to shift the optimum ! to larger values. Since a small !
gives a diffuse correlation factor this indicates that the gemi-
nal basis functions attempt to compensate for the lack of
diffuse functions in the orbital basis.

If one adds the s, p, and d augmentation functions to the
cc-pVDZ basis separately, one finds that the s functions have
almost no energetic effect, and that the effect of the d func-
tions is twice that of the p functions. Moreover, one sees that
only the d functions are responsible for the change in the

TABLE VIII. Valence-shell second-order Møller-Plesset correlation energy
#−E!2" in $ of the Ne atom, as obtained at the MP2 and MP2-R12 levels. The
basis-set limit is E!2"=−320.1 !Ref. 21".

Basis MP2

MP2-R12

2A! 2B

aug-cc-pVDZ 206.87 291.17 277.31
aug-cc-pVTZ 272.52 309.74 305.61
aug-cc-pVQZ 297.24 316.40 314.84
aug-cc-pV5Z 307.97 318.63 318.15
aug-cc-pV6Z 312.87 319.48 319.27

TABLE IX. Valence-shell second-order Møller-Plesset correlation energy
#−E!2" in $ of the Ne atom, obtained at the MP2-F12 level with the correla-
tion factors exp!−!r12" and r12 exp!−!r12". The basis-set limit is E!2"=
−320.1 !Ref. 21".

Basis

exp!−!r12" r12 exp!−!r12"

!opt
a 2A! 2B !opt

a 2A! 2B

aug-cc-pVDZ 1.54 323.97 309.60 0.58 323.72 308.46
aug-cc-pVTZ 1.67 319.51 315.77 0.67 319.85 315.79
aug-cc-pVQZ 1.62 319.71 318.46 0.68 319.73 318.42
aug-cc-pV5Z 1.79 319.94 319.48 0.83 319.97 319.50
aug-cc-pV6Z 1.87 320.08 319.87 0.88 320.09 319.88

aIn a0
−1, optimized at the MP2-F12/B level.

TABLE X. Valence-shell second-order Møller-Plesset correlation energy
#−E!2" in $ of the Ne atom, obtained at the MP2-F12 level with the correla-
tion factors erfc!!r12" and r12 erfc!!r12". The basis-set limit is E!2"=−320.1
!Ref. 21".

Basis

erfc!!r12" r12 erfc!!r12"

!opt
a 2A! 2B !opt

a 2A! 2B

aug-cc-pVDZ 1.10 322.61 307.48 0.34 321.06 305.34
aug-cc-pVTZ 1.21 318.58 314.52 0.39 319.19 314.67
aug-cc-pVQZ 1.51 319.06 317.75 0.41 319.43 317.97
aug-cc-pV5Z 1.62 319.65 319.14 0.42 319.84 319.31
aug-cc-pV6Z 1.70 319.93 319.69 0.55 320.02 319.78

aIn a0
−1, optimized at the MP2-F12/2B level.
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! dependence. An examination of the pair energy contribu-
tions to the MP2 correlation energy as a function of ! reveals
that the different ! dependence is almost entirely due to the
2p-2p electron pairs. This means that there is a redundancy
between the configurations with orbital replacements p→d
and the geminal basis functions. Depending on the expo-
nents, both are attempting to describe either the electron cusp
or the outer regions of the wave function. The description of

the electron cusp requires large exponents, and small expo-
nents are required for the regions of the wave function away
from the nucleus.

The current basis sets are optimized for standard
methods,41 and the exponents of the polarization functions
are too large for MP2-F12 calculations, where the geminals
take care of the cusp. We have therefore attempted to esti-
mate the effect of optimizing the cc-pVXZ basis set, taking

TABLE XI. Valence-shell second-order Møller-Plesset correlation energies #−E!2" in mEh$ as function of ! for Ne and a selection of small test molecules as
obtained from MP2-F12/2B calculations with the correlation factor f12=exp!−!r12" in an augmented correlation-consistent aug-cc-pVXZ basis with cardinal
number X=3 or X=4.

Moleculea X

! /a0
−1

0.0b 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Limiting valuec

CH2 3 141.03 154.64 154.80 154.86 154.81 154.68 154.49 154.27
4 149.29 155.46 155.51 155.53 155.52 155.50 155.46 155.41 155.9

H2O 3 268.36 297.10 297.56 297.80 297.90 297.88 297.74 297.52
4 285.93 299.33 299.50 299.59 299.62 299.60 299.57 299.51 300.5

NH3 3 240.19 262.32 262.64 262.79 262.82 262.74 262.56 262.32
4 253.78 263.81 263.92 263.97 263.97 263.95 263.92 263.87 264.5

HF 3 279.73 315.09 315.70 316.03 316.17 316.21 316.14 315.98
4 301.14 318.07 318.28 318.42 318.49 318.50 318.46 318.40 319.7

N2 3 379.59 416.48 417.15 417.50 417.60 417.48 417.18 416.74
4 401.85 419.30 419.52 419.62 419.64 419.61 419.55 419.46 421.0

CO 3 360.08 399.19 399.92 400.27 400.37 400.29 400.04 399.66
4 383.88 402.14 402.38 402.52 402.56 402.54 402.47 402.38 403.9

Ne 3 272.52 314.26 315.03 315.47 315.69 315.76 315.75 315.65
4 297.24 317.88 318.13 318.30 318.42 318.46 318.44 318.37 320.1

F2 3 535.99 602.63 603.90 604.59 604.95 605.10 605.06 604.83
4 575.71 608.28 608.70 609.00 609.15 609.18 609.11 609.01 611.7

aGeometries as in Ref. 21. Results are reported for CH2 in its 1A1 state.
bStandard MP2 value.
cFrom Ref. 21.

TABLE XII. Valence-shell second-order Møller-Plesset correlation energies #−E!2" in mEh$ as function of ! for Ne and a selection of small test molecules as
obtained from MP2-F12/2B calculations with the correlation factor f12=r12 exp!−!r12" in an augmented correlation-consistent aug-cc-pVXZ basis with
cardinal number X=3 or X=4.

Moleculea X

! /a0
−1

0.0b 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Limiting valuec

CH2 3 150.85 154.74 154.77 154.56 154.12 153.52 152.78 151.89
4 154.29 155.47 155.50 155.49 155.46 155.39 155.27 155.12 155.9

H2O 3 290.18 297.41 297.78 297.85 297.61 297.08 296.29 295.32
4 297.09 299.41 299.54 299.58 299.56 299.51 299.42 299.28 300.5

NH3 3 256.68 262.53 262.74 262.67 262.32 261.75 261.01 260.12
4 262.12 263.85 263.92 263.94 263.92 263.88 263.79 263.65 264.5

HF 3 307.24 315.45 315.99 316.20 316.13 315.75 315.07 314.1
4 315.45 318.18 318.36 318.45 318.46 318.41 318.31 318.19 319.7

N2 3 405.69 416.90 417.28 417.05 416.26 415.02 413.43 411.53
4 415.99 419.38 419.51 419.53 419.47 419.35 419.14 418.82 421.0

CO 3 388.48 399.64 400.11 400.00 399.36 398.25 396.76 394.96
4 398.73 402.25 402.42 402.48 402.44 402.33 402.14 401.86 403.9

Ne 3 305.61 314.66 315.36 315.72 315.78 315.56 315.05 314.26
4 314.84 318.05 318.28 318.39 318.42 318.36 318.25 318.11 320.1

F2 3 587.24 603.26 604.32 604.78 604.66 603.95 602.67 600.88
4 602.98 608.49 608.84 609.00 609.00 608.88 608.69 608.42 611.7

aGeometries as in Ref. 21. Results are reported for CH2 in its 1A1 state.
bMP2-R12/2B value.
cFrom Ref. 21.
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the Ne atom as an example. We have not fully optimized the
basis set but rather scaled !with a common factor *" the
exponents of the polarization functions of the cc-pVTZ and
cc-pVQZ basis sets of Ne at the MP2-F12/2B level. In Figs.
9 and 10 we present plots of the valence-shell correlation
energy as a function of * and !. As the polarization functions
become more diffuse, the optimum exponent for the correla-
tion factor increases, and the dependence of the energy on

! becomes flatter paralleling that of the aug-cc-pVXZ basis.
In absolute terms there is only a slight energy gain in opti-
mizing both * and !, relative to optimizing ! for the standard
basis !*=1". However, reducing * so that the polarization
functions are more diffuse makes the correlation energy
much less sensitive to the exponent ! in the correlation fac-
tor, and the same optimum ! is obtained for the cc-pVXZ and
aug-cc-pVXZ basis sets. It is certainly desirable that the

TABLE XIII. Valence-shell second-order Møller-Plesset correlation energies #−E!2" in mEh$ as function of ! for Ne and a selection of small test molecules as
obtained from MP2-F12/2B calculations with the correlation factor f12=erfc!!r12" in an augmented correlation-consistent aug-cc-pVXZ basis with cardinal
number X=3 or X=4.

Moleculea X

! /a0
−1

0.0b 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Limiting valuec

CH2 3 141.03 154.01 154.44 154.32 153.89 153.29 152.56 151.77
4 149.29 155.13 155.26 155.36 155.36 155.26 155.09 154.86 155.9

H2O 3 268.36 295.33 296.60 297.10 296.94 296.37 295.50 294.39
4 285.93 298.61 298.91 299.13 299.26 299.24 299.10 298.86 300.5

NH3 3 240.19 261.11 262.00 262.19 261.92 261.33 260.49 259.46
4 253.78 263.31 263.52 263.69 263.75 263.69 263.54 263.31 264.5

HF 3 279.73 312.74 314.25 315.11 315.20 314.74 313.93 312.87
4 301.14 317.08 317.52 317.77 317.95 318.02 317.92 317.71 319.7

N2 3 379.59 414.33 416.00 416.34 415.82 414.69 413.13 411.27
4 401.85 418.30 418.70 419.02 419.14 419.04 418.74 418.30 421.0

CO 3 360.08 396.91 398.75 399.28 398.80 397.68 396.14 394.32
4 383.88 400.68 401.64 401.97 401.93 401.56 401.01 400.17 403.9

Ne 3 272.52 311.40 313.06 314.16 314.52 314.29 313.65 312.73
4 297.24 316.66 317.17 317.41 317.59 317.73 317.74 317.60 320.1

F2 3 535.99 598.16 601.19 602.87 603.12 602.35 600.87 598.85
4 575.71 606.36 607.20 607.64 608.00 608.13 607.97 607.58 611.7

aGeometries as in Ref. 21. Results are reported for CH2 in its 1A1 state.
bStandard MP2 value.
cFrom Ref. 21.

TABLE XIV. Valence-shell second-order Møller-Plesset correlation energies #−E!2" in mEh$ as function of ! for Ne and a selection of small test molecules as
obtained from MP2-F12/2B calculations with the correlation factor f12=r12 erfc!!r12" in an augmented correlation-consistent aug-cc-pVXZ basis with cardinal
number X=3 or X=4.

Moleculea X

! /a0
−1

0.0b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Limiting valuec

CH2 3 150.85 153.15 154.10 154.34 153.66 151.74 149.33 147.06
4 154.29 155.01 155.27 155.33 155.21 155.08 154.88 154.41 155.9

H2O 3 290.18 294.04 296.22 296.94 296.86 295.74 293.13 289.47
4 297.09 298.35 299.02 299.23 299.28 299.09 298.80 298.40 300.5

NH3 3 256.68 259.97 261.61 262.11 261.80 260.31 257.78 254.73
4 262.12 263.31 263.52 263.69 263.75 263.69 263.54 263.31 264.5

HF 3 307.24 311.48 313.97 315.02 315.09 314.46 312.42 308.81
4 315.45 316.83 317.69 317.97 318.12 317.97 317.53 317.05 319.7

N2 3 405.69 411.78 415.05 415.93 414.85 411.38 406.40 400.78
4 415.99 417.93 418.79 419.04 418.79 418.43 418.02 417.19 421.0

CO 3 388.48 394.47 397.83 398.80 398.08 395.33 390.67 385.07
4 398.73 400.68 401.64 401.97 401.93 401.56 401.01 400.17 403.9

Ne 3 305.61 310.19 312.84 314.32 314.66 314.15 312.58 309.58
4 314.84 316.37 317.46 317.86 317.97 317.81 317.27 316.65 320.1

F2 3 587.24 595.48 600.25 602.21 602.65 601.48 597.34 590.31
4 602.98 605.79 607.44 608.05 608.31 607.77 606.77 605.84 611.7

aGeometries as in Ref. 21. Results are reported for CH2 in its 1A1 state.
bMP2-R12/2B value.
cFrom Ref. 21.
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same exponent ! is applicable to any size of basis set, and
any basis sets optimized for the MP2-F12 methods should
exhibit this behavior.

VII. CONCLUSIONS

In this paper we have been principally concerned with
finding the correlation factors for use in r12 methods which
are an improvement over the linear function. Through a con-
sideration of the optimum correlation factor for helium we
chose to investigate the performance of four functions, Eqs.
!15"–!18", in MP2-F12 calculations on a small set of mol-
ecules. We find that all of the new correlation functions are
great improvements over the linear-r12 results and that the

substitution of the linear-r12 term with any of these functions
results in a gain of accuracy equivalent to increasing the
basis set of the linear-r12 calculation by one cardinal number
for all molecules in our set. Due to the relative insensitivity
of the results to the exponent ! we find that the function
c exp!−!r12", which was first proposed by Ten-no,26 is best
suited for use in our r12 methods.

We interpret the success of the new correlation factors in
terms of the computed optimum correlation factor for he-
lium, which we define as the projection of the exact wave
function onto the space spanned by #0J, with J constrained
to that of Eq. !4". The new correlation factors not only satisfy
the universal cusp condition of Kato,29 but also closely fit the
behavior of the correlation hole around the cusp due to the
higher-order terms in Eqs. !1" and !2". We find that for he-
lium and its isoelectronic series of cations the size of the
correlation factor scales linearly with the nuclear charge, but
the shape remains almost constant. We infer that the shape of
the optimum correlation factor is very similar in many mo-
lecular systems, and that it is contracted depending on the
effective nuclear charge experienced by the coalescing elec-
tron pairs. Indeed we find that the functions c exp!−!r12" and
cr12 exp!−!r12", which fit the optimum correlation factor for
helium very closely, perform slightly better than c erfc!!r12"
and cr12 erfc!!r12", which diverge from the optimum corre-
lation function sooner. We also observe that the pattern of
optimum exponents ! follows that of the electronegativies of
the component atoms in the set of molecules we investigate.

We find from both our CI-F12 and our MP2-F12 calcu-
lations that there is a significant redundancy between the
geminal basis functions and the CI expansion functions. This
redundancy is predominantly in the description of the longer-
range correlation. We observe that when the one-particle ba-
sis is too small or does not have enough diffuse functions, a
correlation factor with small exponent ! compensates for the
inadequate basis. This situation is not desirable because the
new correlation factors cannot properly describe both the
cusp and the longer-range correlation effects simultaneously.

FIG. 8. A comparison of the valence-shell second-order Møller-Plesset cor-
relation energy of the Ne atom as function of ! for the aug-cc-pVXZ !solid
line", cc-pVXZ !dashed line", and scaled cc-pVXZ !dotted line" basis sets,
with X=3 !!" and X=4 !!". The scaled cc-pVTZ and cc-pVQZ basis sets
are created by scaling the exponents of the polarization functions by 0.55
and 0.60, respectively.

FIG. 9. Valence-shell second-order Møller–Plesset correlation energy of the
Ne atom as function of ! and *, where ! is the exponent of the correlation
factor r12 exp!−!r12" and * is the scaling parameter of the polarization func-
tions of the aug-cc-pVTZ basis.

FIG. 10. Valence-shell second-order Møller–Plesset correlation energy of
the Ne atom as function of ! and *, where ! is the exponent of the correla-
tion factor r12 exp!−!r12" and * is the scaling parameter of the polarization
functions of the aug-cc-pVQZ basis.
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In the spirit of the r12 methodology introduced by
Kutzelnigg2 it is preferable to employ a more compact cor-
relation factor in order to properly describe the cusp, and to
ensure that the one-particle basis has sufficiently diffuse
functions for the description of the longer-range correlation.
We therefore recommend that augmented basis sets are used
in f12 methods.

Finally we comment that using the conventional MP2
method, 90% of the MP2 correlation energy of Ne is recov-
ered with an aug-cc-pVQZ basis, and an aug-cc-pVTZ basis
is required for similar accuracy when using the MP2-R12
method. The MP2-F12 method with any of these correlation
factors recovers the same accuracy using only an aug-cc-
pVDZ basis. This represents a large saving in computational
time, primarily due to the computation of the Hartree-Fock
wave function. We conclude that using these new correlation
factors the r12 methodology is a highly competitive method
for obtaining not only very high accuracy results, but also for
obtaining the correlation energy to moderate accuracy effi-
ciently. Since the new correlation factors are suitable for use
in localization methods, this situation can only improve.
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