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Abstract

We develop a feasible transcorrelated method for accelerating the convergence of reproducing the dynamic corre-

lation e�ects with the size of one-electron basis. The e�ective Hamiltonian is parameterized in such a way that the

Coulomb repulsion is compensated at short inter-electronic distances in terms of a frozen Gaussian geminal. The ge-

minal is chosen to be independent of the position and orientation of pair-electrons. The extra part of the transcorrelated

Hamiltonian is also short-ranged, size-consistent, and universal to the states of interest. We preliminarily applied the

method to the single-reference many body perturbation theory with some pilot calculations. Ó 2000 Elsevier Science

B.V. All rights reserved.

1. Introduction

In the standard ab initio molecular orbital
theory, correlation energies converge very slowly
with the size of one-electron basis, due to singu-
larity of the Coulomb repulsion at r12 � 0. An
attempt to mitigate this feature was ®rst put for-
ward by Hylleraas [1] to ®nd a remarkable speed-
up in the convergence by including functions
dependent on the inter-electronic distance. Since
then, various methods with correlation factors
have been proposed and applied to the calcula-
tions of atoms and molecules [2±10]. These ap-
proaches are classi®ed according to the forms of
the factors (including a term linear to the inter-
electronic distance or not) and the types of the
excitations (with or without orthogonal projec-

tors). The second criterion is more crucial than the
®rst, because the orthogonal projectors make the
factors non-commutative with potentials.

Until today, the approach developed by
Kutzelnigg, Klopper and co-workers [7,8,10], the
so-called R12 method, would be of the widest
applicability. The method avoids explicit evaluation
of high-rank `di�cult integrals' using the resolution
of identity in a complete basis set representation.
Especially, the coupled-cluster (CC) R12 method
of Noga et al. [9,10] enables us to reach chemical
accuracy both in the basis set convergence and in
the sophistication of wave function in the single
reference framework. Calculations on the practical
basis set limits have been reported for molecules as
large as the benzene±argon van der Waals complex
and ferrocene at the Moeller±Plesset second-order
(MP2) perturbation theory level [11,12]. Only
shortcomings are the long-range nature of e�ective
interaction that makes the scaling property unfa-
vorable, and the non-commutative property to the
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potential rather complicates the theoretical con-
struction.

In the methods using correlated Gaussian-type
functions [2±4,6], all the integrals can be evaluated
in closed forms involving at most one-dimensional
numerical integration. Despite their unsatisfactory
forms for Kato's cusp condition [13], the functions
have been successfully used in calculations of small
molecules with high accuracy (for example, see
[14]). More recently, Persson and Taylor have in-
troduced an MP2 method [15], which incorporates
the Gaussian geminal approach [4] with the R12
ansatz. They avoid tedious nonlinear optimiza-
tions using a geminal ®tted to the linear r12

behavior. The explicit evaluation of the three-
electron integrals allows us to use a one-electron
basis set much smaller than those required for
ful®lling the standard approximation in the R12
method [8,10]. The extension to theories beyond
MP2 however includes more complicated integrals
than the three-electron ones. E�ciency of the R12
method is not so much in the choice of the explicit
linear behavior but in the thorough use of the
completeness insertion to the di�cult integrals.

In this Letter, we propose an attractive alter-
native, which is applicable to large-scale molecular
orbital calculations. The basic idea of the ap-
proach is to employ a transcorrelated Hamiltonian
with a frozen Gaussian geminal parameterized to
be short-ranged. In Section 2, we illustrate the
method. Results and discussions with pilot calcu-
lations are given in Section 3.

2. Method

In the transcorrelated method of Boys and
Handy [2], a correlated wave function is repre-
sented by a symmetric correlation factor and a
Slater determinant as

W � exp�F �U: �1�
The method optimizes both the factor and the
determinant, approximating F to be the sum of
two-electronic functions (geminals). This is a
straightforward extension of the treatment of a
homogeneous electron gas [16]. Use of the simi-
larity transformed Hamiltonian, the so-called

transcorrelated Hamiltonian, ~H � eÿF HeF , sim-
pli®es the formal construction because of its ter-
mination at the three-body e�ective interaction [2].
The non-linear optimization of the factor however
requires a laborious process.

Alternatively, we use a ®xed geminal in the
transcorrelated Hamiltonian and represent the re-
sidual correlation e�ects in terms of the usual
correlated wave function, like the con®guration
interaction (CI) one, spanned by a one-electron
basis. In this particular work, the geminal is as-
sumed to be independent of positions and orien-
tations (a function of only electronic distances),

F � 1

2

X
i6�j

f �rij�: �2�

One can express the geminal in the occupation
number representation with a complete basis set. If
we retain the full part of the operator, the simi-
larity transformed Hamiltonian becomes

~H � eÿF HeF � H � K � L; �3�

K � 1

2

X
pqrs

hpqjK12jrsia�p a�q asar; �4�

L � 1

6

X
pqrstu

hpqrjL123jstuia�p a�q a�r auatas; �5�

K12 � ÿr2
1f �r12� ÿ r1f �r12� � r1f �r12�

ÿ r1f �r12� � �r1 ÿr2�; �6�

L123 � ÿ3r1f �r12� � r1f �r13�: �7�
It is noted that the three-electronic part, L123, can
be further arranged to make the operator sym-
metric to the permutations of the three electronic
indices. If we choose a factor linear to the inter-
electronic distance, �1=2�rij, the Coulomb repul-
sion is entirely canceled by the new two-electronic
interaction [2,7]. The rapid growth of non-van-
ishing integrals with system size however becomes
a fatal element for very large molecules.

Instead of noticing the entire behavior of the
geminal, we localize it in such a way that the factor
converges to unity, eÿf �r� ! 1, at large electronic
separations. The conventional molecular orbital
theory is fairly e�cient in describing the long-
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range behavior of wave functions. The localized
geminal will make the three-body interaction less
important; the probability of ®nding three-elec-
trons within the factor radius decreases. Moreover,
computational cost for the evaluation of the nec-
essary integrals scales only linearly with system
size. Abandoning exploring a suitable form of ge-
minal for requirement, we express the factor using
a frozen Gaussian geminal (FROGG),

f �r12� � ÿ
XNG

G

cG exp�ÿfGr2
12�: �8�

The minus sign is for the decreasing probability
of ®nding electrons. Although the form does not
satisfy the cusp condition at r12 � 0 [13], the asymp-
totic behavior in this limit is considered less
important for electrons interacting in the three-
dimensional space. This fact supports the suc-
cessful applications of the explicitly correlated
Gaussian functions [4,6,14]. In this work, we op-
timize the coe�cients and exponents such that the
scalar potential part in K12 cancels the Coulomb
interaction around r12 � 0,

rÿ1
12 w�r12� ÿ r2

1f �r12� ÿ r1f �r12� � r1f �r12� � 0;

�9�
where w�r12� is a short-range weight function. We
introduce an additional weight Gaussian,
w�r12� � exp�ÿfwr2

12�; all expressions in the least
square ®tting procedure are in closed forms. We
show the obtained results with fw � 5 and NG � 6 in
Table 1 and Fig. 1. The e�ective potential (solid line)
is not singular any more, whereas its long-range
behavior is held in common with the Coulomb po-
tential. With this ®t, 98.7% of the short-range

Coulomb energy,
R

dr12rÿ1
12 w�r12�, is compensated.

The norm of the vector potential (dotted line) is a
smoothly decreasing function, the asymptotic be-
havior of which at r12 � 0 is a good measure for the
e�ciency of the ®t, 1=2 being exact [2].

The present approach is based on the e�ective
Hamiltonian in the transcorrelated form, which is
parameterized to be short-ranged, size-consistent,
and universal to the electronic states of interest. It
is therefore applicable to most of the standard
electronic structure theories. The simplest appli-
cation will be to the second-order many-body
perturbation theory. For this, we employ a modi-
®ed MP partitioning to the transcorrelated Ham-
iltonian,

~H � H �MP�
0 � ~V ; �10�

where H �MP�
0 is the usual Hartree±Fock model

Hamiltonian. One notes that the new perturbation,

Table 1

The parameters of FROGG used in this worka

fG cG

0.621698 0.078215

3.371717 0.132037

14.27116 0.068633

82.76522 0.029047

605.5295 0.012063

6596.808 0.004346

a The exponents and coe�cients are optimized with NG � 6 and

fw � 5.

Fig. 1. Schematic representation of the optimized potentials.

The bare Coulomb (dashed line) and optimized short-range

Coulomb (dash±dotted line) interactions lead to the e�ective

interaction in the transcorrelated Hamiltonian (solid line)

without the singularity. The vector quantity, r1f �r12� (dotted

line), is much less singular and included in the two- and three-

electron integrals.
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~V , is free from the Coulomb singularity. Thus
the perturbation series are expected to converge
quicker than the usual MP ones, if the long-range
tail is reproduced well by the HF determinant.
This may not be the case for electrons around the
core; the orbital relaxation e�ects will be impor-
tant. To absorb the e�ects, we solve the pseudo-
orbital equation with a primary partitioning
dropping the three-body part,

hX�j /j�H � K� exp�T 1�j/ic � 0 8j 2 S; �11�
where c and S denote connected operators and
single replacements, respectively, and fX�j g is a set
of particle±hole excitation operators. The property
of the transformed operator with T 1 is discussed in
detail by Koch et al. [17]. We calculate the subse-
quent modi®ed perturbation energies through the
second-order,

E
�0� � h/j�H � K� exp�T 1�j/i ÿ EHF; �12�

E
�1� � h/jL exp�T 1�j/i; �13�

E
�2� � h/j ~H exp�T 1�T �1�j/i: �14�

Singles and doubles are included in the ®rst-order
wave operator,

X�j / H �MP�
0 ; T �1�

h i��� ���/D E
� ÿhX�j /j ~H exp�T 1�j/ic 8j 2 SD: �15�

This procedure is appropriate for the molecules of
light atoms in which the two-body interactions
dominate the orbital shapes. For molecules with
heavy elements, the three-electronic part, L, is to
be included in determining the amplitude, T 1.

In this Letter, the three-electron integrals are
approximated with a completeness insertion in a
similar way used in the R12 methods [8,10]. The
required vector integrals, hpqjr1f �r12�jrsi, are in-
termediates of some other integrals in hpqjK12jrsi,
and can be evaluated without extra CPU time. The
integrals, hpqjr1f �r12� � r1f �r12�jrsi, which are
quadratic to the factor, are generated in a separate
loop. It is possible to combine the electron repul-
sion integrals with hpqjK12jrsi after the generation
of the model Hamiltonian. We did not take this
convention for a later analysis of the perturbation
energies.

3. Result and discussion

Nearly exact non-relativistic results have been
reported for Be atom from CC-R12 [10] and some
other theories. Firstly, we therefore apply the
present approach to the atom. We use the double-
zeta basis set [18] augmented with s- and p-prim-
itives of the largest exponents taken from the
atomic natural orbitals (ANO) [19] and with a d-
polarization function of the exponent, 0.4. We
decontract all functions and use them as a 10s6p1d
primitive set for the accuracy of the completeness
insertion of the three-electron integrals. The aug-
mentation of the large exponents becomes impor-
tant in the second-order energy through the
operator dependent on orbital momentum,
r1f �r12� � r1. For comparison, we use the full
14s9p4d3f primitive set constructed from the same
ANO set. We show the components of the corre-
lation energies in Table 2. Only the three-electronic
operator, L, contributes to the modi®ed ®rst-order
wave operator of single replacements. The corre-
sponding second energy is referred to as E�2�SL . We
accumulated the necessary integrals in the order,
the Coulomb (V), K, and L operators. Accord-
ingly, the second-order energy is classi®ed into
three parts, E�2�DV ; E�2�DK , and E�2�DL, which are the en-
ergies of only V, at least linear to K without the
contribution of L, and the residual of them, re-
spectively. The component, E�2�DV , corresponds to
the conventional MP2 energy apart from the small
correction of the preliminary modi®cation with T 1.
One notes that the single-determinant energies,
i.e., the sums of E

�0�
and E

�1�
, cover a large amount

Table 2

Components of the perturbation energy (mEh) of the Be atoma

Component 10s6p1d 14s9p4d3f

E
�0�

)57.063 )57.046

E
�1�

)1.671 )1.680

E
�2�
SL 0.148 0.150

E
�2�
DV )66.370 )69.886

E
�2�
DK 46.079 47.537

E
�2�
DL 0.179 0.198

Total )78.698 )80.727

a The best R12 energies are )76.248, )85.292 and )94.293 mEh

at MBPT(2) and MBPT(3) CCSD(T), respectively.
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of the correlation energy. The present results lie in
between the best ones of R12-MBPT(2) and R12-
MBPT(3). This is accounted for by the modi®ed
perturbation free from singularity as discussed in
the previous section. The transcorrelated Hamil-
tonian retains the full exponential of the factor
including quadruples and higher excitations from
the HF vacuum.

The second application is to methane, the R12
result of which is also available [10]. We used
compact 10s5p1d and 11s6p2d1f primitive sets for
the carbon atom derived from the correlation
consistent valence double-zeta (cc-pVDZ) and
triple-zeta (cc-pVTZ) basis sets [20], and aug-
mented with s- and p-primitives of the large ex-
ponents in ANO as in the Be case. We intend to
use these sizes of basis sets in practical applications
to larger molecules. The primitive set for the hy-
drogen atoms is ®xed to be 4s1p of cc-pVDZ. The
results are shown in Table 3. One can see that the
three-body interaction especially in the ®rst-order
energy is more important than the Be atom case.

Although the completeness insertions included in

E
�1�
; E

�1�
SL and E

�2�
DL seem unsaturated with the pre-

sent basis sets, the di�erence in the total correla-
tion energy of these components, ca. 5 mEh, is
much smaller than those in the individual contri-
butions of E

�2�
DV and E

�2�
DK . The total correlation en-

ergies are again in between the R12-MBPT(2) and
R12-MBPT(3) ones. Evaluating the meagerness of
the conventional MP2 energies, the present ap-
proach is particularly useful with basis sets as
small as the present ones.

We have presented a part of the results of our
transcorrelated method. All results are reasonable
in molecules with light atoms. It is also found that
the uncertainty from the approximate three-elec-
tron integrals increases when a system includes
heavy atoms. For instance, the component, E

�1�
,

becomes as large as the total correlation energy in
the water molecule. The single energy, E

�1�
SL , also

becomes important with the increase of atomic
numbers; the inclusion of L in determining T 1 is
necessary. The simplest amelioration is to employ
an auxiliary basis set for the completeness insertion,
which is di�erent from the orbital set describing
the wave function. The decomposed two-electron
integrals include only one index for the auxiliary
set, and the computational load does not increase
drastically with the size of the auxiliary set. Alter-
natively, the three-electron integrals can be calcu-
lated explicitly using e�cient recurrence relations
after the contraction of the geminal [21]. The
three-body interactions are important only when
all electrons are in the same vicinity of an atom in
the present choice of the localized geminal. Our
transcorrelated Hamiltonian owns the long-range
decay as the bare Hamiltonian. Thus the present
approach will be suited to local correlation pro-
cedures (see Ref. [22] and references therein).

4. Conclusion

We have illustrated a feasible method for
treating electronic cusps. The main features of the
method are summarized as follows. We started
with the transcorrelated Hamiltonian of Boys and
Handy, which terminates at the three-body inter-
action irrespective of the choice of the anti-sym-
metrized part expanded by the one-electronic
basis. This fact extremely simpli®es the application
to more sophisticated theories including the cou-
pled-cluster and multi-reference ones. Bypassing
the optimization of the correlation factor, we use a
short-ranged FROGG, utilizing the coincident
behavior of pair-electrons. The short-range nature
of the geminal is a crucial point for the scaling
property. The number of the additional integrals
increases only linearly to the size of the system.
Thus the combination with local basis will make

Table 3

Components of the perturbation energy (mEh) of the methane

moleculea

Component 10s5p1d 11s6p2d1f

E
�0�

)112.821 )111.073

E
�1�

)55.491 )62.544

E
�2�
SL 9.012 10.331

E
�2�
DV )217.791 )243.000

E
�2�
DK 93.450 113.800

E
�2�
DL 5.500 7.177

Total )278.140 )286.309

a The R12 energies are )273.579, )286.613 and )295.948 mEh at

MBPT(2)-A, MBPT(3) and CCSD(T), respectively.
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the application to very large molecules possible.
We plan to proceed with such applications.
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