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Second-order correlation energies for atoms and molecules are calculated wath a novel vanational functional that 1s
closely related to the one used before but neglects the most time-consuming terms. Consequently much larger basis scts
could be used. Results for He, Be, Hy and LiH obtained with an explicitly correlated gaussian geminal basis are better than
the best published results by 0.32, 0.06, 3.3, and 6.2% and arc estimated to be accurate to within a fraction of 155,

Calculation of the correlation energy for atoms and molecules using many-body perturbation theory (MBPT)
has been one of the most successful implementations of this theory [1]. There have always becn two mayor areas
of investigations: calculations of the most important components i higher orders of MBPT (sce ref. [2] for a re-
cent review) and calculations of low-order corrections, especially the second-order one, £2), with increased ac-
curacy (see e.g. refs. [3—11]). Due to the recent progress m the former field [2], the latter one, which reduces
to solving the familiar basis set problem, seems to be more important at present. in a typical case presented in
ref. [2] the £¢2) error determines the accuracy of the final result. To improve the accuracy of E(2) the standard
method of summation over a set of virtual orbitals 15 usually abandoned and the first-order pair equations are
solved directly [3—11]. In this way second-order energies with accuracies higher than 99% have been obtained
for the first-row closed-shell atoms [3—6, 9—11]. The numerical techniques employed in these calculations are
hard to extend to molecules. An exception is a method used by Pan and King [6] which amounts to solving the
pair equauons variationally with a basis set of gaussian geminals that are explicitly correlated by a factor
exp(—‘yrlz) where ry5 is the distance between the electrons 1 and 2. A modified version of this approach has
been employed by Adamowicz and Sadlej {7,8] for the H,, LiH, and BH molecules. The basis set of exphatly
correlated gaussian functions has also proven to be capable of reproducing accurately correlation effects m a
variety of observables like polanzabities [12], Compton profiles [13], interatomic potentials [14] and gener-
abized oscillator strengths [15],

If for a closed-shell system the zeroth-order problem 1s determined by a set of HF SCF equauons

foo=€.9, » )

where f1s the Fock operator, ¢ 1s the orbital and e, 1s the orbital energy, then the first-order spin-free pair func-
tions T:m aredefined by the equations

V() +1Q) - e, - egl784(12) = ~a, i 015(12) (2a)
the=aytly . (2b)
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where 1 = 1 and 3 for singlet and triplet pairs, respectively, 5 1s the strong orthogonality projector,
4= [1=p(D1 1 =p) . P=2316,%0,l , 3)
a3

and <,’>L‘,(12) =0,(1es(2) +(2 - N93(1)94(2). The pair functions can be calculated variationally by nunimzing
the funcuonal

eha< FhalT] =101 + 8., 1 ETIFQ) +£(2) — e, — 5lgaT) + (Tlqr3 ohl @)

where 7 1s 2 tnial function and efm are pair energies, the sum of which gives £(2), The above functional can be
called the strong orthogonality functional.

Computer-time requirenicnts are hnown to be a major limitation of Pan and King's approach since the method
requires an extensive optimization of the non-linear parameters in the correlated gaussian geminals. The most
time-consunung tenms result from the presence of the fg, operator 1n eq. (4). The modification introduced by
Adamowicz and Sadley [7] further increases the time of a single calculation but allows the use of smaller orbital
basis sets (n the optimization stage.

It 1s possible, however, to replace the functional (4) by a simpler one which will be called the weak orthogonal-
1ty functiondl,

€S9 Bﬂ[?l =yl + %p)—l Q) +7(@) — ey - g+ Bag (1) + Aggp(DIT + Flazridelyl . )

where A, ; 1s an arbitrary real number greater than 3(e,, + e, — 2¢; o) With €p gyyo denoting the lowest occu-
pied molecular or atomic orbital. Asymptoucally, for large geminal basis sets, this functional reduces the time of
a single calculation by a factor equal to the square of the number of orbital basis functions. One can easily verify
that functional (5) has the same minumal value as functional (4) and that the pair function mininuzing functional
(5) satisfies automatically condition (2b).

The E(?) energies presented in table 1 were obtamed by expanding 7 in terms of exphcitly correlated gaussian
genunals and carefully optinnzing ail near and non-linear parameters. The present results improve the best pub-
lished vatues of £(2) by 0.32,0.06, 3.3 and 6.2% for He, Be, H,, and LiH, respectively. For the Be atom our en-
crgy is neghgibly lower than Lindgren and Salomonson’s [10] *“basis-set independent” result, thus confirming an
accuracy of =10~3 au estimated by these authors, and showing again the quality of the basts set used in the
present work. On the basis of the He and Be results the errors of our £(2) energies in the 20-geminal basis sets
may be estimated to amount to z fraction of one percent.

In order to avoid here a discussion of the dependence of £(2) on the size of the orbital basis set, very accurate
SCF orbitals composed of sphencal gaussian functions (with floating centers for H, and LiH) have been used for
the final calculanion. Expansions half as long give £2) within =105 au and expansions as short as four functions
per orbital can be effectively used in the optimizatuon stage.

Table 1
Sceond-order energies (in au)

He Be Hy LiH
R=14 R =3.015
number of orbital basis functions 20 | 16] 28 [16] 31 30
SCI” encrgy -2.86167995 [16] —14.57302313 [16] —1.1336287 —7.9873231

SCI “hmit™ —2.86168000 [17]

number of geminal basis functions 40
E2) present work -0.037372
2) Literature —0.03725 (4}

—-14.57302318 [16]

40
-0.076323
-0.07628 [10]

—1.133630 [18]

20
-0.034111
—-0.03303 (7]

~7.987313 {19]
~7.98734 [20]

20
~0,071913
-0,06773 (8]
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Table 2
Comparison of total correlation cnergics
He Hz LiH
R=14 R =3.015

E( ~0.03737 —0.03411 ~0.07191
highcr-order corrections -0.00478 ) —0.00605 b) -0.01157¢)
total -0.04215 —-0.04016 -0.08348
“lmit” correlation energy -0.04204 4) —0.04085 ©) —-0.083171)
percent of the corrclation encrgy 100.26 98.3 100.4
“best” previous MBPT result —0.04203 [4] -0.03908 [7] —0.07696 {21]
percent of the corrclation encrgy 99,98 95,7 92,5

2) Sum of third-, fourth-, and fifth-order corrections, from ref. [4].

b) Sinanoglu’s “exact par™ energy (which 1s equivalent to the hnear CCM result) minus E4?) calculated in the same basis set, from
ref. {7].

€} [2/1) Padé approximant minus £{2) calculated i the same basis set, from ref, [21]).

@) Theoretical, refs, [17,22].  ©) Theoretcal, refs. [18,23].

) Mixed expenmental and theoretical, computed usmg data from refs. {20,241,

Wark on higher-order corrections s 1n progress. However to show here the sigmficance of accurate second-
order energies for the final accuracy, our £€2) corrections are combined with pubhshed higher-order corrections
and are comparcd in table 2 with some “limit” values of the correlation energy.

For the Be atom our result 1s essentially the same as that of Lindgren and Salomonson [10] and therefore has
not been included n table 2. For the He atom our shightly better £¢2) lcads to a poorcr agreement with the exact
correlation energy, especially when taking into account that the corrections of sixth and higher order, neglected
by Byron and Joachain [4], can be estimated with the geometric approximation to be equal to —4 X 10~5 au, This
shows that the value of E¢3) + E(4) + E(5) obtained by Byron and Joachain 1s stull m error of =0.00015 au. This
error is probably caused by the very slow convergence of the partial wave expansion for third-order energies ob-
served recently by Jankowski et al. [25]. The very good agreement for LiH 1s probably accidental. It results from
a cancellation of the basis set effect influencing the ncluded higher-order corrections [21) with those MBPT con-
tributions which were neglected [21].

In summary we have proposed and implemented a computationally more efficient functional to varationally
obtain hugh-accuracy second-order energies. With the present approach we are able to match the “basis-set inde-
pendent” results which are available for atoms and at the same time to obtan a stmlar accuracy for small mole-
cules, The results reported here are for the diatomic molecules but our program also handles the polyatomic mol-
ecules, Work on this application s in progress.

The authors are grateful to the Kirkman Data Center of the State of Flonda, Department of Highway Safety
and Motor Vehicles, Tallahassee, Florida, for the generous supply of ample computer time, and to Dr. R.L.
Coldwell for this effective help 1n using the above facihties. This work has been supported, mn part, by grants from:
NSF CHE-79006129 and PAN MR.L9. Two of us (HIM and JGZ) acknowledge travel support under grant NATO
008.80.
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