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Abstract: We show that electronic wave functions ψ of atoms and molecules have a
representation ψ = Fφ, where F is an explicit universal factor, locally Lipschitz, and
independent of the eigenvalue and the solution ψ itself, and φ has second derivatives
which are locally in L∞. This representation turns out to be optimal as can already be
demonstrated with the help of hydrogenic wave functions. The proofs of these results
are, in an essential way, based on a new elliptic regularity result which is of indepen-
dent interest. Some identities that can be interpreted as cusp conditions for second order
derivatives of ψ are derived.

1. Introduction

1.1. Motivation and results. The non-relativistic quantum mechanical Hamiltonian of
an N -electron molecule with L fixed nuclei is given by

HN,L(X, Z) = −$ + V (X, Z) + U(X, Z),

where V , the Coulombic potential, is given by

V ≡ V (X, Z) = −
N∑

j=1

L∑

k=1

Zk

|Xk − xj |
+

∑

1≤i<j≤N

1
|xi − xj |

, (1.1)

and the internuclear repulsion U by

U(X, Z) =
∑

1≤k<%≤L

ZkZ%

|Xk − X%|
.
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The latter is merely an additive term that will be neglected in the sequel and we will
henceforth consider

H ≡ HN,L(X, Z) − U(X, Z). (1.2)

Above, x = (x1, x2, . . . , xN) ∈ R3N denotes the positions of the N electrons, with xj =
(xj,1, xj,2, xj,3) ∈ R3 the position of the j th electron. The positions of the L nuclei with
the positive charges Z = (Z1, Z2 . . . , ZL) ∈ RL

+ are denoted by
X = (X1, X2, . . . , XL) ∈ R3L, where Xk = (Xk,1, Xk,2, Xk,3) ∈ R3 is the (fixed)
position of the kth nucleus with charge Zk , and it is assumed that X% &= Xk for % &= k.
The Laplacian corresponding to the j th electron is $j =

∑3
i=1

∂2

∂xj,i
2 and so the Lapla-

cian on R3N is given by $ =
∑N

j=1 $j . We also introduce the 3N -dimensional gradient
by ∇ = (∇1, . . . ,∇N).

The operator H is selfadjoint on L2(R3N) with operator domain D(H) = W 2,2(R3N)
[14], and it depends parametrically on X and Z. In the case of an N -electron atom with
(one) nucleus of charge Z fixed at the origin 0 ∈ R3, (1.2) becomes

H ≡ HN(Z) = −$ + V (1.3)

=
N∑

j=1

(
− $j − Z

|xj |

)
+

∑

1≤i<j≤N

1
|xi − xj |

.

Generations of chemists and physicists have devoted a good part of their research to
the analysis of various problems related to HN,L(X, Z). Most of the present day under-
standing of atoms and molecules is based on the analysis of problems directly related to
this operator; see any textbook in atomic and molecular quantum mechanics.

One of the central problems is the eigenvalue problem

Hψ = Eψ, E ∈ R, ψ ∈ L2(R3N). (1.4)

Since the electrons are Fermions the N -electron wave function ψ has to satisfy the Pauli
Principle. This can be achieved in a spinless formulation by requiring that ψ transforms
according to certain irreducible representations of the symmetric group SN . Our present
work will not require any symmetry assumptions on ψ . More precisely, we will con-
sider local properties of distributional solutions (locally L1) in a domain ' ⊆ R3N to
Hψ = Eψ , where E can be any real number.

Within mathematics and mathematical physics Schrödinger operators as (1.2) are
studied mostly from an operator theoretical point of view, see the textbooks [1, 14, 18,
22] as well as the recent survey [21].

The PDE-aspects of (1.4) have been studied in relatively few works. We first note the
following: Let ((X) denote the set of points in R3N where the potential V defined in
(1.1) is singular. The function V is real analytic in R3N \ ((X) and hence by classical
results (see [11, Sect. 7.5, pp. 177-180]), so is ψ .

Therefore a basic question is how to characterize the effect of the singularities of V
on the local behaviour of a solution ψ of (1.4).

In 1957 Kato [13] showed that a solution ψ satisfying (1.4) is continuous in all of
R3N with first derivatives locally in L∞, i.e., ψ is locally Lipschitz. He also analyzed
how ψ behaves near the so-called two-particle coalescence points, i.e., those points in
((X) where exactly one term in the sums representing V (see (1.1)) is unbounded.
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Generalizations with new insights for those points in R3N where more than one term
in (1.1) is singular were obtained in [10] and more recently in [9]. We mention that the
present authors in [5, 6 and 4] studied the smoothness of the electron density, a question
related to the present investigation; we shall not discuss this further here.

Suppose we have a solution ψ to Hψ = Eψ, E ∈ R, with H as in (1.2) or (1.3). We
want to find a representation for ψ

ψ(x1, . . . , xn) = F(x1, . . . , xn) φ(x1, . . . , xn)

such that φ is as smooth as possible and F is a universal (i.e., not depending on ψ or E)
positive factor reflecting the behaviour of the potential V near ((X). This means that
for any two solutions ψ1, ψ2 of a fixed Schrödinger operator (1.2) (or (1.3)) the function
F will be the same, i.e.,

ψ1 = Fφ1, ψ2 = Fφ2.

Since it is already known from one-electron atoms that ψ is just locally Lipschitz, F
cannot be smoother than that. We shall see that by choosing F in a special way one can
say a lot more. Let us first recall some of the ideas developed in [9].

Suppose ψ is a solution to (−$ + V )ψ = Eψ in ' ⊆ R3N . Set ψ = eF φ, then φ
satisfies

$φ + 2∇F · ∇φ +
(
$F + |∇F |2 + (E − V )

)
φ = 0. (1.5)

Now assume H = −$ + V is given by (1.2). The specific nature of the Coulomb
potential makes it possible to find an explicit F such that $F = V , namely

F(x) ≡ F2(x) := −1
2

N∑

j=1

L∑

%=1

Z%|X% − xj | + 1
4

∑

1≤i<j≤N

|xi − xj |.

We have given F an index 2 to indicate that F2 is a sum of functions each only depending
on the coordinates of two particles. If we insert F2 into (1.5) we obtain

$φ2 + 2∇F2 · ∇F2 · ∇φ2 +
(
|∇F2|2 + E

)
φ2 = 0,

where we have also given φ an index 2 to show that it is associated with F2. The regular-
ity properties of φ2 are now determined by the regularity of ∇F2, respectively, |∇F2|2.
Since ∇F2 is locally in L∞, standard elliptic regularity theory (see Sect. 2) gives us that

φ2 ∈ C1,α(') for α ∈ (0, 1). (1.6)

(For the definition of the Hölder-spaces Ck,α , see Definition 2.1). Since ∇F2 is not
continuous, one cannot in general expect anything better than (1.6). Note that since
ψ = eF2φ2 we have

∇ψ − (∇F2)ψ ∈ Cα(') for α ∈ (0, 1). (1.7)

This is a general formulation of Kato’s cusp condition [13] which plays an important
role in the numerical treatment of (1.4). (Here, and in the sequel, by a ‘cusp condition’
we understand that condition that solution ψ has to satisfy at a point in the singular set
((X)).

We are now ready to state our main result about the regularity of ψ .
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Theorem 1.1. Suppose ψ is a solution to Hψ = Eψ in ' ⊆ R3N , where H is given by
(1.2). Define yi,% = xi − X%, i ∈ {1, . . . , N}, % ∈ {1, . . . , L}. Let

F = eF2+F3 (1.8)

with

F2(x) = −1
2

L∑

%=1

N∑

i=1

Z%|yi,%| + 1
4

∑

1≤i<j≤N

|xi − xj |, (1.9)

F3(x) = C0

L∑

%=1

∑

1≤i<j≤N

Z% (yi,% · yj,%) ln
(
|yi,%|2 + |yj,%|2

)
, (1.10)

where C0 = 2−π
12π .

Then

ψ = Fφ3 (1.11)

with

φ3 ∈ C1,1('). (1.12)

Furthermore this representation is optimal in the following sense: There is no other
function F̃ depending only on X, Z and on N , but not on ψ or E itself, such that ψ = F̃φ
with φ having more regularity than C1,1.

Remark 1.2.

(i) Of course one can consider more general Hamiltonians, for instance molecular
Hamiltonians where the nuclei are allowed to move. Kato [13] considered this
case. Our results, suitably modified, extend to this situation. We concentrate on the
model with fixed nuclei since this is the ‘standard model’ in molecular physics.

(ii) For the proof of Theorem 1.1 a special regularity result (see Theorem 2.6) for solu-
tions of the Poisson equation $u = g will be vital. Roughly speaking, if g ∈ L∞

has a certain multiplicative structure, we can show that u ∈ C1,1, and not only
u ∈ C1,α, α ∈ (0, 1) as in general (see Proposition 2.2). This result is of indepen-
dent interest.

(iii) Note that each term in the sum F2 is either a term involving the coordinates of one
electron and one nucleus, or the coordinates of two electrons, whereas the terms in
F3 involve the coordinates of two electrons and one nucleus. In the representation
(1.10) of F3 no terms involving the coordinates of three electrons occur; see Sect. 3
for details.
The fact that no terms involving the coordinates of four and more particles show up
in F3 stems from the fact that in the summands contributing to |∇F2|2 only terms
involving at most three particle coordinates occur (again, see Sect. 3 for details).

(iv) An immediate consequence of Theorem 1.1 is the following sharpening of (1.7):

∇ψ − ψ(∇F2 + ∇F3) ∈ C0,1(').

(v) Attempts to approximate many-particle wave functions by a product as in (1.11)
are common in computational chemistry and physics. There, such an F is usually
called a ‘Jastrow factor’.
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It is also interesting to consider the regularity of ψ near the zero-set N (ψ) = {x ∈
R3N | ψ = 0} of ψ . A simple argument shows that Theorem 1.1 actually implies
that ∇ψ : N (ψ) )→ R3N is locally Lipschitz, whereas ∇ψ is just locally L∞ in
((X) \ N (ψ). By ‘locally Lipschitz’ we here mean the following: For all closed balls
K ⊂ R3N , there is a constant C = C(K) such that |∇ψ(x) − ∇ψ(y)| ≤ C(K)|x − y|
for all x, y ∈ N (ψ) ∩ K . Indeed, writing ∇ψ = ψ∇(F2 + F3) + exp(F2 + F3)∇φ3,
we get, for x ∈ N (ψ), that ∇ψ(x) = exp(F2(x) + F3(x))∇φ3(x) since ∇(F2 + F3)
is locally in L∞. The assertion follows, since both exp(F2 + F3) and ∇φ3 are locally
Lipschitz in R3N .

In [8] it was shown for a wide class of potentials that at their zero-sets real valued
distributional solutions (which for these potentials are then actually continuous func-
tions) to (−$ + V )u = 0 are, roughly speaking, by one degree smoother than away
from their zero sets. So the observation above extends these results to the Coulombic
case. The potentials considered in [8] were of Kato type, Kn,δ , where n is the dimension
(in our case, n = 3N ) and δ ∈ (0, 2); see [19] for definitions and many far-reaching
results concerning these potentials. In [19] (see also [20]) it was shown that solutions are
locally Cδ for δ < 1 and C1,δ−1 for δ ∈ (1, 2). However, since the Coulomb potential
V in (1.1) is in K3N,δ for all δ < 1, but not in K3N,1 these results are not sharp and
actually weaker than Kato’s result.

It is not surprising that logarithms occur in (1.10). Such terms have been considered in
classical work by Fock [3] for the atomic case; see Morgan [16] for an analysis of these
‘Fock-expansions’ for two-electron atoms (see also Morgan et al [17]). These papers
also contain many references to earlier work on such expansions.

Proof of the optimality of the representation (1.11) . It suffices to find a simple example.
Consider the one electron atom whose Hamiltonian is given on R3 by

H = −$ − Z

|x|
, x = (x1, x2, x3) ∈ R3.

With ψ1(x) = e− Z
2 |x| and ψ2 = x1e

− Z
4 |x| we have

Hψ1 = − Z2

4 ψ1 , Hψ2 = − Z2

16 ψ2.

Write ψ1 = Fφ(1) and ψ2 = Fφ(2). Now ψ1 > 0 and if we had an F which would
allow more regularity of the φ(i)’s, then

φ(2)

φ(1)
= ψ2

ψ1
= x1e

Z
4 |x| (1.13)

would be better behaved than just C1,1. But near the origin the right-hand side of (1.13)
behaves like x1(1 + Z

4 |x|) and this is just C1,1, i.e., the second derivatives are bounded
but not continuous. -.

We point out some consequences of Theorem 1.1 which can be viewed as cusp con-
ditions for second order derivatives of ψ . Indeed, we can relate the singularities of the
second order derivatives of F ≡ F2 + F3 with those of the second order derivatives of
ψ in a precise way, thereby obtaining certain identities. Here we only explicitly state
some representative cases.
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Corollary 1.3. Let ψ be a solution to Hψ = Eψ in R3N with H given by (1.2).

(i) Let 1 ≤ i < j ≤ N , and fix any point z0 = (z1, . . . , zN) ∈ R3N with zi = zj ≡ z.
Then

lim
R→0

∥∥∥
(
|xi − xj | ∇i · ∇j ψ

)
+ 1

2
ψ(z0)

∥∥∥
L∞(B3N(z0,R))

= 0. (1.14)

(ii) Let 1 ≤ i ≤ N , 1 ≤ % ≤ L, and fix any point z0 = (z1, . . . , zN) ∈ R3N with
zi = X%, zj &= X%, j &= i.
Then

lim
R→0

∥∥∥
(
|xi − X%| $iψ

)
+ Z% ψ(z0)

∥∥∥
L∞(B3N(z0,R))

= 0. (1.15)

Proof. We first note that (1.12) implies that (with F = F2 + F3),

ψ∇i · ∇jF − ∇i · ∇jψ ∈ L∞
loc(R3N). (1.16)

In order to show (1.14) we first show that

lim
x→z0

|xi − xj | ∇i · ∇j F (x) = −1
2
. (1.17)

An easy calculation shows that

lim
x→z0

|xi − xj |∇i · ∇j F2(x) = −1
2
.

If z &= X% for all % then ∇i ·∇j F3 is smooth near z0. We therefore only need to consider
the case z = X%. We have

∇i · ∇jF3 =
C0Z%∇i · ∇j

{(
(xi − X%) · (xj − X%)

)
ln

(
|xi − X%|2 + |xj − X%|2

)}

= 3C0Z% ln
(
|xi − X%|2 + |xj − X%|2

)
+ η,

where η is bounded in a neighbourhood of z0. Noting that

|xi − xj | ≤
√

2
(
|xi − X%|2 + |xj − X%|2

)1/2
,

we see that

lim
x→z0

|xi − xj | ∇i · ∇jF3(x) = 0.

Using the triangle inequality we obtain
∥∥∥ |xi − xj | (∇i · ∇jψ) + 1

2
ψ(z0)

∥∥∥
L∞(B3N(z0,R))

≤
∥∥∥|xi − xj |

(
(∇i · ∇jψ) − (∇i · ∇jF )ψ

)∥∥∥
L∞(B3N(z0,R))

+
∥∥∥|xi − xj | (∇i · ∇j F )ψ + 1

2
ψ(z0)

∥∥∥
L∞(B3N(z0,R))

.

This, (1.16), and (1.17) imply (1.14).
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The proof of (1.15) is similar. Just note that

|xi − X%| $iF2 = −Z% + |xi − X%|
( ∑

j &=i

1
2|xj − xi |

−
L∑

k &=%

Zk

|xi − Xk|

)
.

-.

The results in Theorem 1.1 are not well suited for obtaining a priori estimates. In partic-
ular neither F2 nor F3 stay bounded as |x| tends to infinity so that if, say, ψ ∈ L2(R3N)
then φ3 is not necessarily in L2(R3N). These shortcomings will be dealt with below in
a similar way as in [9].

Definition 1.4. Let χ ∈ C∞
0 (R), 0 ≤ χ ≤ 1, with

χ(x) =
{

1 for |x| ≤ 1
0 for |x| ≥ 2.

(1.18)

We define

Fcut = F2,cut + F3,cut, (1.19)

where

F2,cut(x) = −1
2

L∑

%=1

N∑

i=1

Z% χ(|yi,%|) |yi,%| (1.20)

+ 1
4

∑

1≤i<j≤N

χ(|xi − xj |) |xi − xj |,

F3,cut(x) = (1.21)

C0

L∑

%=1

∑

1≤i<j≤N

Z% χ(|yi,%|)χ(|yj,%|)(yi,% · yj,%) ln
(
|yi,%|2 + |yj,%|2

)
,

and where C0 is the constant from (1.10). We also introduce φ3,cut by

ψ = eFcutφ3,cut. (1.22)

Theorem 1.5. Suppose ψ is a solution to Hψ = Eψ in R3N . Then for all 0 < R < R′

there exists a constant C(R, R′), not depending on ψ nor x0 ∈ R3N , such that for any
second order derivative,

∂2 = ∂2

∂xi,k∂xj,%
, i, j = 1, 2, . . . , N, k, % = 1, 2, 3,

the following estimate holds:

‖∂2ψ − ψ ∂2Fcut‖L∞(B3N(x0,R)) ≤ C(R, R′)‖ψ‖L∞(B3N(x0,R′)). (1.23)
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Remark 1.6. Theorem 1.5 strengthens results obtained in [9]. More precisely, to prove
Theorem 1.5 we will show that

‖φ3,cut‖C1,1(B3N(x0,R)) ≤ C(R, R′)‖φ3,cut‖L∞(B3N(x0,R′)). (1.24)

The estimate (1.23) is then a trivial consequence of (1.24). (On the other hand, (1.23)
and (1.25) imply (1.24)).

The estimate (1.24) is a strengthening of Proposition 1.7 below to α = 1. We state
and prove the proposition here, since we need it in the proof of (1.24). It essentially
follows from ideas in [9].

Proposition 1.7. Suppose ψ is a solution to Hψ = Eψ in R3N . Then for all 0 < R < R′

and all α ∈ (0, 1) there exists a constant C(α, R, R′), not depending on ψ nor x0 ∈ R3N ,
such that, with φ3,cut defined as above,

‖φ3,cut‖C1,α(B3N(x0,R)) ≤ C‖φ3,cut‖L∞(B3N(x0,R′)). (1.25)

Proof of Proposition 1.7 . Note first that with ψ = eF2,cutφ2,cut, (1.5) and $F2 = V gives

$φ2,cut + 2∇F2,cut · ∇φ2,cut (1.26)

+
(
$(F2,cut − F2) + |∇F2,cut|2 + E

)
φ2,cut = 0.

It follows from the form of F2,cut and F2 (see (1.20), (1.18), and (1.9)) that the coeffi-
cients in (1.26) above are uniformly bounded in R3N . Therefore, (1.25), with φ2,cut
instead of φ3,cut, follows from standard elliptic regularity results (see Proposition 2.2).
To get (1.25) with φ3,cut, note that φ3,cut = e−F3,cutφ2,cut, and that F3,cut ∈ C1,α(R3N)
and has compact support (see (1.21) and (1.18)). -.

1.2. Organisation of the paper. For simplicity we shall only give the proofs of The-
orems 1.1 and 1.5 for the atomic case (i.e., % = 1, X1 = 0 and Z1 = Z, see (1.3)).
Indeed, no additional complications arise for molecules. Also, we only give the proof of
Theorem 1.1 in the case ' = R3N .

In Subsect. 1.3 we define some notation to be used in the entire paper. Sect. 2 contains
standard elliptic regularity results in Subsect. 2.1. Subsect. 2.2 contains in particular the
elliptic regularity result Theorem 2.6, which is proved in Subsect. 2.3. Theorem 2.6 is
the essential new mathematical input necessary for the proofs of Theorems 1.1 and 1.5.
These proofs are given in Sect. 3—the proof of Theorem 1.1 in Subsect. 3.1 and that of
Theorem 1.5 in Subsect. 3.2. The Appendices A, B, and C contain the construction of
solutions to certain Poisson equations. These solutions are another important ingredient
for the proofs of the main theorems.

1.3. Notation. Throughout the paper, constants occurring in inequalities will be denoted
by the symbol C, although their actual value might change from line to line.

For x ∈ Rn (n ≥ 2) we write x = rω, with r = |x|, ω = x/|x| ∈ Sn−1, the unit
sphere in Rn. Denote by Bn(x, r) the open ball of radius r > 0 around x.

We denote by Yl,m(ω) the normalised (in L2(Sn−1)) real valued spherical harmonics
of degree l, l ∈ N0, with m = 0, 1, . . . , h(l) − 1, where

h(l) = (2l + n − 2)(l + n − 3)!
(n − 2)! l !

. (1.27)
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Then {Yl,m}l,m constitutes an orthonormal basis in L2(Sn−1).
The Yl,m’s are the eigenfunctions for L2, the Laplace-Beltrami operator on Sn−1:

L2Yl,m = l(l + n − 2)Yl,m,

where − L2

r2 is the angular part of the Laplacian in Rn, so

− $ = − ∂2

∂r2 − n − 1
r

∂

∂r
+ L2

r2 .

We define P(n)
l,m to be the orthogonal projection in L2(Sn−1) on Yl,m:

(
P(n)

l,mf
)
(ω) = Yl,m(ω)

∫

Sn−1
Yl,m(ω)f (ω) dω , f ∈ L2(Sn−1),

and

P(n)
l =

h(l)−1∑

m=0

P(n)
l,m. (1.28)

We denote h(n)
l = Ran(P(n)

l ).
By abuse of notation, for a function f : Rn → C we write f (rω) = f (x), and,

whenever f (r0 ·) : Sn−1 → C is in L2(Sn−1) for some r0 ∈ (0, ∞), we write

(
P(n)

l,mf
)
(r0ω) = Yl,m(ω)

∫

Sn−1
Yl,m(ω)f (r0ω) dω ≡ fl,m(r0)Yl,m(ω).

2. Elliptic Regularity

In this section we collect results on the regularity of solutions to second order elliptic
equations needed for the proof of Theorems 1.1. and 1.5. The results fall in two parts,
known ones (in Subsect. 2.1) and new ones, developed for our purpose, and of interest
in themselves. The latter are in Subsect. 2.2. The result of main interest is Theorem 2.6,
which is proved in Subsect. 2.3.

2.1. Known results. We start by recalling the definition of Hölder continuity:

Definition 2.1. Let ' be a domain in Rn, k ∈ N, and α ∈ (0, 1]. We say that a function
u belongs to Ck,α(') whenever u ∈ Ck('), and for all β ∈ Nn with |β| = k, and all
open balls Bn(x0, r) with Bn(x0, r) ⊂ ', we have

sup
x,y∈Bn(x0,r), x &=y

|Dβu(x) − Dβu(y)|
|x − y|α

≤ C(x0, r).

For any domain '′, with '′ ⊂⊂ ', we define the following norms:

‖u‖Ck,α('′) =
∑

|β|≤k

‖Dβu‖L∞('′) + [u]k,α,'′ ,

[u]k,α,'′ =
∑

|β|=k

sup
x,y∈'′, x &=y

|Dβu(x) − Dβu(y)|
|x − y|α

.
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For k = 0 we use the notation Cα(') ≡ C0,α(') and [u]α,'′ ≡ [u]0,α,'′ .
Furthermore, for a function u ∈ Cα(Rn \ {0}) we define

‖u‖Cα(Sn−1) = sup
Sn−1

|u| + [u]α,Sn−1 , (2.1)

[u]α,Sn−1 = sup
x,y∈Sn−1, x &=y

|u(x) − u(y)|
|x − y|α

.

We will need the following result on elliptic regularity in order to conclude that the
solutions of elliptic second order equations with bounded coefficients are C1,α . The
proposition is a reformulation of Corollary 8.36 in Gilbarg and Trudinger [7], adapted
for our purposes:

Proposition 2.2. Let '0 be a bounded domain in Rn and suppose u ∈ W 1,2('0) is a
weak solution of $u +

∑n
j=1 bjDju + Wu = g in '0, where bj , W, g ∈ L∞('0).

Then u ∈ C1,α('0) for all α ∈ (0, 1) and for any domains '′, ', '′ ⊂ ', ' ⊂ '0 we
have

‖u‖C1,α('′) ≤ C
(

sup
'

|u| + sup
'

|g|
)

for C = C(α, n, M, dist('′, ∂')), with

max{1, max
j=1,... ,n

‖bj‖L∞('), ‖W‖L∞('), ‖g‖L∞(')} ≤ M.

We further need results concerning the regularity of solutions of the Poisson equation.
These regularity properties are based on the regularity properties of the Newton potential
of the inhomogeneity. For our further considerations we recall here the properties of this
function.

Let g ∈ L∞(') for ' a bounded domain in Rn, n ≥ 2. The Newton potential of g
is the function w defined on Rn by

w(x) =
∫

'
0(x − y)g(y)dy (2.2)

with

0(x) =
{

1
2π ln(|x|), n = 2,

1
(2−n) |Sn−1| |x|2−n, n ≥ 3.

From [15, Theorem 10.2 and 10.3] we have

Proposition 2.3. Let ' ⊂ Rn, n ≥ 2, be a bounded domain, then:

(i) If g ∈ L∞('), then w ∈ C1,α(') for all α ∈ (0, 1), and $w = g in ' holds in
the distributional sense.

(ii) If g ∈ Ck,α(') for some k ∈ N and some α ∈ (0, 1), then w ∈ Ck+2,α(').

Since every solution to the Poisson equation can be written as a sum of the Newton
potential of the inhomogeneity and a harmonic function, the above implies in particular
the following well-known result:
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Proposition 2.4. Let g ∈ Ck,α('0) for some k ∈ N and some α ∈ (0, 1), and assume u
is a weak solution to $u = g in '0.

Then u ∈ Ck+2,α('0). Furthermore, for any domains '′, ' with '′ ⊂ ', ' ⊂ '0,
we have

‖u‖Ck+2,α('′) ≤ C
(

sup
'

|u| + ‖g‖Ck,α(')

)
, (2.3)

with C = C(n, k, α, dist('′, ∂')).

The next lemma, which is taken from Gilbarg and Trudinger [7, Lemma 4.2], is
essential for the proof of the main regularity result in Subsect. 2.2.

Lemma 2.5. Let ' be a bounded domain in Rn, n ≥ 2 and let g ∈ Cα(') ∩ L∞(')
for some α ∈ (0, 1].

Then the Newton potential w of g (given in (2.2)) satisfies, for x ∈ ' and i, j =
1, 2, . . . , n,

Dijw(x) =
∫

'0

Dij0(x − y)
(
g(y) − g(x)

)
dy

− g(x)

∫

∂'0

Di0(x − y)νj (y) dσ (y). (2.4)

Here, '0 is any bounded domain containing ' for which the divergence theorem holds,
and g is extended to vanish outside '. In the last integral, dσ denotes the surface
measure of ∂'0, and νj the j th coordinate of its (outward directed) unit normal vector.

2.2. New results. We here collect a number of more explicit regularity results needed
in the proof of Theorems 1.1 and 1.5.

The following result shows that one can push the C1,α, α ∈ (0, 1), in Proposition 2.2
to C1,1 in certain cases.

Theorem 2.6. Let g ∈ L∞(Rk), k ≥ 2, be a homogeneous function of degree 0 which
has the properties g ∈ Cα(Rk \ {0}) and g|Sk−1 is orthogonal to h(k)

2 (the subspace of
L2(Sk−1) spanned by the spherical harmonics of degree 2). Let f ∈ Cα(Rd) for some
d ≥ 0 and let u ∈ C1,α(Rk+d) be a weak solution of the equation

$u(x′, x′′) = g(x′)f (x′′), (2.5)

where x′ ∈ Rk, x′′ ∈ Rd , $ = $x′ + $x′′ .
Then u ∈ W 2,∞

loc (Rn), n = k + d , and the following a priori estimate holds:
For all balls Bn(z, R) and Bn(z, R1) in Rn where 0 < R < R1, z ∈ Rn,

sup
Bn(z,R)

|Diju| ≤ C
(

sup
Bn(z,R1)

|u| +
(

sup
Sk−1

|g|
)
‖f ‖Cα(πdBn(z,R1))

+
(

sup
πdBn(z,R1)

|f |
)

‖g‖Cα(Sk−1)

)
(2.6)

with C = C(n, α, R, R1). Here πd(x′, x′′) = x′′ for x′ ∈ Rk , x′′ ∈ Rd for d > 0; for
d = 0, πd(x′) = 0.
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Remark 2.7.

(i) The case d = 0 means that f is a constant and the terms in (2.6) with f then equal
this constant.

(ii) The reason for the condition k ≥ 2 will become clear in the proof of the theorem,
when Lemma 2.5 is applied.

(iii) Note that if k = 0, d ≥ 2, one has stronger conclusions: Eq. (2.5) becomes$u(y) =
f (y) with f ∈ Cα(Rd), so by Proposition 2.4, u ∈ C2,α(Rd). The a priori estimate
analogous to (2.6) is then a consequence of Hölder-estimates for u (see e. g., [7,
Corollary 6.3]).

(iv) Using the standard fact ([2, Theorem 4 in 5.8]) that W 2,∞
loc (Rn) = C1,1

loc (Rn) (with
equivalent norms) we may replace the term supBn(z,R) |Diju| by [u]1,1,Bn(z,R) on
the left-hand side in (2.6).

(v) For the special solution to (2.5) given by the Newton potential of gf , the estimate
(2.6) holds without the term supBn(z,R1)

|u| on the right-hand side (see (2.16)).

Since the proof of Theorem 2.6 is a bit lengthy we present it separately in Subsect. 2.3.
The following proposition, on solutions to Poisson’s equation, when the inhomoge-

neity f in $u = f is a homogeneous function, is needed often in the paper.

Proposition 2.8. Assume that the function g satisfies
g(rω) = rkG(ω) with G ∈ L∞(Sn−1) and P(n)

k+2G = 0.
Then there exists a solution u to

$u = g on Bn(0, R) ⊂ Rn, (2.7)

satisfying u(rω) = rk+2U(ω) with U ∈ C1,α(Sn−1) for all α ∈ (0, 1).

Proof. Let

gl,m(r) =
∫

Sn−1
g(rω)Yl,m(ω) dω = rk

∫

Sn−1
G(ω)Yl,m(ω) dω = rkgl,m.

Then (see (1.27) for h(l))

g(rω) = rk
∞∑

l=0,l &=k+2

h(l)−1∑

m=0

gl,mYl,m(ω),

since gk+2,m = 0 for all m.
Now define

U(ω) =
∞∑

l=0,l &=k+2

h(l)−1∑

m=0

gl,m

bl(n, k)
Yl,m(ω) (2.8)

with bl(n, k) ≡ (k + 2)((k + 2) + n − 2) − l(l + n − 2). Note that bl(n, k)) &= 0
for l &= k + 2. Since

∑
l,m gl,mYl,m ∈ L2(Sn−1) (since G ∈ L∞(Sn−1)) the sum (2.8)

therefore converges in L2(Sn−1).



Sharp Regularity Results for Coulombic Many-Electron Wave Functions 195

Make the Ansatz u(rω) = rk+2U(ω), and denote for N ∈ N,

gN(rω) =
N∑

l=0,l &=k+2

h(l)−1∑

m=0

gl,mrk Yl,m(ω),

uN(rω) = rk+2
N∑

l=0,l &=k+2

h(l)−1∑

m=0

gl,m

bl(n, k)
Yl,m(ω).

Now let φ ∈ C∞
0

(
Bn(0, R)

)
, then, using that L2Yl,m = l(l + n − 2)Yl,m,

∫

Bn(0,R)
φ($u − g) dx =

∫

Bn(0,R)
($φ)(u − uN) dx +

∫

Bn(0,R)
φ(gN − g) dx. (2.9)

Since u − uN → 0, g − gN → 0 (in L2 - sense) for N → ∞, the RHS of 2.9 tends
to zero for N → ∞. Hence u = rk+2U(ω) solves 2.7 in the distributional sense. With
w the Newton potential corresponding to g (see 2.2), we have w ∈ C1,α(Bn(0, R)) due
to Proposition 2.3, and u − w is harmonic, so u ∈ C1,α(Bn(0, R)). This implies that
U ∈ C1,α(Sn−1). -.

We prove the following useful lemma:

Lemma 2.9. Let G : U → Rn for U ⊂ Rn+m a neighbourhood of a point (0, y0) ∈
Rn × Rm. Assume G(0, y) = 0 for all y such that (0, y) ∈ U . Let

f (x, y) =
{ x

|x| · G(x, y), x &= 0,

0, x = 0.

Then, for α ∈ (0, 1],

G ∈ C0,α(U ; Rn) ⇒ f ∈ C0,α(U). (2.10)

Furthermore, ‖f ‖Cα(U) ≤ 2‖G‖Cα(U).

Proof. Let α ∈ (0, 1]. We need to estimate f (x1,y1)−f (x2,y2)
|(x1,y1)−(x2,y2)|α .

Suppose first that x2 = 0. Then f (x2, y2) = 0 and we get

|f (x1, y1) − f (0, y2)|
|(x1, y1) − (0, y2)|α

≤

∣∣∣ x1
|x1| · G(x1, y1)

∣∣∣

|x1|α
≤

∣∣∣∣
x1

|x1|

∣∣∣∣ · |G(x1, y1)|
|x1|α

≤ ‖G‖Cα(U),

since G ∈ Cα(U ; Rn) and G(0, y1) = 0.
Next, suppose 0 < |x2| ≤ |x1|. By the triangle inequality:

∣∣f (x1, y1) − f (x2, y2)
∣∣ ≤

∣∣∣
x1

|x1|
·
(
G(x1, y1) − G(x2, y2)

)∣∣∣

+
∣∣∣(

x1

|x1|
− x2

|x2|
) · G(x2, y2)

∣∣∣.
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Using that G is Cα and that G(0, y2) = 0, we get
∣∣f (x1, y1) − f (x2, y2)

∣∣

≤ ‖G‖Cα(U)

(∣∣(x1, y1) − (x2, y2)
∣∣α +

∣∣∣
( x1

|x1|
− x2

|x2|
)∣∣∣ |x2|α

)
.

To control the last term—divided by
∣∣(x1, y1)−(x2, y2)

∣∣α—we first derive a lower bound
on

∣∣(x1, y1) − (x2, y2)
∣∣α:

∣∣(x1, y1) − (x2, y2)
∣∣2 ≥ |x1 − x2|2

=
(
|x1| − |x2|

)2 + |x1| |x2|
( x1

|x1|
− x2

|x2|

)2
≥ |x1| |x2|

( x1

|x1|
− x2

|x2|

)2
.

Therefore, using the assumption 0 < |x2| ≤ |x1|,
∣∣(x1, y1) − (x2, y2)

∣∣α ≥ |x2|α
∣∣∣

x1

|x1|
− x2

|x2|

∣∣∣
α
.

This finishes the proof of the lemma. -.
The following obvious lemma is used repeatedly throughout the paper:

Lemma 2.10. Assume f (rω) = r2G(ω) with G ∈ C1,1(Rn \ {0}) ∩ L∞(Rn). Then
f ∈ C1,1(Rn).

Proof. The first derivatives of f trivially exist and are continuous. Therefore it suffices
to show that all derivatives of f of second order belong to L∞

loc(Rn); the result then
follows from Remark 2.7 (iv),

∂2f

∂xj∂xk
= 2δj,kG(ω) + 2

(
xj

∂G

∂xk
+ xk

∂G

∂xj

)
+ r2 ∂2G

∂xj∂xk
∈ L∞

loc(Rn),

since G ∈ C1,1(Rn \ {0}). This proves the lemma. -.
Note that a better regularity cannot be expected without assuming continuity of G at
x = 0. On the other hand, if G only depends on ω ∈ Sn−1, and G is continuous at x = 0,
then G is a constant.

2.3. Proof of Theorem 2.6. We first investigate, for x0 ∈ Bn(z, R1), the behaviour of
the Newton potential w as given in (2.2), namely

w(x0) =
∫

Bn(z,R1)

0(x0 − y)g(y′)f (y′′) dy (2.11)

with y = (y′, y′′) ∈ Rk+d = Rn.
Since u and w are C1,α - solutions of (2.5) in Bn(z, R1) (see Proposition 2.2),

h = u − w is harmonic. Any harmonic function h in a bounded domain ' satisfies the
following a priori estimate (see [7, Theorem 2.10]):

sup
K

|Dijh| ≤ C(n)

δ2 sup
'

|h| , i, j ∈ {1, . . . , n}, (2.12)
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with K compact, K ⊂ ' ⊂ Rn, and δ = dist(K, ∂'). So, by (2.11) and (2.12), for
x0 ∈ Bn(z, R) (recall that h = u − w)

|Diju(x0)| ≤ C(n)

(R1 − R)2

(
sup

Bn(z,R1)

|u|

+ C(n, R1)
(

sup
Sk−1

|g|
)(

sup
πdBn(z,R1)

|f |
))

+ |Dijw(x0)|. (2.13)

Therefore to prove that u ∈ W 2,∞
loc (Rn) and that u satisfies (2.6) it obviously remains

to show that w satisfies the a priori estimate (2.6). This will be done via Lemma 2.5 and
will finish the proof of Theorem 2.6.

We proceed as follows: Define N = {(x′, x′′) ∈ Rn | x′ = 0} and note that |N | = 0
(|N | denotes n-dimensional Lebesgue measure of N ) and that for every ball Bn ⊂ Rn,
Bn \ N is still a domain. For this the assumption k ≥ 2 is vital (see also Remark 2.7
(ii)). Note also that (still with x0 ∈ Bn(z, R1)) w can be written as

w(x0) =
∫

Bn(z,R1)\N
0(x0 − y)g(y′)f (y′′) dy. (2.14)

Taking into account the Hölder continuity assumptions on g and f it is easily seen that
for every domain ' ⊂ Rn, gf ∈ Cα(' \ N). Hence (2.14) and Proposition 2.4 imply
that w ∈ C2,α

(
Bn(z, R1) \ N

)
.

Now we are ready to apply Lemma 2.5: Pick ' = Bn(z, R1)\N and '0 = Bn(z, R2)
with R1 < R2, then we obtain from (2.4), for x0 ∈ Bn(z, R1) \ N , that

Dijw(x0) =
∫

Bn(z,R2)
Dij0(x0 − y)

(
(gf )(y) − (gf )(x0)

)
dy

− (gf )(x0)

∫

∂Bn(z,R2)
Di0(x0 − y)νj (y) dσ (y)

≡ I (x0) + J (x0). (2.15)

Here as before gf is extended by zero outside Bn(z, R1)\N . Noting again that |N | = 0,
we can use this integral representation to derive the a priori estimates on Dijw. We want
to show that for 0 < R < R1,

sup
Bn(z,R)

|Dijw| (2.16)

≤ C2

[(
sup
Sk−1

|g|
)
‖f ‖Cα(πdBn(z,R1)) +

(
sup

πdBn(z,R1)

|f |
)
‖g‖Cα(Sk−1)

]
,

where C2 = C2(n, α, R1 − R, R/R1). Inequality (2.16) together with inequality (2.13)
will yield the desired a priori estimate (2.6) and implies in particular that u ∈ W 2,∞

loc
(Rk+d). So to finish the proof of Theorem 2.6 it remains to prove inequality (2.16). For
this we have to estimate the integrals I (x0) and J (x0) in (2.15). We state the estimates
in the following lemma (Lemma 2.11), which we then apply to prove inequality (2.16).
The proof of Lemma 2.11 is given afterwards. For convenience we shall henceforth use
the following notation: B = Bn(z, R), Bj = Bn(z, Rj ), j = 1, 2.
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Lemma 2.11. With I (x0) and J (x0) as in (2.15) we have the estimates

|I (x0)| ≤ C(n)
( R2

R1 − R

)n(
sup
Sk−1

|g|
) (

sup
πdB1

|f |
)

+ C(n, α) (R1 − R)α
(

sup
Sk−1

|g|
)[

f
]
α,πdB1

+ C(n, α)
(

sup
πdB1

|f |
)

‖g‖Cα(Sk−1), (2.17)

|J (x0)| ≤ C(n) sup
Bn(z,R)

|gf |
( R2

R2 − R

)n−1
(2.18)

for x0 ∈ Bn(z, R) \ N .

Combining the inequalities (2.17) and (2.18) with (2.15) leads to the a priori estimate

sup
x0∈Bn(z,R)

|Dijw(x0)| (2.19)

≤ C(n)
[( R2

R1 − R

)n
+

( R2

R2 − R

)n−1](
sup
Sk−1

|g|
) (

sup
πdB1

|f |
)

+ C(n, α)
[
(R1 − R)α

(
sup
Sk−1

|g|
) [

f
]
α,πdB1

+
(

sup
πdB1

|f |
)

‖g‖Cα(Sk−1)

]
.

Finally we pick R2 = 2R1 and obtain, with C = C(n, α, R, R1),

sup
Bn(z,R)

|Dijw| ≤ C
[(

sup
Sk−1

|g|
)

‖f ‖Cα(πdB1) (2.20)

+
(

sup
πdB1

|f |
)
‖g‖Cα(Sk−1)

]
.

This finishes the proof of (2.16) and according to our previous considerations the proof
of Theorem 2.6. It remains to prove the estimates in Lemma 2.11.

Proof of Lemma 2.11 . We start by proving the estimate (2.18) on J (x0). For y ∈ ∂B2
and x0 ∈ Bn(z, R) \ N we have |x0 − y| ≥ R2 − R. This, and

|Di0(x0 − y)| ≤ C(n)

|x0 − y|n−1 ,

yields

|J (x0)| ≤ |(gf )(x0)|
∫

∂B2

|Di0(x0 − y) νj (y)|dσ (y)

≤ C(n) sup
Bn(z,R)

|gf |
( R2

R2 − R

)n−1
,

verifying (2.18).
It remains to prove the estimate (2.17) on I (x0). This is more involved. With R′ =

R1 − R and ' = Bn(z, R2) \ N , write

I (x0) = I1(x0, R
′) + I2(x0, R

′) (2.21)
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with

I1(x0, R
′) =

∫

'\Bn(x0,R′)
Dij0(x0 − y)

(
(gf )(y) − (gf )(x0)

)
dy,

I2(x0, R
′) =

∫

Bn(x0,R′)
Dij0(x0 − y)

(
(gf )(y) − (gf )(x0)

)
dy.

Clearly we have (since gf ≡ 0 on B2 \ B1 and g is homogeneous)

|I1(x0, R
′)| ≤ 2

(
sup
B1

|gf |
) ∫

'\Bn(x0,R′)
|Dij0(x0 − y)| dy

≤ C(n)
(

sup
Sk−1

|g|
) (

sup
πdB1

|f |
)(R2

R′
)n

. (2.22)

The estimate for I2(x0, R
′) will be more involved and we need several steps.

First notice that

(Dij0)(x) = P2(x)

|x|n+2 , (2.23)

where P2 is a homogeneous harmonic polynomial of degree 2 (which clearly depends on
the indices i, j ; we suppress these for simplicity). Use polar coordinates x =rω, r =|x|,
ω = x/|x|, and obtain (using

∫
Sn−1 P2(ω) dω = 0, and (2.23)) that

I2(x0, R
′) = C(n)

∫ R′

0

∫

Sn−1
r−1P2(ω)

(
gf

)
(x0 + rω) dω dr. (2.24)

Denote x ∈ Rn by x = (x′, x′′) = rω = r(ω′, ω′′), where ω′ ∈ Rk , ω′′ ∈ Rd (so that
|ω′|2 + |ω′′|2 = 1; when d = 0, ω′′ ≡ 0). With this, write

I2(x0, R
′) = C(n)

∫ R′

0
r−1(I (1)

2 (x0, r) + I
(2)
2 (x0, r)

)
dr (2.25)

with (I (1)
2 = 0 when d = 0)

I
(1)
2 (x0, r) =

∫

Sn−1
P2(ω) g(x′

0 + rω′)
(
f (x′′

0 + rω′′) − f (x′′
0 )
)
dω,

I
(2)
2 (x0, r) = f (x′′

0 )

∫

Sn−1
P2(ω) g(x′

0 + rω′) dω.

We need to estimate |I (1)
2 | and |I (2)

2 | such that we gain a suitable r-behaviour for small,
respectively, large r which will enable us to estimate |I2(x0, R

′)|.
Firstly, due to Lemma 2.5, (gf )(y) is defined to be zero for y ∈ B2 \B1 in I (x0) and

formula (2.15) holds for x0 ∈ B1 \ N . Using this formula just for x0 ∈ Bn(z, R) \ N we
have x0 + rω ∈ B1 for all r with 0 ≤ r ≤ R′ = R1 − R and therefore (up to the zero
set N ∪ ∂B1) we can make use of the Hölder continuity properties of g and f for the
points x0 and x0 + rω in the integrals above.
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Using the Hölder continuity of f and the homogeneity of g we obtain

|I (1)
2 (x0, r)|

= rα

∣∣∣∣

∫

Sn−1
|ω′′|αP2(ω) g(x′

0 + rω′)
f (x′′

0 + rω′′) − f (x′′
0 )

rα|ω′′|α
dω

∣∣∣∣

≤ C(n) rα
(

sup
Sk−1

|g|
)

[f ]α, πdB1

(for [f ]α, πdB1 , see Definition 2.1). Hence
∫ R′

0
r−1|I (1)

2 (x0, r)| dr ≤ C(n)

α
(R′)α

(
sup
Sk−1

|g|
)

[f ]α, πdB1 . (2.26)

To estimate the second term in (2.25), we write in the following x′
0 = |x′

0| η with
η ∈ Sk−1 and define s by r = |x′

0|s. Then

∣∣∣
∫ R′

0
r−1I

(2)
2 (x0, r) dr

∣∣∣ (2.27)

=
∣∣f (x′′

0 )
∣∣
∣∣∣
∫ R′

0
r−1

∫

Sn−1
P2(ω) g(|x′

0|η + rω′) dω dr
∣∣∣

=
∣∣f (x′′

0 )
∣∣
∣∣∣
∫ R′

|x′
0 |

0
s−1

∫

Sn−1
P2(ω) g(η + sω′) dω ds

∣∣∣,

where we used that g is homogeneous of degree zero and |x′
0| &= 0. Because of the

s−1-term in the s-integral we have to control the ω-integral for s → 0 and for |x′
0| → 0.

Define, for 0 ≤ s1 < s2 ≤ ∞,

K(s1, s2) =
∫ s2

s1

s−1
∫

Sn−1
P2(ω)g(η + sω′) dω ds. (2.28)

The behaviour of K for different regimes of s1 and s2 is expressed in Lemma 2.12 below.
Applying it, we get that (for all |x′

0| ∈ (0, ∞) )
∣∣K

(
0, R′/|x′

0|
)∣∣ ≤ C (n, α) ‖g‖Cα(Sk−1)

(for ‖g‖Cα(Sk−1), see Definition 2.1).
Since due to (2.27)

∣∣∣
∫ R′

0
r−1I

(2)
2 (x0, r) dr

∣∣∣ = |f (x′′
0 )|

∣∣K
(
0, R′/|x′

0|
)∣∣

we obtain
∣∣∣
∫ R′

0
r−1I

(2)
2 (x0, r) dr

∣∣∣ ≤ C(n, α)
(

sup
πdB1

|f |
)
‖g‖Cα(Sk−1). (2.29)

Further via (2.25), (2.26) and (2.29) lead to

|I2(x0, R
′)| ≤ C(n, α) (R′)α

(
sup
Sk−1

|g|
) [

f
]
α, πdB1

+ C(n, α)
(

sup
πdB1

|f |
)
‖g‖Cα(Sk−1). (2.30)

The estimate (2.17) now follows from (2.21), (2.22), and (2.30).
Proving Lemma 2.12 below will finish the proof of Lemma 2.11. -.
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Lemma 2.12. With K as in (2.28) we have:

(i) s1 = 0, s2 ≤ 1/2:
∣∣K(0, s2)

∣∣ ≤ C(n, α)[g]α,Sk−1 . (2.31)

(ii) 1/2 ≤ s1 < s2 ≤ 4:
∣∣K(s1, s2)

∣∣ ≤ C(n) sup
Sk−1

|g|. (2.32)

(iii) 4 ≤ s1 < s2:
∣∣K(s1, s2)

∣∣ ≤ C(n, α)
[
g
]
α,Sk−1 + C(n) sup

Sk−1
|g|. (2.33)

Proof of Lemma 2.12 .
(i) Since

∫
Sn−1 P2(ω) dω = 0 and g is homogeneous of degree 0 we have

K(0, s2) =
∫ s2

0
s−1

∫

Sn−1
P2(ω)

(
g
( η + sω′

|η + sω′|

)
− g(η)

)
dω ds.

Note that |η + sω′| ≥ 1 − s ≥ 1/2. Since g ∈ Cα(Sk−1) we obtain

∣∣K(0, s2)
∣∣ ≤ C(n)

[
g
]
α,Sk−1

∫ s2

0
s−1

∣∣∣
η + sω′

|η + sω′|
− η

∣∣∣
α

ds.

This, and

∣∣∣
η + sω′

|η + sω′|
− η

∣∣∣ ≤
s +

∣∣1 − |η + sω′|
∣∣

|η + sω′|
≤ 2s

|η + sω′|
≤ 2s

1 − s
≤ 4s

imply (2.31).
(ii) This follows directly from the definition of K (see (2.28)).
(iii) This is the most involved case. We write the unit sphere Sn−1 as the union of

((s) =
{
ω ∈ Sn−1 ∣∣ s|ω′| ≤

√
s
}

=
{
ω ∈ Sn−1 ∣∣ |ω′| ≤ 1√

s

}
(2.34)

and its complement ((s)c (when d = 0, ((s) = ∅ for s > 1) and write K(s1, s2) =
A1 + A2 + A3 where (when d = 0, A2 = 0 for s1 > 1)

A1 =
∫ s2

s1

s−1
∫

((s)c
P2(ω) (g(η + sω′) − g(sω′)) dω ds,

A2 =
∫ s2

s1

s−1
∫

((s)
P2(ω) (g(η + sω′) − g(sω′)) dω ds,

A3 =
∫ s2

s1

s−1
∫

Sn−1
P2(ω) g(sω′) dω ds.

The estimate (2.33) is a direct consequence of the following lemma. Proving it will finish
the proof of Lemma 2.12. -.



202 S. Fournais, M. and T. Hoffmann-Ostenhof, T. Østergaard Sørensen

Lemma 2.13. We have

|A1| ≤ C(n, α)
[
g
]
α, Sk−1 , (2.35)

|A2| ≤ C(n) sup
Sk−1

|g|, (2.36)

A3 = 0. (2.37)

Proof. A1 : Note first that since s|ω′| ≥ 2 and |η + sω′| ≥ 1 in ((s)c we obtain, using
the homogeneity of degree zero of g and the Hölder continuity of g on Sk−1, that

|A1| ≤ C(n)
[
g
]
α,Sk−1

∫ s2

s1

s−1
∫

(c(s)

∣∣∣
η + sω′

|η + sω′|
− sω′

|sω′|

∣∣∣
α

dω ds.

Then by using the triangle inequality and that s|ω′| ≥
√

s ≥ 2, we get
∣∣∣

η + sω′

|η + sω′|
− sω′

|sω′|

∣∣∣ ≤
1 +

∣∣ |sω′| − |η + sω′|
∣∣

|η + sω′|

≤ 2
|η + sω′|

≤ 2√
s − 1

≤ 4√
s

which leads to

|A1| ≤ C(n, α)
[
g
]
α, Sk−1s

− α
2

1 ≤ C(n, α)
[
g
]
α, Sk−1 ,

verifying (2.35).
A2 : For d = 0, A2 = 0. For d > 0, the estimate (2.36) is a consequence of the following
lemma, which is not hard to prove using polar coordinates in Rn (we omit the proof):
Lemma 2.14. Let |((s)| denote the n − 1-dimensional surface measure of ((s). Then

∣∣((s)
∣∣ ≤ C(n)s−1/2. (2.38)

From (2.38) we immediately get (2.36):

|A2| ≤
( ∫ ∞

4
s−1∣∣((s)

∣∣ ds
)

C(n) sup
Sk−1

|g| ≤ C(n) sup
Sk−1

|g|.

A3 : We have

A3 = 0 (2.39)

as a consequence of the lemma below (when d = 0, (2.39) is trivially true, due to the
assumptions on g), since, by assumption, g|Sk−1 is orthogonal to h(k)

2 (the subspace of
L2(Sk−1) spanned by the spherical harmonics of degree 2).

Lemma 2.15. Let 0 < k < n and suppose φ ∈ L2(Sk−1) is orthogonal to h(k)
2 . Let φ̃

denote the following ‘natural’ extension of φ:

φ̃
( (x, y)

|(x, y)|

)
=

{
φ
(

x
|x|

)
for |x| &= 0,

0 for |x| = 0.

Then φ̃ ∈ L2(Sn−1) and φ̃ is orthogonal to h(n)
2 .

Proof. Since φ can be expanded in the natural basis of L2(Sk−1) it suffices to consider a
φ which is the restriction to Sk−1 of a harmonic, homogeneous polynomial Ps of degree
s &= 2. Then P̃s(x, y) = Ps(x) for (x, y) ∈ Rn is a harmonic homogeneous polynomial
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in Rn of degree s &= 2. Therefore φ̃, being the restriction of P̃s to Sn−1, is orthogonal in
L2(Sn−1) to h(n)

2 . -.

This finishes the proof of Lemma 2.13, and therefore finally the proof of Theorem
2.6. -.

3. Proofs of Theorems 1.1 and 1.5

We recall that for notational simplicity we shall give the proofs of Theorems 1.1 and 1.5
only for the atomic case.

3.1. Proof of Theorem 1.1. Let ψ satisfy (H −V )ψ = 0 in R3N , with V as in (1.1), and
let F2 and F3 be given as in (1.9) and (1.10). Define φ3 by the equation ψ = eF2+F3φ3.
Recall that $F2 = V . We now make use of Lemma 3.1 below which, together with Theo-
rem 2.6, is the main ingredient in the proof of Theorem 1.1. Due to this lemma, there exists
a function K3 : R3N → R such that $K3 = −|∇F2|2, and G3 ≡ K3−F3 ∈ C1,1(R3N).
Define ζ3 by

ψ = eF2+K3ζ3 (3.1)

that is, ζ3 = e−G3φ3. Since G3 ∈ C1,1(R3N), it remains to prove Lemma 3.1 below and
that ζ3 ∈ C1,1(R3N), then φ3 ∈ C1,1(R3N) will follow.

Lemma 3.1. There exists a function G3 : R3N → R, G3 ∈ C1,1(R3N) such that the
function

K3(x) = K3(x1, . . . , xN) = Z
(2 − π)

12π

∑

1≤j<k≤N

(xj · xk) ln(x2
j + x2

k )

+ G3(x) (3.2)

solves the equation $K3 = −|∇F2|2, with F2 as in (1.9).

Remark 3.2. Note that the function (x · y) ln(x2 + y2) belongs to C1,α(R6) for all α ∈
(0, 1), but not to C1,1(R6).

Proof. Note that

∇F2 = −Z

2

( x1

|x1|
, . . . ,

xN

|xN |

)
+ 1

4

( N∑

j=2

x1 − xj

|x1 − xj |
, . . . ,

N−1∑

j=1

xN − xj

|xN − xj |

)
, (3.3)

so that

|∇F2|2 =
(NZ2

4
+ N(N − 1)

16

)
− Z

4

∑

1≤j<k≤N

γ2(xj , xk)

+ 1
8

∑

1≤j<k<l≤N

γ3(xj , xk, xl)

≡ 01 + 02(x) + 03(x), (3.4)
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with (x, y, z ∈ R3)

γ2(x, y) =
( x

|x|
− y

|y|

)
· x − y

|x − y|
, (3.5)

γ3(x, y, z) = x − y

|x − y|
· x − z

|x − z|
+ y − x

|y − x|
· y − z

|y − z|
+ z − x

|z − x|
· z − y

|z − y|
.

Therefore it is natural to make the ‘Ansatz’

K3 = µ̂ + κ̂ + ν̂,

and look for µ̂, κ̂, ν̂ solving

$µ̂ = −01 , $κ̂ = −02 , $ν̂ = −03.

First, it is easily seen that with µ(x) = |x|2, x ∈ R3, the function

µ̂(x) = −1
6

( N∑

j=1

Z2

4
µ(xj ) +

∑

1≤j<k≤N

1
16

µ(xj − xk)
)
,

satisfies $µ̂ = −01, µ̂ ∈ C∞(R3N).
Further, it suffices to find functions κ and ν such that

κ(x, y) = 2 − π

3π
(x · y) log(x2 + y2) + κ1(x, y) , κ1 ∈ C1,1(R6),

with ($x + $y)κ(x, y) = γ2(x, y), (3.6)

and ν ∈ C1,1(R9) with

($x + $y + $z)ν(x, y, z) = γ3(x, y, z), (3.7)

since letting

κ̂(x) = Z

4

∑

1≤j<k≤N

κ(xj , xk) , ν̂(x) = −1
8

∑

1≤j<k<l≤N

ν(xj , xk, xl)

gives ($ =
∑N

j=1 $j )

$κ̂(x) = Z

4

∑

1≤j<k≤N

(
($j + $k)κ

)
(xj , xk) = −02(x),

$ν̂(x) = −1
8

∑

1≤j<k<l≤N

(
($j + $k + $l )ν

)
(xj , xk, xl) = −03(x).

The functions κ and ν are constructed in Appendices A and B. Lemma 3.1 then follows
from Lemma A.1 and Lemma B.1. -.

Remark 3.3. Summarizing, one can say that only those points where the coordinates of
(at least) 2 electrons coincide with that of the nucleus (xi = xj = 0) give rise to the
logarithmic terms in K3. These terms stem from the function κ and are due to the type
of singularity of the γ2-terms in |∇F2|2. There is no such contribution from the function
ν, i.e., from the γ3-terms in |∇F2|2. This is due to the permutational symmetry of ν with
respect to the electron coordinates as will be seen from the proof of Lemma B.1.

Pierre-Francois Loos
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To finish the proof of Theorem 1.1 it remains to prove that ζ3 ∈ C1,1(R3N).
Using (H − E)ψ = 0 and H = −$ + V , we get the following equation for ζ3 (see

(1.5) and (3.1); set F = F2 + K3 and φ = ζ3, and use that $F2 = V )

$ζ3 + 2∇
(
F2 + K3

)
· ∇ζ3 (3.8)

+
(
$K3 + |∇

(
F2 + K3

)
|2 + E

)
ζ3 = 0.

Note that, by Lemma 3.1 and (3.3), the coefficients in (3.8) are (locally) in L∞. There-
fore, by Proposition 2.2, ζ3 ∈ C1,α(R3N) for all α ∈ (0, 1). We need to improve this to
C1,1(R3N).

Using $K3 = −|∇F2|2 reduces (3.8) to the equation

$ζ3 + 2∇
(
F2 + K3

)
· ∇ζ3 (3.9)

+
(
|∇K3|2 + 2∇F2 · ∇K3 + E

)
ζ3 = 0.

This eliminated one of the terms in Eq. (3.8) for ζ3 that was only in L∞(R3N), and not
continuous, namely |∇F2|2.

To deal with the two remaining ones (containing ∇F2), re-arrange Eq. (3.9):

$ζ3 + ∇F2 ·
(

2∇ζ3 + 2ζ3∇K3

)
(3.10)

+
(
|∇K3|2 + E

)
ζ3 + 2∇K3 · ∇ζ3 = 0.

Define 6 = (61, . . . , 6N) : R3N → R3N by

6(x1, . . . , xN) = 2∇ζ3 + 2ζ3∇K3. (3.11)

That is, 6j = (6j,1, 6j,2, 6j,3) : R3N → R3 with

6j,i = 2
∂ζ3

∂xj,i
+ 2ζ3

∂K3

∂xj,i
, j ∈ {1, . . . , N} , i ∈ {1, 2, 3}. (3.12)

Then

∇F2 ·
(
2∇ζ3 + 2ζ3∇K3

)
= ∇F2 · 6. (3.13)

Since K3, ζ3 ∈ C1,α(R3N) for all α ∈ (0, 1), we have 6j,i ∈ Cα(R3N) for all j ∈
{1, . . . , N}, i ∈ {1, 2, 3} and α ∈ (0, 1).

Next, let 6̂j,i : R3(N−1) → R be defined by

6̂j,i (x1, . . . , xj−1, xj+1, . . . , xN) = 6j,i (x1, . . . , xj−1, 0, xj+1, . . . , xN), (3.14)

that is, by setting xj equal to zero in 6j,i .
Furthermore, define, for j < k, j, k ∈ {1, . . . , N}, the functions 7(j,k) : R3N → R3

by

7(j,k)(x1, . . . , xN) = (3.15)

6j (x1, . . . , xj−1,
1
2 (xj + xk), xj+1, . . . , xk−1,

1
2 (xj + xk), xk+1, . . . , xN)

−
6k(x1, . . . , xj−1,

1
2 (xj + xk), xj+1, . . . , xk−1,

1
2 (xj + xk), xk+1, . . . , xN).

The proof of Theorem 1.1 will follow from the following two lemmas:
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Lemma 3.4. Let 6̂j,i , 7(j,k),i be defined according to (3.12), (3.14) and (3.15). Assume
the functions uj,i , v(j,k),i solve the equations

$uj,i = Z

2
xj,i

|xj |
6̂j,i , (3.16)

$v(j,k),i = − 1
4

xj,i − xk,i

|xj − xk|
7(j,k),i . (3.17)

Then uj,i , v(j,k),i ∈ C1,1(R3N).

Lemma 3.5. Let 6̂j , 7(j,k) be defined according to (3.12), (3.14) and (3.15). Then the
functions

1
4

xj − xk

|xj − xk|
·
{(

6j − 6k

)
− 7(j,k)

}
, (3.18)

Z

2
xj

|xj |
·
(
6j − 6̂j

)
(3.19)

all belong to Cα(R3N) for all α ∈ (0, 1).

Let us first finish the proof of Theorem 1.1, using the two lemmas.
Let the function U : R3N → R be defined by

U =
3∑

i=1

N∑

j=1

uj,i +
3∑

i=1

∑

1≤j<k≤N

v(j,k),i (3.20)

with the functions uj,i , v(j,k),i solving Eqs. (3.16) and (3.17). Then

$U =
N∑

j=1

Z

2
xj

|xj |
· 6̂j −

∑

1≤j<k≤N

1
4

xj − xk

|xj − xk|
· 7(j,k), (3.21)

and, due to Lemma 3.4, U ∈ C1,1(R3N).
Let W = ζ3 − U , then due to (3.10), (3.21), and the form of ∇F2 (see (3.3))

$W =
N∑

j=1

−Z

2
xj

|xj |
·
(
6j − 6̂j

)
−

(
|∇K3|2 + E

)
ζ3 − 2∇K3 · ∇ζ3

−
∑

1≤j<k≤N

1
4

xj − xk

|xj − xk|
·
{(

6j − 6k

)
− 7(j,k)

}
. (3.22)

Using the fact that K3, ζ3 ∈ C1,α(R3N), and Lemma 3.5, we conclude that the RHS in
(3.22) belongs to Cα(R3N) for all α ∈ (0, 1) . Due to Proposition 2.4, W ∈ C2,α(R3N)
for all α ∈ (0, 1), and so ζ3 = W +U ∈ C1,1(R3N) (since U ∈ C1,1(R3N) as mentioned
above).

This finishes the proof that ζ3 ∈ C1,1(R3N), and therefore φ3 = eG3ζ3 ∈ C1,1(R3N),
since G3 ∈ C1,1(R3N).

To finish the proof of Theorem 1.1, it therefore remains to prove Lemma 3.4 and
Lemma 3.5.
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Proof of Lemma 3.4 . Firstly, for uj,i , this is a straightforward application of Theorem 2.6,
with k = 3, d = 3(N − 1) and

g ≡
xj,i

|xj |
, x′ ≡ xj ∈ R3,

f ≡ Z

2
6̂j,i , x′′ ≡ (x1, . . . , xj−1, xj+1, . . . , xN) ∈ R3(N−1).

It has already been noted that6j,i ∈ Cα(R3N) for allα ∈ (0, 1) and therefore (see (3.14))
also 6̂j,i ∈ Cα(R3(N−1)) for all α ∈ (0, 1). Clearly, xj,i

|xj | ∈ C∞(R3\{0}) ⊂ Cα(R3\{0}),
and P(3)

2

( xj,i

|xj |
)

= 0, due to the anti-symmetry of the function xj,i

|xj | . Therefore, all assump-

tions of Theorem 2.6 are fullfilled and it follows that uj,i ∈ C1,1(R3N).
Secondly, for v(j,k),i , we make an orthogonal change of coordinates: a = 1√

2
(xj −

xk), b = 1√
2
(xj + xk), the other coordinates remaining unchanged. Due to the specific

definition of 7(j,k),i , this brings us to a setup exactly as the one above for uj,i . Since the
orthogonal change of coordinates does not change the regularity, the conclusion follows
as before.

This finishes the proof of Lemma 3.4. -.

Proof of Lemma 3.5 . First, note that the function Gj = 6j −6̂j satisfies Gj ∈ Cα(R3N)
for all α ∈ (0, 1), and

Gj(x1, . . . , xj−1, 0, xj+1, . . . , xN) = 0

for all (x1, . . . , xj−1, xj+1, . . . , xN) ∈ R3(N−1).

Therefore, due to Lemma 2.9,

Z

2
xj

|xj |
·
(
6j − 6̂j

)
∈ Cα(R3N) for all α ∈ (0, 1).

Secondly, for the function

1
4

xj − xk

|xj − xk|
·
{(

6j − 6k

)
− 7(j,k)

}
,

the same orthogonal change of coordinates as in the proof of Lemma 3.4 brings us in the
same situation as the above, again due to the specific definition of 7(j,k). The conclusion
follows as above.

This finishes the proof of Lemma 3.5. -.
This finishes the proof of Theorem 1.1. -.

3.2. Proof of Theorem 1.5. By Remark 1.6 it suffices to prove that (1.24) holds. We
proceed similarly to the proof of Theorem 1.1, but here we need to estimate carefully
all the involved quantities uniformly (i.e., independently of x0 ∈ R3N ). For notational
simplicity, we will prove (1.24) only in the case R′ = 2R.

For the proof we need the following regularised version of Lemma 3.1.
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Lemma 3.1’. There exists a function G3,cut : R3N → R, G3,cut ∈ C1,1(R3N), such
that the function

K3,cut(x) =Z
2 − π

12π

∑

1≤j<k≤N

(xj · xk)χ(|xj |)χ(|xk|) ln(x2
j + x2

k )

+ G3,cut(x) = F3,cut(x) + G3,cut(x) (3.23)

(for F3,cut, see (1.21)) solves the equation

$K3,cut = −|∇F2,cut|2 + rcut,

with F2,cut as defined in (1.20) and rcut ∈ Cα(R3N) for all α ∈ (0, 1). Furthermore,
G3,cut can be chosen such that for all ρ > 0 the following estimate holds:

‖G3,cut‖C1,1(B3N(x0,ρ)) + ‖rcut‖Cα(B3N(x0,ρ)) ≤ C, (3.24)

for some constant C = C(ρ) > 0 independent of x0 ∈ R3N .

Proof. The proof of Lemma 3.1’ is analogous to that of Lemma 3.1. Instead of µ, κ, ν we
will use functions µcut, κcut and νcut to be defined presently. With χ being the function
defined in (1.18) we define

µcut(x) = χ(|x|)µ(x) = χ(|x|)|x|2, (3.25)
κcut(x, y) = χ(|x|)χ(|y|)κ(x, y) (3.26)

− 1
4
χ(3|y|)

(
1 − χ(|x|)

)(
|y|2 x · y

|x||y|

)

− 1
4
χ(3|x|)

(
1 − χ(|y|)

)(
|x|2 x · y

|x||y|

)

≡ χ(|x|)χ(|y|)2 − π

3π
(x · y) ln(x2 + y2) + κ1,cut(x, y).

(Note that κ1,cut(x, y) &= χ(|x|)χ(|y|)κ1(x, y)). Let νcut be as in Lemma B.2, we then
have

$νcut = γ3 + hν, (3.27)
‖νcut‖C1,1(B9((x0,y0,z0),ρ)) + ‖hν‖Cα(B9((x0,y0,z0),ρ)) ≤ C,

with γ3 as in (3.5) and with C independent of (x0, y0, z0) ∈ R9 and ρ > 0.
For µcut, note that

$µcut = $|x|2 + $(µcut − |x|2) (3.28)

= 6 − $
(
(1 − χ(|x|))|x|2

)
≡ 6 − hµ,

where obviously,

‖µcut‖C1,1(B3(x0,ρ)) +
∥∥hµ

∥∥
Cα(B3(x0,ρ))

≤ C, (3.29)

with C independent of x0 ∈ R3 and ρ > 0.
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For κcut, using $κ = γ2 (see (3.5) and (3.6)), that $y(|y|2 x·y
|x||y| ) = 4 x·y

|x||y| , and the
support properties of χ , we have that

$κcut = γ2 −
{
1 − χ(|x|)χ(|y|)

}(
1 − χ(3|x|) − χ(3|y|)

)
γ2

−
{
χ(3|y|)

(
1 − χ(|x|)

)
+ χ(3|x|)

(
1 − χ(|y|)

)}(
γ2 + x · y

|x||y|
)

+ R1 + R2 + R3,

≡ γ2 − Hγ2 − G
(
γ2 + x · y

|x||y|
)
+ R1 + R2 + R3, (3.30)

where

R1 = χ(|y|)κ$xχ(|x|) + χ(|y|)2∇xχ(|x|) · ∇xκ

+ χ(|x|)κ$yχ(|y|) + χ(|x|)2∇yχ(|y|) · ∇yκ,

R2 = −1
4
χ(3|y|)|y|2 y

|y|
· $x

(
(1 − χ(|x|)) x

|x|
)

− 1
4

(
$yχ(3|y|)

)
|y|2 y

|y|
·
(
(1 − χ(|x|) x

|x|
)

− 1
2

(
∇yχ(3|y|)

)
· ∇y

( x · y

|x||y|
|y|2

(
1 − χ(|x|)

))
,

and where R3 is R2 with x and y interchanged.
Using that κ ∈ C1,α(R6) for all α ∈ (0, 1), and the support properties of χ , it is

easily seen that

‖Rj‖Cα(B6((x0,y0),ρ)) ≤ C, (3.31)

with a constant C independent of (x0, y0)) ∈ R6 and ρ > 0.
Since for all (x, y) ∈ R6,

∣∣∇γ2
∣∣ ≤ 6

√
2
( 1
|x|

+ 1
|y|

)
,

∣∣∣∇
(
γ2 + x · y

|x||y|
)∣∣∣ ≤ 8

√
2

|x − y|

we get, using the support properties of H and G, that

‖H ∇γ2‖L∞(R6) ≤ C ,
∥∥G∇

(
γ2 + x·y

|x||y|
)∥∥

L∞(R6)
≤ C.

Again using the support properties of H and G, this implies that

‖H γ2‖C0,1(B6((x0,y0),ρ)) ≤ C, (3.32)
∥∥G

(
γ2 + x·y

|x||y|
)∥∥

C0,1(B6((x0,y0),ρ))
≤ C,

with a constant C independent of (x0, y0) ∈ R6 and ρ > 0.
From (3.30), (3.31), and (3.32) we get

$κcut = γ2 + hκ , ‖hκ‖Cα(B6((x0,y0),ρ)) ≤ C, (3.33)
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with a constant C independent of (x0, y0) ∈ R6 and ρ > 0. Note that (see (3.26) and
(A.2))

κ1,cut(x, y) = χ(|x|)χ(|y|)
(
(x2 + y2)Gκ1

( (x, y)

|(x, y)|
))

, Gκ1 ∈ C1,1(S5).

Therefore, due to the compact support of χ ,

‖κ1,cut‖C1,1(B6((x0,y0),ρ)) ≤ C (3.34)

with C independent of (x0, y0) ∈ R6 and ρ > 0.
Observe that

|∇F2|2 = |∇F2,cut|2 + ∇(F2 − F2,cut) · ∇(F2 + F2,cut) (3.35)

and that

∇(F2 − F2,cut) · ∇(F2 + F2,cut)

=
N∑

j=1

∇j (F2 − F2,cut) · ∇j (F2 + F2,cut)

=
N∑

j=1

7bj ·
xj

|xj |
+

∑

1≤j<k≤N

7b(j,k) ·
xj − xk

|xj − xk|
,

where

7bj = −Z

2

{
1 + χ(|xj |) + χ ′(|xj |)|xj |

}(
7aj +

N∑

l=1,l &=j

7a(j,l)

)
,

7b(j,k) = 1
4

{
1 + χ(|xj − xk|) + χ ′(|xj − xk|)|xj − xk|

}
×

×
(
7aj − 7ak +

N∑

l=1,l &=j

7a(j,l) −
N∑

l=1,l &=k

7a(k,l)

)
,

7aj = −Z

2

{(
1 − χ(|xj |)

)
− χ ′(|xj |)|xj |

} xj

|xj |
,

7a(j,k) = 1
4

{(
1 − χ(|xj − xk|)

)
− χ ′(|xj − xk|)|xj − xk|

} xj − xk

|xj − xk|
.

Clearly (using the support properties of χ ), for all β ∈ N3N ,

‖∂β 7bj‖L∞(R3N) + ‖∂β 7b(j,k)‖L∞(R3N) ≤ C(β). (3.36)

Define

G1,cut = 1
4

N∑

j=1

7bj ·
(
|xj |2

xj

|xj |

)
χ(|xj |)

+ 1
4

∑

1≤j<k≤N

7b(j,k) ·
( ∣∣∣

xj − xk√
2

∣∣∣
2 xj − xk

|xj − xk|

)
χ(|xj − xk|).
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Then, due to (3.36) and the support properties of χ ,

‖G1,cut‖C1,1(B3N(x0,ρ)) ≤ C, (3.37)

for some constant C = C(ρ) > 0 independent of x0 ∈ R3N .
Using $(|xj |2

xj

|xj | ) = 4 xj

|xj | and $(| xj −xk√
2

|2 xj −xk

|xj −xk | ) = 4 xj −xk

|xj −xk | , we see that

$G1,cut = ∇(F2 − F2,cut) · ∇(F2 + F2,cut) + R, (3.38)

with

R = 1
4

N∑

j=1

$
(
χ(|xj |)7bj

)
·
(
|xj |2

xj

|xj |

)

+ 1
2

N∑

j=1

3∑

i=1

∇j

(
χ(|xj |)7bj,i

)
· ∇j

(
|xj |2

xj,i

|xj |

)

+ 1
4

∑

1≤j<k≤N

$
(
χ(|xj − xk|)7b(j,k)

)
·
( ∣∣∣

xj − xk√
2

∣∣∣
2 xj − xk

|xj − xk|

)

+ 1
2

∑

j<k

3∑

i=1

∇j

(
χ(|xj − xk|)7b(j,k),i

)
· ∇j

( ∣∣∣
xj − xk√

2

∣∣∣
2 xj,i − xk,i

|xj − xk|

)

+
N∑

j=1

7bj ·
xj

|xj |
(
1 − χ(|xj |)

)

+
∑

1≤j<k≤N

7b(j,k) ·
xj − xk

|xj − xk|
(
1 − χ(|xj − xk|)

)
.

From (3.36) and the support properties of χ , we see that

‖R‖C0,1(B3N(x0,ρ)) ≤ C, (3.39)

for some constant C independent of x0 ∈ R3N and ρ > 0.
Define

G3,cut = G1,cut + G2,cut (3.40)

with

G2,cut = µ̂cut + κ̂1,cut + ν̂cut,

µ̂cut(x) = −1
6

( N∑

j=1

Z2

4
µcut(xj ) +

∑

1≤j<k≤N

1
16

µcut(xj − xk)
)
,

κ̂1,cut(x) = Z

4

∑

1≤j<k≤N

κ1,cut(xj , xk),

ν̂cut(x) = −1
8

∑

1≤j<k<l≤N

νcut(xj , xk, xl).
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Then, with K3,cut defined as in (3.23), we have, using (3.38), (3.27), (3.33), (3.28),
(3.35), (3.4),

$K3,cut = |∇F2|2 − |∇F2,cut|2 − 01 − 02 − 03 + rcut

= −|∇F2,cut|2 + rcut, (3.41)

where, due to (3.27), (3.33), (3.39), (3.29),

‖rcut‖Cα(B3N(x0,ρ)) ≤ C, (3.42)

for some constant C = C(ρ) > 0 independent of x0 ∈ R3N .
Also, using (3.40), (3.27), (3.29), (3.37) and (3.34),

‖G3,cut‖C1,1(B3N(x0,ρ)) ≤ C, (3.43)

for some constant C independent of x0 ∈ R3N and ρ > 0. Now, (3.24) follows from
(3.42) and (3.43). This finishes the proof of Lemma 3.1’. -.
Let K3,cut be the function constructed in Lemma 3.1’ above. Define (see (3.23), (1.19),
and (1.22))

ζ3,cut = e−F2,cut−K3,cutψ = e−G3,cutφ3,cut. (3.44)

Note that for all ρ > 0 (using Lemma 3.1’),

‖F3,cut − K3,cut‖C1,1(B3N(x0,ρ)) = ‖G3,cut‖C1,1(B3N(x0,ρ))

and this quantity is bounded independently of x0. Hence proving (1.24) is equivalent to
showing that

‖ζ3,cut‖C1,1(B3N(x0,R)) ≤ C(R)‖ζ3,cut‖L∞(B3N(x0,2R)). (3.45)

Using that ζ3,cut = e−G3,cutφ3,cut, the estimate (3.24) (twice), and the bound (1.25), we
get, for all 0 < ρ < ρ′,

‖ζ3,cut‖C1,α(B3N(x0,ρ)) ≤ C‖ζ3,cut‖L∞(B3N(x0,ρ′)), (3.46)

with C = C(ρ, ρ′). Proving (3.45) is improving (3.46) to α = 1.
The function ζ3,cut satisfies the equation

$ζ3,cut + 2
(
∇F2,cut + ∇K3,cut

)
· ∇ζ3,cut

+
(
$F2,cut + $K3,cut + |∇F2,cut + ∇K3,cut|2 + (E − V )

)
ζ3,cut = 0.

We can rewrite this as

$ζ3,cut + 2∇F2,cut ·
(
∇ζ3,cut + ζ3,cut∇K3,cut

)
(3.47)

+ r1,cut · ∇ζ3,cut + r2,cutζ3,cut = 0,

with (since $F2 = V and $K3,cut = −|∇F2,cut|2 + rcut)

r1,cut = 2∇K3,cut,

r2,cut = $F2,cut + rcut + |∇K3,cut|2 + (E − V )

= $(F2,cut − F2) + rcut + |∇K3,cut|2 + E.
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By the construction of F2 and F2,cut (see (1.9), (1.18), and (1.20)) it is clear that for all
ρ > 0,

‖$(F2,cut − F2)‖Cα(B3N(x0,ρ)) ≤ C,

with C = C(ρ) independent of x0 ∈ R3N . Due to Lemma 3.1’ (see also (1.18)), ∇K3,cut
is Cα , and we have for all ρ > 0,

‖∇K3,cut‖Cα(B3N(x0,ρ)) ≤ C, (3.48)

with C = C(ρ) independent of x0 ∈ R3N . This, together with (3.24), means that

‖rj,cut‖Cα(B3N(x0,ρ)) ≤ C, j = 1, 2, (3.49)

where C = C(ρ) is independent of x0 ∈ R3N .
In order to finish the proof, we introduce a localisation. Let f : R → R, 0 ≤ f ≤ 1,

be decreasing and such that f (t) = 1 for t < 0 and f (t) = 0 for t > 1, and define, for
ρ > 0, λ > 1,

θ(x) ≡ θρ,λ(x) = f
( 1

λ−1 ( |x−x0|
ρ − 1)

)
. (3.50)

(So θ(x) = 1 on B3N(x0, ρ) and θ(x) = 0 outside B3N(x0, λρ)).
Clearly the derivatives of θ are bounded independently of x0. Below, all constants

C = C(ρ) also depend on λ > 1; we omit this dependence in the notation. On the set
B3N(x0, ρ)), θζ3,cut satisfies the following equation:

$(θζ3,cut) + 2∇F2,cut ·
(
∇(θζ3,cut) + (θζ3,cut)∇K3,cut

)
(3.51)

+ r1,cut · ∇(θζ3,cut) + r2,cut(θζ3,cut) = 0.

Using (3.51) we will deduce that

‖θR,
√

2 ζ3,cut‖C1,1(B3N(x0,R)) ≤ C(R)‖ζ3,cut‖L∞(B3N(x0,2R)), (3.52)

from which (3.45) clearly follows (since θ ≡ 1 on B3N(x0, R)). To prove Theorem 1.5,
it therefore remains to prove (3.52).

Proof of (3.52) . Let 6j,i,cut be defined as 6j,i was in (3.12) but with ζ3, K3 replaced
by θζ3,cut, K3,cut, that is (j ∈ {1, . . . , N}, i ∈ {1, 2, 3}),

6j,i,cut = 2
∂(θζ3,cut)

∂xj,i
+ 2(θζ3,cut)

∂K3,cut

∂xj,i
. (3.53)

(Here, θ ≡ θR,
√

2). We define 6̂j,i,cut, 7(j,k),i,cut analogously to 6̂j,i , 7(j,k),i defined
in (3.14) and (3.15). Using (3.48) and (3.46) we get that for all 0 < ρ < ρ′,

∥∥6j,i,cut
∥∥

Cα(B3N(x0,ρ))
≤ C(ρ)‖θζ3,cut‖C1,α(B3N(x0,ρ)) (3.54)

≤ C(ρ, ρ′, R)‖ζ3,cut‖L∞(B3N(x0,ρ′)).

We then have the following result, similar to Lemma 3.4:
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Lemma 3.4’. Let uj,i,cut, v(j,k),i,cut be the solutions to Eqs. (3.16), (3.17) (with 6̂j,i ,
7(j,k),i replaced by 6̂j,i,cut, 7(j,k),i,cut) given by the Newton potential on B3N(x0,

√
2R).

Then, for all ρ <
√

2R < ρ′, there exists a constant C = C(ρ, ρ′, R) (independent
of x0 ∈ R3N ) such that

‖uj,i‖C1,1(B3N(x0,ρ)) ≤ C‖ζ3,cut‖L∞(B3N(x0,ρ′)), (3.55)

‖v(j,k),i‖C1,1(B3N(x0,ρ)) ≤ C‖ζ3,cut‖L∞(B3N(x0,ρ′)). (3.56)

Proof. Using Theorem 2.6 and Remark 2.7 (iv) and (v), we get the a priori estimate

‖uj,i,cut‖C1,1(B3N(x0,ρ)) ≤ C
(

sup
∣∣∣∣
xj,i

|xj |

∣∣∣∣ ‖6̂j,i,cut‖Cα(π3N−3B3N(x0,
√

2R))

+
(

sup
π3N−3B3N(x0,

√
2R))

|6̂j,i,cut|
)∥∥∥

xj,i

|xj |

∥∥∥
Cα(S2)

)
.

(3.57)

Using (3.53) and (3.48) we have

‖6̂j,i,cut‖Cα(π3N−3B3N(x0,
√

2R)) ≤ ‖6j,i,cut‖Cα((π3N−3B3N(x0,
√

2R))×R3)

≤ C‖θζ3,cut‖C1,α((π3N−3B3N(x0,
√

2R))×R3).

This, the compact support of θ , and (3.57) implies the estimate

‖uj,i,cut‖C1,1(B3N(x0,ρ)) ≤ C ‖ζ3,cut‖C1,α(B3N(x0,
√

2R)). (3.58)

Combining (3.58) and (3.46), we arrive at (3.55). This finishes the proof of the estimate
(3.55) for uj,i,cut.

The analogous estimate (3.56) for v(j,k),i,cut is proved in the same manner using the
same coordinate transformation as in the proof of Lemma 3.4 (see also the proof of
Lemma 3.5’ below). We omit the details. -.

Lemma 3.5’. Let 6j,i,cut be defined by (3.53) and let 6̂j,i,cut and 7(j,k),i,cut be defined
by (3.14) and (3.15) (with 6j,i replaced by 6j,i,cut). Then the functions defined by (3.18)
and (3.19) (again, with an extra index ‘cut’) belong to Cα(R3N) for all α ∈ (0, 1). Fur-
thermore, for any ρ <

√
2R < ρ′, their Cα-norms on the ball B3N(x0, ρ) are bounded

by

C‖ζ3,cut‖L∞(B3N(x0,ρ′)) (3.59)

with C = C(ρ, ρ′, R) independent of x0 ∈ R3N .

Proof. That the functions belong to Cα(R3N) for all α ∈ (0, 1) follows like in the proof
of Lemma 3.5.

To prove the bounds on the norms it suffices, by Lemma 2.9 and the triangle inequality,
to prove them for

∥∥6k,i,cut
∥∥

Cα(B3N(x0,ρ))
and

∥∥7(j,k),i,cut)
∥∥

Cα(B3N(x0,ρ))
.

For 6k,i,cut, the estimate follows from (3.54).
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To bound 7(j,k),i,cut, denote by tj,k : R3N → R3N the linear transformation (see
also (3.15)),

tj,k(x) =
(x1, . . . , xj−1,

1
2 (xj + xk), xj+1, . . . , xk−1,

1
2 (xj + xk), xk+1, . . . , xN),

so that

7(j,k),i,cut(x) = 6j,i,cut(tj,k(x)) − 6k,i,cut(tj,k(x)).

Then, since |tj,k(z)| ≤ |z|,
∣∣7(j,k),i,cut(x) − 7(j,k),i,cut(y)

∣∣

|x − y|α
≤

∣∣6j,i,cut(tj,k(x)) − 6j,i,cut(tj,k(y))
∣∣

|tj,k(x) − tj,k(y)|α

+
∣∣6k,i,cut(tj,k(x)) − 6k,i,cut(tj,k(y))

∣∣

|tj,k(x) − tj,k(y)|α
. (3.60)

Due to the localisation θ in the definition of 6k,i,cut (see (3.53)), both of the terms on
the RHS of (3.60) are bounded by

C(ρ)‖ζ3,cut‖C1,α(B3N(x0,
√

2R)).

The bound (3.59) for 7(j,k),i,cut now follows using (3.46). This finishes the proof of the
bound (3.59) for the functions (6j,i,cut − 6k,i,cut) − 7(j,k),i,cut.

The proof for the functions 6j,i,cut − 6̂j,i,cut is similar (see also the proof of
Lemma 3.4’ above), so we omit the details. -.
To finish the proof of Theorem 1.5, define Ucut analogously to (3.20), using the functions
uj,i,cut, v(j,k),i,cut from Lemma 3.4’. Then, by Lemma 3.4’, for any ρ <

√
2R < ρ′,

$Ucut =
N∑

j=1

Z

2
xj

|xj |
· 6̂j,cut −

∑

1≤j<k≤N

1
4

xj − xk

|xj − xk|
· 7(j,k),cut, (3.61)

‖Ucut‖C1,1(B3N(x0,ρ)) ≤ C‖ζ3,cut‖L∞(B3N(x0,ρ′)). (3.62)

Define (θ ≡ θR,
√

2)

Wcut = θζ3,cut − Ucut, (3.63)

then, using (3.51), (3.53), (3.61), and the form of ∇F2 (see (3.3)), we get the following
equation for Wcut:

$Wcut = − Z

2

N∑

j=1

xj

|xj |
·
{
6j,cut − 6̂j,cut

}

− 1
4

∑

1≤j<k≤N

xj − xk

|xj − xk|
·
{(

6j,cut − 6k,cut
)
− 7(j,k),cut

}

+
N∑

j=1

∇j

(
F2 − F2,cut

)
· 6j,cut

−
{
r1,cut · ∇(θζ3,cut) + r2,cut(θζ3,cut)

}
≡ ;. (3.64)
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Here, ; belongs to Cα for all α ∈ (0, 1), and, for all ρ <
√

2R < ρ′,

‖;‖Cα(B3N(x0,ρ)) ≤ C‖ζ3,cut‖L∞(B3N(x0,ρ′)) (3.65)

with C = C(ρ, ρ′, R) independent of x0 ∈ R3N . For the first two terms in (3.64) this
follows from Lemma 3.5’. For the third term, it follows using the form of F2 − F2,cut
(see (1.9), (1.18), and (1.20)) and (3.54). For the last term we use (3.49) and (3.46).

By Proposition 2.4 this means that Wcut belongs to C2,α , and we have the estimate

‖Wcut‖C1,1(B3N(x0,R)) ≤ ‖Wcut‖C2,α(B3N(x0,R)) (3.66)

≤ C(R)
(
‖Wcut‖L∞(B3N(x0,

3√2R))
+ ‖;‖

Cα(B3N(x0,
3√2R))

)
.

Using (3.63), the triangle inequality, and then (3.62) (with ρ = 3√2R and ρ′ = 2R), we
have

‖Wcut‖L∞(B3N(x0,
3√2R))

≤ C(R)‖ζ3,cut‖L∞(B3N(x0,2R)).

This, (3.66), and (3.65) with ρ = 3√2R and ρ′ = 2R, gives the estimate

‖Wcut‖C1,1(B3N(x0,R)) ≤ C(R)‖ζ3,cut‖L∞(B3N(x0,2R)). (3.67)

Using θζ3,cut = Wcut + Ucut, (3.62) (with ρ = R and ρ′ = 2R) and (3.67), the estimate
(3.52) follows. -.

This finishes the proof of Theorem 1.5. -.

A. Construction of the Function κ

In this appendix we construct the function κ that gives rise to the terms of order r2 ln(r)
in the function K3 solving $K3 = −|∇F2|2 (see the previous section, Remark 3.3 in
particular). Therefore, κ is responsible for the C1,α-singularities in the wavefunction ψ .

More precisely, we prove the following:

Lemma A.1. Let the function γ2 : R6 → R be given by

γ2(x, y) =
( x

|x|
− y

|y|

)
· x − y

|x − y|
, x, y ∈ R3. (A.1)

Then there exists a function κ : R6 → R of the form

κ(x, y) = 2 − π

3π
(x · y) ln(x2 + y2) + (x2 + y2) Gκ1

( (x, y)

|(x, y)|

)

≡ k(x, y) + κ1(x, y) , Gκ1 ∈ C1,1(S5) (A.2)

satisfying $κ = γ2.

Remark A.1. Note that by Lemma 2.10, κ1 ∈ C1,1(R6).
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Proof. Recall that h(6)
2 = Ran(P(6)

2 ) is given by the linear span of the harmonic, homo-
geneous polynomials of degree 2 in R6 restricted to S5.

By Lemma C.1 we have that

(P(6)
2 γ2)(rω) = c1

x · y

x2 + y2 , c1 = 16(2 − π)

3π
,

where r2 = x2 + y2, ω = (x, y)/r ∈ S5. Let k(x, y) = c1
16 (x · y) ln(x2 + y2). Then

(
$x + $y

)
k(x, y) = c1

x · y

x2 + y2 = (P(6)
2 γ2)(rω).

Letting κ1 = κ − k this reduces the problem (of finding κ such that ($x + $y)κ = γ2)
to finding κ1 such that

($x + $y)κ1 = γ̂2 (A.3)

with

γ̂2 = γ2 − c1
x · y

x2 + y2 . (A.4)

Due to the above,

(P(6)
2 γ̂2)(rω) = 0.

Therefore, by Proposition 2.8, there exists a solution κ1 to (A.3) such that κ1(rω) =
r2Gκ1(ω), with Gκ1 ∈ C1,α(S5) for all α ∈ (0, 1).

To verify (A.2) we need to prove that in fact Gκ1 ∈ C1,1(S5). We will do this by
proving that κ1 ∈ C1,1(R6 \ {0}), since then Gκ1 = κ1/r2 ∈ C1,1(S5).

To prove κ1 ∈ C1,1(R6 \ {0}), we analyze Eq. (A.3) for κ1 in the vicinity of singular
points of the function γ̂2 on the sphere S5. There are two types of singular points: (a)
(x0, x0) ∈ S5, (b) (0, y0) ∈ S5 (resp. (x0, 0) ∈ S5). The function κ1 is C∞ in a neigh-
bourhood of all other points on S5 due to Proposition 2.4 (since, for r > 0, γ̂2 is C∞

away from points of type (a) and (b), see (A.1) and (A.4)).
(a) Let Ua ⊂ R6 be a neighbourhood of a point (x0, x0) ∈ S5 (i.e., 2|x0|2 = 1) such that
for some c > 0, |x| ≥ c, |y| ≥ c for (x, y) ∈ Ua . Choose new coordinates: Let

(x1, x2) = t (x, y) = (x − y, x + y).

Then

(
γ2 ◦ t−1)(x1, x2) = x1

|x1|
·
( x1 − x2

|x1 − x2|
+ x1 + x2

|x1 + x2|

)
≡ x1

|x1|
· Ga(x1, x2)

with Ga ∈ C∞(
t (Ua)

)
. Since Ga(0, x2) = 0 for x2 &= 0 (that is, for x = y &= 0 in the

original coordinates), we have, by Lemma 2.9, that γ2◦t−1 ∈ C0,1(t (Ua)
)
, and therefore

γ2 ∈ C0,1(Ua) ⊂ Cα(Ua) for all α ∈ (0, 1). Since (x · y)/(x2 + y2) ∈ C∞(Ua), we
have (see (A.4)) γ̂2 ∈ Cα(Ua) for all α ∈ (0, 1). By Proposition 2.4 we get from (A.3)
that κ1 ∈ C2,α(Ua).
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(b) Let Ub ⊂ R6 be a neighbourhood of a point (0, y0) ∈ S5 (i.e., |y0| = 1) such that
for some c > 0, |y| ≥ c, |x − y| ≥ c for (x, y) ∈ Ub. Then

γ2(x, y) =
( x

|x|
− y

|y|

)
· x − y

|x − y|

= − x

|x|
· y

|y|
+ x

|x|
·
( y

|y|
− y − x

|y − x|

)
− y

|y|
· x − y

|x − y|
.

Note that

− y

|y|
· x − y

|x − y|
∈ C∞(Ub)

and that

x

|x|
·
( y

|y|
− y − x

|y − x|

)
≡ x

|x|
· Gb(x, y),

with Gb ∈ C∞(Ub), Gb(0, y) = 0 for y &= 0. Therefore, by Lemma 2.9 and (A.4),

γ̂2(x, y) −
(

− x

|x|
· y

|y|

)
∈ C0,1(Ub) ⊂ Cα(Ub) for all α ∈ (0, 1).

Let κ2 be such that

(
$x + $y

)
κ2 = − x

|x|
· y

|y|
, κ2 ∈ C1,1(Ub).

The existence of such a function is ensured by Theorem 2.6, since y &= 0 for (x, y) ∈ Ub,
and P(3)

2

(
x
|x|

)
= 0 due to the anti-symmetry of x

|x| .
Then (see (A.3)) κ3 = κ1 − κ2 solves

(
$x + $y

)
κ3 = γ̂2(x, y) −

(
− x

|x|
· y

|y|

)
∈ Cα(Ub) for all α ∈ (0, 1),

so by elliptic regularity κ3 ∈ C2,α(Ub) ⊂ C1,1(Ub). Since κ2 ∈ C1,1(Ub), this proves
κ1 = κ2 + κ3 ∈ C1,1(Ub). Together with κ1 ∈ C2,α(Ua) from above, this implies
Gκ1 = κ1/r2 ∈ C1,1(S5), and so κ1 = r2 Gκ1 ∈ C1,1(R6).

This finishes the proof of the existence of κ solving (3.6), and having the form (A.2),
with G = Gκ1 .

B. Construction of the Function ν

In this appendix we construct a function ν solving (3.7).

Lemma B.1. There exists a solution ν = ν(x, y, z) to Eq. (3.7) satisfying

(i) ν is invariant under cyclic permutation, i.e., ν(x, y, z) = (ν ◦ σ )(x, y, z) for all
x, y, z ∈ R3, where σ (x, y, z) = (z, x, y).

(ii) ν ∈ C1,1(R9).
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The idea is to change coordinates, to the centre-of-mass frame for (x, y, z). In these
new coordinates, the problem of solving (3.7) turns out to reduce to a problem in 6
variables only. By an extra symmetry of the function γ3 (see (3.5)), namely permutation
of the three electron-coordinates x, y, and z, the logarithmic term that occured in the
function κ (see (A.2)) does not occur here. This is because the projection on h(6)

2 of γ̃3
(the function that γ3 transforms into in the new coordinates, see (B.2) below) vanishes,
due to this extra symmetry.

Proof. Make the following change of coordinates (each entry below is a diagonal 3 × 3-
matrix with the listed number in the diagonal; we will use this notation repeatedly; here,
x, y, z ∈ R3)




x
y
z



 = T




x1
x2
x3



 =





1√
3

0 2√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2

− 1√
6








x1
x2
x3



 . (B.1)

Then
(
γ3 ◦ T

)
(x1, x2, x3) = (B.2)

x2

|x2|
· x2 +

√
3x3

|x2 +
√

3x3|
+ x2

|x2|
· x2 −

√
3x3

|x2 −
√

3x3|
− x2 +

√
3x3

|x2 +
√

3x3|
· x2 −

√
3x3

|x2 −
√

3x3|
≡ γ̃3(x1, x2, x3).

That γ̃3 is independent of x1 is the fact that γ3 only depends on the inter-electron coor-
dinates (x − y, y − z, z − x respectively), and not on the centre-of-mass coordinate
(xCM = 1√

3
(x + y + z) = x1).

The function γ3 is invariant under cyclic permutation of the electron-coordinates
x, y and z, that is,

(
γ3 ◦ σ

)
(x, y, z) = γ3(x, y, z) for all x, y, z ∈ R3 with σ (x, y, z) =

(z, x, y). This gives that
(
γ̃3 ◦ R

)
(x1, x2, x3) = γ̃3(x1, x2, x3) for all x1, x2, x3 ∈ R3, (B.3)

with R the orthogonal transformation given by R = T −1 ◦ σ ◦ T , that is by the 9 × 9-
matrix (again, each entry is a diagonal 3 × 3-matrix)

R =




1 0 0
0 cos( 2π

3 ) sin( 2π
3 )

0 − sin( 2π
3 ) cos( 2π

3 )



 .

Note that R is a rotation of (x2, x3) by 2π
3 around x1 (all in R9), that is, R3 = I9, where

I9 is the identity on R9.
Define the function γ̄3 by

γ̄3(x2, x3) = γ̃3(x1, x2, x3) , (x2, x3) ∈ R6 (B.4)

(since γ̃3 is independent of x1, this is well defined). Then, due to (B.3),
(
γ̄3 ◦ R̄

)
(x2, x3) = γ̄3(x2, x3) for all x2, x3 ∈ R3, (B.5)
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with (each entry still being a diagonal 3 × 3-matrix)

R̄ =
(

− 1
2

√
3

2
−

√
3

2 − 1
2

)

=
(

cos( 2π
3 ) sin( 2π

3 )

− sin( 2π
3 ) cos( 2π

3 )

)
. (B.6)

Observe that if ν̄ = ν̄(x2, x3) solves (for γ̄3, see (B.2) and (B.4))
(
$x2 + $x3

)
ν̄ = γ̄3, (B.7)

then trivially the function ν̃ defined by ν̃(x1, x2, x3) = ν̄(x2, x3) solves
(
$x1 + $x2 + $x3

)
ν̃ = γ̃3.

Since T is orthogonal, the function ν = ν̃ ◦T −1 will then solve (recall that γ̃3 = γ3 ◦T )(
$x + $y + $z

)
ν = γ3, that is, (3.7). The problem of solving (3.7) therefore reduces

to solving (B.7).
Observe next that (see (B.2) and (B.4))

γ̄3(Ox2, Ox3) = γ̄3(x2, x3) for all O ∈ SO(3), x2, x3 ∈ R3.

This and (B.5) gives, by (iii) of Lemma C.2, that P(6)
2 γ̄3 = 0 . Therefore, by Proposi-

tion 2.8, there exists a solution ν̄ to (B.7) with

ν̄(x2, x3) = (x2
2 + x2

3 ) Gν̄

(
(x2, x3)

|(x2, x3)|

)
,

Gν̄ ∈C1,α(S5) for all α ∈ (0, 1).

We proceed to prove that in fact Gν̄ ∈ C2,α(S5) for all α ∈ (0, 1). We do this by
showing that ν̄ ∈ C2,α(R6 \ {0}), using (B.7) and elliptic regularity (Proposition 2.4).

Note that there are two kinds of singular points of γ̄3 on S5: (a) x2 = 0 (and so
x3 &= 0), (b) x2 =

√
3x3 (and so x2 &= 0 &= x3) (resp. x2 = −

√
3x3). The function ν̄

(and therefore, Gν̄) is C∞ in a neighbourhood of all other points on S5 due to elliptic
regularity (Proposition 2.4).
(a) Let Ua ⊂ R6 be a neighbourhood of a point (0, x0

3 ) ∈ S5 (i.e., x0
3 &= 0), such that for

some c > 0, |x2 +
√

3x3| ≥ c, |x2 −
√

3x3| ≥ c for (x2, x3) ∈ Ua . Note that

γ̄3(x2, x3) = x2

|x2|
·
(

x2 +
√

3x3

|x2 +
√

3x3|
+ x2 −

√
3x3

|x2 −
√

3x3|

)

− x2 +
√

3x3

|x2 +
√

3x3|
· x2 −

√
3x3

|x2 −
√

3x3|
. (B.8)

Write

x2

|x2|
·
(

x2 +
√

3x3

|x2 +
√

3x3|
+ x2 −

√
3x3

|x2 −
√

3x3|

)

≡ x2

|x2|
· Ga(x2, x3),

where Ga ∈ C∞(Ua), Ga(0, x3) = 0. Furthermore,

x2 +
√

3x3

|x2 +
√

3x3|
· x2 −

√
3x3

|x2 −
√

3x3|
∈ C∞(Ua).
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Therefore, due to Lemma 2.9, γ̄3 ∈ C0,1(Ua) ⊂ Cα(Ua) for all α ∈ (0, 1), and so, by
(B.7) and elliptic regularity (Proposition 2.4), ν̄ ∈ C2,α(Ua).
(b) Let Ub be a neighbourhood of a point (x0

2 , x0
3 ) ∈ S5 with x0

2 =
√

3x0
3 (i.e., x0

2 &= 0 &=
x0

3 ), such that for some c > 0, |x2| ≥ c, |x2 +
√

3x3| ≥ c for (x2, x3) ∈ Ub. Choose
new coordinates: Let

(u, v) = τ (x2, x3) = (x2 −
√

3x3, x2 +
√

3x3).

Then
(
γ̄3 ◦ τ−1)(u, v) = u

|u|
·
(

u + v

|u + v|
− v

|v|

)
+ u + v

|u + v|
· v

|v|
.

We proceed as above. Write

u

|u|
·
(

u + v

|u + v|
− v

|v|

)
≡ u

|u|
· Gb(u, v),

where Gb ∈ C∞(
τ (Ub)

)
(since v &= 0, u + v &= 0 in τ (Ub)), Gb(0, v) = 0 for v &= 0.

Furthermore,

u + v

|u + v|
· v

|v|
∈ C∞(Ub).

Lemma 2.9 implies that γ̄3◦τ−1 ∈ C0,1(τ (Ub)
)
, and so γ̄3 ∈ C0,1(Ub) ⊂ Cα(Ub) for all

α ∈ (0, 1). By (B.7) and elliptic regularity (Proposition 2.4) follows that ν̄ ∈ C2,α(Ub).
Singular points of the form x0

2 = −
√

3x0
3 are treated analogously.

From the above follows that ν̄ ∈ C2,α(R6 \ {0}), and therefore Gν̄ ∈ C2,α(S5), for
all α ∈ (0, 1).

This finishes the construction of a function ν̄ ∈ C1,1(R6) that solves (B.7), and has
the form

ν̄(x2, x3) = (x2
2 + x2

3 ) Gν̄

(
(x2, x3)

|(x2, x3)|

)
, (B.9)

Gν̄ ∈C2,α(S5) for all α ∈ (0, 1).

As discussed above ν defines a function ν solving Eq. (3.7). Clearly, since ν ∈
C1,1(R6), we get ν ∈ C1,1(R9). The solution ν constructed in this manner does not nec-
essarily satisfy the invariance property (i). In order to force this invariance, we consider

νsym = 1
3

3∑

j=1

(ν ◦ σ j )(x, y, z).

Since the Laplace operator commutes with σ , and γ3 is invariant under σ , νsym satisfies
the conclusion of Lemma B.1. -.
With the notation from the proof of Lemma B.1, we define

νcut(x2, x3) = χ(x2
2 + x2

3 ) ν(x2, x3),

with χ as in (1.18), and ν̃cut(x1, x2, x3) ≡ νcut(x2, x3) (as already defined). As discussed
above (for ν) the function ν̃cut defines a function νcut = ν̃cut ◦ T −1 : R9 → R (by the
linear transformation T in (B.1)). We then get:



222 S. Fournais, M. and T. Hoffmann-Ostenhof, T. Østergaard Sørensen

Lemma B.2. The function νcut satisfies

$νcut = γ3 + h,

with γ3 as in (3.5) and h ∈ Cα(R9) for all α ∈ (0, 1). Furthermore, we have the estimate

‖νcut‖C1,1(B9((x0,y0,z0),R)) + ‖h‖Cα(B9((x0,y0,z0),R)) ≤ C, (B.10)

with C independent of (x0, y0, z0) ∈ R9 and R > 0.

Proof. We calculate, using (B.7),
(
$x1 + $x2 + $x3

)
ν̃cut =

(
$x2 + $x3

)
νcut ≡ $νcut

= γ 3 +
{
($χ)ν + 2∇χ · ∇ν

}
− (1 − χ)γ 3

≡ γ̃3 + h̃.

Using (B.8) and (B.9) we see that the term in {·} is Cα and has compact support. The
function (1−χ)γ 3 is Cα (this was proved in the proof of Lemma B.1) and homogeneous
of degree zero outside B6(0, 2). Therefore,

‖h̃‖Cα(B9((x
0
1 ,x0

2 ,x0
3 ),R)) ≤ C,

with C independent of (x0
1 , x0

2 , x0
3 ) ∈ R9 and R > 0. Since χ has compact support, and

ν ∈ C1,1(R6), we have

‖ν̃cut‖C1,1(B9((x
0
1 ,x0

2 ,x0
3 ),R)) ≤ C,

with C independent of (x0
1 , x0

2 , x0
3 ) ∈ R9 and R > 0.

Since T is an orthogonal transformation, (B.10) follows. This finishes the proof of
the lemma. -.

C. Computation of P(6)
2 γ2

In this appendix we compute P(6)
2 γ2, the singular part of the two-particle terms in |∇F2|2,

see (3.4) and (3.5). This is Lemma C.1 below. It follows from general results on P(6)
2 η

when η has certain symmetry-properties (Lemma C.2). The latter is also responsible for
the non-occurrence of terms of order r2 ln(r) (of regularity C1,α only) in the function ν
constructed in the previous appendix; see Lemma B.1.

Lemma C.1. Let

γ2(x, y) =
( x

|x|
− y

|y|

)
· x − y

|x − y|
, (x, y) ∈ R3 × R3. (C.1)

Then

(
P(6)

2 γ2
)
(x, y) = 16(2 − π)

3π

x · y

x2 + y2 , (x, y) ∈ R3 × R3.
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Proof. This will follow from Lemma C.2 and Lemma C.3 below. Namely, by (i) and (ii)
in Lemma C.2 we get that, due to symmetry,

(
P(6)

2 γ2
)
(x, y) = c1

x · y

x2 + y2 for some c1 ∈ R,

that is, only the function x · y (restricted to S5) contributes to the projection onto h(6)
2 of

the function γ2 in (C.1). That c1 = 16(2−π)
3π is the result of Lemma C.3 (which is merely

two computations). -.

Lemma C.2. Assume η ∈ L2(S5) satisfies

η(Ox, Oy) = η(x, y) (C.2)

for all O ∈ SO(3) and almost all (x, y) ∈ S5 ⊂ R3 × R3. Let Q1 be the orthogonal
projection (in L2(S5)) onto

Span
{
P1|S5 , P2|S5

}
,

and Q2 the orthogonal projection onto

Span
{
P1|S5

}
,

where P1(x, y) = x · y, P2(x, y) = x2 − y2, (x, y) ∈ R3 × R3.
Then

(i) P(6)
2 η = Q1η.

(ii) Let η satisfy

η(x, y) = η(y, x) for almost all (x, y) ∈ S5 ⊂ R3 × R3. (C.3)

Then P(6)
2 η = Q2η.

(iii) Let R̄ be as in (B.6). Assume η satisfies

η(R̄(x, y)) = η(x, y) for almost all (x, y) ∈ S5 ⊂ R3 × R3. (C.4)

Then P(6)
2 η = 0.

Proof of Lemma C.2 . Suppose (i) is proven then the proofs of (ii) and (iii) are simple:

Proof of (ii) . Due to (i) we only need to prove that
∫

S5
η(x, y)(x2 − y2) dω = 0.

This follows using the symmetry (C.3) of η (which preserves the measure dω of S5):
∫

S5
η(x, y)P (x, y) dω = 1

2

∫

S5
η(x, y)

(
P(y, x) + P(x, y)

)
dω,

and when P(x, y) = P2(x, y) = x2 − y2, then P(y, x) + P(x, y) = 0. This
proves (ii). -.
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Proof of (iii) . Using (i) and (C.4) it is enough to show that

P(x, y) + P(R̄(x, y)) + P(R̄2(x, y)) = 0,

when P(x, y) = x ·y or x2 −y2 (since R̄ preserves the measure dω of S5). This follows
by direct calculation. -.

It remains to prove (i):

Proof of (i) . Recall that h(6)
2 = Ran(P(6)

2 ). Define h2,inv by

h2,inv = Span
{
f ∈ h(6)

2

∣∣ f (Ox, Oy) = f (x, y) for all O ∈ SO(3)
}

.

Note that P(6)
2 η ∈ h2,inv because of (C.2). We need to prove that

h2,inv = Span
{
P1|S5 , P2|S5

}
.

Since every function in h2,inv can be written as a finite sum of spherical harmonics of
degree 2 it suffices to consider a real, harmonic polynomial P which is homogeneous
of degree 2, and which is invariant under the action of SO(3):

P(Ox, Oy) = P(x, y) for all O ∈ SO(3). (C.5)

Identifying P with a quadratic form on R6, there exist real symmetric matrices A, B,
and C, such that

P(x, y) = x · Ax + y · By + x · Cy. (C.6)

The condition of harmonicity of P becomes Tr[A + B] = 0. We prove that A, B, and
C have to be multiples of the identity matrix I3 on R3. To do so, let us first restrict to
x = 0. Using (C.5) and (C.6) we get

y · By = P(0, y) = P(O0, Oy) = Oy · BOy,

for all O ∈ SO(3). Let λ be a (real) eigenvalue of B, with corresponding eigenvector
v: Bv = λv. Let y be any vector in R3. Then there exists an Oy ∈ SO(3) such that
Oyy = µyv for some µy ∈ R, and therefore y ·By = Oyy ·BOyy = λ‖y‖2. Since this
is true for all y ∈ R3, we get B = λI3. A similar argument (with y = 0, and letting x
vary) shows that also A is a multiple of the identity. Finally, the condition of harmonicity,
Tr[A + B] = 0, implies that A = −B = −λI3.

Finally the term x · Cy. This will be treated similarly. Due to the above (see (C.6)),
x · Cy = P(x, y) − λ(y2 − x2). Therefore, (C.5) implies

x · Cy = Ox · COy for all O ∈ SO(3).

By arguments similar to the above, we find that C is also a multiple of the identity I3.
Since P(x, y) = λ(x2 − y2) + x · Cy, this finishes the proof of (i). -.

This finishes the proof of Lemma C.2. -.
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Lemma C.3. Let Q2 be the orthogonal projection (in L2(S5)) onto

Span
{
P1|S5

}
, P1(x, y) = x · y , (x, y) ∈ R3 × R3,

and let

γ2(x, y) =
(

x

|x|
− y

|y|

)
· x − y

|x − y|
, (x, y) ∈ R3 × R3.

Then

Q2γ2 = c1
x · y

x2 + y2 , c1 = 16(2 − π)

3π
. (C.7)

Proof. Note that, with

Y (ω) = P1|S5(ω)∥∥ P1|S5

∥∥
L2(S5)

, ω = (x, y)
√

x2 + y2
,

we have ‖Y‖L2(S5) = 1, and so

Q2γ2(ω) = Y (ω)

∫

S5
Y (ω)γ2(ω) dω (C.8)

=





1

∥∥ P1|S5

∥∥2
L2(S5)

·
∫

S5
P1|S5(ω) γ2(ω) dω




 · x · y

x2 + y2 .

We need to compute the two integrals in the brackets.
Since P1 is homogeneous of order 2 and γ2 of order 0 (as functions on R6), we have

∫

B6(0,R)
P1(x, y)γ2(x, y) dx dy = R8

8

∫

S5
P1|S5(ω) γ2(ω) dω.

Therefore,
∫

S5
P1|S5(ω) γ2(ω) dω = 8

∫

B6(0,1)
P1(x, y)γ2(x, y) dx dy. (C.9)

Choose coordinates (|x|, |y|, |x − y|, ') for R6 (with ' three necessary angles). Note
that

P1(x, y) = x · y = 1
2

(
|x|2 + |y|2 − |x − y|2

)
, (x, y) ∈ R3 × R3,

and

γ2(x, y) = |x| + |y|
|x − y|

(
1 − |x|2 + |y|2 − |x − y|2

2|x||y|

)
, (x, y) ∈ R3 × R3.
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Then (see Hylleraas [12, (45d)]; let s = |x|, t = |y|, r = |x − y|)
∫

B6(0,1)
P1(x, y)γ2(x, y) dx dy = 1

4

( ∫
d'

)
×

×
∫ 1

0

∫ √
1−s2

0

∫ s+t

|s−t |
(s2 + t2 − r2)(s + t)

(
2st − (s2 + t2 − r2)

)
dr dt ds

= 1
4

(2 − π)

48

∫
d'. (C.10)

Using (C.9) and (C.10) this means that
∫

S5
P1|S5(ω) γ2(ω) dω = 2 − π

24

∫
d'. (C.11)

Next, observe that, again due to homogeneity, we have
∫

B6(0,R)
(x · y)2 dx dy = R10

10

∥∥P1
∣∣
S5

∥∥2
L2(S5)

and so
∥∥P1

∣∣
S5

∥∥2
L2(S5)

= 10
∫

B6(0,1)
(x · y)2 dx dy. (C.12)

Since x · y = 1
2

(
|x|2 + |y|2 − |x − y|2

)
we get (using coordinates as above)

∫

B6(0,1)
(x · y)2 dx dy

= 1
4

( ∫
d'

) ∫ 1

0

∫ √
1−s2

0

∫ s+t

|s−t |

(
s2 + t2 − r2)2

srt dr dt ds

= π

1280

∫
d'.

This means (see (C.12)) that
∥∥P1

∣∣
S5

∥∥2
L2(S5)

= π

128

∫
d'. (C.13)

Now (C.7) follows from (C.8), (C.11), and (C.13). This finishes the proof of Lemma
C.3. -.
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