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We develop an explicitly correlated multireference configuration interaction method (MRCI-F12)
with multiple reference functions. It can be routinely applied to nearly degenerate molecular elec-
tronic structures near conical intersections and avoided crossings, where the reference functions are
strongly mixed in the correlated wave function. This work is a generalization of the MRCI-F12
method for electronic ground states, reported earlier by Shiozaki et al. [J. Chem. Phys. 134, 034113
(2011)]. The so-called F12b approximation is used to arrive at computationally efficient formulas.
The doubly external part of the wave function is expanded in terms of internally contracted config-
urations generated from all the reference functions. In addition, we introduce a singles correction
to the CASSCF reference energies, which is applicable to multi-state calculations. As examples, we
present numerical results for the avoided crossing of LiF, excited states of ozone, and the H2 + OH
(A2�+) reaction. © 2011 American Institute of Physics. [doi:10.1063/1.3587632]

I. INTRODUCTION

The internally contracted multireference configuration
interaction (MRCI) method of Werner and Knowles1, 2 has
been a powerful tool for computing global potential energy
surfaces (PESs) and electronically excited states, and for de-
scribing nearly degenerate electronic structures of molecules.
Even for quasi-degenerate electronic states around conical in-
tersections and avoided crossings,3 where reference functions
are strongly mixed in the correlated wave functions, the inter-
nally contracted MRCI based on multiple reference functions
can be routinely used (see Ref. 4). One known problem is,
however, that the correlation energy is only slowly conver-
gent with respect to the basis size; therefore, one needs to use
a large basis set (sometimes quintuple-ζ or even larger basis
sets5) to perform predictive calculations.

Recently, we have developed an explicitly corre-
lated MRCI (MRCI-F12) method6 and implemented it
for electronic ground states within the so-called F12b
approximation.7, 8 MRCI-F12 accelerates the basis-set con-
vergence of the underlying MRCI method with very lit-
tle additional computational effort. As in other explicitly
correlated F12 methods,9–11 MRCI-F12 introduces a term
into the wave function that has an explicit dependence on
the electron–electron distances ri j . The MRCI-F12 method
has been based on our earlier development of an explic-
itly correlated complete active space second-order perturba-
tion (CASPT2-F12) method,12 which in turn has employed
modern F12 techniques such as the resolution of the iden-
tity approximation13, 14 using auxiliary basis sets,15, 16 a Slater-
type geminal function [F12 = −e−γ r12/γ ],17 geminal ampli-
tudes fixed at the values from the first-order cusp conditions,18

efficient formulas for F12 intermediates,19, 20 and density fit-
ting for the F12 integrals.21, 22

a)Electronic mail: werner@theochem.uni-stuttgart.de.

There are also approaches by others to multireference
F12 theories. Gdanitz was the first to combine the ex-
plicitly correlated methods with multireference correlation
models,23, 24 using a linear R12 correlation factor and the so
called standard approximation (i.e., using the orbital basis to
represent resolutions of the identity). Ten-no has introduced
internally contracted geminal excitations in his study on an
explicitly correlated multireference perturbation method.25

Valeev and co-workers have studied a perturbative correction
that utilizes the two-particle reduced density matrix of the un-
derlying correlated models,26, 27 and Varganov and Martínez
have proposed to combine an F12 function with CASSCF.28

In this study we generalize the aforementioned MRCI-
F12 method6 to incorporate multiple reference functions re-
quired in the presence of conical intersections and avoided
crossings. Internally contracted conventional and geminal
doubles functions are generated from several reference func-
tions, and wave functions for all the states of interest are
obtained as eigenfunctions of the resulting Hamiltonian ma-
trix. We also introduce a complementary auxiliary basis
set (CABS) singles correction which is applicable to mul-
tiple state calculations. Numerical examples are presented
to demonstrate the much improved basis set convergence of
MRCI-F12 compared to the conventional MRCI.

II. THEORY

A. Multi-state MRCI-F12

The index notation is as follows: i , j , k, l, m, n label
occupied orbitals, a, b virtual orbitals in the orbital basis set
(OBS), α, β virtual orbitals in the complete basis, κ , λ any
orbitals, x , y virtual orbitals in the CABS,16 and L , M , N
reference wave functions. All the orbitals are normalized and
the occupied, virtual, and CABS orbitals are orthogonal to
each other.
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We use the Werner–Knowles partial internal contraction
scheme (i.e., doubly external configurations are internally
contracted, while singly external and internal configurations
remain uncontracted).1 This mixed scheme has been chosen
for convenience, but the method could straightforwardly be
extended to more strongly contracted wave function ansätze,
as, e.g., proposed in the context of CASPT2 by Celani and
Werner,29 or completely contracted MRCI as first used by
Werner and Reinsch.30 In this work the MRCI-F12 wave func-
tions of the M th state is parametrized as in the single-state
MRCI-F12 method with the scaled fixed (SFIX) ansatz;6 the
only difference is that the geminal configurations, as well
as conventional doubly external configurations, are generated
from all the reference functions:

	M
MRCI−F12 = 	M

MRCI +
∑

N

t M N
F12 Q̂ F̂ |N 〉, (1)

where the conventional MRCI wave function is defined as

	M
MRCI =

∑
I

t M
I |
I 〉 +

∑
S,a

t S,M
a

∣∣
a
S

〉

+ 1

2

∑
N

∑
i j

∑
ab

T i j,M N
ab

∣∣
ab
i j,N

〉
. (2)

Here, |
I 〉 and |
a
S〉 are standard spin-adapted configuration

state functions (CSFs) with zero and one electron, respec-
tively, in the external orbital space. The internally contracted
doubly excited configurations |
ab

i j,N 〉 are generated by apply-

ing spin-free excitation operators Êab
i j to the complete refer-

ence functions |N 〉,
|N 〉 =

∑
R

cN
R |
R〉, (3)

∣∣
ab
i j,N

〉 = Êab
i j |N 〉. (4)

Thus, the internally contracted configurations are state spe-
cific, and the contraction coefficients cN

R are kept fixed in
the MRCI calculation. Using the union of the internally con-
tracted configurations of all considered states effectively al-
lows for a relaxation of the contraction coefficients and makes
it possible to describe all states in a balanced way.

The reference configurations are a subset of the inter-
nal configurations |
I 〉, i.e., {R} ⊆ {I }. Note that the coef-
ficients t M

R of the reference configurations are fully relaxed in
the MRCI wave function. They are only fixed in the definition
of the internally contracted configurations as explained above.
We will further discuss the choice of the reference functions
|N 〉 later in this section.

In the SFIX ansatz, the coefficients t M N
F12 are variation-

ally optimized to minimize the energy expectation value. The
SFIX ansatz is essential for deriving the multi-state MRCI-
F12, since it allows us to optimize the amplitudes by a
Davidson-like diagonalization procedure, which is not the
case for the FIX ansatz6 in which these coefficients are set
to 1. The geminal excitation operator F̂ is defined as

F̂ = 1

2

∑
i j

∑
αβ

F i j
αβ Êαβ

i j +
∑
i jk

∑
α

F i j
αk Êαk

i j , (5)

where F i j
αβ are two-electron integrals over the Slater-type

geminal function17 multiplied by fixed amplitudes18

F i j
αβ = 3

8
〈αβ|F12|i j〉 + 1

8
〈αβ|F12| j i〉. (6)

In our implementation, the F12 = −e−γ r12/γ correlation fac-
tor is fitted to a linear combination of six Gaussian gemi-
nals whose coefficients and exponents are determined by a
weighted fit.20 Throughout this work, the length parameter γ

is set to 1.0 a−1
0 .

The strong orthogonality projector is defined as

Q̂ = Q̂αβ,i j − Q̂ab,i j + Q̂S ≡ Q̂ P + Q̂S, (7)

where Q̂αβ,i j is a projector onto a complete space spanned
by the internally contracted configurations |
αβ

i j,N 〉. Q̂ P elim-
inates from the geminal excitations the internally contracted
double excitations that are present in the conventional MRCI
wave function. Q̂S projects out the contributions of internally
contracted singly excited configurations

∣∣
x
i,M

〉 = Ê x
i |M〉, (8)

as well as the semi-internal doubles present in the conven-
tional MRCI:

Q̂S =
∑

S

∑
x

|
x
S〉〈
x

S|
⎡
⎣1 −

∑
i j

∑
M N

∣∣
x
i,M

〉
(γ −1)M N

i j

〈

x

j,N

∣∣
⎤
⎦.

(9)

The overlap of the internally contracted singles is given by the
first-order reduced transition density matrix (1RDM)

γ M N
i j = 〈


x
i,M

∣∣
x
j,N

〉 = 〈M |Ê i
j |N 〉. (10)

The inverse of this matrix in Eq. (9) appears since the inter-
nally contracted singles are not orthonormal to each other. Ac-
cording to the above definition, the singly external terms in
the geminal operator are directly approximated by using the
CABS orbitals x . In our previous work6 we have shown that
this does not deteriorate the convergence of the correlation
energy with basis set size.

In this work, we use the MRCI-F12b approximation to
arrive at computationally efficient working equations,6 which
is analogous to the F12b approximation in coupled-cluster
theory.7, 8 The geminal–geminal part of the Hamiltonian ma-
trix is approximated as

〈M |F̂† Q̂ Ĥ Q̂ F̂ |N 〉 ≈ 〈M |F̂† Q̂
(

f̂ + 1
2 E (1)

M + 1
2 E (1)

N

)
Q̂ F̂ |N 〉,

(11)

with E (1)
M = 〈M |Ĥ − f̂ |M〉. This definition is consistent with

the previously reported ground-state formulation6 and analo-
gous to the multireference quasi-degenerate perturbation the-
ories (MCQDPT or MS-CASPT2)31, 32 based on the Bloch
wave operator formalism. The state-averaged Fock operator
is used,

f̂ =
⎡
⎣hκλ +

∑
i j

γ
(sa)
i j

(
J i j
κλ − 1

2 K i j
κλ

)
⎤
⎦ Êκ

λ ≡ fκλ Êκ
λ , (12)
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where γ
(sa)
i j is the state-averaged one-particle density matrix

(using equal weights for all states) and J i j
κλ and K i j

κλ are
Coulomb and exchange operators, J i j

κλ = 〈iκ|r−1
12 | jλ〉, K i j

κλ

= 〈κλ|r−1
12 |i j〉. The couplings between geminal and conven-

tional excitations are also approximated as in the ground-state
MRCI-F12.6

This approximation to the geminal–geminal block, how-
ever, breaks the invariance of the multi-state MRCI-F12 with
respect to the rotations in the reference space. Although the
most straightforward choice for the reference functions is to
use the CASSCF functions, this turned out to lead to humps
on the PESs; this is due to the fact that the E (1) values dramati-
cally change around the crossing points of the CASSCF PESs.
We note that this also causes humps on the MS-CASPT2
PESs. A better set of reference functions can be generated by
diagonalizing the Fock operator within the reference space, so
that

〈M | f̂ |N 〉 = δM N fM M , (13)

|M〉 =
∑

N

|N CASSCF〉UN M . (14)

The rotation of the reference functions only affects the F12
contributions since the underlying MRCI is invariant. The im-
portance of this procedure is presented for the ozone case (see
below). It also generates smooth MS-CASPT2 potentials.

Davidson’s correction, which approximately corrects the
size consistency error of the MRCI and MRCI-F12 methods,
is computed as

�E M
+Q = (

E M − Ẽ M
ref

)[ (
cM

0

)−2 − 1
]
, (15)

where
(
cM

0

)2 = 1

N

∑
R

(
t M
R

)2
, (16)

with t M
I being the internal (relaxed reference) coefficients in

the final MRCI-F12b wave function of the M th state, and

N = 〈
	M

MRCI−F12

∣∣	M
MRCI−F12

〉
. (17)

Ẽ M
ref = 〈M̃ |Ĥ |M̃〉 is the reference energy of the rotated refer-

ence |M̃〉 of the M th state, which is a unitary transformation
of the original reference functions that maximizes the overlap
with the final MRCI-F12 wave functions:

|M̃〉 = |N 〉[T(T†T)−1/2]N M , (18)

TN M = 〈
N

∣∣	M
MRCI−F12

〉
. (19)

See Ref. 5 for more details.

B. CABS singles correction

Although the MRCI-F12 method is efficient for achiev-
ing near CBS limit correlation energies, the basis set er-
rors of the CASSCF contributions remain uncorrected.6, 26

Recently, Kong and Valeev proposed a scheme to rectify
such errors, which was applied to multireference single-state
calculations.27 In the following, we introduce a generalization

of the CABS singles correction7, 33 that is generally applica-
ble to multireference, multi-state calculations. In our work the
correction is computed for each state separately through a sin-
gles CI. The reason that we prefer a CI-based approach is that
the introduction of the Fock operator in the singles correction
may amplify the breaking of degeneracies of states when spa-
tial symmetries are present.

The singles wave function is expanded by the reference
function and internally contracted CABS singles configura-
tions |
̃x

i,N 〉 = Ê x
i |Ñ 〉 generated from all the references:

∣∣	M
S

〉 = |M̃〉 +
∑

N

∑
i

∑
x

t i,M N
x

∣∣
̃x
i,N

〉
. (20)

Note that the first term is state specific and uses the rotated
reference wave function |M̃〉 that has largest overlap with the
MRCI-F12 wave function for state M [cf. Eq. (18)]. The inter-
nally contracted CABS singles configurations are orthogonal
to the space considered in MRCI-F12, owing to the projection
Eq. (9).

The amplitudes in Eq. (20) are optimized by minimizing
this energy, i.e., by solving the eigenvalue equation

〈

̃x

i,N

∣∣Ĥ − E M
S

∣∣	M
S

〉 = 0, (21)

where E M
S = 〈	M

S |Ĥ |	M
S 〉/〈	M

S |	M
S 〉 is the energy expecta-

tion value. The necessary matrix elements are:

〈M̃|Ĥ ∣∣
̃x
i,N

〉 =
∑

j

γ̃ M N
ji hx j +

∑
jkl

̃M N
ji,kl J kl

x j , (22)

〈

̃x

i,N

∣∣Ĥ
∣∣
̃y

j,L

〉 = hxy γ̃
N L

i j +
∑

kl

(
̃N L

i j,kl J kl
xy + ̃N L

k j,il K
kl
xy

)

+ δxy

∑
kl

̃N L
i j,klhkl + 1

2
δxy

∑
klmn

̃N L
i j,kl,mn J kl

mn. (23)

The transition density matrices γ̃i j,M N , ̃kl
i j,M N , and ̃lmn

i jk,M N
are computed using the rotated reference functions:

γ̃ M N
i j = 〈M̃|Ê i

j |Ñ 〉, (24)

̃M N
i j,kl = 〈M̃ |Ê ik

jl |Ñ 〉, (25)

̃M N
i j,kl,mn = 〈M̃|Ê ikm

jln |Ñ 〉. (26)

The singles correction is then defined as

�E M
S = E M

S − 〈M̃ |Ĥ |M̃〉. (27)

We note in passing that the singles corrections can
be alternatively defined perturbatively by minimizing the
Hylleraas functional 〈
̃M

S |Ĥ (0)|
̃M
S 〉 + 2〈
̃M

S |Ĥ |M̃〉. For sin-
gle state calculations this reduces to the method by Kong and
Valeev.27 Despite the aforementioned shortcoming, the pertur-
bative approach has the advantage that one can avoid the eval-
uation of K and J integrals with two CABS indices. Another
choice would be to include the CABS singles configurations
in the MRCI-F12 (with some approximation to Hamiltonian
matrix elements). These possibilities will be explored in fu-
ture work.
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TABLE I. The effect of singles corrections to the singlet-triplet separation
of CH2 and the dissociation energy of ozone in kcal/mol. �ES denotes the
singles corrections to the energy differences. The geometries have been op-
timized for each method and basis set.

OBS CASSCF MRCI MRCI-F12a MRCI-F12+�ES

CH2 singlet–triplet splitting (full valence)

VDZ-F12 10.58 10.12 9.29 8.78
VTZ-F12 10.12 9.01 8.57 8.53
VQZ-F12 10.11 8.73 8.51 8.50
CBS[56] 8.49

CH2 singlet–triplet splitting [(7,4,3,1) orbitals]

VDZ-F12 11.21 10.35 9.35 9.01
VTZ-F12 10.61 9.33 8.93 8.86
VQZ-F12 10.54 9.07 8.85 8.84
CBS[56] 8.83

O3 dissociation energy (full valence)

VDZ-F12 9.01 17.62 23.43 25.01
VTZ-F12 10.27 22.72 25.38 25.64
VQZ-F12 10.55 24.86 26.01 26.03
CBS[56] 26.12

aValues from Ref. 6.

III. NUMERICAL RESULTS

A. CABS singles correction

Table I demonstrates the effect of the singles corrections
for the singlet–triplet splitting of CH2 and the dissociation
energy of ozone computed with single-state MRCI-F12 as
in Ref. 6 (all the computational details can be found there).
When the full valence active space is used, the singles cor-
rections closely reproduce the basis set truncation errors of
CASSCF for both systems. Moreover, when the extended ac-
tive space consisting of the full valence + C(3s, 3p, 3d) or-
bitals is used, where the basis errors of CASSCF and the
correlation energies of MRCI-F12 do not seem additive, the
CABS singles corrected energies provide similar accuracy as
in the full valence cases. Similar improvements are also found
in the examples presented in the following sections.

B. Avoided crossing of LiF

The potential energy curves of two lowest 1�+ states of
LiF are known to have an ionic-covalent avoided crossing at
a long distance, and the CASSCF curves have the avoided
crossing at a much shorter distance (see Fig. 1). The reason is
that dynamical correlation effects lower the ionic state rel-
ative to the neutral one, thus moving the crossing point to
longer distances. This effect is sensitive to the basis set. If
one naively follows the lowest energy state in a single-state
calculation for ca. R = 10.6–13.8 bohr, the ionic MRCI wave
function will be expanded by the internally contracted con-
figurations generated from the covalent CASSCF reference,
which leads to large errors. Therefore, a multi-state treatment
is vital for this molecule.

Following a recent extensive work of Varandas,34 we use
the cc-pVXZ and aug-cc-pVXZ (X = D, T, Q) basis sets35–37

for Li and F (denoted as VXZ), respectively, and the active

En
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-106.8

-106.6

-106.4
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CASSCF

MRCI-F12b

FIG. 1. The global potential energy curves of LiF computed by CASSCF
(grey) and MRCI-F12b (black) with VQZ. The rectangle indicates the region
expanded in Fig. 2.

space consisting of six electrons in three a1, two b2, and two
b1 orbitals. These correspond to the Li(2s) and F(2p, 3p)
atomic orbitals. The 1s orbitals and the 2s orbital of F are dou-
bly occupied in the CASSCF reference, and the 1s orbitals are
not correlated in the MRCI and MRCI-F12b calculations. The
corresponding JKFIT and MP2FIT basis sets38–40 are used
for density fitting (DF) and resolution of the identity (RI).
Since for Li no JKFIT basis is available, the QZVPP/JKFIT
set41 is used in this case. For this molecule, the Davidson
correction to MRCI has been reported to give less accurate
results (compared to the full configuration interaction) than
the uncorrected ones;34 it is therefore not included in this
work.

The potential energy curves (R = 12.0–15.0) computed
by MRCI and MRCI-F12b are shown in Fig. 2. Those com-
puted by MRCI have an avoided crossing (where the energy
difference between the ground and excited states is mini-
mized) at 12.83, 13.12, and 13.48 bohr with VDZ, VTZ, and

-107.10

-107.05

-107.00

-106.95

En
er

gy
 / 
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MRCI-F12b

R / bohr R / bohr

MRCI

13.75
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12.0 13.0 14.0 15.012.0 13.0 14.0 15.0

13.12

13.48 13.62

FIG. 2. The potential energy curves of LiF computed by MRCI and MRCI-
F12b with the VDZ (blue), VTZ (purple), and VQZ (red) basis sets. Dotted
lines in the left panel are the results from MRCI-F12b/VQZ. Dotted blue
lines with open circles in the right panel are the results from MRCI-F12/VDZ
without the singles correction.
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FIG. 3. PESs of low-lying singlet A′ states of ozone computed by MRCI+Q (the left panel) and MRCI-F12b+Q (the right panel). One dimensional cuts are
made at one R1 = 2.4 and � OOO = 116.8. The aug-cc-pVDZ (blue), aug-cc-pVTZ (purple), and aug-cc-pVQZ (red) basis sets are used. Dotted lines in the left
panel are those computed by MRCI-F12b+Q with aug-cc-pVQZ.

VQZ, respectively, while the MRCI-F12b crossings are at
13.62 and 13.75 bohr with VTZ and VQZ, respectively. The
MRCI-F12b/VDZ curve has small irregular behavior around
the crossing due to the large a posteori CABS singles cor-
rection. Probably, this can only be solved by integrating the
CABS singles into the MRCI-F12b wavefunction, which will
be considered in the future. The empirical value for the cross-
ing point is 13.7 bohr, which is derived by using the Rittner
potential for the ionic state42, 43

Rc = 1

�IPEA
+ α(Li+) + α(F−)

2�IPEA R3
c

, (28)

where �IPEA is the difference between the ionization poten-
tial (IP) of Li and electron affinity (EA) of F, and α’s are the
polarizabilities. From this formula, we ascribe the quicker ba-
sis set convergence of MRCI-F12b mainly to the improved
description of the electron affinity of F. It should be noted
that one cannot expect that our calculation reproduces the em-
pirical crossing distance exactly. For this one would have to
include, e.g., core correlation effects and higher-order exci-
tations. Most notably, taking into account the core-valence
correlation effect in the Li atom would reduce the computed
crossing distance by about 0.34 bohr. On the other hand, tak-
ing into account higher order excitations in the F atom would
increase the electron affinity, thereby increasing the crossing
distance by about 0.34 bohr. Thus, there is some very favor-
able error compensation which leads to the good agreement
of our computed MRCI-F12 values with the empirical value.

C. Excited states of Ozone

The photodissociation of ozone has been theoretically
studied to provide insights into atmospheric chemistry of the
ozone layer (see, for instance, Ref. 44 and references therein).
The excited-state dynamics after photoexcitations of 1–6 eV
goes through multiple conical intersections. Here we demon-

strate them by MRCI+Q and MRCI-F12b+Q calculations
with various basis sets.

We used the full valence active space with frozen core
approximation, that is, the three 1s orbitals are doubly
occupied in the CASSCF references and not correlated in the
MRCI calculations. Dunning’s aug-cc-pVXZ basis sets were
used for the OBS and Weigend’s auxiliary basis sets for DF
and RI.38, 39 The calculations were carried out in Cs symmetry,
and five A′ and six A′′ states were averaged in the CASSCF,
but only the five A′ states have been calculated by MRCI+Q
and MRCI-F12b+Q. The two O-O bond distances are de-
noted R1 and R2. Figure 3 compiles the one-dimensional cuts
of PESs as a function of the distance R2, keeping R1 = 2.4
bohr and � OOO = 116.8◦ fixed.

Although the vertical excitation energies from the
equilibrium geometry of the ground state are quickly
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3.9

3.1 3.2 3.3 3.4
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R2 / bohr

CASSCF references

Rotated references

FIG. 4. PESs of excited states of ozone computed by MRCI-F12b using the
CASSCF (open circles) and the rotated (full circles) reference functions. The
aug-cc-pVDZ basis set is used.
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FIG. 5. One-dimensional cut of the ground and first excited A′ PES of the H2
+OH reaction computed by MRCI-F12b+Q with aug-cc-pVQZ. The rectan-
gle indicates the region expanded in Fig. 6.

convergent to their complete basis limits with MRCI+Q
(which were presented by Schinke and co-workers to validate
their results44, 45), this is partly due to error cancellations be-
tween the basis-set truncation errors of the ground and excited
states. Such fortunate error cancellation is not present in gen-
eral; the dissociation energies and the positions of the avoided
crossings (associated with the conical intersections at C2v ge-
ometries) are very sensitive to the size of the basis set, as
we already observed in our earlier work6 for the dissociation
energies of the ground state. To achieve quantitative agree-
ments, one needs to use larger than the quadruple-ζ basis
sets. MRCI-F12b+Q remedies this problem to a large extent,
and even the PESs computed with the double-ζ basis set are
hardly distinguishable on the scale of the figure from those
calculated with the quadruple-ζ basis set.

The choice of the reference functions discussed in Sec. II
is also investigated on this system. Figure 4 is the expanded
view of the avoided crossing in the same cut computed by
MRCI-F12b and aug-cc-pVDZ with the CASSCF and the
rotated references. The Davidson correction is not included,
since it may lead to unphysical humps on the potentials in
the crossing region. The results support the use of rotated ref-

erence functions to define the approximate geminal–geminal
Hamiltonian matrix elements.

D. H2 + OH reaction

The photoquenching of OH (A2�+) by H2 has been ex-
tensively studied both experimentally and theoretically (see
Refs. 46–48 and references therein). Notably, Hoffman and
Yarkony have located 13 conical intersections of the PESs of
this reaction.47 The construction of the global PES of this re-
action requires more than 20 000 energy calculations,48 which
would be greatly facilitated by the cost-effective MRCI-F12
method presented in this work.

In order to demonstrate the performance of the MRCI-
F12b method, we follow the work of Fu et al.48 and com-
pute a one-dimensional cut through the six-dimensional PESs
to illustrate one of the conical intersections in Cs symmetry.
Fig. 5 shows the energy profiles along this cut. The geomet-
rical parameters are also presented in the figure. The energy
zero is set to the energy of H2 +OH (X 2�) using the experi-
mental geometries:49 rHH = 1.831 bohr, rOH = 1.400 bohr.

As in Ref. 48, we have performed a state-averaged
CASSCF using two states in A′ and one state in A′′ within Cs

symmetry. The full valence active space (which consists of six
a′ and one a′′ orbitals) has been used. The 1s orbital of oxygen
was kept doubly occupied and not correlated. The subsequent
MRCI and MRCI-F12b calculations have been performed for
two states in A′ symmetry. The basis set used was the same as
in the ozone calculation (see Sec. III C).

The basis set dependence of the PES near the conical
intersection computed by MRCI+Q and MRCI-F12b+Q is
shown in Fig. 6. The MRCI+Q curves have a significant basis
set dependence, giving basis errors of more than 0.1 eV with
the aug-cc-pVDZ basis for short distances, while the MRCI-
F12b+Q curves computed with the aug-cc-pVXZ (X = D,
T, Q) basis sets are hardly distinguishable from each other.
In other words, MRCI+Q/aug-cc-pVQZ accuracy can be
achieved with MRCI-F12b+Q/aug-cc-pVDZ. The cost reduc-
tion observed between MRCI+Q/aug-cc-pVQZ and MRCI-
F12b+Q/aug-cc-pVDZ is more than one order of magnitude
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FIG. 6. Expanded view of the one-dimensional cut of H2 + OH PES with a conical intersections in Cs symmetry, computed by MRCI+Q and MRCI-F12b+Q.
The aug-cc-pVDZ (blue), aug-cc-pVTZ (purple), and aug-cc-pVQZ (red) basis sets are used. Dotted lines in the left panel are those computed by MRCI-F12b+Q
with aug-cc-pVQZ.
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(318 and 13 seconds excluding the CASSCF step, respec-
tively, on 1 CPU, Xeon 3.33 GHz).

IV. CONCLUSIONS

We have developed an MRCI-F12 method for multiple
state calculations, which expands the wave functions using
the union of internally contracted configurations generated
from all the reference functions. This allows us to apply it
to nearly degenerate electronic structures around conical in-
tersections and avoided crossings, which play an important
role, for instance, in photochemistry. As in our earlier de-
velopment, the so-called F12b approximation has been used
to arrive at efficient working equations. The specific choice
of the reference functions that diagonalize the Fock opera-
tor yields smooth global PESs. Compared to the underlying
MRCI method, the additional computational cost is small,
whereas the basis set convergence is much improved. Es-
pecially for the ozone excited states and the H2 + OH reac-
tion studied here, results comparable in accuracy to the con-
ventional MRCI with quadruple-ζ basis sets are obtained by
MRCI-F12b using double-ζ basis sets. This leads to the vast
reduction of the computational costs while achieving the same
accuracy. The computer codes have been implemented into
the MOLPRO package,50 and will be made available for gen-
eral use in the next release.

ACKNOWLEDGMENTS

Dr. Gerald Knizia, Dr. Kodagenahalli R. Shamasundar,
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