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An internally contracted multireference configuration interaction is developed which employs wave
functions that explicitly depend on the electron–electron distance (MRCI-F12). This MRCI-F12
method has the same applicability as the MRCI method, while having much improved basis-set con-
vergence with little extra computational cost. The F12b approximation is used to arrive at a computa-
tionally efficient implementation. The MRCI-F12 method is applied to the singlet–triplet separation
of methylene, the dissociation energy of ozone, properties of diatomic molecules, and the reaction
barrier and exothermicity of the F + H2 reaction. These examples demonstrate that already with
basis sets of moderate size the method provides near complete basis set MRCI accuracy, and hence
quantitative agreement with the experimental data. As a side product, we have also implemented
the explicitly correlated multireference averaged coupled pair functional method (MRACPF-F12).
© 2011 American Institute of Physics. [doi:10.1063/1.3528720]

I. INTRODUCTION

The internally contracted multireference configuration
interaction method1, 2 (MRCI) is a powerful tool for highly
accurate calculations of global potential energy surfaces,
electronically excited states, and many other systems where
near degeneracy situations occur and where single-reference
electronic structure methods such as coupled-cluster (CC)
theories are not applicable. However, the MRCI energies are
slowly convergent with the orbital basis set size, a problem
that is shared with all other conventional wave function meth-
ods. Thus, one needs to use very large basis set for predictive
computations,3 and this can make accurate calculations very
expensive.

The slow convergence of conventional correlation energy
calculations is caused by deficiencies in the used N -electron
basis sets: Linear combinations of Slater determinants are un-
able to properly represent the wave function cusp around the
electron–electron coalescence ri j = 0, where ri j = |ri − r j |
is the distance between two electrons. In order to ameliorate
this problem, in a seminal paper in 1985 Kutzelnigg pro-
posed to augment the conventional wave function expansion
by terms that are explicitly dependent on the electron–
electron distances ri j .4 Originally, only terms linear in
r12 were included, since this is sufficient to describe the
wave function cusp and its vicinity for small r12 (R12-
methods). However, the linear r12 terms are unphysical for
large r12, and this leads to numerical problems and a loss of
accuracy, in particular for larger molecules. This problem was
first realized by Ten-no,5 who proposed to use a short-range
Slater-type geminal function F12(r12) = −γ −1e−γ r12 . The use
of this function in the so-called F12-methods leads to a dra-
matic improvement of the accuracy and numerical stability.
Meanwhile, extensive benchmark calculations for numerous
properties have shown that F12-methods yield results with
near complete basis set (CBS) limit accuracy already with

a)Electronic mail: werner@theochem.uni-stuttgart.de.

triple-ζ basis sets.6–13 In order to achieve a comparable
accuracy with conventional methods, at least quintuple-ζ
basis sets are necessary. This means that F12-methods reduce
the computational cost for calculations of similar quality
typically by 2 orders of magnitude.

A fundamental problem of explicitly correlated wave
function methods was that a straightforward derivation of
the theory leads to three-electron and four-electron integrals.
Since these integrals are extremely numerous and expen-
sive, their exact calculation is only possible for very small
molecules and basis sets. This has hampered the develop-
ment and application of explicitly correlated methods for a
long time. A solution was first proposed by Kutzelnigg and
Klopper:14, 15 By insertion of resolutions of the identity (RI),
the many-electron integrals can be approximated by sums of
products of two-electron integrals. Several important tech-
niques were developed in the last decade that improved the ac-
curacy and efficiency of these approximations. These include
the use of auxiliary basis sets for the RI,16 the construction
of a complementary auxiliary orbital basis (CABS) from the
union of the orbital and auxiliary basis sets,17 and density fit-
ting approximations for efficient F12 integral evaluations.18, 19

The computation of the two-electron integrals over the F12

correlation factor can be done analytically,5, 20, 21 but in most
current implementations the Slater geminal is fitted to a linear
combination of Gaussian geminals in order to simplify the in-
tegral evaluation. For more details and references the reader is
referred to the papers describing the various variants of MP2-
F12 theory,16, 22–25 or to recent reviews.26, 27

A lot of recent works have been focused on approximate
explicitly correlated CC models, such as CCSD(T)-F12x
(x = a, b),9, 28 CCSD(T)F12,29–31 and CCSD(T)(F12∗).13

These approximations to the full CC-F12 method32–34 pro-
vide near CBS CCSD(T) accuracy with little additional
computational cost as compared to conventional CCSD(T)
calculations with the same basis set. The approximate models
are vital for practical purposes since the full CC-F12
method suffers from numerical instabilities and high
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computational cost. There have also been extensions of the
CC-F12 theory to local CC-F12 methods,35–37 higher or-
der CC methods,38, 39 response properties,40, 41 and unconven-
tional triples excitations.42 However, most of the work was
restricted to single-reference correlation models.

The first explicitly correlated MRCI method has been
developed by Gdanitz quite long time ago,43, 44 using a lin-
ear R12 correlation factor. In his method R12 excitations
were generated from uncontracted reference configurations.
Only recently, the F12 theory has been further explored.45–48

Ten-no45 has introduced an internally contracted geminal ex-
citation operator (combined with uncontracted multireference
Møller–Plesset perturbation theory49). An a posteriori F12
approach for arbitrary correlation models using the reduced
density matrices (RDM) of the underlying models has been
subsequently proposed by Torheyden and Valeev.46 There has
been also an attempt to combine the F12 theory with complete
active space self-consistent field (CASSCF) by Varganov and
Martínez.47

In a preceding Communication,48 we have developed
an efficient and accurate internally contracted explicitly cor-
related multireference perturbation method (CASPT2-F12).
In this work, we extend this formalism to MRCI-F12 and
multireference averaged coupled pair functional (MRACPF-
F12).50 We present preliminary applications for the singlet–
triplet separation of methylene, the dissociation energy of
ozone, the equilibrium distances, harmonic frequencies, and
dissociation energies of diatomic molecules, and the reaction
barrier and exothermicity of F + H2 reaction. An extension
to excited-state calculations will be reported elsewhere.

II. THEORY

This section is organized as follows: In Sec. II A we will
briefly recapitulate the internally contracted MRCI method of
Werner and Knowles,1 on which the current work is based.
In Sec. II B we will describe the ansatz for the explicitly cor-
related MRCI-F12 wave function. Based on this, the expres-
sions for the energy expectation value and the resulting ampli-
tude equations will be derived in Secs. II C and II D. Finally,
in Secs. II E and II F approximations that significantly reduce
the computational cost are introduced. These are similar to the
(F12∗) and F12b approximations in CC-F12 theory.

Explicitly correlated calculations require two Gaussian
type (GTO) basis sets: (i) the orbital basis set (OBS), as used
in any conventional calculation; and (ii) an auxiliary (RI) ba-
sis used to approximate the resolution of the identity. In the
following, we will use several orthonormal orbital spaces: the
orbitals that are occupied in any of the reference configura-
tions are denoted occupied or internal. The remaining orbitals
in the orbital basis are denoted external or virtual. Orbitals
outside the OBS are denoted complementary (CO) orbitals. A
finite subset of this infinite set is represented in the union of
the OBS and the RI and is denoted complementary auxiliary
orbital basis set (CABS). The index notation used for these
spaces is summarized in Table I. Repeated indices which do
not occur on the left hand side of the equations imply summa-
tion over them unless otherwise stated.

TABLE I. Orbital spaces and associated indices used in this work.

Space Abbreviation Indices

Finite spaces:
Occupied orbitals (including core) o
Correlated (valence) orbitals i, j, k, l, m, n
External orbitals in the OBS a, b, c, d
All orbitals in the OBS r, s, t, u
Complementary auxiliary orbitals CABS x, y

Complete (infinite) spaces:
Complementary orbitals CO x ′, y′, z′

Any external orbitals α, β

Any orbitals κ , λ, µ, ν

A. Internally contracted MRCI

The (partially) contracted MRCI wave function used in
this work is defined as

|(MRCI⟩ =
∑

I

tI |I ⟩ +
∑

S

∑

a

t S
a |Sa⟩

+
∑

p=±1

∑

i≥ j

∑

ab

T i jp
ab

∣∣)ab
i jp

〉

≡ tI |I ⟩ + t S
a |Sa⟩ + T i jp

ab

∣∣)ab
i jp

〉
, (1)

where |I ⟩ and |Sa⟩ are internal and singly external configu-
ration state functions (CSFs), respectively. The internal con-
figuration space {I } includes all configurations built from
occupied orbitals which can be created by applying double
excitations to the individual reference configurations. All pos-
sible spin couplings are taken into account. Similarly, the
space {S} includes all N − 1 electron functions generated
by two orbital annihilations and one internal orbital creation
from any reference configuration. Thus, this class includes
true single excitations as well as semi-internal double exci-
tations (i.e., double excitations with one excitation into active
orbitals and one into virtual orbitals). For more details see
Refs. 1 and 2.

The configuration space with two electrons in the ex-
ternal orbital subspace is spanned by internally contracted
configurations,1 which are generated by applying two spin-
summed one-electron excitation operators Êa

i ,

Êa
i =

∑

ρ={α, β}
η†

aρηiρ, (2)

to an arbitrary fixed reference wave function |0⟩

|(ref⟩ ≡ |0⟩ = t (0)
R |R⟩. (3)

The reference configurations are a subset of the internal con-
figurations {R} ⊂ {I }. Note that their coefficients tR are fully
relaxed in the MRCI wave function, but kept fixed to their
original values in the definition of the internally contracted
double excitations. The reference coefficients t (0)

R as well as
the orbitals are optimized in a preceding multiconfiguration
self-consistent field (MCSCF) or CASSCF calculation.

The spin-coupled contracted doubly external configura-
tions are defined as

∣∣)ab
i jp

〉
= 1

2

(
Êa

i Êb
j + pÊb

i Êa
j

)
|0⟩ (i ≥ j). (4)
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The parity p = ±1 corresponds to singlet and triplet coupling
of the external electrons, respectively. In the remainder of this
paper, implied summations involving singlet or triplet pair
indices i j p or klq are restricted as shown in Eq. (1). For a
unique set of configurations the restriction a ≥ b would be
sufficient, but in order to obtain an efficient formulation in
terms of matrix multiplications it is convenient to use all a, b.
This implies for the amplitudes T i jp

ab = pT i jp
ba .

Normally, the internal contraction causes very small er-
rors, except in cases when the character of the reference func-
tion very strongly changes in the correlation calculation. This
can happen in the vicinity of avoided crossings or conical in-
tersections. In such cases it is necessary to use the union of in-
ternally contracted configurations generated from two or more
reference states. For details and extensions to electronically
excited states see Ref. 51.

The advantage of using internally contracted configura-
tions is that their number is independent of the number of ref-
erence configurations. This eliminates the most severe bottle-
neck of the standard uncontracted MRCI methods, in which
all double excitations relative to all individual reference con-
figurations are taken into account. However, the contracted
configurations have a complicated structure and are neither
normalized nor orthogonal

〈
)ab

i jp

∣∣)cd
klq

〉
= 1

2
(δacδbd + pδadδbc)Si jp,klq , (5)

Si jp,klq = δpq⟨0|Ê i j
kl + pÊi j

lk |0⟩. (6)

Orthogonal configurations |)ab
Dp⟩ can be obtained by symmet-

rical orthogonalization
∣∣)ab

Dp

〉
=

∑

i≥ j

UDp,i j p
∣∣)ab

i jp

〉
(7)

where U = S−1/2. Here the two- and three-electron excitation
operators are defined as

Ê i j
kl =

∑

ρ=α, β

η
†
iρ Ê j

l ηkρ, (8)

Ê i jk
lmn =

∑

ρ=α, β

η
†
iρ Ê jk

mnηlρ, (9)

and furthermore the spin-coupled two-electron excitation op-
erator as

Êκλ
i j p = 1

2

(
Êκλ

i j + pÊκλ
j i

)
. (10)

In principle, it is also possible to define internally con-
tracted internal and singly external configurations. However,
their orthogonalization would in general require the diagonal-
ization of the third and fourth-order density matrices (3RDM
and 4RDM), respectively, which might cause a bottleneck in
calculations for larger molecules. Moreover, fifth or (for non-
CAS reference functions) sixth-order density matrices would
be needed to compute the Hamiltonian matrix elements. In the
current work we therefore leave the internal (|I ⟩) and singly
external (|Sa⟩) CSFs uncontracted, as originally proposed by
Werner and Knowles.1 Another way to avoid higher order

RDMs is to classify the internal and semi-internal configu-
rations according to the number of holes in the closed-shell
(inactive) orbital subspace of the reference function. It is then
possible to contract all internal and semi-internal configura-
tions that depend at most on two active orbital labels, so that
at most the 2RDM is needed for the overlap and the 4RDM
for the Hamiltonian (in this case the RDMs only depend on
the active orbital labels). This scheme, which can speed up
calculations by one order of magnitude or more, has first been
applied by Celani and Werner52 for CASPT2, and has recently
been implemented for MRCI in our laboratory.53 Its extension
to MRCI-F12 will be considered in future work.

B. Ansatz for MRCI-F12

We employ a similar ansatz for the MRCI-F12 wave
function as we used earlier for CASPT2-F12. The MRCI
wave function Eq. (1) is augmented by internally contracted
geminal terms

(MRCI−F12 = (MRCI + tF12 Q̂ F̂ |0⟩, (11)

where the geminal excitation operator F̂ is defined as

F̂ = F i j p
αβ Êαβ

i j p + F i j
αk Êαk

i j . (12)

F i j p
αβ are two-electron integrals over the Slater-type geminal

function5 multiplied by fixed amplitudes ti j p,

F i j p
αβ = 1

2
ti j p

(
Fi j

αβ + pF ji
αβ

)
, (13)

Fi j
αβ = ⟨i j |F12|αβ⟩

=
∫ ∫

dr1dr2φα(r1)φβ(r2)F12φi (r1)φ j (r2), (14)

ti j p =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

(1 + δi j )−1 (p = +1)

1
4

(1 − δi j ) (p = −1).

(15)

The coefficient tF12 in Eq. (11) can be chosen in two ways:
In intermediate normalization (⟨(|0⟩=1) the value tF12 = 1
satisfies the first-order cusp conditions [fixed amplitude
ansatz (FIX), or SP ansatz].54 Alternatively, one can deter-
mine the value of tF12 variationally; in this case the intermedi-
ate normalization condition is not required (scaled fixed am-
plitudes, or SFIX). We have implemented and tested both op-
tions. The FIX ansatz is size consistent (if combined with a
size consistent conventional wave function) and orbital invari-
ant. The SFIX ansatz is still orbital invariant and size exten-
sive, but not size consistent. In the current context, this is not
an important issue, since the MRCI method is not size consis-
tent anyway. One could also optimize the amplitudes ti j p fully
(using tF12 = 1), which would correspond to the diagonal (D)
ansatz in MP2-F12.23 Since the diagonal ansatz is not orbital
invariant, and size consistent only with localized orbitals, we
do not further consider it in this work. Note that our definition
of F i j p

αβ differs from its single-reference analog by a factor of
1/2 so that
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F i j p
αβ Êαβ

i j p = 1
2
F i j

αβ Êαβ
i j , (16)

which is consistent with the rest of the equations. The spin un-
coupled effective geminal amplitudes for singly external con-
figurations are

F i j
αk =

(
F i j,1

αk + F i j,−1
αk

)
(1 + δi j )

= ⟨αk|F12|mn⟩t i j
mn, (17)

t i j
mn = 3

8
δimδ jn + 1

8
δinδ jm . (18)

In our program the F12 correlation factor is approximated by
a fit to a linear combination of six Gaussian geminals

F12 = −γ −1 exp(−γ r12) ≈
6∑

i=1

ci exp
(
− αi r2

12

)
. (19)

The coefficients ci and exponents αi are determined by a
weighted fit, as described in Ref. 23. Throughout this work,
the length parameter γ is set to 1.0 a−1

0 .
The strong-orthogonality projector Q̂ is required to keep

the geminal terms orthogonal to the conventional wave func-
tion. It can be expressed as

Q̂ = Q̂αβ,i j − Q̂ab,i j + Q̂S ≡ Q̂ P + Q̂S, (20)

in which Q̂αβ,i j projects onto the infinite space spanned by
all internally contracted double excitations |)αβ

i j p⟩ and Q̂ab,i j

removes the configuration space that is already present in
the conventional MRCI. The doubly external contribution of
Q̂ P F̂ |0⟩ can be rewritten in terms of internally contracted
configurations as

Q̂ P F̂ |0⟩ = )
x ′ y′

i j p F i j p
x ′ y′ + 2)x ′a

i jpF
i j p
x ′a , (21)

where x ′, y′ label the complete complementary orbital space.
The summations over the complete space x ′, y′ can be elimi-
nated and replaced by analytical integrals in the most impor-
tant terms. In terms where this is not possible, the complete
CO space is approximated by the finite CABS space, i.e. the
indices x ′, y′ are replaced by x, y.

The singles projector Q̂S is defined as

Q̂S = |Sx ⟩⟨Sx |
[
1 −

∣∣)x
i

〉
(γ −1)i j

〈
)x

j

∣∣] , (22)

where γi j = ⟨0|Ê i
j |0⟩ is the 1-RDM and γ −1 is its inverse. Its

purpose of Q̂S is twofold: |Sx ⟩⟨Sx | projects from the space of
internally contracted geminal excitations to the uncontracted
space of CSFs with one electron in the CABS space. This
makes it possible to use the same coupling coefficients as
in the conventional MRCI. In contrast to the doubly exter-
nal contributions, it will for these terms not be possible to re-
move summations over the complete space x ′, and therefore
we use the finite CABS space from the beginning. As will be
shown later, the energy contributions of these configurations
converge quickly with basis set size, and the restriction to the
CABS space is not a severe approximation. This is due to the
fact that for atoms the semi-internal energy contribution satu-
rates with RI functions of angular momentum quantum num-
bers up to 3locc (locc is the maximum angular momentum

TABLE II. Definition of the coupling coefficients used in the MRCI-F12
formalism. All quantities are independent of the external indices a, b, and
there is no implied summation over repeated indices within the brackets.
The coupling coefficients are the same as used in the conventional MRCI.

pair–pair: αmn(i j p, klq) = δpq ⟨0|Ê i jm
kln + pÊi jm

lkn |0⟩

βmn(i j p, klq) = ⟨0|Ê i jn
mlk + pÊi jn

lmk + q Êi jn
mkl + pq Êi jn

kml |0⟩

γ (i j p, klq) = δpq fmn⟨0|Ê i jm
kln + pÊ jim

kln |0⟩
single–single: αmn(S, T ) = ⟨Sa |Êm

n |T a⟩
βmn(S, T ) = ⟨Sa |Êan

mb|T b⟩
γ (S, T ) = fmn⟨Sa |Êm

n |T a⟩
pair–single: σk (i j p, S) = ⟨)ab

i jp |Êb
k |Sa⟩

αkmn(i j p, S) = ⟨)ab
i jp|Êbm

kn |Sa⟩

pair–internal: σmn(i j p, I ) = 1
2 ⟨0|Ê i j

mn + pÊi j
nm |I ⟩

single–internal: σk (S, I ) = ⟨Sa |Êa
k |I ⟩

αkmn(S, I ) = ⟨Sa |Êam
kn |I ⟩

pair–ref.: σmn(i j p, 0) = 1
2 ⟨0|Ê i j

mn + pÊi j
nm |0⟩

single–ref.: σk (S, 0) = ⟨Sa |Êa
k |0⟩

αkmn(S, 0) = ⟨Sa |Êam
kn |0⟩

quantum number in the occupied space),45 and RI basis sets
contain such higher angular momentum functions.

The projector in brackets removes the contributions of
internally contracted single excitations |)x

i ⟩ = Ê x
i |0⟩, which

cannot easily be separated from the space of semi-external
double excitations |)xk

i j ⟩ = Ê xk
i j |0⟩.46 The inverse of the

1RDM occurs because the internally contracted singles are
nonorthogonal

〈
)x

i

∣∣)y
j

〉
= δxyγi j . (23)

The singles geminal part can now be written as

Q̂S F̂ |0⟩ = |Sx ⟩F S
x (24)

with

F S
x =

(
δST − DS

m DT
m

)
αik j (T, 0)F i j

xk, (25)

DS
m = σn(S, 0)(γ −1/2)mn. (26)

The coupling coefficients σi (S, 0) and αik j (S, 0) are defined
in Table II. We note that in our previous communication on
CASPT2-F12 (Ref. 48) the singles were not projected out
exactly but only approximately by using a normal ordered
excitation operator {Êαk

i j } = Êαk
i j − Êα

i γk j + 1
2γki Êα

j .55 As is
shown in the supplementary material,56 the differences be-
tween both approaches are only significant for small (double-
ζ ) basis sets.

In summary, the geminal parts as written in Eqs. (21) and
(24) have the same form as the corresponding singles and
doubles contributions in the standard MRCI wave function,
except that the CO or CABS orbitals are used and the ampli-
tudes T i jp

ab and t S
a are replaced by the fixed effective geminal

amplitudes F i j p
x ′ y′ , F i j p

x ′a , and F S
x . Since all density matrices

and coupling coefficients are independent of the virtual or-
bitals, they are the same for the conventional and explicitly
correlated terms, and thus the contributions of the geminal
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terms to the residual expressions are completely analogous
to the conventional ones. The only exceptions are the terms
in which the summations over the complete CA space are
replaced by analytical integrals. This will be discussed in
Secs. II C and II D.

C. The energy expectation value and amplitude
equations

The MRCI-F12 energy expectation value can be written
as

E = ⟨(MRCI|Ĥ |(MRCI⟩ + 2AtF12 + Bt2
F12

⟨(MRCI|(MRCI⟩ + Xt2
F12

, (27)

where
A = ⟨(MRCI|Ĥ Q̂ F̂ |0⟩, (28)

B = ⟨0|F̂† Q̂ Ĥ Q̂ F̂ |0⟩, (29)

X = ⟨0|F̂† Q̂ F̂ |0⟩. (30)

The pure MRCI contributions are of course the same as in
the conventional case described in Ref. 1 and need no further
discussion. Defining

ADp
ab =

〈
)ab

Dp

∣∣Ĥ Q̂ F̂ |0⟩, (31)

AS
a =

〈
)a

S

∣∣Ĥ Q̂ F̂ |0⟩, (32)

AI = ⟨I |Ĥ Q̂ F̂ |0⟩, (33)

one obtains

A = tI AI + t S
a AS

a + T Dp
ab ADp

ab . (34)

Explicit expressions for the quantities AI , AS
a , ADp

ab , B, and X
will be presented in Sec. II D.

The amplitude equations for the FIX ansatz are obtained
by differentiation of the Lagrangian L = E + 2λ(⟨0|(⟩ − 1)
with respect to the amplitudes tI , t S

a , and T Dp
ab . The second

term takes care of the intermediate normalization condition
⟨0|(⟩ = 1, which must be implied for the FIX ansatz. In this
case the coefficient tF12 = 1 is kept fixed. This yields

〈
)ab

Dp

∣∣Ĥ |(MRCI⟩ + ADp
ab tF12 − ET Dp

ab = 0, (35)

⟨Sa|Ĥ |(MRCI⟩ + AS
a tF12 − Et S

a = 0, (36)

⟨I |Ĥ |(MRCI⟩ + AI tF12 − λt (0)
I − EtI = 0, (37)

in which E is the MRCI-F12 expectation value as given
above. These equations can be solved by subspace residual
minimization of Eqs. (35)–(37) with iterative updates. Ex-
plicit expressions for the matrix elements ⟨)ab

Dp|Ĥ |(MRCI⟩,
⟨Sa|Ĥ |(MRCI⟩, and ⟨I |Ĥ |(MRCI⟩ can be found in Ref. 1.

For the SFIX ansatz, in which the coefficient tF12 is op-
timized, we do not need to impose intermediate normaliza-
tion (i.e., we set λ = 0), but instead the derivative of the
Lagrangian with respect to the scaling factor tF12 must van-
ish at convergence

A + (B − E X )tF12 = 0. (38)

TABLE III. Definition of the integrals used in the F12 formalism. The
matrices V i j

αβ , Bi j,kl and Xi j,kl are the same as in the closed-shell single-
reference MP2-F12 theory. Bi j,kl is evaluated using the so called approxi-
mation C (Refs. 22 and 23). The working equations can be found in Ref.
23.

J kl
κλ = ⟨κk|r−1

12 |λl⟩
K kl

κλ = ⟨κλ|r−1
12 |kl⟩

Fkl
κλ = ⟨κλ|r−1

12 F12|kl⟩
W kl

κλ = ⟨κλ|r−1
12 F12|kl⟩

F2
i j,kl = ⟨i j |F2

12|kl⟩

V i j
κλ = ⟨κλ|r−1

12 Q̂12 F12|i j⟩ = W i j
κλ − K rs

κλ Fi j
rs − K ox

κλ Fi j
ox − K xo

κλ Fi j
xo

Xi j,kl = ⟨i j |F12 Q̂12 F12|kl⟩ = F2
i j,kl − Fi j

rs Fkl
rs − Fi j

ox Fkl
ox − Fi j

xo Fkl
xo

Bi j,kl = ⟨i j |F12 Q̂12( f̂1 + f̂2)Q̂12 F12|kl⟩

F i j p
κλ = 1

2
ti j p

(
Fi j

κλ + pF ji
κλ

)

V i j p
κλ = 1

2
ti j p

(
V i j

κλ + pV ji
κλ

)

W i j p
κλ = 1

2
ti j p

(
W i j

κλ + pW ji
κλ

)

Xi j p,klq = 1
2
δpq ti j ptklq

(
Xi j,kl + pX ji,kl

)

Bi j p,klq = 1
2
δpq ti j ptklq

(
Bi j,kl + pB ji,kl

)

In this case the residual equations represent an eigenvalue
problem that can be solved iteratively by a Davidson-like
method (see Ref. 1 for details).

D. Matrix elements for MRCI-F12

In second quantization the molecular Hamiltonian is de-
fined as

Ĥ = hκλ Êκ
λ + 1

2
K µν

κλ Êκλ
µν (39)

where hκλ is the sum of kinetic and external potential terms
and K µν

κλ = ⟨κλ|r−1
12 |µν⟩ are the two-electron repulsion inte-

grals. Further integrals, which are needed in later expressions,
are summarized in Table III.

As an example for the derivation of the matrix elements
A, B, and X defined in the previous section we consider the
pair contribution to the term ⟨0|Ĥ Q̂ P F̂ |0⟩. Using Eq. (21) we
obtain

⟨0|Ĥ Q̂ P F̂ |0⟩ = σkl(i j p, 0)
(
K αβ

kl F i j p
αβ − K ab

kl F i j p
ab

)

= 1
2

ti j pσkl(i j p, 0)
(
⟨kl|r−1

12 Q̂′
12 F12|i j⟩

+ p⟨kl|r−1
12 Q̂′

12 F12| j i⟩
)
, (40)

where Q̂′
12 is a two-electron projector

Q̂′
12 = |αβ⟩⟨αβ| − |ab⟩⟨ab|

= |x ′y′⟩⟨x ′y′| + |ax ′⟩⟨ax ′| + |x ′a⟩⟨x ′a|

= 1 − |rs⟩⟨rs| − |ox ′⟩⟨ox ′| − |x ′o⟩⟨x ′o|. (41)

In the last equality we have used the RI, |κλ⟩⟨κλ| = 1.
The unit operator (1) leads to analytical integrals
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⟨i j |r−1
12 F12|mn⟩, and thus the double summation over

the infinite space is eliminated. In the last two terms, which
usually give only small contributions, the summation over
the complete complementary space x ′ must be approximated
by the finite CABS space x , and the two-electron projector
Q̂′

12 is then replaced by

Q̂12 = 1 − |rs⟩⟨rs| − |ox⟩⟨ox | − |xo⟩⟨xo|. (42)

This is exactly the same as in single-reference MP2-F12 the-
ory. Using the integrals defined in Table III the result can now
be compactly written as

⟨0|Ĥ Q̂ P F̂ |0⟩ = V i j p
kl σkl(i j p, 0). (43)

The corresponding singles contribution reads

⟨0|Ĥ Q̂S F̂ |0⟩ =
[
σk(S, 0)hkx + αkmn(S, 0)J mn

kx

]
F S

x . (44)

Similar arguments yield

X = Xi j p,klq Si jp,klq + F S
x F S

x . (45)

The matrices ADp
ab are evaluated in the basis of nonorthogo-

nal configurations )ab
i jp and subsequently transformed to the

orthogonal basis

ADp
ab = 1

2
UDp,i j p

(
Ai jp

ab + p Ai jp
ba

)
, (46)

where

Ai jp
ab = Si jp,klq

[
V klq

ab + 2haxF
klq
xb + 2K xm

ab F S
x σm(klq, S)

]

+
[
2J mn

ax αmn(i j p, klq) + K mn
ax βmn(i j p, klq)

]
F klq

xb .

(47)

The contributions to the internal and singles residuals are

AS
a =

[
δST hax + J mn

ax αmn(S, T ) + K mn
ax βmn(S, T )

]
F T

x

+ 2F i j p
ax

[
hxkσk(i j p, S) + J mn

xk αkmn(i j p, S)
]

+ 2V i j p
ak σk(i j p, S), (48)

AI =
[
hkxσk(S, I ) + J mn

kx αkmn(S, I )
]
F S

x

+V i j p
mn σmn(i j p, I ). (49)

The coupling coefficients σ , α, and β are defined in
Table II. They are exactly the same as used in the conventional
MRCI.

The explicit expressions for the geminal–geminal term
B can be derived from the conventional matrix element
⟨(MRCI|Ĥ |(MRCI⟩ (cf. Ref. 1) by replacing the amplitudes
T i jp

ab and t S
a by the geminal amplitudes F i j p

αβ and F S
x , re-

spectively. In most terms, the summations over the infi-
nite virtual space cannot be removed and must be approx-
imated by double RI approximations. An example is the
term

(
F i j p

x ′ y′ K mn
x ′z′F

klq
z′ y′ + 2F i j p

ay′ K mn
az′ F

klq
z′ y′

+F i j p
x ′b K mn

x ′z′F
klq
z′b + F i j p

ay′ K mn
ac F klq

cy′

)
βmn(i j p, klq).

(50)

In some terms resolutions of the identity can be used to elim-
inate the double RIs, the most important one being

⟨i j p|F12 Q̂12r−1
12 Q̂12 F12|klq⟩Si jp,klq

=
[
⟨i j p|F12r−1

12 F12|klq⟩ − F i j p
rs

(
V klq

rs + W klq
rs

)

−2F i j p
xo

(
V klq

xo + W klq
xo

)]
Si jp,klq . (51)

Even though the full implementation of these expressions is
in principle feasible, it involves many multiple RI approxima-
tions and integrals over up to two CABS orbitals. These terms
would not only be expensive to evaluate, but would also re-
quire very large RI basis sets for numerical stability. This is
the same situation as for exact CCSD-F12 methods. In the
next two sections we therefore introduce approximations for
the B and A terms. If only B is approximated, one obtains a
model that corresponds to the (F12∗) approximation in cou-
pled cluster theory. If also the coupling terms A are approx-
imated, one arrives at approximation MRCI-F12b which has
been implemented in the current work.

E. Approximation MRCI(F12∗)

In this section we introduce an approximation for the
geminal–geminal term B. A similar approximation has been
used before in the CCSD-F12b,9, 28 CCSD(F12),57, 58 and
CCSD(F12∗)13 methods.

The geminal–geminal block B is approximated by re-
placing Ĥ − E0 with ˆH (0) − E (0), where ˆH (0) is the zeroth-
order Hamiltonian used in CASPT2

Ĥ (0) = P̂0 f̂ P̂0 + (1 − P̂0) f̂ (1 − P̂0) (52)

with P̂0 = |0⟩⟨0|, E0 = ⟨0|Ĥ |0⟩, and E (0) = ⟨0| f̂ |0⟩. The
Fock operator is defined as

f̂ =
[

hκλ + γi j

(
J i j
κλ − 1

2
K i j

κλ

)]
Êκ

λ ≡ fκλ Êκ
λ . (53)

Thus, the geminal–geminal block of the Hamiltonian is ap-
proximated as

B ≈ (E0 − E (0))X + ⟨0|F̂† Q̂ f̂ Q̂ F̂ |0⟩. (54)

The matrix element over the Fock operator is

⟨0|F̂† Q̂ f̂ Q̂ F̂ |0⟩= Bi j p,klq Si jp,klq + Xi j p,klqγ (i j p, klq)

+ 4F S
x

[
fakF

i j p
xa + fykF

i j p
xy

]
σk(i j p, S)

+F S
x fxyF

S
y + γ (S, T )F S

x F T
x .

(55)

F. Approximation MRCI-F12b

In the previous section we have shown how the geminal–
geminal term B can be efficiently approximated. The A cou-
pling terms still involve the computation and storage of the
three-external integrals K kx

ab and are expensive to evaluate.
In the following, we introduce an additional approximations
which avoids also these problems. This corresponds to the
F12b approximation in CC theory.9, 28
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Apart from the V i jp
rs terms, all contributions of two-

electron integrals to the A matrix elements are neglected and
the one-electron matrix elements hrs are replaced by frs (the
same approximation is made in CASPT2-F1248). In addition,
the CABS contributions to the V i j

rs matrix elements are ne-
glected and V i j p

rs is approximated as

V̄ i j p
rs = 1

2
ti j p

(
V̄ i j

rs + pV̄ ji
rs

)
, (56)

V̄ i j
rs = W i j

rs − K tu
rs Fi j

tu . (57)

The coupling terms then simplify to

Ai jp
ab ≈ Si jp,klq

[
V̄ klq

ab + 2 faxF
klq
xb

]
, (58)

AS
a ≈ 2V̄ i j p

ak σk(i j p, S)+ faxF
S
x +2F i j p

ax fxkσk(i j p, S).

(59)

The evaluation of the integrals K kx
ab and J mn

ax is thus avoided
and the computational effort is strongly reduced. Note
that the amplitude equation for the internal coefficients
[Eq. (49)] is not approximated, since it directly contributes
to the energy.

G. Variants with size consistency corrections

Davidson’s correction59 to MRCI energies, that accounts
approximately for contributions of higher order excitations
and reduces the size consistency errors, has been implemented
for MRCI-F12 in the same way as in the conventional MRCI
method. The correction is defined as

/E+Q = (E − E0)
(
c−2

0 − 1
)
, (60)

where c0 is the coefficient of the reference function in the
(normalized) MRCI-F12 wave function. One can either use
the fixed reference function, yielding

c0 = 1√
N

⟨0|(MRCI−F12⟩ = 1√
N

∑

I∈{R}
t (0)
I tI , (61)

in which N = ⟨(MRCI−F12|(MRCI−F12⟩ (Q1 correction in
Ref. 3). This may fail in the vicinity of conical intersections,
since then states may strongly mix and c0 may get small, lead-
ing to a strong overestimation of the correction. This problem
can be avoided by using instead of the coefficients t (0)

I the re-
laxed reference coefficients tI . Renormalization of the relaxed
reference function then yields

c2
0 = 1

N

∑

I∈{R}
t2
I (62)

(Q0 correction in Ref. 3). This correction is used by default
unless otherwise stated.

Replacing the expectation value of MRCI-F12 methods
by

E = E0 + ⟨(MRCI−F12|H − E0|(MRCI−F12⟩
⟨0|0⟩ + ga⟨(i |(i ⟩ + ge⟨(e|(e⟩

(63)

leads to the MRACPF-F12 methods, in which

|(i ⟩ = (1 − P̂0)tI |I ⟩, (64)

|(e⟩ = t S
a |Sa⟩ + T i jp

ab |)ab
i jp⟩ + tF12 Q̂ F̂ |0⟩. (65)

In the MRACPF model,50 ga and ge are set to

ga = 1, (66)

ge = 2/n, (67)

where n is the number of correlated electrons. MR av-
eraged quadratic coupled cluster60 (MRAQCC-F12) and
MRCEPA(0)-F12 (linear coupled electron pair approxima-
tion) can be obtained by using a different set of ga and ge

values. Since their working equations are very similar to those
of MRCI-F12, they are not repeated here.

III. RESULTS

The method described in the previous sections has been
implemented in the developer version of the MOLPRO suite of
ab initio programs.61 In all calculations reported in this paper
approximation F12b has been used. For the sake of simplic-
ity the suffix b will be omitted in the following. Unless oth-
erwise noted, Davidson’s correction (Q0) was applied in all
calculations presented in the following, since it reduces the
size consistency errors of the MRCI and MRCI-F12 meth-
ods and in most cases leads to significantly improved results
(with and without F12 correction). All integrals with CABS
indices, as well as all those needed to compute V, X, and B in
Table III, are computed using density fitting.18 The Fock ma-
trix elements (except for fmn in Table II) are also evaluated
using density fitting. All other integrals are computed ex-
actly. The CBS values are calculated by applying Helgaker’s
formula62 to the total energies computed by aug-cc-pV5Z and
6Z, assuming that the CASSCF contribution is well converged
at the aug-cc-pV6Z basis set.

The singlet–triplet separation of methylene (CH2) has
been computed by the above described MRCI-F12 method,
as well as other MR methods using the full valence and
larger active spaces. The full-valence active space consists
of (3,2,1,0) orbitals in a1, b2, b1, a2 symmetries, while
the larger active space, which formally includes in addi-
tion the C(3s, 3p, 3d) AOs, has (7,4,3,1) orbitals. Peter-
son’s correlation consistent double, triple and quadruple ζ

F12 basis sets63, 64 (cc-pVXZ-F12 for the OBS and cc-pVXZ-
F12/OptRI for the CABS, denoted hereafter as VXZ-F12, X
= {D,T,Q}) are used. For density fitting, we have used the
corresponding aug-cc-pVXZ/MP2FIT and cc-pVXZ/JKFIT
basis sets (X = T for VDZ-F12 and VTZ-F12, and
X = Q for VQZ-F12).65, 66 An even-tempered diffuse func-
tion per angular momentum has been added to cc-
pVXZ/JKFIT basis.24 The total energies of the singlet and
triplet states of CH2 are summarized in Table IV, and the
singlet–triplet separations are presented in Table V. In order
to demonstrate the convergence of the energy with respect
to the basis set (Table IV), we have fixed the geometry to
rCH = 2.1023 a0 (2.0413 a0) and ̸ HCH = 101.71◦ (134.22◦)
for the 1 A1 (3 B1) states, respectively. However, for comput-
ing the singlet–triplet splittings (Table V) the geometries have
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TABLE IV. The reference and correlation energies of singlet and triplet methylene in Eh at fixed geometries (see text). MRCI and MRCI-F12 values include
Davidson’s correction (+Q0).

OBS CASSCF CASPT2 CASPT2-F12 MRCI MRCI-F12 (FIX) MRCI-F12 (SFIX)

Singlet, (3,2,1,0) active space
VDZ-F12 −38.95368 −0.08233 −0.10545 −0.09896 −0.11619 −0.11652
VTZ-F12 −38.95735 −0.09554 −0.10639 −0.11256 −0.11916 −0.11964
VQZ-F12 −38.95811 −0.10111 −0.10667 −0.11703 −0.12002 −0.12036

CBS56 −38.95832 −0.10666 — −0.12052 — —

Triplet, (3,2,1,0) active space
VDZ-F12 −38.97048 −0.08814 −0.10938 −0.09827 −0.11426 −0.11452
VTZ-F12 −38.97341 −0.10090 −0.11063 −0.11085 −0.11685 −0.11725
VQZ-F12 −38.97413 −0.10605 −0.11096 −0.11492 −0.11760 −0.11789

CBS56 −38.97432 −0.11103 — −0.11806 — —

Singlet, (7,4,3,1) active space
VDZ-F12 −39.02901 −0.01911 −0.03808 −0.02306 −0.04022 −0.04029
VTZ-F12 −39.03562 −0.02909 −0.03776 −0.03393 −0.04070 −0.04080
VQZ-F12 −39.03687 −0.03343 −0.03792 −0.03798 −0.04116 −0.04125

CBS56 −39.03720 −0.03792 — −0.04142 — —

Triplet, (7,4,3,1) active space
VDZ-F12 −39.04687 −0.01877 −0.03608 −0.02168 −0.03727 −0.03734
VTZ-F12 −39.05252 −0.02849 −0.03642 −0.03189 −0.03805 −0.03814
VQZ-F12 −39.05366 −0.03258 −0.03661 −0.03565 −0.03849 −0.03858

CBS56 −39.05394 −0.03667 — −0.03875 — —

been optimized for each method and basis set. The opti-
mized geometries can be found in Supplementary Material.56

The MRCI-F12 correlation energies have achieved 1 kcal/mol
accuracy (compared to their CBS limits) with as small as
the VTZ-F12 basis set. The singlet–triplet separation is also
converged to a few tenth of a mEh at the triple-ζ basis
set. The experimental value corrected for the zero-point vi-
bration energy and relativity is 9.1 ± 0.2 kcal/mol,67 which
agrees well with our MRCI-F12 values for the (7,4,3,1) active
space.

We have also examined the dependence of the F12 ener-
gies with respect to the size of RI basis sets, which is shown
in Table VI. The reference values were computed using the
huge RI basis set of Klopper.16 The errors arising from the
incompleteness of RI basis sets in MRCI-F12 were found of
the same order as in the CCSD-F12 method, which legitimates
the direct use of the CABS orbitals for the semi-internal terms
[see Eq. (22)].

Another example is the dissociation energy of
the ozone molecule in its electronic ground state to
a triplet oxygen molecule and a triplet oxygen atom
[O3(1 A1)→O2(30−

g )+O(3 P)]. The ozone molecule has a
strong multiconfiguration character. The experimental value
for De is 26.1 kcal/mol.68 The geometries of O3 and O2

have been optimized for each method and basis set using
numerical gradients. The optimized geometrical parameters
for CASSCF, CASPT2, MRCI, and MRACPF with and
without F12 terms are listed in Table VII. MRCI-F12 with
the double-ζ basis set already gives equilibrium geometries
accurate to 0.01 Å and < 0.1◦, which halves the error of
the MRCI method. With the triple-ζ basis set, the obtained
bond lengths are found to agree within 0.003 Å with the
experimental values.69 The dissociation energies computed
using these optimized geometries are also compiled in
Table VII. Obviously, F12 treatments greatly accelerate their
convergence with respect to the basis size. The MRCI-F12

TABLE V. The singlet–triplet separation of methylene in kcal/mol. The geometries have been optimized for all combinations of methods and basis sets.
MRCI and MRCI-F12 values include Davidson’s correction (+Q0).

OBS CASSCF CASPT2 CASPT2-F12 MRCI MRCI-F12 (FIX) MRCI-F12 (SFIX)

(3,2,1,0) active space
VDZ-F12 10.58 14.19 13.02 10.12 9.34 9.29
VTZ-F12 10.12 13.44 12.73 9.01 8.62 8.57
VQZ-F12 10.11 13.16 12.75 8.73 8.54 8.51

CBS56 12.79 8.49

(7,4,3,1) active space
VDZ-F12 11.21 11.01 9.96 10.35 9.36 9.35
VTZ-F12 10.61 10.23 9.76 9.33 8.94 8.93
VQZ-F12 10.54 10.00 9.71 9.07 8.86 8.85

CBS56 9.72 8.83
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TABLE VI. The errors due to the incompleteness of the RI insertion
(in µEh). The singlet CH2 is computed by the VDZ-F12 basis set for
OBS and various RI basis sets. Klopper’s huge RI basis seta is used as a
reference.

RI MRCI-F12 CCSD-F12b
aVDZ/JKFIT −39.0 −25.1
aVTZ/JKFIT −36.6 −32.0
aVQZ/JKFIT −26.6 −25.9
aV5Z/JKFIT −22.2 −21.0
VDZ-F12/OPTRI 6.5 3.4

aReference 16.

value with the triple-ζ basis set deviates only by 0.9 kcal/mol
from the experimental value, and the quadruple-ζ basis set
reproduces it within 0.2 kcal/mol. The SFIX ansatz slightly
outperforms the FIX ansatz, especially in calculations with
small basis sets. The conventional MRCI method is off by
3 kcal/mol with the triple-ζ basis set and by 1.2 kcal/mol
even with the quadruple-ζ basis set. MRACPF-F12 gives
quantitatively similar results to MRCI-F12.

Next, the geometries and spectroscopic constants of sev-
eral first-row hydrides and homonuclear diatomics have been

TABLE VII. The dissociation energy (in kcal/mol) and optimized geom-
etry of ozone and oxygen molecules in angstrom and degree. MRCI and
MRCI-F12 values include Davidson’s correction (+Q0).

Ozone Oxygen

Method OBS De rOO ̸ OOO rOO

CASSCF VDZ-F12 9.01 1.289 116.6 1.222
VTZ-F12 10.27 1.281 116.8 1.216
VQZ-F12 10.55 1.280 116.8 1.215

CASPT2 VDZ-F12 14.91 1.299 116.6 1.225
VTZ-F12 18.99 1.284 116.7 1.214
VQZ-F12 20.82 1.282 116.7 1.213

CBS56 22.04 1.280 116.8 1.211

CASPT2-F12 VDZ-F12 20.16 1.290 116.5 1.219
VTZ-F12 21.66 1.281 116.7 1.212
VQZ-F12 22.08 1.280 116.7 1.211

MRCI VDZ-F12 17.62 1.293 116.6 1.224
VTZ-F12 22.72 1.279 116.8 1.214
VQZ-F12 24.86 1.276 116.8 1.212

CBS56 26.12 1.273 116.8 1.210

MRCI-F12 (FIX) VDZ-F12 22.91 1.284 116.6 1.218
VTZ-F12 25.23 1.275 116.8 1.211
VQZ-F12 25.96 1.273 116.8 1.210

MRCI-F12 (SFIX) VDZ-F12 23.43 1.283 116.6 1.217
VTZ-F12 25.38 1.274 116.8 1.211
VQZ-F12 26.01 1.273 116.8 1.210

ACPF VDZ-F12 17.54 1.294 116.6 1.224
VTZ-F12 22.62 1.279 116.7 1.214
VQZ-F12 24.76 1.277 116.8 1.212

CBS56 26.03 1.274 116.8 1.210

ACPF-F12 (FIX) VDZ-F12 22.79 1.285 116.6 1.218
VTZ-F12 25.13 1.275 116.8 1.211
VQZ-F12 25.87 1.274 116.8 1.210

Experiment 26.1 1.272 116.8 1.208

aTaken from Ref. 68.

calculated. Core orbitals are doubly occupied and not cor-
related. We have used the full valence active spaces for the
homonuclear diatomics, while four orbitals which formally
correspond to the 3s and 3p orbitals of C–F are added for
the hydrides. Dunning’s cc-pVXZ and aug-cc-pVXZ basis
sets70, 71 for H and C–F, respectively, are used for OBS (abbre-
viated by VXZ and aVXZ in Table VIII) and Weigend’s cc-
pVXZ/JKFIT and (aug-)cc-pVXZ/MP2FIT basis sets65, 66 for
auxiliary basis sets. Table VIII compiles the equilibrium bond
lengths, harmonic frequencies and dissociation energies. The
equilibrium bond lengths and harmonic frequencies were cal-
culated by fitting the potential energy curves with polynomi-
als of rank 8. The experimental values are taken from Refs. 72
and 73. For the equilibrium bond lengths, which are quite in-
sensitive to the basis set, the F12 treatments reduce the error at
the double or triple-ζ level by a factor of 2. The harmonic fre-
quencies are improved significantly by the F12 treatment; the
triple-ζ calculations reproduce the corresponding CBS values
typically within 10 cm−1, which is in contrast to the conven-
tional MRCI method whose basis-set errors can amount to
25 cm−1 or more. Moreover, the improvements by the F12
factor for the dissociation energies are remarkable. The pure
correlation contributions [i.e., the difference of MRCI(-F12)
energies and CASSCF energies] quickly converge to the CBS
limit: the errors in the correlation contributions are less than
1 kcal/mol using the aug-cc-pVTZ basis set, while one often
observes errors of more than 5 kcal/mol for MRCI with the
same basis set. In many cases, the remaining errors of MRCI-
F12 calculations are parallel to those of CASSCF, suggesting
that the future development of a “CABS singles” correction24

to CASSCF is necessary to further reduce the errors.
Finally, we have examined the reaction barriers and the

exothermicity of the F + H2 reaction by the MRCI-F12
method. These quantities are known to be strongly depen-
dent on the basis set.3 The geometries optimized by the MRCI
method with the aug-cc-pV5Z basis set were used (see Ref. 3
for details). Only the 12 A′ ground state was considered in the
CASSCF, MRCI, and MRCI-F12 calculations (the 22 A′ and
12 A′′ states, which are degenerate with the 12 A′ at the F + H2

asymptote, have very little effect on the energy differences
considered here, even though they cannot be neglected at in-
termediate geometries, see Refs. 74 and 75). The active space
is spanned by 2a′–9a′, 1a′′, and 2a′′ orbitals. The 1a′ orbital
is not correlated in the MRCI and MRCI-F12 calculations.
The aug-cc-pVXZ basis sets for F and the cc-pVXZ set for H
are used as OBS70, 71 [diffuse functions on H introduce signifi-
cant basis-set superposition errors and are therefore omitted3].
For Davidson’s correction, we have employed the Q1 variant
[cf. Eq. (61)], as recommended in Ref. 3. MRCI-F12 with the
quadruple-ζ basis set is already converged to a few hundredth
of a kcal/mol as compared to its CBS limit. In contrast, the
conventional MRCI method requires the aug-cc-pV6Z basis
set (or more) to achieve the same accuracy. As one can ob-
serve, the CASSCF and correlation contributions have errors
of different signs and partly cancel with each other; proba-
bly this is the source of the small humps in the convergence
of the MRCI-F12 reaction barriers. The core correlation, rela-
tivistic, non Born–Oppenheimer, and spin-orbit contributions,
which are not considered in this work, amount to +0.442 and
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TABLE VIII. The equilibrium bond lengths re (in angstrom), harmonic frequencies ωe (in cm−1), and dissociation energies De (in kcal/mol) of first-row
hydrides and homonuclear diatomics. MRCI and MRCI-F12 values include Davidson’s correction (+Q0). MRCI-F12 has been performed with the SFIX
ansatz.

OBS CASSCF MRCI MRCI-F12 CASSCF MRCI MRCI-F12 CASSCF MRCI MRCI-F12
CH, X22 re (Expt. 1.120) ωe (Expt. 2858.5) De (Expt. 83.9)

aVDZ / VDZ 1.139 1.141 1.135 2825.0 2819.1 2849.3 74.1 77.1 81.1
aVTZ / VTZ 1.123 1.123 1.121 2827.2 2835.9 2843.1 76.1 82.2 83.6
aVQZ / VQZ 1.122 1.121 1.120 2840.7 2847.3 2851.1 76.3 83.4 83.9
aV5Z / V5Z 1.122 1.120 1.120 2841.6 2850.6 2852.1 76.4 83.7 84.0

CBS56 — 1.120 — — 2851.9 — — 84.0 —

NH, X30− re (Expt. 1.036) ωe (Expt. 3282.3) De (Expt. n/a)
aVDZ / VDZ 1.054 1.053 1.047 3212.1 3209.8 3259.5 72.2 74.8 80.4
aVTZ / VTZ 1.045 1.041 1.039 3226.3 3254.1 3269.0 73.3 80.5 82.4
aVQZ / VQZ 1.044 1.038 1.038 3233.2 3270.9 3275.8 73.6 82.1 82.9
aV5Z / V5Z 1.044 1.038 1.038 3234.4 3274.4 3276.6 73.6 82.5 82.9

CBS56 — 1.037 — — 3277.0 — — 82.9 —

OH, X22 re (Expt. 0.970) ωe (Expt. 3737.8) De (Expt. 106.6)
aVDZ / VDZ 0.980 0.980 0.972 3700.3 3685.4 3725.8 95.8 99.4 104.6
aVTZ / VTZ 0.975 0.974 0.972 3714.0 3711.3 3725.5 96.7 104.5 106.4
aVQZ / VQZ 0.974 0.971 0.971 3723.1 3729.8 3733.2 96.9 106.2 107.0
aV5Z / V5Z 0.973 0.971 0.971 3724.8 3733.4 3734.2 96.9 106.7 107.1

CBS56 — 0.971 — — 3734.9 — — 107.1 —

HF, X10+ re (Expt. 0.917) ωe (Expt. 4138.3) De (Expt. 141.6)
aVDZ / VDZ 0.924 0.924 0.921 4116.8 4085.9 4120.9 129.5 133.9 138.9
aVTZ / VTZ 0.921 0.921 0.920 4145.9 4120.2 4130.6 130.1 139.1 140.9
aVQZ / VQZ 0.919 0.918 0.918 4153.3 4136.4 4136.9 130.4 140.8 141.5
aV5Z / V5Z 0.919 0.918 0.918 4154.2 4137.3 4137.5 130.4 141.2 141.6

CBS56 — 0.917 — — 4136.6 — — 141.6 —

C2, X10+
g re (Expt. 1.243) ωe (Expt. 1854.7) De (Expt. 146±3)

aVDZ 1.267 1.274 1.262 1843.2 1800.7 1844.2 139.0 128.3 137.9
aVTZ 1.255 1.253 1.248 1839.1 1828.9 1844.5 142.5 139.4 143.0
aVQZ 1.254 1.248 1.246 1841.7 1843.6 1850.2 143.2 142.8 144.3
aV5Z 1.253 1.247 1.246 1842.2 1847.9 1851.2 143.3 143.7 144.5

CBS56 — 1.246 — — 1851.1 — — 144.6 —

N2, X10+
g re (Expt. 1.098) ωe (Expt. 2358.6) De (Expt. 228.4)

aVDZ 1.117 1.123 1.115 2339.6 2300.1 2343.9 207.0 201.8 217.3
aVTZ 1.105 1.106 1.103 2335.9 2324.5 2341.9 212.0 218.0 224.8
aVQZ 1.104 1.102 1.101 2339.2 2339.9 2347.2 213.2 223.8 226.8
aV5Z 1.104 1.101 1.101 2340.4 2345.2 2348.9 213.3 225.5 227.1

CBS56 — 1.101 — — 2348.7 — — 227.2 —

O2, X30−
g re (Expt. 1.208) ωe (Expt. 1580.2) De (Expt. 120.6)

aVDZ 1.221 1.225 1.215 1542.8 1536.3 1575.2 91.2 107.5 114.9
aVTZ 1.218 1.217 1.213 1536.5 1550.0 1567.4 94.4 115.1 118.3
aVQZ 1.215 1.212 1.210 1547.8 1571.9 1579.8 95.1 118.1 119.6
aV5Z 1.215 1.211 1.210 1548.1 1575.9 1580.3 95.1 118.9 119.7

CBS56 — 1.210 — — 1581.2 — — 119.7 —

F2, X10+
g re (Expt. 1.412) ωe (Expt. 916.6) De (Expt. 39.0)

aVDZ 1.490 1.454 1.430 658.3 815.6 861.7 16.1 30.3 33.4
aVTZ 1.459 1.420 1.413 736.3 906.7 922.5 19.1 35.9 37.3
aVQZ 1.459 1.415 1.412 731.7 911.5 919.0 19.1 36.9 37.6
aV5Z 1.458 1.413 1.412 733.7 917.1 921.1 19.1 37.2 37.6

CBS56 — 1.411 — — 921.7 — — 37.5 —

−0.365 kcal/mol for the reaction barrier and exothermicity,
respectively.3

The computational cost of MRCI-F12 per iteration is al-
most identical to that of MRCI. The overhead for the addi-
tional integral evaluations and the computation of the F12

energy contributions is usually small: for O3 in Cs symme-
try with the full valence active space, MRCI-F12 took 2920 s
(wall time) with the VTZ-F12 basis set, whereas MRCI took
2860 s with the same basis set. Timings were measured on an
AMD Opteron 2380 workstation (2.5 GHz, 1 core).



034113-11 MRCI-F12 J. Chem. Phys. 134, 034113 (2011)

TABLE IX. The reaction barriers and exothermicity of the F + H2 reac-
tion in kcal/mol. MRCI and MRCI-F12 values include Davidson’s correc-
tion (+Q1).

OBS CASSCF MRCI MRCI-F12 MRCI-F12
(FIX) (SFIX)

Barrier (bent)
aVTZ 7.304 1.795 1.291 1.333
aVQZ 7.427 1.433 1.298 1.294
aV5Z 7.475 1.385 1.310 1.310
aV6Za 7.481 1.352
CBS56 1.307

Barrier (linear)
aVTZ 6.165 2.064 1.772 1.800
aVQZ 6.273 1.850 1.791 1.790
aV5Z 6.320 1.854 1.818 1.819
aV6Za 6.326 1.838
CBS56 1.817

Exothermicity
aVTZ 34.848 30.640 31.960 31.766
aVQZ 34.959 31.674 32.126 32.071
aV5Z 34.906 31.832 32.086 32.048
aV6Za 34.902 31.916
CBS56 32.032

aThe MRCI-F12 calculations with aV6Z were not performed since there are no auxil-
iary basis sets available.

IV. CONCLUSIONS

We have developed an explicitly correlated MRCI-F12
method, which provides results with near MRCI/CBS limit
accuracy and quantitative agreement with the experimental
values already with medium-size basis sets. The doubly ex-
ternal configurations generated by the geminal excitations are
internally contracted, while the singly external configurations
remain uncontracted. In order to reduce the computational
cost and to improve the numerical stability, approximations
are made for the geminal–geminal block and for the geminal-
conventional coupling terms. These are similar to the F12b
approximation in the single reference CC-F12 theories.28 In
this approximation, the computational cost of MRCI-F12 is
almost the same as that of MRCI with the same basis set,
while the basis set dependence is much improved. As a side
product, we have also implemented MRACPF-F12 and re-
lated methods.

The applicability of the MRCI-F12 method presented
here is the same as that of the underlying conventional MRCI
method. It can be used for strongly correlated or degenerate
electronic structures, and is a powerful tool to compute, for
instance, global PES’s for small systems or the energetics of
reactions involving transition metal compounds. An extension
to excited electronic states, including the possibility to treat
avoided crossings and conical intersections, will be presented
in a separate publication. The efficiency and applicability of
the method to larger molecules can be increased by contract-
ing further configuration classes, as proposed by Celani and
Werner for CASPT2.52 Recently, a new MRCI program based
on this scheme has been developed in our group,53 and its ex-
tension to MRCI-F12 will be considered in the near future.

Our study shows that most of the remaining basis set
incompleteness errors are due to the surprisingly slow con-

vergence of the CASSCF energy with basis set size. A cor-
rection to the CASSCF energy, similar to the CABS singles
correction24 in single-reference cases, is therefore highly de-
sirable and will be presented in a future publication.
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