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The tensor contraction expressions defining a variety of high-rank coupled-cluster energies and

wave functions that include the interelectronic distances (r12) explicitly (CC-R12) have been

derived with the aid of a newly-developed computerized symbolic algebra SMITH. Efficient

computational sequences to perform these tensor contractions have also been suggested, defining

intermediate tensors—some reusable—as a sum of binary tensor contractions. SMITH can elucidate

the index permutation symmetry of intermediate tensors that arise from a Slater-determinant

expectation value of any number of excitation, deexcitation and other general second-quantized

operators. SMITH also automates additional algebraic transformation steps specific to R12

methods, i.e. the identification and isolation of the special intermediates that need to be evaluated

analytically and the resolution-of-the-identity insertion to facilitate high-dimensional molecular

integral computation. The tensor contraction expressions defining the CC-R12 methods including

through the connected quadruple excitation operator (CCSDTQ-R12) have been documented and

efficient computational sequences have been suggested not just for the ground state but also for

excited states via the equation-of-motion formalism (EOM-CC-R12) and for the so-called L
equation (L-CC-R12) of the CC analytical gradient theory. Additional equations (the geminal

amplitude equation) arise in CC-R12 that need to be solved to determine the coefficients

multiplying the r12-dependent factors. The operation cost of solving the geminal amplitude

equations of rank-k CC-R12 and EOM-CC-R12 (right-hand side) scales as O(n6) (k = 2) or O(n7)

(k Z 3) with the number of orbitals n and is surpassed by the cost of solving the usual amplitude

equations O(n2k+2). While the complexity of the geminal amplitude equations of L- and EOM-

CC-R12 (left-hand side) nominally scales as O(n2k+2), it is less than that of the other O(n2k+2)

terms in the usual amplitude equations. This suggests that the unabridged equations should be

solved in high-rank CC-R12 for benchmark accuracy.

I. Introduction

The explicit inclusion of the interelectronic (r12) degrees of

freedom in electron wave functions1,2 significantly reduces the

errors in the wave functions and energies arising from the

incompleteness of the one-electron basis set (see ref. 3 and 4

and references therein). The Slater-type correlation factor first

proposed by Ten-no5 allows one to recover typically 96% of

the complete-basis-set second-order Møller–Plesset (MP2)

correlation energies with the aug-cc-pVDZ basis set and

99% with the aug-cc-pVTZ basis set;4,6,7 these figures are

considerably greater than those of the standard MP2 method

(B70 and 90%). In these MP2-R12 calculations, the majority

of the residual errors is ascribed to the higher-order electron

correlation effects rather than to the basis-set incompleteness

and it is hence important to address such effects with high-

rank electron-correlation treatments such as the coupled-

cluster (CC) methods.

Noga et al. were among the first to study the CC methods

including r12-dependent terms (CC-R12)8–12 within the so-

called standard approximation (SA).13 This approximation

amounted to evaluating high-dimensional molecular integrals

with the aid of the resolution-of-the-identity (RI) insertion

using the same basis functions that expanded the Hartree–

Fock orbitals. SA dramatically simplified the CC-R12 equa-

tions, but was effective only for large orbital basis sets.13

This problem was remedied by Klopper and Samson, who

introduced a separate (and large) auxiliary basis set (ABS) for

the RI.14 The numerical shortcomings of the ABS approach

were rectified by Valeev, who proposed a more robust way

to utilize an ABS and called it the complementary auxiliary

basis set (CABS) method.15,16 Ten-no explored the use of a

multicenter quadrature as a variant of ABS.17 These advances

allowed the orbital basis set (OBS) to be kept relatively small

and the accuracy of the RI approximation to be varied

independently. These approaches, however, resulted in

the CC-R12 formalisms that are much more complex than

those based on the SA. Hence, several groups explored

approximate formalisms utilizing the CABS. First, Fliegl

et al. introduced an approximate CC-R12 with the connected

aQuantum Theory Project, Departments of Chemistry and Physics,
University of Florida, Gainesville, Florida 32611-8435, USA.
E-mail: hirata@qtp.ufl.edu

bDepartment of Chemistry, Virginia Tech, Blacksburg, Virginia
24061-0002, USA

cDepartment of Applied Chemistry, Graduate School of Engineering,
The University of Tokyo, Tokyo, 113-8656, Japan
w Electronic supplementary information (ESI) available: Equations
and intermediates (computational sequences) of the CC-R12, L-CC-
R12 and EOM-CC-R12 methods, including through the connected
quadruple excitation operators. See DOI: 10.1039/b803704n
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single and double excitation operators (CCSD-R12) termed

CCSD(R12).18–20 Furthermore, CC-R12 was extended to ex-

cited states by Fliegl et al. in the CC2 approximation.21,22

Recently, Adler et al. proposed a further simplification of

CCSD-R12 and CCSD(R12).23 Independently, Valeev sug-

gested introducing the r12-dependent terms by the Löwdin

perturbation theory using the CCSD wave function as a

reference; the simplest of such methods, CCSD(2)R12, had an

accuracy comparable to that of the iterative CCSD(R12)

method and could be implemented more easily.24 It may be

said that optimal algorithmic details and standard implemen-

tation practices of efficient and accurate CC-R12 methods are

being established.

Nonetheless, unabridged implementations of CCSD-R12

and its higher-rank analogues, their excited-state counterparts

via the equation-of-motion (EOM) formalism, and their ana-

lytical gradient capabilities based on the L equations have not

appeared. The CCSD-R12 method adds the so-called geminal

amplitude equation determining the amplitudes of the r12-

dependent terms to those that correspond to the usual CC

energy and amplitude equations. As we show in this work, the

size dependence of the operation cost of solving the geminal

amplitude equation is the same as that of ordinary T ampli-

tude equations in CCSD [O(n6) with n being the number of

orbitals] but with a much greater prefactor, offering an

incentive to neglect or approximate r12-dependent terms in

the former. However, this incentive vanishes for higher-rank

CC-R12 methods because the operation cost of the amplitude

equations increases exponentially with the excitation rank

while that of the geminal amplitude equation remains O(n7)

for CCSDT-R12 and higher. In this sense, it is meaningful to

document and analyze the complete set of the equations that

define high-rank CC-R12 and related methods. A pioneering

study of the equations of CC-R12 including through the

connected triple excitation operator (CCSDT-R12) was

reported by Noga and Kutzelnigg.9

The formula derivation and computer implementation of

high-rank CC-R12 methods involve complex symbolic manip-

ulation processes which, in practice, can no longer be per-

formed reliably by hand. This is already the case with the high-

rank members of the conventional CC and EOM-CC meth-

ods, the derivation and implementation of which are compu-

terized today. Kállay and Surján invented the string-based

algorithm, which enumerated and evaluated diagrammatic

contributions to the CC and EOM-CC equations at any given

rank on the fly.25,26 Hirata developed the symbolic algebra

code TCE,27–29 which automated the formula derivation and

implementation processes of the CC, EOM-CC and related

methods. Beginning with the definition of a method as a set of

few physical equations (ansatz) written in terms of expectation

values of second-quantized operators in a Slater determinant,

TCE derives the corresponding tensor contraction equations by

applying Wick’s theorem (derivation). It then transforms the

equations into efficient computational sequences exposing

compact data layout and reuse, introducing the intermediate

tensors (‘‘intermediates’’) as a sum of binary tensor contrac-

tions (transformation). It eventually translates the computa-

tional sequences into parallel-executable codes that take

advantage of spin symmetry (in the spin-orbital formalisms),

real Abelian point-group symmetry and index permutation

symmetry (implementation).

Among these steps, the exploitation of index permutation

symmetry is especially important not just for keeping the

operation and memory costs manageable but also for ensuring

Fermi–Dirac statistics of electronic wave functions. Unlike the

physical tensors (e.g. molecular integrals, excitation ampli-

tudes), which are antisymmetric with respect to an interchange

of any pair of covariant or contravariant indices, the inter-

mediates and their index permutation symmetry are not

necessarily known a priori. What makes the algorithms of

Kállay and Surján and those of Hirata feasible is the key

observation25 that, for a certain class of electron-correlation

methods, intermediates can be made to have known index

permutation symmetry by restricting permissible computa-

tional sequences. For instance, in the CC method of any rank,

the intermediates have two covariant and two contravariant

groups of permutable indices when binary contractions of

excitation amplitudes are barred.

Owing to the presence of new physical tensors containing an

r12-dependent factor, the CC-R12 methods do not belong to

the class of methods that can be handled by the aforemen-

tioned computerized symbolic algebra. To accommodate

them, it is necessary to elucidate the index permutation

symmetry of the intermediates that can arise from a wider

class of electron-correlation methods and less restricted com-

putational sequences. Furthermore, an implementation of the

CC-R12 methods involves three additional algebraic transfor-

mation steps that are time-consuming and error-prone when

performed manually. First, some special intermediates must be

identified and isolated to ensure the analytical elimination of

the 1/r12 Coulomb singularity in the Hamiltonian with the r12-

dependent factor. Second, the RI must be introduced judi-

ciously to reduce effectively the rank of the resulting high-

dimensional molecular integrals and facilitate their rapid

evaluation. Third, certain recurring intermediates must be

precalculated, stored and reused. These symbol manipulation

steps are tedious but highly systematic and ideally carried out

by a computer.

The objective of this paper is twofold. The first objective is

to describe the new symbolic algebra code SMITH (ref. 30) that

automates the derivation and transformation processes of a

much wider class of electron-correlation methods, including

the CC-R12 methods, than could be handled previously. To

achieve this goal, SMITH can elucidate the index permutation

symmetry of intermediates arising from unrestricted computa-

tional sequences of the methods that are defined by Slater-

determinant expectation values of a product of any number of

excitation, deexcitation and other more general operators.

SMITH can also perform the additional algebraic transforma-

tion steps unique to the R12 methods.

The second objective is to apply SMITH to the high-rank CC-

R12 ansätze and document the resulting tensor contraction

equations and computational sequences that define the inter-

mediates, adopting the state-of-the-art R12 methodology

(modified ansatz 2 and the CABS of Valeev). The CC-R12

methods including up to the connected quadruple excitation

operator (CCSD-R12, CCSDT-R12 and CCSDTQ-R12) are

analyzed. Furthermore, we extend the CC-R12 methods to

This journal is �c the Owner Societies 2008 Phys. Chem. Chem. Phys., 2008, 10, 3358–3370 | 3359
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excited states via the EOM formalism31–36 and to the related L
equations in the CC analytical gradient theory.37 The corre-

sponding tensor contraction equations are derived and com-

putational sequences (intermediates) are suggested for up to

EOM- and L-CCSDTQ-R12.

II. CC-R12 equations

A CCSD-R12 theory

We begin with a brief overview of the ansatz of the CC-R12

methods9 in the spin–orbital formalism using CCSD-R12 as

an example. Its wave function for the electronic ground state is

parametrized as

|Ci = exp(Ŝ)|F0i, (1)

where |F0i is a single-determinant [typically, but not limited

to, Hartree–Fock (HF)] reference wave function and

Ŝ ¼ T̂ þ F̂: ð2Þ

In the above, T̂ is the usual cluster excitation operator, i.e.

T̂ = T̂1 + T̂2 (3)

with

T̂1 = tai {a
wi}, (4)

T̂2 =
1
4
tabij {a

wbwji}, (5)

where a, b, c, d and an denote particle indices (virtual orbitals)

in the space spanned by the orbital basis set; i, j, k, l, m and in
hole indices (occupied orbital) in the same space; and p, q, r, s

either (see Table 1). Henceforth repeated indices in an

equation imply the summation over them with no restrictions

to the index domain arising from the index permutation

symmetry of tensors and {� � �} brings the operators in the

normal order.

The new operator F̂, which commutes with T̂, is a product

of molecular integrals Fab
kl involving an explicit r12-dependent

factor (correlation factor) and geminal amplitudes tklij and is

written as9

F̂ ¼ ½F̂ t̂�C ¼
1

8
Fab
kl t

kl
ij faybyjig; ð6Þ

with

F̂ =
1
4
Fab
kl {a

wbwlk}, (7)

t̂ =
1
4
tklij {k

wlwji}. (8)

It is stipulated that F and t are antisymmetric with respect

to the interchanges of contravariant (covariant) indices.

In the second equality in eqn (6), F and t are required

to be diagrammatically connected through two hole lines

(as indicated by ‘‘[� � �]C’’). The Greek symbols (a, b, g, d, an)
label particle indices (virtual orbitals) in the hypothetical

complete basis set, which will be obliterated in the

computational sequences that are subject to implementation

(vide infra). It is assumed for convenience that the

virtual orbitals in the orbital basis set ({fa}) represent a

subset of those in the complete basis set ({fa}) and

hence either P̂nfa(rn) = 0 or P̂nfa(rn) = fa(rn) must

hold, where P̂n is the projector onto the space spanned

by {fp(rn)}.

Because F̂ is responsible for capturing just the two-electron

correlation effects, it should satisfy

F̂ ¼ Q̂12F̂; ð9Þ

where Q̂12 is the strong-orthogonality projection operator

defined by

Q̂12fi(r1) = 0, (10a)

Q̂12fi(r2) = 0, (10b)

for any i. One such definition of Q̂12 is expressed as14,38

Q̂(1)
12 = (1 � P̂1)(1 � P̂2), (11)

which is known as ‘‘ansatz 1’’ of Kutzelnigg and Klopper.13

An alternative definition of Q̂12 (‘‘ansatz 2’’) is

Q̂(2)
12 = (1 � Ô1)(1 � Ô2), (12)

where Ôn is the projector onto the space spanned by {fi(rn)}.
39

This ansatz is often preferred as it leads to smaller basis set

errors when used in MP2-R12. It is also desirable for the

geminal pairs produced by F̂ to be orthogonal to fa(r1)fb(r2)

products to avoid double counting the correlation energies

that are already accounted for by the conventional correlation

methods. This is achieved by ‘‘modified ansatz 2’’ introduced

by Valeev15 in the form

Q̂
ð~2Þ
12 ¼ ð1� Ô1Þð1� Ô2Þ � V̂1V̂2 ð13aÞ

= 1 � P̂1P̂2 � Ô1(1 � P̂2) � (1 � P̂1)Ô2 (13b)

= V̂1(1 � P̂2) + (1�P̂1)V̂2 + (1 � P̂1)(1 � P̂2), (13c)

where V̂n is the projector onto the space spanned by

{fa(r1)} (i.e. P̂n = Ôn + V̂n). Note that this ansatz was

implicitly suggested in ref. 13 and sometimes referred to as

‘‘ansatz 3’’.7

Adopting the projector of eqn (13a)–(13c) leads to the

following definition for the molecular integrals Fab
kl :

Table 1 Sets and indices of spin orbitals and corresponding projectors

Set Index Projector Spin orbital

{fp} p, q, r, s P̂ Spin orbitals in the orbital basis
{fi} i, j, k, l, m, in Ô Occupied orbitals in the orbital basis
{fa} a, b, c, d, an V̂ Virtual orbitals in the orbital basis
{fk} k, l, m, n 1 Spin orbitals in the complete basis
{fa} a, b, g, d, an 1 � Ô Virtual orbitals in the complete basis
{fa0} a0, a0n 1 � P̂ Virtual orbitals in the complete basis that do not belong to {fa}
{fa0} a0, b0, a0n P̂0 Virtual orbitals in the CABS
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Various forms of the explicitly r12-dependent factor

(the correlation factor) can be inserted in eqn (14), e.g. the

Slater-type function of r12,
5

F12 = exp(�gr12), (15)

where g is a positive constant. Other choices include the linear

r12 function,
2,13,38 Gaussian-type function40–43 and Gaussian-

damped linear r12 function.
44

The unknown parameters in the wave function, i.e. the T

amplitudes in eqn (4) and (5), the geminal t amplitudes in eqn

(6) and correlation energy E0 are determined by solving the

equations obtained by substituting the wave function [eqn (1)]

into the Schrödinger equation and projecting it onto the

determinants accessible by the action of Ŝ on |F0i. This leads
to what correspond to the energy and T1 and T2 amplitude

equations of CCSD:9

hF0| �H|F0i = E0, (16)

hFa
i | �H|F0i = 0, (17)

hFab
ij | �H|F0i = 0, (18)

where Fa
i and Fab

ij are singly and doubly excited determinants

from F0 respectively, and a new equation:

hFkl
ij | �H|F0i = 0. (19)

This last equation (the geminal amplitude equation) is

obtained by projecting the Schrödinger equation onto the

geminal replacements

|Fkl
ij i = [F̂{kwlwji}]C|F0i, (20)

in which we imposed the connectedness in the same meaning

as in eqn (6). Note that the number of individual equations in

eqn (19) is identical to the number of the geminal t amplitudes

(n4h with nh being the number of occupied orbitals). �H is the

CCSD-R12 similarity-transformed Hamiltonian defined with

the usual normal-ordered Hamiltonian ĤN by

�H = exp(�Ŝ)ĤN exp(Ŝ) = [ĤN exp(Ŝ)]C, (21)

ĤN = fkl{k
wl} +

1
4v

kl
mn{k

wlwnm}, (22)

where f and v are Fock and antisymmetrized two-electron

integral matrices respectively, and ĤN and Ŝ must be dia-

grammatically connected in the right-hand side of eqn (21).

The Greek symbols (k, l, m, n) in eqn (22) refer to the spin

orbitals from a complete (and thus infinite) set obtained as a

union of {fi} and {fa}.

We must now address how the sums over the complete basis

set indices are eliminated to yield computationally tractable

equations. The following tensor contractions (‘‘special inter-

mediates’’ shown in diagrammatic form in Fig. 1) involve

certain two-electron integrals that must be evaluated before RI

insertions to ensure the analytical cancellation between the

1/r12 singularity and the r12-dependent factor:

Vpq
ij =

1
2
vpqabF

ab
ij , (23)

Xkl
ij =

1
2
Fkl*
ab F

ab
ij , (24)

Bkl
ij = Fkl*

ab f
a
gF

bg
ij , (25)

Pkl
ij =

1
4
Fkl*
ab v

ab
gdF

gd
ij . (26)

For example, using the projector in eqn (13b) allows one to

rewrite eqn (23) as

Vpq
ij = 1

2
vpqklF

kl
ij � 1

2
vpqrs F

rs
ij � vpqma0F

ma0
ij

= (F12/r12)
pq
ij � 1

2
vpqrs F

rs
ij � vpqma0F

ma0
ij , (27)

where a0 denotes an index from another infinite basis set {fa0},

which is the set theoretic difference {fa} � {fa} and is there-

fore disjoint to {fp} (Table 1). The two operators F12 and 1/r12
are multiplied first and then the integration over electronic

degrees of freedom is carried out. In this way, F12 eradicates or

alleviates the singularity 1/r12 in the Hamiltonian analytically

and thereby leads to the accelerated basis-set convergence of

correlation energies. It should be understood that F kl
ij , F

rs
ij and

Fma0
ij are defined analogously to F ab

ij [eqn (14)] and (F12/r12)
pq
ij is

antisymmetrized. The last term on the right-hand side still

involves the sum of integrals over the index (a0) that spans an
infinite set. This term is evaluated by approximating the sum

over {fa0} as a sum over the CABS {fa0}, which is the finite set

of virtual orbitals that is disjoint to {fp}. Using a0, b0 and a0n to

label the CABS indices, the last term of eqn (27) becomes

v
pq
ma0F

ma0
ij ¼CABS

v
pq
ma0F

ma0
ij : ð28Þ

Analogous transformations of special intermediates

X, B and P produce two-electron integrals of operators F2
12,

[F12,[r2
1 + r2

2,F12]] and F2
12/r12 respectively, whose analytical

evaluation is relatively straightforward. Intermediate B

requires extra attention: an earlier approach for evaluating

this term involved integrals of the non-Hermitian operator

[r2
1 + r2

2,F12] and relied on extended and generalized

Fig. 1 Special intermediates that are evaluated as a whole (not as a

tensor contraction) by individual molecular integral subroutines. The

bold lines with double arrow stand for particles in a complete basis set,

the triple vertices denote F and the dotted vertices f or v.9

Fab
kl ¼

R R
dr1dr2faðr1Þ

�fbðr2Þ
�F12 fkðr1Þflðr2Þ � flðr1Þfkðr2Þf g; if P̂1fa ¼ 0 or P̂2fb ¼ 0;

0; otherwise ðP̂1fa ¼ fa and P̂2fb ¼ fbÞ:

(
ð14Þ
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Brillouin conditions (EBC and GBC).13,14,45 An alternative

approach is to approximate the single commutators via the RI

and avoid the use of EBC and GBC.46 Both approaches result

in sums over the complete basis set ({fk}) which are

approximated by those over the orbital basis set and CABS

({fp} , {fa0}). SMITH does not perform the algebraic mani-

pulations required to evaluate these special intermediates. It

instead detects them and suggests computational sequences on

the basis of the assumption that they are available at runtime

by an external integrals engine.

The sums over the complete basis set in other numerous

terms are approximated by those over the CABS15 as in eqn

(28). This process (the RI insertion) is automated by SMITH for

the terms that are not special intermediates. In the next

subsection, the automation of this step will be explained in

more detail. The RI insertion with the CABS amounts to

replacing an infinite sum by a finite sum:X
a0
¼CABS
X
a0
; ð29Þ

X
a

¼CABS
X
a

þ
X
a0
: ð30Þ

These replacements are equivalent to approximating the pro-

jector in eqn (13c) as

Q̂
ð~2Þ
12 ¼

CABS
V̂1P̂

0
2 þ P̂

0
1V̂2 þ P̂

0
1P̂

0
2; ð31Þ

where P̂0i is the projector on the CABS space.

B Automated derivation

The derivation step refers to the process of transforming the

ansatz (written in terms of the expectation values of second-

quantized operators in a Slater determinant) to a sum of

product-tensor expressions, each optionally multiplied by in-

dex permutation operators. The derivation of the CC-R12

equations also involves the identification of the special inter-

mediates, the RI insertions and an ad hoc common subexpres-

sion elimination of certain recurring intermediates. These steps

have been completely automated by SMITH.

Previously, TCE carried out the automated derivation by

applying Wick’s theorem, i.e. by contracting normal-ordered

strings of creation and annihilation operators. Unlike TCE,

SMITH’s algorithm uses antisymmetrized Goldstone diagrams

and produces each topologically distinct term only once at

every stage of the contraction process. The use of the diagrams

makes SMITH considerably faster than TCE and, because

CC-R12 is much more complex than CC at a given rank, this

increased efficiency of algebraic manipulations is essential.

SMITH generates and interprets the diagrams according to the

rules stipulated by Bartlett47,48 and extended to the CC-R12

ansätze, in which second-quantized operators are represented

by vertices with single-arrow upgoing (particle), double-arrow

upgoing (complete particle) and single-arrow downgoing

(hole) lines. The numbers of lines above and below the vertices

are respectively related to the excitation and deexcitation

ranks of the operator. In SMITH, each vertex is computationally

stored as a class object with attributes such as the vertex type

and strings of creation or annihilation operators of particle,

complete particle and hole types. Interaction operators are

compactly expressed by operators of unspecified types.

SMITH contracts creation and annihilation operators of the

same type between all excitation vertices and an interaction

vertex and spawns just the topologically distinct diagram

fragments. This can be performed efficiently by using the

symbolic algorithm47,48 that exhaustively enumerates distinct

permutations of connectable lines and that can be straightfor-

wardly computerized. The contraction step is repeated be-

tween the diagram fragments and deexcitation operators. The

numerical factors and index permutation operators acting on

the resulting tensor contraction expressions are determined by

applying the established diagrammatic rules.47,48 The only new

rule that is added for the CC-R12 ansätze is that when a

creation (annihilation) operator of an unspecified type in an

interaction vertex is contracted with an annihilation (creation)

operator of a known type, the corresponding tensor index in

the interaction vertex obtains the same (particle, complete

particle or hole) operator type.

TCE could only handle ansätze restricted to a form

F0h jðL̂ÔR̂1 � � � R̂nÞC;L
���F0i ð32Þ

which contained one deexcitation L̂ operator, any number of

excitation R̂1� � �R̂n operators and one interaction (i.e. neither

excitation nor deexcitation) Ô operator, which could be var-

iously connected or linked. In conjunction with a certain

prescribed order of tensor contractions, these restrictions led

to intermediates with a priori known highly symmetric index

groups.25,28 These restrictions are lifted in SMITH, which can

handle more general expectation values that have arbitrary

numbers of deexcitation, excitation and general operators

(and the corresponding tensors) such as eqn (16)–(19). Since

the new operator added in the CC-R12 ansätze, F̂ [eqn (6)], is

in fact an excitation operator, the CCSD-R12 ansatz eqn

(16)–(19) may appear to be handled by TCE if Ft is treated as

a compound tensor. The subsequent algebraic transformations

(vide infra), however, must treat F and t independently when

introducing the special intermediates into the equations.

Furthermore, one of the special intermediates X has the form

of an interaction operator, inserting itself as the second tensor

of the type O in the computational sequence. Hence, the more

general algorithms of SMITH reported here are crucial for the

entire procedure.

The CCSD-R12 equations [eqn (16)–(19)] produced by

SMITH are shown in Tables 2–5. The equations of CCSDT-

R12 and CCSDTQ-R12 have also been derived and made

available as ESI.w Although the CCSDT-R12 equations and

computational sequences in the SA have been reported by

Noga and Kutzelnigg,9 unabridged equations of these high-

rank methods have not been documented before. These ex-

pressions involve Pn (not to be confused with the P̂n projec-

tors), which is a shorthand notation of the operator that

permutes n indices of the tensor upon which it acts. For

instance, P2 acting on the following contraction is expanded as

P2f
a3
a8
v
a4a8
i1i2
� ð1� Pa3a4Þf a3a8

v
a4a8
i1i2
¼ f a3a8

v
a4a8
i1i2
� f a4a8

v
a3a8
i1i2

ð33Þ

where Pa3a4
interchanges indices a3 and a4 wherever they

appear to the right of the operator. The explicit form of Pn
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is readily inferred from the tensor contraction expression,

according to the rules written in ref. 47 and 48 and will not

be shown here.

As eqn (6) suggests, the energy and T1 and T2 amplitude

equations of CCSD-R12 add a new term containing the Ft

tensor product at every appearance of the T2 amplitude in the

corresponding equations of CCSD. Although the geminal

amplitude equation (Table 5) has no counterpart in CCSD,

it resembles the T2 amplitude equation because the F̂ operator

is also a two-body excitation operator. Unlike the T amplitude

equations, which become increasingly more lengthy as the

rank of T̂ is raised, the complexity of the geminal amplitude

equation increases only modestly with the rank of T̂ because

the rank of F̂ is held fixed. Since only T̂n (1 r n r 3) can

appear in the geminal amplitude equation in CC-R12 of any

rank, the geminal amplitude equation remains the same for

CCSDT-R12 and higher.

SMITH subsequently seeks the subexpressions that corres-

pond to the special intermediates—V, X, B and P—and

replaces them with the corresponding single tensor objects.

This process involves matching the tensor types and contrac-

tion patterns in the equations against the definitions of these

intermediates [eqn (23)–(26)]. Therefore, it occurs before the

binary tensor contraction order is determined (vide infra). For

instance, the second term in the right-hand side of the geminal

amplitude equation of CCSD-R12 (Table 5) reads

þ 1

4
ð1� Pi1 i2ÞFi3i4�

a5a6
f i7i1 F

a5a6
i8i9

t
i8i9
i2i7
: ð34Þ

SMITH uses eqn (24) to transform this into an expression,

� 1

2
ð1� Pi1i2Þf

i7
i2
t
i8i9
i1i7

X
i3i4
i8i9
; ð35Þ

which is devoid of the indices associated with the complete

basis set and hence is a programmable expression, provided

that X is furnished by an external integrals engine.

Another term in the same equation,

þ 1

4
Fi3i4�
a5a6

vi7a5a8a9
F
a8a9
i10 i11

t
i10 i11
i1i2

t
a6
i7
; ð36Þ

is simplified to

þ 1

2
Fi3i4�
a5a6

Vi7a5
i8 i9

t
i8i9
i1i2

t
a6
i7
; ð37Þ

using eqn (23), which still contains a complete-basis-set

index (a5). In the SA of Kutzelnigg and Klopper,13 this and

copious other terms vanished by virtue of approximating the

complete basis set by the orbital basis set. In this work,

however, we document a less approximate alternative that

evaluates the contributions from them using the CABS

(vide supra). This step (the RI insertion) is achieved by acting

Q̂
ð~2Þ
12 of eqn (31) on F̂ and replacing the index pair aman by ama

0
n

and the pair aman by ama
0
n, a

0
man and a0ma

0
n, where a0m labels a

particle index in the CABS space. The above example is then

transformed to

þ 1

2
F
i3i4�

a0
5
a6
V

i7a
0
5

i8 i9
t
i8i9
i1i2

t
a6
i7
; ð38Þ

which does not involve complete basis set indices and is

subject to a computer implementation. In general, this

step can spawn multiple terms from a single seed term. For

instance, the following term containing complete-basis-set

indices,

1

8
ð1� Pi1i2ÞFi3i4�

a5a6
vi7i8a9a10

F
a5a9
i11i12

ti11i12i1i7
F
a6a10
i13 i14

t
i13 i14
i2 i8

; ð39Þ

is transformed to the sum of five terms without such indices as

illustrated diagrammatically in Fig. 2.

At this stage, SMITH seeks and replaces every occurrence of

the binary tensor products Ft by the special intermediate

Table 2 The left-hand side of the energy equation (e= E0) of CCSD-
R12 [eqn (16)] obtained with the modified ansatz 2

e ¼ þf i1a2 t
a2
i1
þ 1

2
vi1 i2a3a4

t
a3
i1
ta4i2 þ

1
4
vi1 i2a3a4

t
a3a4
i1 i2
þ 1

8
vi1 i2a3a4

F
a3a4
i9 i10

t
i9 i10
i1 i2

Table 3 The left-hand side of the T1 amplitude equation (da2i1 ¼ 0) of
CCSD-R12 [eqn (17)] obtained with the modified ansatz 2

Table 4 The left-hand side of the T2 amplitude equation (da3a4i2 i1
¼ 0) of CCSD-R12 [eqn (18)] obtained with the modified ansatz 2
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denoted by t̃:

et a03a4i1i2
¼ 1

2
F
a0
3
a4

i5i6
t
i5i6
i1i2
; ð40Þ

et a03a04i1i2
¼ 1

2
F

a0
3
a0
4

i5i6
t
i5 i6
i1 i2
: ð41Þ

Unlike the other special intermediates, t̃ intermediates do not

need to be supplied by an external integrals engine but are

readily evaluated as the right-hand sides of the above equa-

tions. They appear frequently throughout the CC-R12 equa-

tions and can be computed prior to the other contractions,

stored and subsequently reused. This transformation can,

therefore, be viewed as an example of common subexpression

elimination which is automated for the other reusable inter-

mediates (vide infra). This ad hoc transformation becomes

necessary in CC-R12 because the search of optimal binary

contraction orders in SMITH is non-exhaustive and this heur-

istic optimization reduces the operation cost of solving the

CCSD-R12 geminal amplitude equations from O(n3p0n
4
h) (with-

out t̃) to O(n3p0n
3
h) (with t̃). In this step, one of the terms that

arise from eqn (39) is transformed as follows:

1

8
ð1� Pi1 i2ÞF

i3i4�

a0
5
a0
6
v
i7 i8
a0
9
a0
10
F
a0
5
a0
9

i11 i12
t
i11 i12
i1 i7

F
a0
6
a0
10

i13 i14
t
i13 i14
i2i8

¼ 1

2
ð1� Pi1i2ÞF

i3i4�

a0
5
a0
6
v
i7i8
a0
9
a0
10

et a05a09i1i7
et a06a010i2i8

:

ð42Þ

SMITH automates all of the above steps, transforming the

energy and amplitude equations of CCSD-R12 in Tables 2–5

into those shown in Tables ESI.3.I–IIIw and Table 6 respec-

tively. The latter equations are considerably longer than the

former, further supporting the argument for the use of a

computerized symbolic algebra. They are in the spin–orbital

formalisms and are not spin-adapted for any spin multiplicity.

Computerizing the spin adaptation is a challenging symbol

manipulation problem and is beyond the scope of this study.

All the terms that involve F in the T amplitude equations

(Tables ESI.3.I and ESI.3.IIw) and a majority of those in the

geminal amplitude equation (Table 6) vanish in the SA,

tremendously simplifying the equations and subsequent com-

puter implementations. Here we instead rely on the RI inser-

tion using the CABS with the aim of achieving high accuracy

with relatively small orbital basis sets.

C Computational sequences

The derived tensor expressions must be transformed into

efficient computational sequences (transformation) before their

implementations. SMITH performs three such algebraic trans-

formation steps: the strength reduction, factorization and

common subexpression elimination.

The first step (the strength reduction) solves the classic

matrix chain multiplication problem approximately and de-

termines the best sequential binary tensor contraction order,

e.g. A(B(CD)), for each multiple tensor product, ABCD, where

each letter denotes a tensor. Hence, it defines intermediates as

binary tensor products: x1 = CD and x2 = Bx1. While the

result of a tensor product does not depend on the order of

contraction owing to the associative and commutative nature

of tensor contractions, the operation and memory costs can

vary greatly. SMITH examines all n!/2 distinct sequential binary

tensor contraction orders for an n-tuple product and finds the

least expensive order by first comparing peak operation costs

and then peak memory costs.

Table 5 The left-hand side of the geminal t amplitude equation (di3 i4i2 i1
¼ 0) of CCSD-R12 [eqn (19)] obtained with the modified ansatz 2

Fig. 2 One seed diagram (upper left) containing the complete-basis-

set particle lines (bold lines with double upgoing arrows) can spawn

five individual diagrams that have no dependence on the complete

basis set. In the latter, the complete-basis-set particle lines are replaced

by those in the orbital basis set (thin lines with single upgoing arrows)

or those in the CABS (thin lines with double upgoing arrows). The

triple vertex may represent an Ft compound tensor.
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Non-sequential contraction orders, e.g. (AB)(CD), are not

considered in SMITH (or in TCE). While this limitation hardly

affects the operation cost in CC, it turns out to be significant in

CC-R12. The optimal sequential contraction order exhibits

one-rank-higher polynomial size dependence of the operation

cost than the optimal non-sequential contraction order. Since

the geminal amplitude equations (with Ft viewed as two-

electron excitation operators) have the structure similar to

that of the T2 amplitude equations, we may expect that, when

the non-sequential contractions involving Ft are taken into

consideration, the complexity of the geminal amplitude equa-

tions cannot scale more steeply than that of the corresponding

T2 amplitude equations. The aforementioned t̃ transformation

amounts to a practical way of allowing non-sequential con-

traction orders that are expected to be particularly important.

Previously, TCE performed the strength reduction similarly for

the methods definable by eqn (32). It also examined all sequen-

tial contraction orders comparing their operation and memory

costs, but permitted binary contraction orders were restricted to

the form L(Ri(� � �(RjO)� � �)), where we used the same alphabets

for the tensors and operators. This restriction was crucial to

ensure that every resulting intermediate possessed an a priori

known index permutation symmetry. With SMITH, any combina-

tion of excitation, deexcitation and general operators is per-

mitted and there is no restriction in the binary contraction

orders. The index permutation symmetry of the resulting inter-

mediates is determined on a case-by-case basis automatically

from the computational representations of the intermediates.

For instance, one of the terms in the geminal amplitude

equation reads

dði3 i4Þði1 i2Þ ¼ �ð1� Pi1i2Þv
i8a
0
6

i2a
0
7

et ða05a07Þði1 i8Þ F
ði3i4Þ�
ða0

5
a0
6
Þ ; ð43Þ

where some indices are parenthesized to show that they are

permutable. All covariant (contravariant) indices of an input

(Fw, t̃ and v in this equation) or output tensor (d) are

permutable unless they belong to different index classes: hole

(in), particle (an), or CABS (a0n). For instance, F
ði3i4Þ�
ða0

5
a0
6
Þ is anti-

symmetric with respect to the interchange of i3 and i4 or that of

a05 and a06, i.e.,

F
i3i4�

a0
5
a0
6
¼ �Fi4i3�

a0
5
a0
6
¼ �Fi3 i4�

a0
6
a0
5
¼ F

i4i3�

a0
6
a0
5
: ð44Þ

Therefore, only those elements of d, Fw and t̃ whose indices

satisfy the following inequalities need to be stored: F
i3oi4�
a0
5
oa0

6
,

di3oi4
i1oi2

and et a0
5
oa0

7
i1oi8

. It is critical to exploit the index permutation

symmetry to minimize the memory and operation costs of

solving the amplitude equations. Furthermore, the block

sparsity of the tensors that arises from the spatial symmetry

and spin integration (within the spin–orbital formalisms) is

also significant. These details of the computerized implemen-

tations are, however, deferred to our forthcoming article.

The binary contraction order for eqn (43) determined by

SMITH is as follows:

dði3 i4Þði1 i2Þ ¼
1

2
F
ði3 i4Þ�
ða0

5
a0
6
Þ x
ða0

5
a0
6
Þ

ði1i2Þ ; ð45Þ

x
ða0

5
a0
6
Þ

ði1i2Þ ¼ �ð1� Pi1i2Þð1� Pa0
5
a0
6
Þvi8a

0
6

i2a
0
7

et ða05a07Þði1i8Þ : ð46Þ

The numerical factors (including the signs) in these individual

equations are arbitrary insofar as their products are consistent

with the overall numerical factor in eqn (43). The index

permutation symmetry of the intermediate is indicated by

parentheses. The general rule that determines the index per-

mutation symmetry of intermediates can be stated as follows:

(i) only like indices are permutable (covariant vs. contravar-

iant; particle, hole and CABS); (ii) the indices that originate

from one input tensor are permutable; (iii) the indices that will

be contracted with those of one input tensor are permutable;

(iv) the external indices (i.e. the indices of d) are permutable.

In the above example, the indices i1 and i2 of x
ða0

5
a0
6
Þ

ði1 i2Þ are

permutable because they are the external indices [rule (iv)].

The indices a05 and a06 of x
ða0

5
a0
6
Þ

ði1i2Þ are permutable according to

rule (iii) as they are both contracted to the permutable indices

Table 6 The left-hand side of the geminal t amplitude equation (di3 i4i2 i1
¼ 0) of CCSD-R12 [eqn (19)] with the special intermediates [eqn (23)–(26)]

and the RI insertion using the CABS [eqn (31)]
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in F
ði3i4Þ�
ða0

5
a0
6
Þ . The two permutation operators in eqn (46) ensure

the desired antisymmetry of x
ða0

5
a0
6
Þ

ði1 i2Þ . The insertion of the

antisymmetrization operator (1 � Pa05 a
0
6
), which cannot be seen

in eqn (43), is justifiable because v
i8a
0
6

i2a
0
7

et ða05a07Þði1i8Þ can be written as a

sum of symmetric and antisymmetric components with respect

to the interchange of a05 and a06, and the symmetric component

only gives rise to a vanishing contribution in eqn (45) because

F
ði3i4Þ�
ða0

5
a0
6
Þ is antisymmetric.

The second algebraic transformation step is the factoriza-

tion. By virtue of the distributive nature of tensor algebra,

common tensor contractions can be factorized, e.g. AB +

AC = A(B + C), defining intermediates as a sum of unary

tensor expressions and/or binary tensor contractions. For

instance, the sum of two tensor contractions,

dði3i4Þði1i2Þ ¼ � ð1� Pi1i2Þv
i8a
0
6

i2a
0
7

et ða05a07Þði1i8Þ F
ði3 i4Þ�
ða0

5
a0
6
Þ

þ ð1� Pi1i2Þv
i8a
0
6

ða7a9Þt
a9
i2
et a05a7ði1i8ÞF

ði3i4Þ�
ða0

5
a0
6
Þ

ð47Þ

is evaluated by the following sequence:

dði3i4Þði1i2Þ ¼
1

2
F
ði3i4Þ�
ða0

5
a0
6
Þ x

ða0
5
a0
6
Þ

ði1i2Þ þ Z
ða0

5
a0
6
Þ

ði1i2Þ

h i
; ð48Þ

Z
ða0

5
a0
6
Þ

ði1 i2Þ ¼ ð1� Pi1 i2Þð1� Pa0
5
a0
6
Þet a05a7

i1i8ð ÞX
i8a
0
6

i2a7
; ð49Þ

X
i8a
0
6

i2a7
¼ v

i8a
0
6

a7a9ð Þt
a9
i2
; ð50Þ

where x is defined in eqn (46). The factorization has replaced

two matrix multiplications and one summation Fx + FZ by

one multiplication and one summation F(x + Z) in eqn (48).

This step must be preceded by reexpressing the tensor con-

tractions and their indices in a canonical order, which brings

equivalent tensor contractions into literal identical expres-

sions, so that the subsequent factorization can exhaustively

locate all factorizable common multipliers. The canonical

order is arbitrary but must be unambiguous and uniquely

defined for each tensor contraction. The strength reduction

and factorization are, in principle, a coupled optimization

which is evidently an NP-hard (nondeterministic polynomial-

time hard) problem. SMITH handles them as uncoupled,

sequential optimizations.

The third algebraic transformation is the common sub-

expression elimination. Take the contraction

þð1� Pi1i2Þv
i7a
0
5

a8a9ð Þt
a9
i2
t
a8
i1
t
a6
i7
F

i3i4ð Þ�
a0
5
a6

ð51Þ

as an example. SMITH suggests that this be evaluated in the

following sequence:

dði3i4Þði1i2Þ ¼ F
ði3i4Þ�
a0
5
a6

z
a0
5
a6

i1 i2ð Þ; ð52Þ

z
a0
5
a6

i1i2ð Þ ¼ t
a6
i7
t
i7a
0
5

i1 i2ð Þ; ð53Þ

t
i7a
0
5

i1i2ð Þ ¼ ð1� Pi1i2Þt
a8
i1
X
i7a
0
5

i2a8
; ð54Þ

X
i7a
0
5

i2a8
¼ v

i7a
0
5

a8a9ð Þt
a9
i2
; ð55Þ

where the equivalence of the two intermediates defined by eqn

(50) and (55) is implied by the use of the common symbol X.
This X intermediate, therefore, can be computed only once,

stored and reused, unlike other volatile intermediates that are

used only once and discarded afterward. SMITH examines the

whole computational sequences, inspecting the tensors and

their contractions, and identifies reusable intermediates. This

optimization is relatively unimportant in CC,27 but there are

some expensive reusable intermediates in the geminal ampli-

tude equation of CC-R12 (e.g. X7 in Table 7). However, the

most important reusable intermediate is t̃, which is introduced

in an ad hoc fashion and significantly reduces the peak

operation cost of CCSD-R12 when carried out prior to the

strength reduction. The reusable intermediates occur not just

at the terminal positions of the tree-like structure of

the computational sequences but also at the non-terminal

positions.

The computational sequences and intermediates for the T1,

T2 and geminal t amplitude equations of CCSD-R12 suggested

by SMITH are given in Tables ESI.4.I and ESI.4.IIw and in

Table 7, in which x and X symbolize volatile and reusable

intermediates respectively. The permutable indices are not

identified in these Tables, although this information is main-

tained internally in the computational representations of the

intermediates. The binary contraction order is determined by

assuming that nh = 28, np = 232 and np0 = 888 (the numbers

of occupied orbitals, virtual orbitals and CABS respectively),

which correspond to a calculation for ethylene using

aug-cc-pVTZ for the orbital basis set and [15s9p7d5f/9s7p5d]

for the auxiliary basis set. The suggested computational

sequences and intermediates may vary considerably with these

parameters.

The peak operation cost of evaluating the right-hand side of

the CCSD-R12 geminal amplitude equation is O(n3p0n
3
h).

This cost has the same polynomial rank as that of the T2

amplitude equation of conventional CCSD [O(n4pn
2
h)] as well

as the cost of computing the special intermediates, but the

former has a much greater prefactor and is estimated to be

an order of magnitude greater than the latter two for realistic

choices of nh, np and np0 such as the above. This fact

may support approximations which neglect these expensive

terms such as SA13 and various approximate

CC-R12 schemes.18,20,23,24 Another way to reduce the overall

cost of CCSD-R12 is via the weak orthogonality

projectors,49–52 which eliminate the integrals of the highest

dimensionality from the geminal amplitude equation. Yet

another method is to group and order the terms according

to the operation and memory costs and truncate the equation

to maximize the cost performance. With SMITH, the latter

strategy and various other systematic approximations can be

relatively easily explored.

Unlike the T amplitude equations, the geminal amplitude

equation does not become exponentially more complex with

the rank of T̂ (Table 8). In fact, the CCSDT-R12 geminal
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amplitude equation adds only one term (see Fig. 3 for its

diagrammatic representation),

d i3i4ð Þ
i1i2ð Þ ¼

1

2
F

i3i4ð Þ�
a0
5
a6

t
a6a7a8ð Þ
i1 i2i9ð Þ v

i9a
0
5

a7a8ð Þ; ð56Þ

to the corresponding equation of CCSD-R12. This can be

evaluated in two contraction steps,

d i3i4ð Þ
i1i2ð Þ ¼ F

i3i4ð Þ�
a0
5
a6

x
a0
5
a6

i1i2ð Þ; ð57Þ

x
a0
5
a6

i1i2ð Þ ¼
1

2
t
a6a7a8ð Þ
i1 i2 i9ð Þ v

i9a
0
5

a7a8ð Þ; ð58Þ

at an overall O(np0n
3
pn

3
h) cost. While this may be less than the

O(n3p0n
3
h) cost of other terms already present in CCSD-R12 for

small basis sets, it eventually outgrows the rest and becomes

the dominant term in the geminal amplitude equation as the

basis set sizes increase. Nevertheless, the complexity of the T

amplitude equations also rises considerably from O(n4pn
2
h)

(CCSD-R12) to O(n5pn
3
h) (CCSDT-R12) and, consequently,

the cost of solving the geminal amplitude equation is expected

to be marginal when compared to that of solving the T

amplitude equations in CCSDT-R12. With the above combi-

nation of nh, np and np0, the geminal amplitude equation costs

two orders of magnitude less than the T amplitude equation.

The ratio becomes even smaller as the basis sets are extended

and/or the rank of T̂ is raised. Therefore, approximating the

geminal amplitude equation at the sacrifice of accuracy may

not be justifiable in CCSDT-R12 and higher-ranked methods.

Table 7 The computational sequence and intermediates for the geminal t amplitude equation of CCSD-R12 [eqn (19)]

Table 8 The size dependence of the peak operation costs of solving the geminal amplitude equations and T, L, R or L amplitude equations of the
CC-R12 methods of rank k

Method Geminal T, L, R or L

EOM- (right) and CC-R12 (k = 2) O(n3p0n
3
h) O(nk+2

p nkh)

EOM- (right) and CC-R12 (k Z 3) O(np0n
3
pn

3
h ) O(nk+2

p nkh)

EOM- (left) and L-CC-R12 (k = 2) O(n3p0n
3
h) O(n3p0n

3
h)

EOM- (left) and L-CC-R12 (k Z 3) O(nk+1
p nk+1

h ) O(nk+2
p nkh)

This journal is �c the Owner Societies 2008 Phys. Chem. Chem. Phys., 2008, 10, 3358–3370 | 3367

Pu
bl

is
he

d 
on

 2
0 

M
ay

 2
00

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
 P

au
l S

ab
at

ie
r 

on
 1

2/
07

/2
01

7 
13

:3
1:

47
. 

View Article Online

http://dx.doi.org/10.1039/b803704n


Unlike the conventional CC methods, in which the imple-

mentation effort can be focused on only one diagrammatic

term that dominates the overall operation cost, the CC-R12

equations typically include multiple terms with comparable

operation costs. Furthermore, the costs of these terms depend

on three parameters (nh, np and np0) instead of two and their

relative importance becomes much harder to comprehend.

Efficient computer implementation of even the ground-state

CC-R12 method poses an intractably complex optimization

problem that can be tackled robustly only with a computerized

symbolic algebra such as SMITH.

III. EOM- and K-CC-R12 equations

Our computerized symbolic algebra can also be applied

directly to excited-state CC-R12 methods via the EOM-CC

formalism. They parametrize the nth excited right-hand-side

wave function as

|Cni = R̂[n]|C0i = exp(Ŝ)R̂[n]|F0i, (59)

where R̂[n] is an excitation operator that commutes with Ŝ. For

EOM-CCSD-R12, it is

R̂[n] = R̂[n]
0 + R̂[n]

1 + R̂[n]
2 + R̂[n], (60)

in which the first term is a constant and the second through

fourth terms are the following:

R̂[n]
1 = (r[n])ai {a

wi}, (61)

R̂[n]
2 = 1

4
(r[n])abij {a

wbwji}, (62)

and

R̂½n� ¼ ½F̂ r̂½n��C ¼ 1
8
Fab
kl ðr

½n�Þklij fayb
yjig; ð63Þ

with

r̂[n] = 1
4
(r[n])klij {k

wlwji}, (64)

where the excited-state index ‘‘[n]’’ will be omitted whenever it

is not essential. In eqn (63), F and r[n] must be diagrammati-

cally connected through both k and l lines. Substituting eqn

(59) into the Schrödinger equation and projecting it onto the

determinant space accessible by the action of R̂[n] on |F0i, we
arrive at the EOM-CCSD-R12 equations for the right-hand-

side wave function and excitation energy o[n],, i.e.

hFa
i |( �HR̂[n])C|F0i = o[n](r[n])ai , (65)

hFab
ij |( �HR̂[n])C|F0i = o[n](r[n])abij , (66)

and

hFkl
ij |( �HR̂[n])C|F0i = 1

2
o[n]Xkl

mn(r
[n])mn

ij , (67)

where special intermediate X is defined in eqn (24). Owing to

the connectedness, R̂[n]
0 does not appear in these equations.

They have a trivial, ground-state solution: R̂[0]
0 = 1, R̂[0]

1 =

R̂
½0�
0 = 0, and o[0] = 0.

The left-hand-side wave function of EOM-CCSD-R12 is

written as

hCn| = hF0|L̂
[n]exp(�Ŝ), (68)

where L̂[n] = L̂[n]
0 + L̂[n]

1 + L̂[n]
2 + L̂½n� is a deexcitation

operator, whose components are defined as

L̂[n]
1 = (l[n])ia{i

wa}, (69)

L̂[n]
2 =

1
4
(l[n])ijab{i

wjwba}, (70)

L̂½n� ¼ ½l̂½n�F̂y�C ¼ 1
8
ðl½n�ÞijklF

kl�
ab fiyjybag; ð71Þ

with

lˆ [n] =
1
4
(l[n])ijkl{i

wjwlk}, (72)

and L̂0
[n] is a constant. Again, l[n] and F must be connected

through k and l. It can be shown that

L̂[n]
0 = dn0, (73)

and hence, for an excited state (n 4 0), the equations that

determine the unknown parameters are

hF0|(L̂
[n] �H)L|F

a
i i = o[n](l[n])ia, (74)

hF0|(L̂
[n] �H)L|F

ab
ij i = o[n](l[n])ijab, (75)

and

hF0|(L̂
[n] �H)L|F

kl
ij i = 1

2
o[n](l[n])mn

kl X
ij
mn, (76)

where |Fkl
ij i is defined by the Hermitian conjugate of eqn (20).

For the ground state, the left-hand-side EOM-CC-R12

equations reduce to the so-called L equations of the CC-R12

method:37

hF0| �H + (L̂ �H)L|F
a
i i = 0, (77)

hF0| �H + (L̂ �H)L|F
ab
ij i = 0, (78)

hF0| �H + (L̂ �H)L|F
kl
ij i = 0, (79)

where, in accordance with the convention, we use L̂ for the

deexcitation operator that is related to L̂[0] by L̂[0] = 1 + L̂,
(l[0])ia = lia, (l

[0])ijab = lijab, (l
[0])ijkl = lijkl etc. The L equation is

central to the calculations of analytical gradients, analytical

molecular properties and certain noniterative, perturbation

corrections of the effects of higher-order connected T̂ to low-

er-order CC energies.53–57 A preferred derivation of this

equation leading to the same result is based on the CC-R12

energy functional defined, in complete analogy to the conven-

tional CC energy functional,47,48 as

E = hF0|(1 + L̂) �H|F0i. (80)

Demanding that E be stationary with respect to lia, l
ij
ab and lijkl,

we arrive at the CCSD-R12 amplitude equations (17)–(19).

The stationary value of E is equal to E0. This quasi-variational

character of E makes the relevant parameters (lia, l
ij
ab and lijkl)

useful for analytical gradients and properties, whose formulae

are generally simpler for variational methods. Requiring that

Fig. 3 The diagrammatic representation of eqn (56).
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E be stationary with respect to tai , t
ab
ij and tklij leads, on the other

hand, to the amplitude equations (77)–(79).

The tensor contraction expressions defining EOM- (both

right- and left-hand-side wave functions) and L-CC-R12 and

their computational sequences are compiled as ESIw for

methods through and up to the connected quadruple excita-

tion operators (EOM- and L-CCSDTQ-R12). As in CC-R12,

ad hoc common subexpression eliminations (r̃ = Fr, l˜= lF*,

and ~l = lF*) are performed after the RI insertion with the

CABS. EOM- and L-CC-R12 introduce additional equations

that determine the coefficients multiplying the r12-dependent

factors to what corresponds to the usual equations in

EOM- and L-CC.
The size dependence of the operation cost of solving these

additional equations [eqn (67), (76) and (79)] varies with the

method (Table 8). In EOM-CC-R12 (right-hand side), it

remains to be O(np0n
3
pn

3
h) for EOM-CCSDT-R12 or higher

and is, therefore, quickly surpassed by the cost of solving

the usual amplitude equations in EOM-CC (right-hand side)

of excitation rank k, which increases as O(nk+2
p nkh). This again

suggests that eqn (67) be solved without making drastic

approximations in high-rank EOM-CC-R12 (right-hand side)

for achieving benchmark accuracy.

In L- and EOM-CC-R12 (left-hand side), in contrast, the

operation cost of solving the geminal amplitude equations

increases as O(nk+1
p nk+1

h ). This is because L̂[n] in these equa-

tions is a deexcitation operator and can be contracted

variously with �H and excitation operator T̂, adding significant

complexity to the resulting equations, unlike Ŝ and R̂[n] that

are excitation operators and cannot be contracted with T̂. One

of the terms with the O(n4pn
4
h) complexity (see Fig. 4 for its

diagram) in the L-CCSDT-R12 geminal amplitude equation is

d i3 i4ð Þ
i1 i2ð Þ ¼

1

4
ð1� Pi3i4ÞF

a0
5
a6

i1i2ð Þv
i3 i7ð Þ
a0
5
a8
t
a8a9a10ð Þ
i7i11 i12ð Þ l

i4i11 i12ð Þ
a6a9a10ð Þ; ð81Þ

which is evaluated as

d i3 i4ð Þ
i1 i2ð Þ ¼ F

a0
5
a6

i1i2ð Þx
i3i4ð Þ
a0
5
a6
; ð82Þ

x i3i4ð Þ
a0
5
a6
¼ ð1� Pi3i4Þv

i3i7ð Þ
a0
5
a8
zi4a8i7a6

; ð83Þ

zi4a8i7a6
¼ 1

4
t
a8a9a10ð Þ
i7 i11i12ð Þ l

i4i11 i12ð Þ
a6a9a10ð Þ: ð84Þ

Since L̂[n] is a double deexcitation operator, the geminal

amplitude equations in L- and EOM-CC-R12 (left-hand side)

resemble the L2 amplitude equations of L- and EOM-CC (left-

hand side) respectively. The complexity of the latter is also

O(nk+1
p nk+1

h ). Because the overall peak operation cost of high-

rank L-CC-R12 and EOM-CC-R12 (left-hand side) methods

is O(nk+2
p nkh), which is greater than the O(nk+1

p nk+1
h ) cost of the

geminal amplitude equations, there seems no need to intro-

duce a further approximation to the latter. In high-rank

L-CC-R12 and EOM-CC-R12 (left-hand side), therefore,

computerized symbolic algebra such as SMITH is particularly

useful because the complexity of their geminal amplitude

equations grows, unlike those of CC-R12 and EOM-CC-R12

(right-hand side).

IV. Conclusions

In this study, we have derived the compact mathematical

expressions for the CC-R12 methods up to CCSDTQ-R12

with the CABS and modified ansatz 2 and suggested computa-

tional sequences that reduce the peak operation and memory

costs. These expressions have been automatically generated by

the newly-developed computerized symbolic algebra code

SMITH, which can handle Slater-determinant expectation values

of any combination of excitation, deexcitation and general

operators, including those that appear in the R12 ansätze.

SMITH also has additional capabilities to identify and isolate

the special intermediates and insert the RI approximations

using the CABS, which are specific symbol manipulations in

the CC-R12 derivations. We have found that certain recurring

intermediates (Ft) must be precalculated, stored and reused to

arrive at an efficient computational sequence, particularly in

CCSD-R12. Our previous code TCE is inadequate in virtually

every step of the derivation and algebraic transformation of

CC-R12.

We have, furthermore, defined the ansätze for the EOM-

and L-CC-R12 methods which are essential for the evaluation

of excitation energies and analytical gradients and properties

within the CC-R12 framework. We have presented the work-

ing equations and efficient computational sequences of these

methods up to the models that include the connected quad-

ruple excitation operator (EOM- and L-CCSDTQ-R12).

The operation costs of these methods have been examined

on the basis of the suggested computational sequences. In

CCSD-R12, the operation cost for solving the geminal ampli-

tude equation [O(n3p0n
3
h)] exceeds that for solving the T ampli-

tude equation [O(n4pn
2
h)], supporting some approximations to

simplify the former. Such approximations include SA13 as well

as approximate CC-R12 variants.18,20,23,24 In the higher-order

analogues, however, the operation cost for solving the geminal

amplitude equations becomes increasingly less important in

the overall cost; in fact, it is estimated to be negligible in the

CCSDT-R12 method. The same holds for the EOM-CC-R12

(right-hand side) method. The geminal amplitude equations of

the L- and EOM-CC-R12 (left-hand side) become increasingly

involved as the excitation rank (k) is raised. The operation cost

of solving the equations scales as O(nk+1
p nk+1

h ) for k Z 3,

which is nevertheless smaller than the overall cost O(nk+2
p nkh).

This suggests that the higher-order CC-R12 implementations

may be based on the unabridged equations and computational

sequences presented in this paper to achieve the highest

accuracy with no significant penalty in the operation or

memory cost.

Efforts towards automatic code generations of CC-R12

by SMITH, the code verification and validation and the

performance assessment of the various models suggested hereFig. 4 The diagrammatic representation of eqn (81).
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are underway. The results will be presented in forthcoming

articles.
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46 S. Kedžuch, M. Milko and J. Noga, Int. J. Quantum Chem., 2005,

105, 929.
47 R. J. Bartlett, in Modern Electronic Structure Theory II, ed. D. R.

Yarkony, World Scientific, Singapore, 1995.
48 R. J. Bartlett and M. Musia", Rev. Mod. Phys., 2007, 79, 291.
49 K. Szalewicz, B. Jeziorski, H. J. Monkhorst and J. G. Zabolitzky,

Chem. Phys. Lett., 1982, 91, 169.
50 K. Szalewicz, W. Ko"os, H. J. Monkhorst and C. Jackson, J.

Chem. Phys., 1984, 81, 2723.
51 R. Bukowski, B. Jeziorski and K. Szalewicz, J. Chem. Phys., 1999,

110, 4165.
52 D. P. Tew, W. Klopper and F. R. Manby, J. Chem. Phys., 2007,

127, 174105.
53 S. A. Kucharski and R. J. Bartlett, J. Chem. Phys., 1998, 108,

5243.
54 S. A. Kucharski and R. J. Bartlett, J. Chem. Phys., 1998, 108, 5243.
55 S. R. Gwaltney and M. Head-Gordon, J. Chem. Phys., 2001, 115,

2014.
56 S. Hirata, P.-D. Fan, A. A. Auer, M. Nooijen and P. Piecuch, J.

Chem. Phys., 2004, 121, 12197.
57 T. Shiozaki, K. Hirao and S. Hirata, J. Chem. Phys., 2007, 126,

244106.

3370 | Phys. Chem. Chem. Phys., 2008, 10, 3358–3370 This journal is �c the Owner Societies 2008

Pu
bl

is
he

d 
on

 2
0 

M
ay

 2
00

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
 P

au
l S

ab
at

ie
r 

on
 1

2/
07

/2
01

7 
13

:3
1:

47
. 

View Article Online

http://dx.doi.org/10.1039/b803704n

