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The tensor contraction expressions defining a variety of high-rank coupled-cluster energies and
wave functions that include the interelectronic distances (r,) explicitly (CC-R12) have been
derived with the aid of a newly-developed computerized symbolic algebra smitH. Efficient
computational sequences to perform these tensor contractions have also been suggested, defining
intermediate tensors—some reusable—as a sum of binary tensor contractions. SMITH can elucidate
the index permutation symmetry of intermediate tensors that arise from a Slater-determinant
expectation value of any number of excitation, deexcitation and other general second-quantized
operators. sMITH also automates additional algebraic transformation steps specific to R12
methods, i.e. the identification and isolation of the special intermediates that need to be evaluated
analytically and the resolution-of-the-identity insertion to facilitate high-dimensional molecular
integral computation. The tensor contraction expressions defining the CC-R12 methods including
through the connected quadruple excitation operator (CCSDTQ-R12) have been documented and

efficient computational sequences have been suggested not just for the ground state but also for
excited states via the equation-of-motion formalism (EOM-CC-R12) and for the so-called A
equation (A-CC-R12) of the CC analytical gradient theory. Additional equations (the geminal
amplitude equation) arise in CC-R12 that need to be solved to determine the coefficients
multiplying the rj,-dependent factors. The operation cost of solving the geminal amplitude
equations of rank-k CC-R12 and EOM-CC-R 12 (right-hand side) scales as O(1n®) (k = 2) or O(n’)
(k > 3) with the number of orbitals n and is surpassed by the cost of solving the usual amplitude

equations O(n**?

). While the complexity of the geminal amplitude equations of A- and EOM-

CC-R12 (left-hand side) nominally scales as O(n***2), it is less than that of the other O *?)
terms in the usual amplitude equations. This suggests that the unabridged equations should be

solved in high-rank CC-R12 for benchmark accuracy.

I. Introduction

The explicit inclusion of the interelectronic (ri;) degrees of
freedom in electron wave functions' significantly reduces the
errors in the wave functions and energies arising from the
incompleteness of the one-electron basis set (see ref. 3 and 4
and references therein). The Slater-type correlation factor first
proposed by Ten-no> allows one to recover typically 96% of
the complete-basis-set second-order Mpoller—Plesset (MP2)
correlation energies with the aug-cc-pVDZ basis set and
99% with the aug-cc-pVTZ basis set;*®’ these figures are
considerably greater than those of the standard MP2 method
(~70 and 90%). In these MP2-R12 calculations, the majority
of the residual errors is ascribed to the higher-order electron
correlation effects rather than to the basis-set incompleteness
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and intermediates (computational sequences) of the CC-R12, A-CC-

R12 and EOM-CC-R12 methods, including through the connected

quadruple excitation operators. See DOI: 10.1039/b803704n

and it is hence important to address such effects with high-
rank electron-correlation treatments such as the coupled-
cluster (CC) methods.

Noga et al. were among the first to study the CC methods
including rj,-dependent terms (CC-R12)*'? within the so-
called standard approximation (SA).'> This approximation
amounted to evaluating high-dimensional molecular integrals
with the aid of the resolution-of-the-identity (RI) insertion
using the same basis functions that expanded the Hartree—
Fock orbitals. SA dramatically simplified the CC-R12 equa-
tions, but was effective only for large orbital basis sets.'
This problem was remedied by Klopper and Samson, who
introduced a separate (and large) auxiliary basis set (ABS) for
the RI.!* The numerical shortcomings of the ABS approach
were rectified by Valeev, who proposed a more robust way
to utilize an ABS and called it the complementary auxiliary
basis set (CABS) method.'>!¢ Ten-no explored the use of a
multicenter quadrature as a variant of ABS.!” These advances
allowed the orbital basis set (OBS) to be kept relatively small
and the accuracy of the RI approximation to be varied
independently. These approaches, however, resulted in
the CC-R12 formalisms that are much more complex than
those based on the SA. Hence, several groups explored
approximate formalisms utilizing the CABS. First, Fliegl
et al. introduced an approximate CC-R12 with the connected
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single and double excitation operators (CCSD-R12) termed
CCSD(R12)."%2° Furthermore, CC-R12 was extended to ex-
cited states by Fliegl et al. in the CC2 approximation.?'>?
Recently, Adler et al. proposed a further simplification of
CCSD-R12 and CCSD(R12).* Independently, Valeev sug-
gested introducing the ri,-dependent terms by the Lowdin
perturbation theory using the CCSD wave function as a
reference; the simplest of such methods, CCSD(2)g >, had an
accuracy comparable to that of the iterative CCSD(R12)
method and could be implemented more easily.* It may be
said that optimal algorithmic details and standard implemen-
tation practices of efficient and accurate CC-R12 methods are
being established.

Nonetheless, unabridged implementations of CCSD-R12
and its higher-rank analogues, their excited-state counterparts
via the equation-of-motion (EOM) formalism, and their ana-
Iytical gradient capabilities based on the A equations have not
appeared. The CCSD-R12 method adds the so-called geminal
amplitude equation determining the amplitudes of the rj,-
dependent terms to those that correspond to the usual CC
energy and amplitude equations. As we show in this work, the
size dependence of the operation cost of solving the geminal
amplitude equation is the same as that of ordinary 7" ampli-
tude equations in CCSD [O(n®) with n being the number of
orbitals] but with a much greater prefactor, offering an
incentive to neglect or approximate rj,-dependent terms in
the former. However, this incentive vanishes for higher-rank
CC-R12 methods because the operation cost of the amplitude
equations increases exponentially with the excitation rank
while that of the geminal amplitude equation remains O(n’)
for CCSDT-R12 and higher. In this sense, it is meaningful to
document and analyze the complete set of the equations that
define high-rank CC-R12 and related methods. A pioneering
study of the equations of CC-RI12 including through the
connected triple excitation operator (CCSDT-RI12) was
reported by Noga and Kutzelnigg.’

The formula derivation and computer implementation of
high-rank CC-R12 methods involve complex symbolic manip-
ulation processes which, in practice, can no longer be per-
formed reliably by hand. This is already the case with the high-
rank members of the conventional CC and EOM-CC meth-
ods, the derivation and implementation of which are compu-
terized today. Kallay and Surjan invented the string-based
algorithm, which enumerated and evaluated diagrammatic
contributions to the CC and EOM-CC equations at any given
rank on the fly.?>?° Hirata developed the symbolic algebra
code tce,>”?° which automated the formula derivation and
implementation processes of the CC, EOM-CC and related
methods. Beginning with the definition of a method as a set of
few physical equations (ansatz) written in terms of expectation
values of second-quantized operators in a Slater determinant,
TCE derives the corresponding tensor contraction equations by
applying Wick’s theorem (derivation). It then transforms the
equations into efficient computational sequences exposing
compact data layout and reuse, introducing the intermediate
tensors (“‘intermediates”) as a sum of binary tensor contrac-
tions (transformation). It eventually translates the computa-
tional sequences into parallel-executable codes that take
advantage of spin symmetry (in the spin-orbital formalisms),

real Abelian point-group symmetry and index permutation
symmetry (implementation).

Among these steps, the exploitation of index permutation
symmetry is especially important not just for keeping the
operation and memory costs manageable but also for ensuring
Fermi—Dirac statistics of electronic wave functions. Unlike the
physical tensors (e.g. molecular integrals, excitation ampli-
tudes), which are antisymmetric with respect to an interchange
of any pair of covariant or contravariant indices, the inter-
mediates and their index permutation symmetry are not
necessarily known a priori. What makes the algorithms of
Kallay and Surjan and those of Hirata feasible is the key
observation?’ that, for a certain class of electron-correlation
methods, intermediates can be made to have known index
permutation symmetry by restricting permissible computa-
tional sequences. For instance, in the CC method of any rank,
the intermediates have two covariant and two contravariant
groups of permutable indices when binary contractions of
excitation amplitudes are barred.

Owing to the presence of new physical tensors containing an
r1o-dependent factor, the CC-R12 methods do not belong to
the class of methods that can be handled by the aforemen-
tioned computerized symbolic algebra. To accommodate
them, it is necessary to elucidate the index permutation
symmetry of the intermediates that can arise from a wider
class of electron-correlation methods and less restricted com-
putational sequences. Furthermore, an implementation of the
CC-R12 methods involves three additional algebraic transfor-
mation steps that are time-consuming and error-prone when
performed manually. First, some special intermediates must be
identified and isolated to ensure the analytical elimination of
the 1/r;, Coulomb singularity in the Hamiltonian with the r|,-
dependent factor. Second, the RI must be introduced judi-
ciously to reduce effectively the rank of the resulting high-
dimensional molecular integrals and facilitate their rapid
evaluation. Third, certain recurring intermediates must be
precalculated, stored and reused. These symbol manipulation
steps are tedious but highly systematic and ideally carried out
by a computer.

The objective of this paper is twofold. The first objective is
to describe the new symbolic algebra code smiTH (ref. 30) that
automates the derivation and transformation processes of a
much wider class of electron-correlation methods, including
the CC-R12 methods, than could be handled previously. To
achieve this goal, sMiTH can elucidate the index permutation
symmetry of intermediates arising from unrestricted computa-
tional sequences of the methods that are defined by Slater-
determinant expectation values of a product of any number of
excitation, deexcitation and other more general operators.
sMITH can also perform the additional algebraic transforma-
tion steps unique to the R12 methods.

The second objective is to apply sMITH to the high-rank CC-
R12 ansdtze and document the resulting tensor contraction
equations and computational sequences that define the inter-
mediates, adopting the state-of-the-art R12 methodology
(modified ansatz 2 and the CABS of Valeev). The CC-R12
methods including up to the connected quadruple excitation
operator (CCSD-R12, CCSDT-R12 and CCSDTQ-R12) are
analyzed. Furthermore, we extend the CC-R12 methods to
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excited states via the EOM formalism®'~® and to the related A
equations in the CC analytical gradient theory.>” The corre-
sponding tensor contraction equations are derived and com-
putational sequences (intermediates) are suggested for up to
EOM- and A-CCSDTQ-R12.

II. CC-R12 equations
A CCSD-R12 theory

We begin with a brief overview of the ansatz of the CC-R12
methods’ in the spin—orbital formalism using CCSD-R12 as
an example. Its wave function for the electronic ground state is
parametrized as

¥) = exp(S)/®0), (1)
where |®) is a single-determinant [typically, but not limited
to, Hartree—Fock (HF)] reference wave function and

S=T+7. )

In the above, 7 is the usual cluster excitation operator, i.e.

T=1 +1 (3)
with

T, = {d"1}, )

T, = 4z,, Pa'bljiy, ©)

where a, b, ¢, d and a,, denote particle indices (virtual orbitals)
in the space spanned by the orbital basis set; 4, j, k, /, m and i,
hole indices (occupied orbital) in the same space; and p, ¢, r, s
either (see Table 1). Henceforth repeated indices in an
equation imply the summation over them with no restrictions
to the index domain arising from the index permutation
symmetry of tensors and {---} brings the operators in the
normal order.

The new operator ﬁf', which commutes with 7', is a product

of molecular integrals F¥} involving an explicit rj,-dependent
ki

factor (correlatlon factor) and geminal amplitudes #; and is
written as’
= [Filc = *Fff i {od BljiY, (6)
with
= —F“ (o BTIk}, (7
= }gi; KTy, ®)

It is stipulated that F and ¢ are antisymmetric with respect
to the interchanges of contravariant (covariant) indices.

Table 1 Sets and indices of spin orbitals and corresponding projectors

In the second equality in eqn (6), F and ¢ are required
to be diagrammatically connected through two hole lines
(as indicated by “[---]c”"). The Greek symbols («, f, 7, 9, @)
label particle indices (virtual orbitals) in the hypothetical
complete basis set, which will be obliterated in the
computational sequences that are subject to implementation
(vide infra). It is assumed for convenience that the
virtual orbitals in the orbital basis set ({¢,}) represent a
subset of those in the complete basis set ({¢,}) and
hence either P,y (r,) = 0 or P,du(r,) = d.(r,) must
hold, where P, is the projector onto the space spanned
by {8y}

Because # is responsible for capturing just the two-electron
correlation effects, it should satisfy

F =007, 9)

where Oy, is the strong-orthogonality projection operator
defined by

Oni(r) = 0, (10a)
O120i(r2) = 0, (10b)

. .. 2 . 3
for any i. One such definition of O, is expressed as'*3

0 = (1 — P)(1 — Py, (11)

which is known as “ansatz 1" of Kutzelnigg and Klopper.'?
An alternative definition of Q> (“ansatz 2”) is

03 = (1 - 0)(1 - 0y), (12)

where O, is the projector onto the space spanned by {¢(r,)}.>
This ansatz is often preferred as it leads to smaller basis set
errors when used in MP2- R12 It is also desirable for the
geminal pairs produced by & to be orthogonal to ¢,(r;)ds(r2)
products to avoid double counting the correlation energies
that are already accounted for by the conventional correlation
methods. This is achieved by “modified ansatz 2” introduced
by Valeev'® in the form

sz =(1=0)(1=0,) - WVs (13a)
= 1= PP~ 0y(1 - P,) — (1 - P)O; (13b)
= il = Py) + (1I=P)Vy + (1 = P))(1 = Py, (130)
where V, is the projector onto the space spanned by
{¢ur))} (ie. P, = O, + V,). Note that this ansatz was
implicitly suggested in ref. 13 and sometimes referred to as
“ansatz 3.7

Adopting the projector of eqn (13a)—(13c) leads to the
following definition for the molecular integrals Fif

Set Index Projector Spin orbital

{dp) Dy q, 1, S ISA Spin orbitals in the orbital basis

o i, j, ky I, m, i, o Occupied orbitals in the orbital basis

{da} a, b, ¢, d, a, 12 Virtual orbitals in the orbital basis

{9} Ky Ay fy U 1 A Spin orbitals in the complete basis

{¢s} o, B, - d, o, 1-0 Virtual orbitals in the complete basis

{p} o, o 1 - P Virtual orbitals in the complete basis that do not belong to {¢,}
{da'} a, b, a, P Virtual orbitals in the CABS

3360 | Phys. Chem. Chem. Phys., 2008, 10, 3358-3370
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Pl - {ffdrld’Z‘{ba 1) dp(r2) Fra{ i (1) (r2) — ¢y (1) (r2)}, if Piop, = 0 or Prgpy = 0;

)

Various forms of the explicitly rj,-dependent factor
(the correlation factor) can be inserted in eqn (14), e.g. the
Slater-type function of ry,,’

Fio = exp(—yri2), (15)

where y is a positive constant. Other choices include the linear
r1» function,>!'>*® Gaussian-type function**** and Gaussian-
damped linear r;, function.**

The unknown parameters in the wave function, i.e. the T
amplitudes in eqn (4) and (5), the geminal ¢ amplitudes in eqn
(6) and correlation energy E, are determined by solving the
equations obtained by substituting the wave function [eqn (1)]
into the Schrédinger equation and projecting it onto the
determinants accessible by the action of S on |®y). This leads
to what correspond to the energy and 7, and 7, amplitude
equations of CCSD:’

(| H| Do) = Ey, (16)
(Of H|®o) = 0, (17)
(@57 | H|®g) = 0, (18)

where ®f and (D;j-” are singly and doubly excited determinants
from @, respectively, and a new equation:

(@} H|Dg) = 0. (19)

This last equation (the geminal amplitude equation) is
obtained by projecting the Schrodinger equation onto the
geminal replacements

) = [F{kTi}lcl®o). (20)

in which we imposed the connectedness in the same meaning
as in eqn (6). Note that the number of individual equations in
eqn (19) is identical to the number of the geminal ¢ amplitudes
(n} with ny, being the number of occupied orbitals). H is the
CCSD-R12 similarity-transformed Hamiltonian defined with
the usual normal-ordered Hamiltonian Hy by

H = exp(—S)Hx exp(S) = [Hn exp(S)]c, @1
Hy = f502) + Biod i, 22)

where f and v are Fock and antisymmetrized two-electron
integral matrices respectively, and Hy and S must be dia-
grammatically connected in the right-hand side of eqn (21).
The Greek symbols (k, 4, u, v) in eqn (22) refer to the spin
orbitals from a complete (and thus infinite) set obtained as a
union of {¢;} and {¢,}.

We must now address how the sums over the complete basis
set indices are eliminated to yield computationally tractable
equations. The following tensor contractions (“special inter-
mediates” shown in diagrammatic form in Fig. 1) involve
certain two-electron integrals that must be evaluated before RI
insertions to ensure the analytical cancellation between the
1/r1, singularity and the rj,-dependent factor:

vre = Lvgrep, (23)

otherwise (P ¢, = ¢, and P2¢/; = ¢p)-

,
e

rq &l
% X
3
x s A A
3
A
Kl ki
B 7

Fig. 1 Special intermediates that are evaluated as a whole (not as a
tensor contraction) by individual molecular integral subroutines. The
bold lines with double arrow stand for particles in a complete basis set,
the triple vertices denote F and the dotted vertices f or v.”

x4 = SR E, (24)
B{";’l = x/fﬁ 1/ ) (25)
Py = LRy, (26)

For example, using the projector in eqn (13b) allows one to
rewrite eqn (23) as

%
V{’?F’ S Vp oc,Fmoc

)

Vi = pEy - 5

= (Foo/ro)j - %V’Z,ﬁ’F (R o @27

where o denotes an index from another infinite basis set {¢,},
which is the set theoretic difference {¢,} — {¢,} and is there-
fore disjoint to {¢,} (Table 1). The two operators F, and 1/r;»
are multiplied first and then the integration over electronic
degrees of freedom is carried out. In this way, Fi, eradicates or
alleviates the singularity 1/r, in the Hamiltonian analytically
and thereby leads to the accelerated basis-set convergence of
correlation energies. It should be understood that Fj}‘, Fii and
F}I™ are defined analogously to F [eqn (14)] and (F; 2/r12)§, is
antisymmetrized. The last term on the right-hand side still
involves the sum of integrals over the index («') that spans an
infinite set. This term is evaluated by approximating the sum
over {¢./} as a sum over the CABS {¢,/}, which is the finite set
of virtual orbitals that is disjoint to {¢,}. Using &, b" and a), to
label the CABS indices, the last term of eqn (27) becomes
v e CRBS (28)
Analogous transformations of special intermediates
X, B and P produce two-electron integrals of operators F,
[F12,[V3 + V3,F5]] and F%z/rlz respectively, whose analytical
evaluation is relatively straightforward. Intermediate B
requires extra attention: an earlier approach for evaluating
this term involved integrals of the non-Hermitian operator
[V} + V3F)5] and relied on extended and generalized

This journal is © the Owner Societies 2008

Phys. Chem. Chem. Phys., 2008, 10, 3358-3370 | 3361


http://dx.doi.org/10.1039/b803704n

Published on 20 May 2008. Downloaded by Universite Paul Sabatier on 12/07/2017 13:31:47.

Brillouin conditions (EBC and GBC).'*!%* An alternative
approach is to approximate the single commutators via the RI
and avoid the use of EBC and GBC.*® Both approaches result
in sums over the complete basis set ({¢.}) which are
approximated by those over the orbital basis set and CABS
({#p} © {Pa}). smiTH does not perform the algebraic mani-
pulations required to evaluate these special intermediates. It
instead detects them and suggests computational sequences on
the basis of the assumption that they are available at runtime
by an external integrals engine.

The sums over the complete basis set in other numerous
terms are approximated by those over the CABS'® as in eqn
(28). This process (the RI insertion) is automated by smiTH for
the terms that are not special intermediates. In the next
subsection, the automation of this step will be explained in
more detail. The RI insertion with the CABS amounts to
replacing an infinite sum by a finite sum:

STEEST (29)
STAERS LY. (30)

These replacements are equivalent to approximating the pro-
jector in eqn (13c) as

0 B P By + BV + BB, (31)
where P'; is the projector on the CABS space.

B Automated derivation

The derivation step refers to the process of transforming the
ansatz (written in terms of the expectation values of second-
quantized operators in a Slater determinant) to a sum of
product-tensor expressions, each optionally multiplied by in-
dex permutation operators. The derivation of the CC-R12
equations also involves the identification of the special inter-
mediates, the RI insertions and an ad hoc common subexpres-
sion elimination of certain recurring intermediates. These steps
have been completely automated by sMITH.

Previously, TCE carried out the automated derivation by
applying Wick’s theorem, i.e. by contracting normal-ordered
strings of creation and annihilation operators. Unlike TCE,
SMITH’s algorithm uses antisymmetrized Goldstone diagrams
and produces each topologically distinct term only once at
every stage of the contraction process. The use of the diagrams
makes sMITH considerably faster than TCE and, because
CC-R12 is much more complex than CC at a given rank, this
increased efficiency of algebraic manipulations is essential.

SMITH generates and interprets the diagrams according to the
rules stipulated by Bartlett*”*® and extended to the CC-R12
ansitze, in which second-quantized operators are represented
by vertices with single-arrow upgoing (particle), double-arrow
upgoing (complete particle) and single-arrow downgoing
(hole) lines. The numbers of lines above and below the vertices
are respectively related to the excitation and deexcitation
ranks of the operator. In smiTH, each vertex is computationally
stored as a class object with attributes such as the vertex type
and strings of creation or annihilation operators of particle,

complete particle and hole types. Interaction operators are
compactly expressed by operators of unspecified types.

SMITH contracts creation and annihilation operators of the
same type between all excitation vertices and an interaction
vertex and spawns just the topologically distinct diagram
fragments. This can be performed efficiently by using the
symbolic algorithm*”*® that exhaustively enumerates distinct
permutations of connectable lines and that can be straightfor-
wardly computerized. The contraction step is repeated be-
tween the diagram fragments and deexcitation operators. The
numerical factors and index permutation operators acting on
the resulting tensor contraction expressions are determined by
applying the established diagrammatic rules.*”*® The only new
rule that is added for the CC-R12 ansitze is that when a
creation (annihilation) operator of an unspecified type in an
interaction vertex is contracted with an annihilation (creation)
operator of a known type, the corresponding tensor index in
the interaction vertex obtains the same (particle, complete
particle or hole) operator type.

TCE could only handle ansétze restricted to a form

(0l (LOR, - R,y | @0) (32)

which contained one deexcitation L operator, any number of
excitation R;---R, operators and one interaction (i.e. neither
excitation nor deexcitation) Q operator, which could be var-
iously connected or linked. In conjunction with a certain
prescribed order of tensor contractions, these restrictions led
to intermediates with a priori known highly symmetric index
groups.>>?® These restrictions are lifted in smiTH, which can
handle more general expectation values that have arbitrary
numbers of deexcitation, excitation and general operators
(and the corresponding tensors) such as eqn (16)—(19). Since
the new operator added in the CC-R12 ansiitze, # [eqn (6)], is
in fact an excitation operator, the CCSD-R12 ansatz eqn
(16)—(19) may appear to be handled by TcE if Ft is treated as
a compound tensor. The subsequent algebraic transformations
(vide infra), however, must treat F and ¢ independently when
introducing the special intermediates into the equations.
Furthermore, one of the special intermediates X has the form
of an interaction operator, inserting itself as the second tensor
of the type Q in the computational sequence. Hence, the more
general algorithms of smiTH reported here are crucial for the
entire procedure.

The CCSD-R12 equations [eqn (16)—(19)] produced by
sMITH are shown in Tables 2-5. The equations of CCSDT-
R12 and CCSDTQ-R12 have also been derived and made
available as ESI.¥ Although the CCSDT-R12 equations and
computational sequences in the SA have been reported by
Noga and Kutzelnigg,” unabridged equations of these high-
rank methods have not been documented before. These ex-
pressions involve P, (not to be confused with the P, projec-
tors), which is a shorthand notation of the operator that
permutes n indices of the tensor upon which it acts. For
instance, P, acting on the following contraction is expanded as

"az ,a4dy _ ay ,a4dy __ pay dqdg  payg ,A3dg
Pof vy, = (I = Puya) as Vit —Jag Vijis ag Vit (33)

where P, interchanges indices a3 and a, wherever they
appear to the right of the operator. The explicit form of P,
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Table 2 The left-hand side of the energy equation (e = E;) of CCSD-
R12 [eqn (16)] obtained with the modified ansatz 2

Table 3 The left-hand side of the T amplitude equation (5;:2 =0) of
CCSD-RI12 [eqn (17)] obtained with the modified ansatz 2

iy tlz 1 zm as dg 1117 azay 1 11,2 0304 gi1g
faa [11 a3a4t1] L + auutzllz +3 8 1314F79110 tl]lz

is readily inferred from the tensor contraction expression,
according to the rules written in ref. 47 and 48 and will not
be shown here.

As eqn (6) suggests, the energy and 7'} and 7, amplitude
equations of CCSD-R12 add a new term containing the Ft
tensor product at every appearance of the 7, amplitude in the
corresponding equations of CCSD. Although the geminal
amplitude equation (Table 5) has no counterpart in CCSD,
it resembles the T> amplitude equation because the & operator
is also a two-body excitation operator. Unlike the 7" amplitude
equations, which become increasingly more lengthy as the
rank of 7 is raised, the complexity of the geminal amplitude
equation increases only modestly with the rank of 7" because
the rank of & is held fixed. Since only T}, (1 < n < 3) can
appear in the geminal amplitude equation in CC-R12 of any
rank, the geminal amplitude equation remains the same for
CCSDT-R12 and higher.

sMITH subsequently seeks the subexpressions that corres-
pond to the special intermediates—V, X, B and P—and
replaces them with the corresponding single tensor objects.
This process involves matching the tensor types and contrac-
tion patterns in the equations against the definitions of these
intermediates [eqn (23)—(26)]. Therefore, it occurs before the
binary tensor contraction order is determined (vide infra). For
instance, the second term in the right-hand side of the geminal
amplitude equation of CCSD-R12 (Table 5) reads

(1= Pui) Fdo fi Frt sy (34)

o506 igig ‘“ipi7*

-

+

SMITH uses eqn (24) to transform this into an expression,

1
—5 (L= Pun)f 633 X3 (35)

ipi7 % igig 0

which is devoid of the indices associated with the complete
basis set and hence is a programmable expression, provided
that X is furnished by an external integrals engine.

5% p’lz _ ;‘is, 2 2,93 _ 300,00 4 p3mas g A3 poaa lsle
”’)il =+ Jiy 'iy Jf:; T,‘ a4’y tx; F Jayt i3 11&4F1(!576 iyiq
_ =3az 4 134 a5 ,‘22 o+ 1:'-'2 a4 4 14,0304 235 J34p 44495
'1a4t13 FV, 'mctv 4 ”4”‘tr3 txl i“«og i3iq Qmaﬂ’itzl@
vl3l4 s el 30y 405 tt;,m _ vtm ta; 26 42
T3 i1as igi7 ;3»4 ERg1c '6‘7 iyis a3ce iy iy 14
isig 206 2 iy mas 05 | Bin Asds 4
4+ i 1y
Jasa(,t,l,4 tl; “w‘*stlgr i 2 “3%[1111« i3
3iy pposay 17% 46 _ 7502 4i7lg 6
ZvﬂsaGFz'/lg iy A Zvﬂ“’cpmg i3ig "1
i3ig 506 (1713 42
v“saﬁptaﬂg tmgtu
Another term in the same equation,
1 i3ig* | i70s o809 Li10i11 6
+ 4Fac5a(, Vocgzy:)Fz]oll] lllh [17 ’ (36)
is simplified to
1 i3ig* 171705 4igiy a6
+2F15a5 Vlgl\) ll]h tl7 ’ (37)

using eqn (23), which still contains a complete-basis-set
index («s). In the SA of Kutzelnigg and Klopper,'? this and
copious other terms vanished by virtue of approximating the
complete basis set by the orbital basis set. In this work,
however, we document a less approximate alternative that
evaluates the contributions from them using the CABS
(vzde supra). This step (the RI insertion) is achieved by dctmg
Q 12 of eqn (31) on Fand replacmg the index pair a,,,oc,, by a,,a,,
and the pair o,,x, by a,.a,, a,a, and a,a,, where a,, labels a
particle index in the CABS space. The above example is then
transformed to

+1Fl3l4 V’7"5 igiy a6 (38)

2 aaﬁ igiy 1117 177
which does not involve complete basis set indices and is
subject to a computer implementation. In general, this
step can spawn multiple terms from a single seed term. For
instance, the following term containing complete-basis-set
indices,

g (1= Pun ) E v Fiit, R e (39)
is transformed to the sum of five terms without such indices as
illustrated diagrammatically in Fig. 2.

At this stage, sMITH seeks and replaces every occurrence of
the binary tensor products Ft by the special intermediate

Table 4 The left-hand side of the 7, amplitude equation ((5?;,.‘:4 = 0) of CCSD-R12 [eqn (18)] obtained with the modified ansatz 2

6‘13“4 —+P ,ﬂsta“ht Pz 3 a4a< + 1P~ faaF“SMtléW 1P2f FGGUS 1718ta4 + P is a3,“4‘16 +P Stastﬂsa:: + v“SaA + P V’S“Btazt + ] p ,a’a4f“5
ag i
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+1vc35 FOso6 78 4 1[%1% o ‘f: + 1PP w;‘,mtlez :3 — LPyVgea s “z8 + 1P Pyt TS B0

A5 dyiy zu; “Tlay q

a3 050,
+ll)’i zv‘,;n;,[" o

;) 4 0607
igig 2 j‘l £

867" igig

.Sk 43 paar
— P! 2Vy anfxg tlyl(

A«{(l‘l iy u; Dy iglg m5 ;6

547 p 7576 9747394 _ isay g 47
i + 3 Vrlu—: ir “isig P”P2v“n“/tzl “inis

+ 1P

-I’Zvj.j:'z Tt lv’;ﬁ“;,“‘“:j“"w P Pﬂﬁz,?tf'j‘jst?f““— VPV F‘)";jtﬂ b 'Pu Z»MSF;”N o

+yPye F;;:;‘O" 0L+ P T + AP iy i Ty + P2 P :’ o B — Pyvie, “’5 j"‘l:“z“’*

= PoVER GGG P PG T — LRSS + PSR GR — PG TN + PV PSS
A PP FL O 4 P P e i F S — P

1 5 793 ok ppogeq 111112 1 s 793 fiotio prosas giiing
+ PZPZV“WSFa Fvint P2V“7“8F:llo isig FZl'lZ ipiy

igitg ’1’5 11112 g

This journal is © the Owner Societies 2008

Phys. Chem. Chem. Phys., 2008, 10, 3358-3370 | 3363


http://dx.doi.org/10.1039/b803704n

Published on 20 May 2008. Downloaded by Universite Paul Sabatier on 12/07/2017 13:31:47.

Table 5 The left-hand side of the geminal r amplitude equation (5;:‘]‘ = 0) of CCSD-R12 [eqn (19)] obtained with the modified ansatz 2
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Unlike the other special intermediates, 7 intermediates do not
need to be supplied by an external integrals engine but are
readily evaluated as the right-hand sides of the above equa-
tions. They appear frequently throughout the CC-R12 equa-
tions and can be computed prior to the other contractions,
stored and subsequently reused. This transformation can,
therefore, be viewed as an example of common subexpression
elimination which is automated for the other reusable inter-
mediates (vide infra). This ad hoc transformation becomes
necessary in CC-R12 because the search of optimal binary
contraction orders in SMITH is non-exhaustive and this heur-
istic optimization reduces the operation cost of solving the
CCSD-R12 geminal amplitude equations from O(n;,nz) (with-
out 7) to O(ny,n}) (with 7). In this step, one of the terms that

seed diagram

Fig. 2 One seed diagram (upper left) containing the complete-basis-
set particle lines (bold lines with double upgoing arrows) can spawn
five individual diagrams that have no dependence on the complete
basis set. In the latter, the complete-basis-set particle lines are replaced
by those in the orbital basis set (thin lines with single upgoing arrows)
or those in the CABS (thin lines with double upgoing arrows). The
triple vertex may represent an Ft compound tensor.

arise from eqn (39) is transformed as follows:

1 L dd i . dd. .
_ _pP.. 13147 1718 5% A11h12 7610 413114
3 (1 Pll’Z)Fa;a’ﬁ Vaga’mFiHilzlim Fioi tiis

(42)

- .. ! )
— (1 —_ P . )F'ﬂzx' Y ?5f19llll6.‘11()
N /% deay “ayal " hin T iy

N —

SMITH automates all of the above steps, transforming the
energy and amplitude equations of CCSD-R12 in Tables 2-5
into those shown in Tables ESI.3.I-11I1 and Table 6 respec-
tively. The latter equations are considerably longer than the
former, further supporting the argument for the use of a
computerized symbolic algebra. They are in the spin—orbital
formalisms and are not spin-adapted for any spin multiplicity.
Computerizing the spin adaptation is a challenging symbol
manipulation problem and is beyond the scope of this study.
All the terms that involve F in the T amplitude equations
(Tables ESI.3.1 and ESI.3.1IT) and a majority of those in the
geminal amplitude equation (Table 6) vanish in the SA,
tremendously simplifying the equations and subsequent com-
puter implementations. Here we instead rely on the RI inser-
tion using the CABS with the aim of achieving high accuracy
with relatively small orbital basis sets.

C Computational sequences

The derived tensor expressions must be transformed into
efficient computational sequences (transformation) before their
implementations. sSMITH performs three such algebraic trans-
formation steps: the strength reduction, factorization and
common subexpression elimination.

The first step (the strength reduction) solves the classic
matrix chain multiplication problem approximately and de-
termines the best sequential binary tensor contraction order,
e.g. A(B(CD)), for each multiple tensor product, ABCD, where
each letter denotes a tensor. Hence, it defines intermediates as
binary tensor products: £; = CD and & = B¢&;. While the
result of a tensor product does not depend on the order of
contraction owing to the associative and commutative nature
of tensor contractions, the operation and memory costs can
vary greatly. sMITH examines all n!/2 distinct sequential binary
tensor contraction orders for an n-tuple product and finds the
least expensive order by first comparing peak operation costs
and then peak memory costs.
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Table 6 The left-hand side of the geminal 7 amplitude equation (5:1‘]’ = 0) of CCSD-R12 [eqn (19)] with the special intermediates [eqn (23)—(26)]

and the RI insertion using the CABS [eqn (31)]
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Non-sequential contraction orders, e.g. (AB)(CD), are not
considered in smITH (or in TcE). While this limitation hardly
affects the operation cost in CC, it turns out to be significant in
CC-R12. The optimal sequential contraction order exhibits
one-rank-higher polynomial size dependence of the operation
cost than the optimal non-sequential contraction order. Since
the geminal amplitude equations (with Fr viewed as two-
electron excitation operators) have the structure similar to
that of the 7, amplitude equations, we may expect that, when
the non-sequential contractions involving Ft are taken into
consideration, the complexity of the geminal amplitude equa-
tions cannot scale more steeply than that of the corresponding
T, amplitude equations. The aforementioned 7 transformation
amounts to a practical way of allowing non-sequential con-
traction orders that are expected to be particularly important.

Previously, TCE performed the strength reduction similarly for
the methods definable by eqn (32). It also examined all sequen-
tial contraction orders comparing their operation and memory
costs, but permitted binary contraction orders were restricted to
the form L(R(---(R£Y)---)), where we used the same alphabets
for the tensors and operators. This restriction was crucial to

ensure that every resulting intermediate possessed an a priori

known index permutation symmetry. With sMiTH, any combina-
tion of excitation, deexcitation and general operators is per-
mitted and there is no restriction in the binary contraction
orders. The index permutation symmetry of the resulting inter-
mediates is determined on a case-by-case basis automatically
from the computational representations of the intermediates.
For instance, one of the terms in the geminal amplitude
equation reads
) = =0 = Pa vt T Fe) (43)
where some indices are parenthesized to show that they are
permutable. All covariant (contravariant) indices of an input
(F', 7 and v in this equation) or output tensor (J) are
permutable unless they belong to different index classes: hole

(i,), particle (a,), or CABS (). For instance, F(('?Z‘,)) is anti-
576

symmetric with respect to the interchange of i; and i, or that of
ds and ag, i.e.,
Fl314 — Fl413 _ Fl;l4 _ Fléi’%,* ) (44)

usa6 a U 6 5 uﬁas

Therefore, only those elements of 3, F™ and 7 whose indices

satisfy the followmg inequalities need to be stored: ”<’4*

Sl and 750
symmetry to minimize the memory and operation costs of
solving the amplitude equations. Furthermore, the block
sparsity of the tensors that arises from the spatial symmetry
and spin integration (within the spin—orbital formalisms) is
also significant. These details of the computerized implemen-
tations are, however, deferred to our forthcoming article.

The binary contraction order for eqn (43) determined by
SMITH is as follows:

It is critical to exploit the index permutation

(i3i4) _1 (izig)* 2(d5dg)
i) = 5 Flaal) Stin) - “3)
60’/50/6) _ 7(1 _ P . )(1 — P ! r)\/iga/6 7(0'5!1'7) (46)
(hh) = i a5 ipdy (i)

The numerical factors (including the signs) in these individual
equations are arbitrary insofar as their products are consistent
with the overall numerical factor in eqn (43). The index
permutation symmetry of the intermediate is indicated by
parentheses. The general rule that determines the index per-
mutation symmetry of intermediates can be stated as follows:
(1) only like indices are permutable (covariant vs. contravar-
iant; particle, hole and CABS); (ii) the indices that originate
from one input tensor are permutable; (iii) the indices that will
be contracted with those of one input tensor are permutable;

(iv) the external indices (i.e. the indices of J) are permutable.

In the above example, the indices i/; and i, of g(lflz(;) are

permutable because they are the external indices [rule (iv)].

The indices a5 and ag of & “512" are permutable according to

rule (iii) as they are both contracted to the permutable indices
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in F((ﬁ';‘,); . The two permutation operators in eqn (46) ensure
576

the desired antisymmetry of éEZS;S). The insertion of the

antisymmetrization operator (1 — P,), which cannot be seen

i (i .
in eqn (43), is justifiable because ngﬁ" t E:‘lz;) can be written as a
7

sum of symmetric and antisymmetric components with respect
to the interchange of a5 and ag, and the symmetric component
only gives rise to a vanishing contribution in eqn (45) because
F(izfz;)*

(asag)

The second algebraic transformation step is the factoriza-
tion. By virtue of the distributive nature of tensor algebra,
common tensor contractions can be factorized, e.g. AB +
AC = A(B + (), defining intermediates as a sum of unary
tensor expressions and/or binary tensor contractions. For
instance, the sum of two tensor contractions,

is antisymmetric.

S(i3is) _ igdg ~(dsdh) po(izig)x
O == (L= Pui)vid i) Flaar)
(47)
sy agTdsar (i3ig)*
(U= P )V 1 i) Py
is evaluated by the following sequence:
(nia) _ L pliiye [ o) | (st
Otniz) = 5 Fladyy |ty + M) } (48)
(d-d.) ~diay —igd,
'7(,'15,*2(5 = (1 - Pilfz)(l - Pa'su’(})t (1'511‘8):‘1'25137 (49)
—igdy isag  ag
Eirer = Varan) s (50)

where ¢ is defined in eqn (46). The factorization has replaced
two matrix multiplications and one summation F¢ + Fy by
one multiplication and one summation F(¢ + #) in eqn (48).
This step must be preceded by reexpressing the tensor con-
tractions and their indices in a canonical order, which brings
equivalent tensor contractions into literal identical expres-
sions, so that the subsequent factorization can exhaustively
locate all factorizable common multipliers. The canonical
order is arbitrary but must be unambiguous and uniquely
defined for each tensor contraction. The strength reduction
and factorization are, in principle, a coupled optimization
which is evidently an NP-hard (nondeterministic polynomial-
time hard) problem. smiTH handles them as uncoupled,
sequential optimizations.

The third algebraic transformation is the common sub-
expression elimination. Take the contraction

i7d

/ ay Lag ae (i3i4)*
+(1 - Piliz)"((,gflg)[i; Zilx [ Fa,;a: (51)

as an example. sSMITH suggests that this be evaluated in the
following sequence:

(i3ig) _ plizig)* 4506
inin) = Faag Clirin)s (52)
d-ag ird
g(1'511'2) - 1?761'-(1’11:2)’ (53)

T = (1= Py )(SE]S (54)

(i1i) iy “hag?

Ern = Vagan i (55)
where the equivalence of the two intermediates defined by eqn
(50) and (55) is implied by the use of the common symbol ZE.
This Z intermediate, therefore, can be computed only once,
stored and reused, unlike other volatile intermediates that are
used only once and discarded afterward. sMiTH examines the
whole computational sequences, inspecting the tensors and
their contractions, and identifies reusable intermediates. This
optimization is relatively unimportant in CC,>’ but there are
some expensive reusable intermediates in the geminal ampli-
tude equation of CC-R12 (e.g. E; in Table 7). However, the
most important reusable intermediate is 7, which is introduced
in an ad hoc fashion and significantly reduces the peak
operation cost of CCSD-R12 when carried out prior to the
strength reduction. The reusable intermediates occur not just
at the terminal positions of the tree-like structure of
the computational sequences but also at the non-terminal
positions.

The computational sequences and intermediates for the 77,
T, and geminal ¢ amplitude equations of CCSD-R12 suggested
by smiTH are given in Tables ESI.4.1 and ESI.4.II1 and in
Table 7, in which ¢ and E symbolize volatile and reusable
intermediates respectively. The permutable indices are not
identified in these Tables, although this information is main-
tained internally in the computational representations of the
intermediates. The binary contraction order is determined by
assuming that n, = 28, n, = 232 and n,, = 888 (the numbers
of occupied orbitals, virtual orbitals and CABS respectively),
which correspond to a calculation for ethylene using
aug-cc-pVTZ for the orbital basis set and [15s9p7d5f/9s7p5d]
for the auxiliary basis set. The suggested computational
sequences and intermediates may vary considerably with these
parameters.

The peak operation cost of evaluating the right-hand side of
the CCSD-R12 geminal amplitude equation is O(nf,/n?,).
This cost has the same polynomial rank as that of the T,
amplitude equation of conventional CCSD [O(n;n%)] as well
as the cost of computing the special intermediates, but the
former has a much greater prefactor and is estimated to be
an order of magnitude greater than the latter two for realistic
choices of n;, n, and n, such as the above. This fact
may support approximations which neglect these expensive
terms such as SA' and various approximate
CC-R12 schemes.'%2%232* Another way to reduce the overall
cost of CCSD-R12 is via the weak orthogonality
projectors,® 32 which eliminate the integrals of the highest
dimensionality from the geminal amplitude equation. Yet
another method is to group and order the terms according
to the operation and memory costs and truncate the equation
to maximize the cost performance. With smiTH, the latter
strategy and various other systematic approximations can be
relatively easily explored.

Unlike the 7 amplitude equations, the geminal amplitude
equation does not become exponentially more complex with
the rank of 7' (Table 8). In fact, the CCSDT-R12 geminal
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Table 7 The computational sequence and intermediates for the geminal 7 amplitude equation of CCSD-R12 [eqn (19)]
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amplitude equation adds only one term (see Fig. 3 for its
diagrammatic representation),

SWBi) _ lF(i3i4)*t(a<;a7ﬂs)Vf9“§ (56)

(hiz) = p " dsag “(iriig) (a7ag)’

to the corresponding equation of CCSD-R12. This can be
evaluated in two contraction steps,

(i3ig) _ plizig)* ¢@5a6
Oiiy) = Faag C(hiny (57)

/ 1 )

asag 1 (agazag) 1945
5(f1iz) 2 Uirinis) ¥ (aras)” (58)

at an overall O(n,y ;n?,) cost. While this may be less than the
O(n;/ni) cost of other terms already present in CCSD-R12 for

small basis sets, it eventually outgrows the rest and becomes
the dominant term in the geminal amplitude equation as the
basis set sizes increase. Nevertheless, the complexity of the T
amplitude equations also rises considerably from O(n;nﬁ)
(CCSD-R12) to O(nf,nf,) (CCSDT-R12) and, consequently,
the cost of solving the geminal amplitude equation is expected
to be marginal when compared to that of solving the T
amplitude equations in CCSDT-R12. With the above combi-
nation of ny, n, and n,,, the geminal amplitude equation costs
two orders of magnitude less than the 7 amplitude equation.
The ratio becomes even smaller as the basis sets are extended
and/or the rank of 7' is raised. Therefore, approximating the
geminal amplitude equation at the sacrifice of accuracy may
not be justifiable in CCSDT-R12 and higher-ranked methods.

Table 8 The size dependence of the peak operation costs of solving the geminal amplitude equations and 7, A, R or L amplitude equations of the

CC-R12 methods of rank k&

Method Geminal T,A, Ror L
EOM- (right) and CC-R12 (k = 2) O(mymy) O™ 2nf)
EOM- (right) and CC-R12 (k > 3) O(np/n;nz) o™ *nf)
EOM- (left) and A-CC-R12 (k = 2) O@ym3) O@mym3)
EOM- (left) and A-CC-R12 (k > 3) o kY )

This journal is © the Owner Societies 2008

Phys. Chem. Chem. Phys., 2008, 10, 3358-3370 | 3367


http://dx.doi.org/10.1039/b803704n

Published on 20 May 2008. Downloaded by Universite Paul Sabatier on 12/07/2017 13:31:47.

Fig. 3 The diagrammatic representation of eqn (56).

Unlike the conventional CC methods, in which the imple-
mentation effort can be focused on only one diagrammatic
term that dominates the overall operation cost, the CC-R12
equations typically include multiple terms with comparable
operation costs. Furthermore, the costs of these terms depend
on three parameters (n,, n, and n,/) instead of two and their
relative importance becomes much harder to comprehend.
Efficient computer implementation of even the ground-state
CC-R12 method poses an intractably complex optimization
problem that can be tackled robustly only with a computerized
symbolic algebra such as sMITH.

III. EOM- and A-CC-R12 equations

Our computerized symbolic algebra can also be applied
directly to excited-state CC-R12 methods via the EOM-CC
formalism. They parametrize the nth excited right-hand-side
wave function as

W,) = R"W,) = exp(S)R"|Dy), (59)

where R" is an excitation operator that commutes with S. For
EOM-CCSD-R12, it is

R = R+ R+ R+ g, (60)

in which the first term is a constant and the second through
fourth terms are the following:

R = (ya'iy, D
R = S0 i, (€

and
= (B éFW( i el i, (63)

with
Al — All(r["])?/{kmﬁ}» (64)

where the excited-state index “‘[#]” will be omitted whenever it
is not essential. In eqn (63), F and ") must be diagrammati-
cally connected through both k and / lines. Substituting eqn
(59) into the Schrédinger equation and projecting it onto the
determinant space accessible by the action of R on |®,), we
arrive at the EOM-CCSD-R12 equations for the right-hand-

side wave function and excitation energy o ie.
(@F|(HR™)c|®g) = (™), (65)
(@ |(HR™)c| Do) = (), (66)
and
(@1 R |@g) = ol Xk, (", (67)

where special intermediate X is defined in eqn (24). Owing to
the connectedness, R does not appear in these equations.
They have a trivial, ground-state solution: @50] =1, 15[10] =
,@g)] =0, and 0 = 0.

The left-hand-side wave function of EOM-CCSD-R12 is
written as

(¥, = (Do) LMexp(—S), (68)

where LM = 7 + IV + IF + 21 is a deexcitation
operator, whose components are defined as

L/-[l"] _ ([[,;])[{l-+a}’ (69)
L8 = Y by, 70
PV = e = LLE G B, (7))
with

and L™ is a constant. Again, /! and F must be connected
through k and /. It can be shown that

L5 = 6,0, (73)

and hence, for an excited state (n > 0), the equations that
determine the unknown parameters are

(Dol (L H)L 1) = (Y, (74)
(@|(L )L |05) = ", (75)

and
(oL Oy = 30l E XL, (76)

where \<D§-‘,-l> is defined by the Hermitian conjugate of eqn (20).

For the ground state, the left-hand-sidle EOM-CC-R12
equations reduce to the so-called A equations of the CC-R12
method:*’

(@o|H + (AH)L|®) = 0, (77
(O H + (AH)L|®S) = 0, (78)
(Oo|H + (AH) D) = 0, (79)

where, in accordance with the convention, we use A for the
deexcitation operator that is related to L1 by [ = 1 + A,
(N, = 28 (@i, = AL, (Y], = 2], etc. The A equation is
central to the calculations of analytical gradients, analytical
molecular properties and certain noniterative, perturbation
corrections of the effects of higher-order connected 7" to low-
er-order CC energies.>>>” A preferred derivation of this
equation leading to the same result is based on the CC-R12
energy functional defined, in complete analogy to the conven-
tional CC energy functional,*’**® as

E = (@1 + A)H|Dy). (80)

Demanding that E be stationary with respect to A%, 1%, and 27,
we arrive at the CCSD-R12 amplitude equations (17)—(19).
The stationary value of E is equal to E,. This quasi-variational
character of E makes the relevant parameters (1%, A7, and 1}
useful for analytical gradients and properties, whose formulae
are generally simpler for variational methods. Requiring that
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E be stationary with respect to #/, 4" and 7/ leads, on the other
hand, to the amplitude equations (77)—(79).

The tensor contraction expressions defining EOM- (both
right- and left-hand-side wave functions) and A-CC-R12 and
their computational sequences are compiled as ESIf for
methods through and up to the connected quadruple excita-
tion operators (EOM- and A-CCSDTQ-R12). As in CC-R12,
ad hoc common subexpression eliminations (7 = Fr, [ = IF,
and 1 = AF*) are performed after the RI insertion with the
CABS. EOM- and A-CC-R12 introduce additional equations
that determine the coefficients multiplying the r;,-dependent
factors to what corresponds to the usual equations in
EOM- and A-CC.

The size dependence of the operation cost of solving these
additional equations [eqn (67), (76) and (79)] varies with the
method (Table 8). In EOM-CC-R12 (right-hand side), it
remains to be O(np«ninf,) for EOM-CCSDT-R12 or higher
and is, therefore, quickly surpassed by the cost of solving
the usual amplitude equations in EOM-CC (right-hand side)
of excitation rank k, which increases as O(n’p"”nf;'). This again
suggests that eqn (67) be solved without making drastic
approximations in high-rank EOM-CC-R12 (right-hand side)
for achieving benchmark accuracy.

In A- and EOM-CC-R12 (left-hand side), in contrast, the
operation cost of solving the geminal amplitude equations
increases as O(nﬁ“nﬁﬁ“). This is because L' in these equa-
tions is a deexcitation operator and can be contracted
variously with A and excitation operator T', adding significant
complexity to the resulting equations, unlike S and R"™ that
are excitation operators and cannot be contracted with 7. One
of the terms with the O(n‘p‘nﬁ) complexity (see Fig. 4 for its
diagram) in the A-CCSDT-R12 geminal amplitude equation is

1

(i3ia) __ dsas (i3i7) (agagayg) 4 (igir1ira)
5(!'?;2‘) T4 (1- P’-3i4)F(iTiz)vd/ju7x t(f78l'11)i1120) j'(4;;2;;120)’ (81)
which is evaluated as
(i3ig) _ pA596 »(i3ig)
Vi) = Fiim) S (82)
z(i3ig) _ (1— Py, )v(l}h)éiws (83)
ga;aﬁ - B314) " dlag >irag’
) 1 .
a:g: — _ fasagaro) 5 (iainiira) (84)

4 (inin) “(asagaio)’

Since #™ is a double deexcitation operator, the geminal
amplitude equations in A- and EOM-CC-R12 (left-hand side)
resemble the L, amplitude equations of A- and EOM-CC (left-
hand side) respectively. The complexity of the latter is also
O(n[k,’+ k1), Because the overall peak operation cost of high-
rank A-CC-R12 and EOM-CC-R12 (left-hand side) methods
is O(nsy " *ny), which is greater than the O(1} " 'nj " 1) cost of the

geminal amplitude equations, there seems no need to intro-

fi

Fig. 4 The diagrammatic representation of eqn (81).

duce a further approximation to the latter. In high-rank
A-CC-R12 and EOM-CC-R12 (left-hand side), therefore,
computerized symbolic algebra such as smiITH is particularly
useful because the complexity of their geminal amplitude
equations grows, unlike those of CC-R12 and EOM-CC-R12
(right-hand side).

IV. Conclusions

In this study, we have derived the compact mathematical
expressions for the CC-R12 methods up to CCSDTQ-R12
with the CABS and modified ansatz 2 and suggested computa-
tional sequences that reduce the peak operation and memory
costs. These expressions have been automatically generated by
the newly-developed computerized symbolic algebra code
sMITH, which can handle Slater-determinant expectation values
of any combination of excitation, deexcitation and general
operators, including those that appear in the R12 ansétze.
sMmITH also has additional capabilities to identify and isolate
the special intermediates and insert the RI approximations
using the CABS, which are specific symbol manipulations in
the CC-R12 derivations. We have found that certain recurring
intermediates (F7) must be precalculated, stored and reused to
arrive at an efficient computational sequence, particularly in
CCSD-R12. Our previous code TcCE is inadequate in virtually
every step of the derivation and algebraic transformation of
CC-R12.

We have, furthermore, defined the ansitze for the EOM-
and A-CC-R12 methods which are essential for the evaluation
of excitation energies and analytical gradients and properties
within the CC-R12 framework. We have presented the work-
ing equations and efficient computational sequences of these
methods up to the models that include the connected quad-
ruple excitation operator (EOM- and A-CCSDTQ-R12).

The operation costs of these methods have been examined
on the basis of the suggested computational sequences. In
CCSD-R12, the operation cost for solving the geminal ampli-
tude equation [O(nixnf,)] exceeds that for solving the 7 ampli-
tude equation [O(n;nﬁ)], supporting some approximations to
simplify the former. Such approximations include SA'* as well
as approximate CC-R12 variants.'82%232% [n the higher-order
analogues, however, the operation cost for solving the geminal
amplitude equations becomes increasingly less important in
the overall cost; in fact, it is estimated to be negligible in the
CCSDT-R12 method. The same holds for the EOM-CC-R12
(right-hand side) method. The geminal amplitude equations of
the A- and EOM-CC-R12 (left-hand side) become increasingly
involved as the excitation rank (k) is raised. The operation cost
of solving the equations scales as O(ny " 'nj*") for k > 3,
which is nevertheless smaller than the overall cost O(rz’; 20k).
This suggests that the higher-order CC-R12 implementations
may be based on the unabridged equations and computational
sequences presented in this paper to achieve the highest
accuracy with no significant penalty in the operation or
memory cost.

Efforts towards automatic code generations of CC-R12
by smitH, the code verification and validation and the
performance assessment of the various models suggested here

This journal is © the Owner Societies 2008
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are underway. The results will be presented in forthcoming
articles.
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