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Various strategies to implement efficiently quantum Monte

Carlo (QMC) simulations for large chemical systems are

presented. These include: (i) the introduction of an efficient

algorithm to calculate the computationally expensive Slater

matrices. This novel scheme is based on the use of the highly

localized character of atomic Gaussian basis functions (not the

molecular orbitals as usually done), (ii) the possibility of

keeping the memory footprint minimal, (iii) the important

enhancement of single-core performance when efficient

optimization tools are used, and (iv) the definition of a

universal, dynamic, fault-tolerant, and load-balanced

framework adapted to all kinds of computational platforms

(massively parallel machines, clusters, or distributed grids).

These strategies have been implemented in the QMC¼Chem

code developed at Toulouse and illustrated with numerical

applications on small peptides of increasing sizes (158, 434,

1056, and 1731 electrons). Using 10–80 k computing cores of

the Curie machine (GENCI-TGCC-CEA, France), QMC¼Chem has

been shown to be capable of running at the petascale level,

thus demonstrating that for this machine a large part of

the peak performance can be achieved. Implementation of

large-scale QMC simulations for future exascale platforms

with a comparable level of efficiency is expected to be

feasible. VC 2013 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23216

Introduction

Quantum Monte Carlo (QMC) is a generic name for a large

class of stochastic approaches solving the Schr€odinger equa-

tion by using random walks. In the last 40 years, they have

been extensively used in several fields of physics including nu-

clear physics,[1] condensed-matter physics,[2] spin systems,[3]

quantum liquids,[4] infrared spectroscopy,[5,6] and so on. In

these domains, QMC methods are usually considered as rou-

tine methods and even in most cases as state-of-the-art

approaches. In sharp contrast, this is not yet the case for the

electronic structure problem of quantum chemistry, where

QMC[7,8] is still of confidential use when compared to the two

well-established methods of the domain [Density Functional

Theory (DFT) and post-Hartree–Fock methods]. Without enter-

ing into the details of the forces and weaknesses of each

approach, a major limiting aspect of QMC hindering its diffu-

sion is the high computational cost of the simulations for real-

istic systems.

However—and this is the major concern of this work—a

unique and fundamental property of QMC methods is their re-

markable adaptation to high-performance computing (HPC)

and, particularly, to massively parallel computations. In short,

the algorithms are simple and repetitive, central memory

requirements may be kept limited whatever the system size,

and I/O flows are negligible. As most Monte Carlo algorithms,

the computational effort is almost exclusively concentrated on

pure CPU (‘‘number crunching method’’) and the execution

time is directly proportional to the number of Monte Carlo

steps performed. In addition, and this is a central point for

massive parallelism, calculations of averages can be decom-

posed at will: n Monte Carlo steps over a single processor

being equivalent to n/p Monte Carlo steps over p processors

with no communication between the processors (apart from

the initial/final data transfers). Once the QMC algorithm is suit-

ably implemented the maximum gain of parallelism (ideal scal-

ability) should be expected.

A most important point is that mainstream high-level quan-

tum chemistry methods do not enjoy such a remarkable prop-

erty. They are essentially based on iterative schemes defined

within the framework of linear algebra and involve the manip-

ulation and storage of extremely large matrices. Their adapta-

tion to extreme parallelism is intrinsically problematic.

Now, in view of the formidable development of computa-

tional platforms, particularly in terms of the number of com-

puting cores (presently up to a few hundreds of thousands

and many more to come) the practical bottleneck associated

with the high-computational cost of QMC is expected to

become much less critical. Thus, QMC may become in the

coming years a method of practical use for treating chemical

problems out of the reach of present-day approaches. Follow-

ing this line of thought, a number of QMC groups are pres-

ently working on implementing strategies allowing their QMC

codes to run efficiently on very large-scale parallel
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computers.[9–11] Essentially, most strategies rely on massive

parallelism and on some efficient treatment (‘‘linear-scaling’’-

type algorithms) for dealing with the matrix computations and

manipulations that represent the most CPU-expensive part of

the algorithm.

Here, we present several strategies implemented in the

QMC¼Chem code developed in our group at the University of

Toulouse.[12] A number of actual simulations realized on the

Curie machine at the French GENCI-TGCC-CEA computing cen-

ter with almost ideal parallel efficiency in the range 10,000–

80,000 cores and reaching the petascale level have been

realized.

The contents of this article are as follows. In the first section,

a brief account of the QMC method used is presented. Only

those aspects essential to the understanding of the computa-

tional aspects discussed in this article are given. In second sec-

tion, the problem of computing efficiently the Slater matrices at

the heart of the QMC algorithm (computational hot spot) is

addressed. A novel scheme taking advantage of the highly-

localized character of the atomic Gaussian basis functions [not

the molecular orbitals (MOs) as usually done] is proposed. A cru-

cial point is that the approach is valid for an arbitrary molecular

shape (e.g., compact molecules), there is no need of considering

extended or quasi-one-dimensional molecular systems as in lin-

ear-scaling approaches. The third section discusses the overall

performance of the code and illustrates how much optimizing

the single-core performance of the specific processor at hand

can be advantageous. The fourth section is devoted to the way

our massively parallel simulations are deployed on a general

computational platform and, particularly, how fault-tolerance is

implemented, a crucial property for any large-scale simulation.

Finally, a summary of the various strategies proposed in this ar-

ticle is presented in the last section.

The QMC Method

In this article, we shall consider a variant of the fixed-node diffu-

sion Monte Carlo (FN-DMC) approach, the standard QMC method

used in computational chemistry. Here, we shall insist only on the

aspects needed for understanding the rest of the work. For a com-

plete presentation of the FN-DMC method, the reader is referred,

for example, to Refs. [2], [7], or [8] and references therein.

Fixed-node diffusion Monte Carlo (FN-DMC)

Diffusion Monte Carlo. In a diffusion Monte Carlo scheme, a fi-

nite population of ‘‘configurations’’ or ‘‘walkers’’ moving in the

3N-dimensional space (N, number of electrons) is introduced.

A walker is described by a 3N-dimensional vector R :
(r1, r2,…, rN) giving the positions of the N electrons. At each

Monte Carlo step, each walker of the population is diffused

and drifted according to

R0 ¼ Rþ sbðRÞ þ
ffiffiffi
s

p
g (1)

where s is a small time-step, g is a Gaussian vector (3N inde-

pendent normally distributed components simulating a free

Brownian diffusion), and b(R) the drift vector given by

bðRÞ � rwTðRÞ
wTðRÞ

; (2)

where wT, the trial wave function, is a known computable

approximation of the exact wavefunction. At the end of this

drift/diffusion step, each walker is killed, kept unchanged, or

duplicated a certain number of times proportionally to the

branching weight w given by

w ¼ e�
s
2½ðELðR0Þ�ETÞþðELðRÞ�ETÞ� (3)

where ET is some reference energy and EL the local energy

defined as

ELðRÞ �
HwTðRÞ
wTðRÞ

: (4)

The population is propagated and after some equilibrium time

it enters a stationary regime, where averages are evaluated. As

an important example, the exact energy may be obtained as

the average of the local energy.

The fixed-node approximation. Apart from the statistical and

the short-time (finite time step) errors which can be made ar-

bitrary small, the only systematic error left in a DMC simulation

is the so-called fixed-node (FN) error. This error results from

the fact that the nodes of the trial wavefunction [defined as

the (3N � 1)-dimensional hypersurface where WT(R) ¼ 0] act

as infinitely repulsive barriers for the walkers [divergence of

the drift vector, eq. (2)]. Each walker is thus trapped forever

within the nodal pocket delimited by the nodes of WT where

it starts from. When the nodes of wT coincide with the exact

nodes, the algorithm is exact. If not, a variational FN error is

introduced. However, with the standard trial wavefunctions

used, this error is in general small,* a few percent of the corre-

lation energy for total energies.

Parallelizing FN-DMC

Each Monte Carlo step is carried out independently for each

walker of the population. The algorithm can thus be easily par-

allelized over an arbitrary number of processors by distributing

the walkers among the processors, but doing this implies syn-

chronizations of the CPUs since the branching step requires

that all the walkers have first finished their drifted-diffusion

step.

To avoid this aspect, we have chosen to let each CPU core

manage its own population of walkers without any communi-

cation between the populations. On each computing unit a

population of walkers is propagated and the various averages

of interest are evaluated. At the end of the simulation, the

*A word of caution is necessary here. Although the FN error on total energies

is indeed usually very small compared with typical errors of standard compu-

tational chemistry methods, this error can still be large enough to have a non-

negligible impact on small energy differences of interest in chemistry (binding

energies, energy barriers, electronic affinities, etc.). Accordingly, to have to our

disposal nodal hypersurfaces of sufficient quality for a general molecular sys-

tem remains an important issue of QMC approaches.
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averages obtained on each processor are collected and

summed up to give the final answers. Regarding parallelism

the situation is thus ideal since, apart from the negligible ini-

tial/final data transfers, there are no communications among

processors.

The only practical problem left with FN-DMC is that the

branching process causes fluctuations in the population size

and thus may lead to load-balancing problem among process-

ors. More precisely, nothing prevents the population size from

decreasing or increasing indefinitely during the Monte Carlo

iterations. To escape from this, a common solution consists in

forcing the number of walkers not to deviate too much from

some target value for the population size by introducing a

population control step. It is usually realized by monitoring in

time the value of the reference energy ET via a feedback

mechanism, see, for example, Ref. [13]. The price to pay is the

introduction of some transient load imbalances and inter-proc-

essor communications/synchronization to redistribute walkers

among computing cores, inevitably degrading the parallel

speedup. This solution has been adapted by several groups

and some tricks have been proposed to keep this problem

under control.[9–11,14]

Here, we propose to avoid this problem directly from the be-

ginning by using a variant of the FN-DMC working with a con-

stant number of walkers. Several proposals can be found in the

literature, for example, Refs. [15,16]. Here, we shall use the

method described in Ref. [16]. In this approach, the branching

step of standard DMC is replaced by a so-called reconfiguration

step. Defining the normalized branching weights as follows:

pk ¼ wkPM
i¼1wi

(5)

the population of walkers is ‘‘reconfigured’’ by drawing at each

step M walkers among the M walkers according to the proba-

bilities pk. At infinite population, the normalization factor
P

M
i¼1

wi is a constant and this step reduces to the standard branch-

ing step, where walkers are deleted or duplicated proportion-

ally to the weight w. At finite M, the normalization factor now

fluctuates and a finite-population bias is introduced. A simple

way to remove this error and to recover the exact averages

consists in adding to the averages a global weight given by

the product of the normalization factors of all preceding gen-

erations, thus compensating exactly the same product intro-

duced into the dynamics by successive reconfiguration steps.

The price to pay is some increase of statistical fluctuations due

to the presence of an additional fluctuating weight. However,

this increase is found to be rapidly very moderate when M is

increased. In practice, thanks to this algorithm free of a finite-

population bias, rather small walker populations on each core

can be used (typically, we use 10–100 walkers per core). For all

details, the reader is referred to Ref. [16].

Critical CPU part

At each Monte Carlo step, the CPU effort is almost completely

dominated by the evaluation of the wavefunction WT and its

first and second derivatives (computational hot spot). More

precisely, for each walker the values of the trial wavefunction,

WT, its first derivatives with respect to all 3N-coordinates [drift

vector, eq. (2)], and its Laplacian !2WT [kinetic part of the

local energy, eq. (4)] are to be calculated. It is essential that

such calculations be as efficient as possible since in realistic

applications their number may be very large (typically of the

order of 109–1012).

A common form for the trial wavefunction is

WTðRÞ ¼ eJðRÞ
X

K¼ðK";K#Þ
cKDetK" ðr1;…; rN" ÞDetK# ðrN# ;…; rNÞ: (6)

where the electron coordinates of the N: (respectively, N;)

electrons of spin : (respectively, ;) have been distinguished, N

¼ N: þ N;. In this formula, eJ(R) is the Jastrow factor describing

explicitly the electron–electron interactions at different levels

of approximations. A quite general form may be written as

JðRÞ ¼
X
a

Uðe�nÞðriaÞ þ
X
i;j

Uðe�eÞðrijÞ þ
X
ai;j

Uðe�e�nÞðrij; ria; rjaÞ

þ …

(7)

where rij ¼ |ri � rj| is the inter-electronic distance and ria ¼
|ri � Qa| is the distance between electron i and nucleus a
located at Qa. Here, U’s are simple functions and various

expressions have been used in the literature. The Jastrow factor

being essentially local, short-ranged expressions can be used

and the calculation of this term is usually a small contribution to

the total computational cost. As a consequence, we shall not

discuss further the computational aspect of this term here.

The second part of the wavefunction describes the shell-struc-

ture in terms of single-electron MOs and is written as a linear

combination of products of two Slater determinants, one for the

: electrons and the other for the ; electrons. Each Slater matrix

is built from a set of MOs /i(r) usually obtained from a prelimi-

nary DFT or self consistent field (SCF) calculations. The Norb mo-

lecular orbitals (MOs) are expressed as a sum over a finite set of

Nbasis basis functions [atomic orbitals (AOs)]

/iðrÞ ¼
XNbasis

j¼1

aijvjðrÞ (8)

where the basis functions vj(r) are usually expressed as a prod-

uct of a polynomial and a linear combination of Gaussian func-

tions. In the present article, the following standard form is

used

vðrÞ ¼ ðx � QxÞnx ðy � QyÞny ðz � QzÞnz gðrÞ (9)

with

gðrÞ ¼
X
k

cke
�ckðr�QÞ2

: (10)

Here, Q ¼ (Qx, Qy, Qz) is the vector position of the nucleus-

center of the basis function, n ¼ (nx, ny, nz) a triplet of positive
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integers, g(r) is the spherical Gaussian component of the AO,

and ck its exponents. The determinants corresponding to spin

:-electrons are expressed as

DetK" ðr1;…; rN" Þ ¼ Det

/i1ðr1Þ … /i1ðrN" Þ
..
. ..

. ..
.

/iN"
ðr1Þ … /iN"

ðrN" Þ

0
B@

1
CA (11)

where K: is a compact notation for denoting the set of indices

{i1, …, iN:
} specifying the subset of the MOs used for this par-

ticular Slater matrix. A similar expression is written for spin

;-electrons.

In contrast to the calculation of the Jastrow factor, the eval-

uation of the determinantal part of the wavefunction and its

derivatives is critical. To perform such calculations, we use a

standard approach[7] consisting in calculating the matrices of

the first and second (diagonal) derivatives of each MO /i with

respect to the three space variables l ¼ x, y, z evaluated for

each electron position rj, namely,

D
ð1Þ
l;i j �

@/iðrjÞ
@xjl

(12)

D
ð2Þ
l;i j �

@2/iðrjÞ
@xjl

2
(13)

and then computing the inverse D�1 of the Slater matrix

defined as Dij ¼ /i(rj). The drift components and the Laplacian

corresponding to the determinantal part of the trial wavefunc-

tion are thus evaluated as simple vector-products

1

DetðRÞ
@DetðRÞ

@xil
¼

X
j¼1; N

D
ð1Þ
l;i jD

�1
ji (14)

1

DetðRÞ
@2DetðRÞ

@xil
2

¼
X
j¼1; N

D
ð2Þ
l;i jD

�1
ji (15)

From a numerical point of view, the computational time T

needed to evaluate such quantities as a function of the num-

ber of electrons N scales as OðN3Þ

T ¼ aN3 þ bN3: (16)

The first N3-term results from the fact that the N2 matrix ele-

ments of the Slater matrices are to be computed, each ele-

ment being expressed in terms of the Nbasis � N basis func-

tions needed to reproduce an arbitrary delocalized MO. The

second N3-term is associated with the generic cubic scaling of

any linear algebra method for inverting a general matrix.

Exploiting the Highly Localized Character of
Atomic Basis Functions

As seen in the previous section, one of the two computational

hot spots of QMC is the calculation of the derivatives of the

determinantal part of the trial wave function for each elec-

tronic configuration (r1,…,rN) at each Monte Carlo step. To be

more precise, the Norb MO used in the determinantal expan-

sion (6) are to be computed (here, their values will be denoted

as C1) together with their first derivatives with respect to x, y,

and z (denoted C2,C3,C4) and their Laplacians (denoted C5).

Calculations are made in single precision using an efficient ma-

trix product routine we describe now. The matrix products

involve the matrix of the MO coefficients aij, eq. (8) (here

denoted as A) the matrix of the atomic Gaussian basis func-

tions evaluated at all electronic positions, vj(ri) (denoted B1),

their first derivatives (denoted B2,B3,B4), and Laplacians

(denoted B5). The five matrix products are written under the

convenient form

Ci ¼ ABi i ¼ 1; 5 (17)

Note that matrix A remains constant during the simulation,

whereas matrices Bi and Ci depend on electronic configura-

tions. The matrix sizes are as follows: Norb � N for the Ci’s, Norb

� Nbasis for A, and Nbasis � N for B. In practical applications,

Norb is of the order of N, whereas Nbasis is greater than N by a

factor 2 or 3 for standard calculations and much more when

using high-quality larger basis sets. The expensive part is

essentially dominated by the Nbasis multiplications. The total

computational effort is thus of order Norb � N � Nbasis, that is,

� OðN3Þ.
The standard approach proposed in the literature for reduc-

ing the N3-price is to resort to the so-called linear-scaling or

OðNÞ-techniques.[17–22] The basic idea consists in introducing

spatially localized MOs instead of the standard delocalized (ca-

nonical) ones obtained from diagonalization of reference Hamil-

tonians (usually, Hartree–Fock or Kohn–Sham). Since localized

orbitals take their value in a finite region of space—usually in

the vicinity of a fragment of the molecule—the number of basis

set functions Nbasis needed to represent them with sufficient ac-

curacy becomes essentially independent of the system size (not

scaling with N as in the case of canonical ones). In addition to

this, each electron contributes only to a small subset of the

localized orbitals (those nonvanishing in the region where the

electron is located). As a consequence, the number of nonvan-

ishing matrix elements of the Ci matrices no longer scales as

Norb � N � N2 but linearly with N. Furthermore, each matrix ele-

ment whose computation was proportional to the number of

basis set functions used, Nbasis � N, is now calculated in a finite

time independent of the system size. Putting together these

two results, we are led to a linear dependence of the computa-

tion of the Ci matrices upon the number of electrons.

Here, we choose to follow a different path. Instead of local-

izing the canonical MOs, we propose to take advantage of the

localized character of the underlying atomic Gaussian basis set

functions. The advantages are essentially three-fold:

1. The atomic basis set functions are naturally localized in-

dependently of the shape of the molecule. This is the most im-

portant point since the localization procedures are known to

be effective for chemical systems having a molecular shape

made of well-separated subunits (e.g., linear systems) but

much less for general compact molecular systems that are

ubiquitous in chemistry.
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2. The degree of localization of the standard atomic Gaus-

sian functions is much larger than that obtained for MOs after

localization (see results below)

3. By using the product form, eq. (17), the localized nature

of the atomic Gaussian functions can be exploited very effi-

ciently (see next section).

In practice, when the value of the spherical Gaussian part

g(r) of an AO function v(r) is smaller than a given threshold e
¼ 10�8, the value of the AO, its gradients and Laplacian are

considered null. This property is used to consider the matrices

B1,…,B5 as sparse. However, in contrast with linear-scaling

approaches, the MO matrix A is not considered here as sparse.

We shall come back to this point later. To accelerate the calcu-

lations, an atomic radius is computed as the distance beyond

which all the Gaussian components g(r) of the AOs v(r) cen-

tered on the nucleus are less than e. If an electron is farther

than the atomic radius, all the AO values, gradients and Lapla-

cians centered on the nucleus are set to zero.

The practical implementation to perform the matrix prod-

ucts is as follows. For each electron, the list of indices (array

‘‘indices’’ in what follows) where g(r) > 0 is calculated. Then,

the practical algorithm can be written as

C1 ¼ 0.

C2 ¼ 0.

C3 ¼ 0.

C4 ¼ 0.

C5 ¼ 0.

do i¼1, Number of electrons

do k¼1, Number of non-zero AOs for electron i

do j¼1, Number of molecular orbitals

C1 (j, i) þ¼ A (j, indices (k, i)) *B1 (k, i)

C2 (j, i) þ¼ A (j, indices(k, i)) *B2 (k, i)

C3 (j, i) þ¼ A (j, indices(k, i)) *B3 (k, i)

C4 (j, i) þ¼ A (j, indices(k, i)) *B4 (k, i)

C5 (j, i) þ¼ A (j, indices(k, i)) *B5 (k, i)

end do

end do

end do

(where x þ¼ y denotes x ¼ x þ y).

This implementation allows to take account of the sparsity

of the B matrices, while keeping the efficiency due to a possi-

ble vectorization of the inner loop. The load/store ratio is 6/5

(6 load-from-memory instructions, 5 store-to-memory instruc-

tions) in the inner loop: the elements of Bn are constant in the

inner loop (in registers), and the same element of A is used at

each line of the inner loop (loaded once per loop cycle). As

store operations are more expensive than load operations,

increasing the load/store ratio improves performance as will

be shown in the next section. Using this algorithm, the scaling

of the matrix products is expected to drop from OðN3Þ to a

scaling roughly equal to OðN2Þ (in a regime where N is large

enough, see discussion in the next section). Let us now illus-

trate such a property in the applications to follow.

The different systems used here as benchmarks are repre-

sented in Figure 1. The trial wavefunctions used for describing

each system are standard Hartree–Fock wavefunctions (no Jas-

trow factor) with MOs expressed using various Gaussian basis

sets. System 1 is a copper complex with four ligands having

158 electrons and described with a cc-pVDZ basis set. System

2 is a polypeptide taken from Ref. [23] (434 electrons and 6-

31G* basis set). System 3 (not shown in Figure 1) is identical

Figure 1. Molecular systems used as benchmarks.
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to System 2 but using a larger basis set, namely, the cc-pVTZ

basis set. System 4 is the 1ZE7 molecule from the Protein Data

Bank (1056 electrons, 6-31G*), and System 5 is the 1AMB mole-

cule from the Protein Data Bank (1731 electrons, 6-31G*).

Table 1 shows the level of sparsity of the matrices A (Aij :
aij) and B1 (B1ij

: vi(rj)) for the five systems (matrices Bn with

n > 1 behave as B1 with respect to sparsity). As seen the num-

ber of basis set functions used is proportional to the number

of electrons with a factor ranging from about 2.2 to 6.8.

Regarding the matrix A of MO coefficients, the results are

given both for standard canonical (delocalized) MOs and for

localized orbitals. To get the latter ones, different localization

schemes have been applied.[24–26] However, they essentially lead

to similar results. Here, the results presented are those obtained

by using the Cholesky decomposition of the density matrix

expressed in the AO basis set.[26] As seen the level of sparsity of

the matrix A is low. Although it increases here with the system

size it remains modest for the largest size (there are still about

one third of nonzero elements). Of course, such a result strongly

depends on the type of molecular system considered (compact

or not compact) and on the diffuse character of the atomic basis

set. Here, we have considered typical systems of biochemistry.

Next, the level of sparsity of the B matrices is illustrated.

The percentage of nonzero values of vi(rj) has been obtained

as an average over a variational Monte Carlo (VMC) run. In

sharp contrast with MOs the AOs are much more localized,

thus leading to a high level of sparsity. For the largest system,

only 3.9% of the basis function values are nonnegligible.

In the last line of the table the maximum number of non-

zero elements obtained for all the columns of the matrix dur-

ing the entire Monte Carlo simulation is given. A first remark is

that this number is roughly constant for all system sizes. A sec-

ond remark is that the maximum number of non-zero values is

only slightly greater than the average, thus showing that the

B matrices can be considered sparse during the whole simula-

tion, not only in average. As an important consequence, the

loop over the number of non-zero AOs for each electron in

the practical algorithm presented above (loop over k index) is

expected to be roughly constant as a function of the size at

each Monte Carlo step. This latter remark implies for this part

an expected behavior of order OðN2Þ for large N. Let us now

have a closer look at the actual performance of the code.

Overall Performance of QMC5CHEM

When discussing performance several aspects must be consid-

ered. A first one, which is traditionally discussed, is the formal

scaling of the code as a function of the system size N (N �
number of electrons). As already noted, due to the innermost

calculation, products, and inversion of matrices, such a scaling

is expected to be cubic, OðN3Þ. However, there is a second im-

portant aspect, generally not discussed, which is related to the

way the expensive innermost floating-point operations are

implemented and on how far and how efficiently the potential

performance of the processor at hand is exploited. In what fol-

lows, we shall refer to this aspect as ‘‘single-core optimization.’’

It is important to emphasize that such an aspect is by no way

minor and independent on the previous ‘‘mathematical’’ one.

To explicit this point, let us first recall that the computational

time T results essentially from two independent parts, the first

one resulting from the computation of the matrix elements, T1

� aN3 and the second one from the inversion of the Slater ma-

trix, T2 � bN3. Now, let us imagine that we have been capable of

devising a highly efficient linear-scaling algorithm for the first

contribution such that T � eN � T2 within the whole range of

system sizes N considered. We would naturally conclude that

the overall computational cost T � T2 is cubic. In the opposite

case where a very inefficient linear-scaling algorithm is used for

the first part, T � T1 � T2, we would conclude to a linear-scaling

type behavior. Of course, mathematically speaking such a way

of reasoning is not correct since scaling laws are only meaning-

ful in the asymptotic regime where N goes to infinity. However,

in practice only a finite range of sizes is considered (here,

between 2 and about 2000 active electrons) and it is important

to be very cautious with the notion of scaling laws. A more cor-

rect point of view consists in looking at the global performance

of the code in terms of total CPU time for a given range of sys-

tem sizes, a given compiler, and a given type of CPU core.

Finally, a last aspect concerns the memory footprint of the

code whose minimization turns out to be very advantageous.

Indeed, the current trend in supercomputer design is to

increase the number of cores more rapidly than the available

total memory. As the amount of memory per core will con-

tinue to decrease, it is very likely that programs will need to

have a low memory footprint to take advantage of exascale

Table 1. System sizes, percentage of nonzero molecular orbital

coefficients, and average percentage of nonzero atomic orbital values.

Smallest

system b-strand b-strand TZ 1ZE7 1AMB

Numb. of

electrons, N

158 434 434 1056 1731

Numb. of

basis functions,

Nbasis

404 963 2934 2370 3892

% of non-zero[a]

canonical MO

coefficients

aij(Aij = 0)

(99.4%) (76.0% (81.9%) (72.0%) (66.1%)

% of non-zero[a]

localized MO

coefficients

aij(Aij = 0)

81.3% 48.4% 73.4% 49.4% 37.1%

Average % of

non-zero[b] basis

functions vi (rj)

(B1ij = 0)

40.3% 19.1% 9.0% 6.5% 4.5%

Average number

of non-zero

elements per

column of B1ij

163 184 266 155 175

Maximum number

of non-zero

elements per

column of B1ij

251 298 394 246 305

[a] Zero MO coefficients are those below 10�5. [b] Zero AO matrix ele-

ments are those for which the radial component of the basis function

has a value below 10�8 for given electron positions.
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computers. Another point is that when less memory is used

less electrical power is needed to perform the calculation: data

movement from the memory modules to the cores needs

more electrical power than performing floating point opera-

tions. Although at present time the power consumption is not

yet a concern to software developers, it is a key aspect in pres-

ent design of the exascale machines to come.

In this section, the results discussed will be systematically

presented by using two different generations of Intel Xeon

processors. The first processor, referred to as Core2, is an Intel

Xeon 5140, Core2 2.33 GHz, Dual core, 4 MiB shared L2 cache.

The second one, referred to as Sandy Bridge, is an Intel Xeon

E3-1240 at 3.30 GHz, Quad core, 256 KiB L2 cache/core, 8 MiB

shared L3 cache (3.4 GHz with turbo). Note also that the paral-

lel scaling of QMC being close to ideal (see next section), sin-

gle-core optimization is very interesting: the gain in execution

time obtained on the single-core executable is directly trans-

ferred to the whole parallel simulation.

Improving the innermost expensive floating-point operations

For the Core2 architecture, the practical algorithm presented

above may be further improved by first using the unroll and

jam technique,[27] which consists in unrolling the outer loop

and merging multiple outer-loop iterations in the inner loop:

do i¼1, Number of electrons

do k¼1, Number of non-zero AOs for electron i, 2

do j¼1, Number of molecular orbitals

C1 (j, i) þ¼ A (j, indices (k, i)) *B1 (k, i) þ &

A (j, indices (kþ1, i)) * B1 (kþ1, i)

C2 (j, i) þ¼ A (j, indices (k, i)) * B2 (k ,i) þ &

A (j, indices (kþ1, i)) * B2 (kþ1, i)

...

end do

end do

end do

To avoid register spilling, the inner loop is split in two

loops: one loop computing C1, C2, C3 and a second loop

computing C4, C5. The load/store ratio is improved from 6/5

to 5/3 and 4/2.

For the Sandy Bridge architecture, the external body is

unrolled four times instead of two, and the most internal loop

is split in three loops: one loop computing C1, C2, a second

loop computing C3, C4, and a third loop computing C5. The

load/store ratio is improved from 6/5 to 6/2 and 5/1.

Then, all arrays were 256-bit aligned using compiler direc-

tives and the first dimensions of all arrays were set to a multi-

ple of eight elements (if necessary, padded with zeros at the

end of each column) to force a 256-bit alignment of every col-

umn of the matrices. These modifications allowed the compiler

to use only vector instructions to perform the matrix products,

both with the Streaming SIMD Extension (SSE) or the

Advanced Vector Extension (AVX) instruction sets. The x86_64

version of the MAQAO framework[28] indicates that, as the

compiler unrolled twice the third loop (C5), these three loops

perform 16 floating point operations per cycle, which is the

peak performance on this architecture.

Finally, to improve the cache hit probability, blocking was

used on the first dimension of Bn (loop over k). In each block,

the electrons (columns of B) are sorted by ascending first ele-

ment of the indices array in the block. This increases the prob-

ability that columns of A will be in the cache for the computa-

tion of the values associated with the next electron.

The results obtained using the Intel Fortran Compiler XE

2011 are presented in Table 2 for both the Core2 and the

Sandy Bridge architectures. The single-core double-precision

Linpack benchmark is also mentioned for comparison. The

results show that the full performance of the matrix products

is already reached for the smallest system. However, as

opposed to dense matrix product routines, we could not

approach further the peak performance of the processor since

the number of memory accesses scales as the number of float-

ing point operations (both OðN2Þ): the limiting factor is inevi-

tably the data access. Nevertheless, the DECAN tool[29]

revealed that data access only adds a 30% penalty on the

pure arithmetic time, indicating an excellent use of the hier-

archical memory and the prefetchers.

Single-core performance

Computational cost as a function of the system size. In Table 3,

the memory required together with the CPU time obtained for

Table 2. Single core performance (GFlops/s) of the matrix products (single precision), inversion (double precision), and overall performance of QMC 5

Chem (mixed single/double precision).

Core2 Sandy Bridge

Products Inversion Overall Products Inversion Overall

Linpack (DP) 7.9 (84.9%) 24.3 (92.0%)

Peak 18.6 9.3 52.8 26.4

Smallest system 9.8 (52.7%) 2.6 (28.0%) 3.3 26.6 (50.3%) 8.8 (33.3%) 6.3

b-Strand 9.7 (52.2%) 4.3 (46.2%) 3.7 33.1 (62.7%) 13.7 (51.2%) 13.0

b-Strand TZ 9.9 (53.2%) 4.3 (46.2% 4.5 33.6 (63.6%) 13.7 (51.2%) 14.0

1ZE7 9.3 (50.0%) 5.2 (55.9% 4.6 30.6 (57.9%) 15.2 (57.6%) 17.9

1AMB 9.2 (49.5%) 5.6 (60.2% 5.0 28.2 (53.4%) 16.2 (61.4%) 17.8

The percentage of the peak performance is given in parentheses.

Core2: Intel Xeon 5140, Core2 2.33 GHz, Dual core, 4 MiB shared L2 cache.

Sandy Bridge: Intel Xeon E3–1240, Sandy Bridge 3.30 GHz, Quad core, 256 KiB L2 cache/core, 8 MiB shared L3 cache (3.4 GHz with turbo).

FULL PAPER WWW.C-CHEM.ORG

944 Journal of Computational Chemistry 2013, 34, 938–951 WWW.CHEMISTRYVIEWS.COM



one VMC step for the five systems are presented using both

processors. The two expensive computational parts (matrix

products and inversion) are distinguished. A first remark is that

the trends for both processors are very similar so we do not

need to make a distinction at this moment. A second remark

is that the memory footprint of QMC¼Chem is particularly

low. For the biggest size considered (1731 electrons), the

amount of RAM needed is only 313 MiB. Finally, another im-

portant remark is that at small number of electrons the multi-

plicative part is dominant while this is not the case at larger

sizes. Here, the change of regime is observed somewhere

between 400 and 1000 electrons but its precise location

depends strongly on the number of basis functions used. For

example, for systems 3 and 4 corresponding to the same mol-

ecule with a different number of basis functions, the multipli-

cative part is still dominant for the larger basis set (b-strand

with cc-pVTZ) while it is no longer true for the smaller basis

set (b-strand with 6-31G*). In Figure 2, a plot of the total com-

putational time for the Sandy Bridge core as a function of the

number of electrons is presented. A standard fit of the curve

with a polynomial form Nc leads to a c-value of about 2.5.

However, as discussed above such a power is not really mean-

ingful. From the data of Table 3, it is easy to extract the pure

contribution related to the inversion and a factor very close to

3 is obtained, thus illustrating that for this linear algebra part

we are in the asymptotic regime. For the multiplicative part,

the pure N2 behavior is not yet recovered and we are in an in-

termediate regime. Putting together these two situations leads

to some intermediate scaling around 2.5.

Sparsity. In our practical algorithm, for the matrix products we

have chosen to consider the B matrices as sparse as opposed

to the A matrix which is considered dense. The reason for that

is that considering the matrix A sparse would not allow us to

write a stride-one inner loop. In single precision, SSE instruc-

tions executed on Intel processors can perform up to eight

instructions per CPU cycle (one four-element vector ADD

instruction and one four-element vector MUL instruction in

parallel). Using the latest AVX instruction set available on the

Sandy Bridge architecture, the width of the SIMD vector regis-

ters have been doubled and the CPU can now perform up to

16 floating point operations per cycle. A necessary condition

for enabling vectorization is a stride-one access to the data.

This implies that using a sparse representation of A would dis-

able vectorization, and reduce the maximum number of float-

ing operations per cycle by a factor of four using SSE (respec-

tively, eight using AVX). If matrix A has more than 25%

(respectively, 12.5%) nonzero elements, using a sparse repre-

sentation is clearly not the best choice. This last result is a

nice illustration of the idea that the efficiency of the formal

mathematical algorithm depends on the core architecture.

Inversion step. Now, let us consider the inversion step which is

the dominant CPU-part for the big enough systems (here, for

about a thousand electrons and more). In Table 2, the per-

formance in GFlops/s of the inversion step is presented for

both processors. For comparisons, the theoretical single-core

peak and single-core Linpack performance are given. For each

processor the third column gives the overall performance of

the code while the second column is specific to the inversion

part. As seen the performance of both parts increases with the

number of electrons. For largest systems, the performance rep-

resents more than 50% of the peak performance of each proc-

essor. For the largest system, the whole code has a perform-

ance of about 54% of the peak performance for the Core2 and

about 61% for the Sandy Bridge. The performance is still

Table 3. Single-core memory consumption and elapsed time for one VMC step.

Smallest system b-strand b-strand TZ 1ZE7 1AMB

RAM (MiB) 9.8 31 65 133 313

Core2

QMC step(s) 0.0062 0.0391 0.0524 0.2723 0.9703

Inversion 15% 31% 21% 47% 58%

Products 25% 23% 35% 21% 18%

Sandy Bridge

QMC step(s) 0.0026 0.0119 0.0187 0.0860 0.3042

Inversion 12% 26% 17% 42% 52%

Products 24% 22% 32% 21% 20%

Values in % represent the percentage of the total CPU time.

Core2: Intel Xeon 5140, Core2 2.33 GHz, Dual core, 4 MiB shared L2 cache.

Sandy Bridge: Intel Xeon E3–1240, Sandy Bridge 3.30 GHz, Quad core, 256 KiB L2 cache/core, 8 MiB shared L3 cache (3.4 GHz with turbo).

Figure 2. Single-core scaling with system size. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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better for the inversion part: 60.2% for the Core2 and 61.4%

for the Sandy Bridge.

Determinant calculation compared to spline interpolation. Most

authors use three-dimensional spline representations of the

MOs to compute in constant time the values, first derivatives

and Laplacians of one electron in one MO, independently of

the size of the atomic basis set. This approach seems efficient

at first sight, but the major drawback is that the memory

required for a single processor can become rapidly prohibitive

since each MO has to be precomputed on a three-dimensional

grid. To overcome the large-memory problem, these authors

use shared memory approaches on the computing nodes,

which implies coupling between the different CPU cores. In

this paragraph, we compare the wall time needed for spline

interpolation or computation of the values, first derivatives

and Laplacians of the wave function at all electron positions.

Version 0.9.2 of the Einspline package[30] was used as a refer-

ence to compute the interpolated values, gradients and Lapla-

cians of 128 MOs represented on 23 � 21 � 29 single precision

arrays. The ‘‘multiple uniform splines’’ set of routines were used.

To evaluate the value, gradient and Laplacian of one MO at one

electron coordinate, an average of 1200 CPU cycles was meas-

ured using LIKWID[31] on the Core2 processor versus 850 CPU

cycles on the Sandy Bridge processor. Even if the interpolation is

done using a very small amount of data and of floating point

operations, it is bound by the memory latency. Indeed, the

needed data is very unlikely to be in the CPU cache and this

explains why the number of cycles per matrix element is quite

large. As our code uses a very small amount of memory, and as

the computationally intensive routines are very well vectorized

by the compiler, the computation of the matrix elements is

bound by the floating point throughput of the processor.

The number of cycles needed to build the C1 … C5 matrices

is the number of cycles needed for one matrix element scaled

by the number of matrix elements N2
a þ N2

b. Table 4 shows the

number of CPU cycles needed to build the full C1 … C5 matri-

ces for a new set of electron positions using spline interpola-

tion or using computation. The computation includes the com-

putation of the values, gradients and Laplacians of the AOs

(matrices B1 … B5) followed by the matrix products.

Using a rather small basis set (6-31G*), the computation of

the matrices in the 158-electron system is only 10% slower

than the interpolation on the Core2 architecture. Using a

larger basis set (cc-pVTZ), the computation is only 57% slower.

As the frequency is higher in our Sandy Bridge processor than in

our Core2 processor, we would have expected the number of cycles

of one memory latency to increase, and therefore we would have

expected the Einspline package to be less efficient on that specific

processor. One can remark that the memory latencies have been

dramatically improved from the Core2 to the Sandy Bridge architec-

tures and the number of cycles for the interpolation decreases.

The full computation of the matrix elements benefits from the

improvement in the memory accesses, but also from the enlarge-

ment of the vector registers from 128 to 256 bits. This higher vec-

torization considerably reduces the number of cycles needed to

perform the calculation such that in the worst case (the largest

basis set), the full computation of the matrix elements takes as

much time as the interpolation. In all other cases, the computa-

tion is faster than the spline interpolation. Finally, let us mention

that as the memory controller is directly attached to the CPU, on

multisocket computing nodes the memory latencies are higher

when accessing a memory module attached to another CPU

(Non-uniform memory access (NUMA) architecture).

Parallelism: Implementing a Universal,
Dynamic, and Fault-Tolerant Scheme

Our objective was to design a program that could take maxi-

mum advantage of heterogeneous clusters, grid environments,

the petaflops platforms available now and those to come soon

(exascale).

To achieve the best possible parallel speed-up on any hard-

ware, all the parallel tasks have to be completely decoupled. Feld-

man et al. have shown that a naive implementation of parallelism

does not scale well on commodity hardware.[32] Such bad scal-

ings are also expected to be observed on very large-scale simula-

tions. Therefore, we chose an implementation where each CPU

core realizes a QMC run with its own population of walkers inde-

pendently of all the other CPU cores. The run is divided in blocks

over which the averages of the quantities of interest are com-

puted. The only mandatory communications are the one-to-all

communication of the input data and the all-to-one communica-

tions of the results, each result being the Monte Carlo average

computed with a single-core executable. If a single-core execut-

able is able to start as soon as the input data is available and stop

at any time sending an average over all the computed Monte

Carlo steps, the best possible parallel speed-up on the machine

can always be obtained. This aspect is detailed in this section.

Fault-tolerance

Fault-tolerance is a critical aspect since the mean time before

failure increases with the number of hardware components:

using N identical computing nodes for a singe run multiplies by

Table 4. Number of million CPU cycles needed for the computation of the values, gradients and Laplacians of the molecular orbitals using the

Einspline package and using our implementation for the Core2 and the Sandy Bridge micro-architectures. The ratio QMC 5 Chem/Einspline is also given.

Core2 Sandy Bridge

QMC ¼ Chem Einspline Ratio QMC ¼ Chem Einspline Ratio

Smallest system 16.7 15.0 1.11 9.2 10.6 0.87

b-strand TZ 177.3 113.0 1.57 81.7 80.1 1.02

1ZE7 783.5 669.1 1.17 352.0 473.9 0.74

1AMB 2603.0 1797.8 1.45 1183.9 1273.5 0.93
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N the probability of failure of the run. If one computing node is

expected to fail once a year, a run using 365 computing nodes is

not expected to last more than a day. As our goal is the use both

of massive resources and commodity clusters found in laborato-

ries, hardware failure is at the center of our software design.

The traditional choice for the implementation of parallelism is

the use of the message passing interface (MPI).[33] Efficient libra-

ries are proposed on every parallel machine, and it is probably

the best choice in most situations. However, all the complex fea-

tures of MPI are not needed for our QMC program, and it does

not really fit our needs: in the usual MPI implementations, the

whole run is killed when one parallel task is known not be able

to reach the MPI_Finalize statement. This situation occurs when

a parallel task is killed, often due to a system failure (I/O error,

frozen computing node, hardware failure, etc). For deterministic

calculations where the result of every parallel task is required,

this mechanism prevents from unexpected dead locks by imme-

diately stopping a calculation that will never end. In our imple-

mentation, as the result of the calculation of a block is a Gaus-

sian distributed random variable, removing the result of a block

from the simulation is not a problem since doing that does not

introduce any bias in the final result. Therefore, if one comput-

ing node fails, the rest of the simulation should survive.

We wrote a simple Python TCP client/server application to han-

dle parallelism. To artificially improve the bandwidth, all network

transfers are compressed using the Zlib library,[34] and the results

are transferred asynchronously in large packets containing a col-

lection of small messages. Similarly, the storage of the results is

executed using a nonblocking mechanism. The computationally

intensive parts were written using the IRPF90 code generator,[35]

to produce efficient Fortran code that is also easy to maintain.

The architecture of the whole program is displayed in Figure 3.

Program interface

Our choice concerning the interaction of the user with the

program was not to use the usual ‘‘input file and output file’’

structure. Instead, we chose to use a database containing all

the input data and control parameters of the simulation, and

also the results computed by different runs. A few simple

scripts allow the interaction of the user with the database.

This choice has several advantages:

• The input and output data are tightly linked together. It is

always possible to find to which input corresponds output data.

• If an output file is needed, it can be generated on

demand using different levels of verbosity.

• Graphical and web interfaces can be trivially connected

to the program.

• Simple scripts can be written by the users to manipulate

the computed data in a way suiting their needs.

Instead of storing the running average as the output of a run,

we store all the independent block-averages in the database,

and the running averages are post-processed on demand by

database queries. There are multiple benefits from this choice:

• Checkpoint/restart is always available

• It is possible to compute correlations, combine different

random variables, and so on, even when the QMC run is finished.

• Combining results computed on different clusters con-

sists in simply merging the two databases, which allows auto-

matically the use of the program on computing grids.[36]

• Multiple independent jobs running on the same cluster

can read/write in the same database to communicate via the

file system. This allows to gather more and more resources as

they become available on a cluster or to run a massive num-

ber of tasks in a best effort mode.†

Error checking

We define the critical data of a simulation as the input data

that characterizes uniquely a given simulation. For instance,

the molecular coordinates, the MOs, the Jastrow factor param-

eters are critical data since they are fixed parameters of the

wave function during a QMC run. In contrast, the number of

walkers of a simulation is not critical data for a VMC run since

Figure 3. Overview of the QMC¼Chem architecture. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

†When cluster resources are unused, a QMC job starts. When another user

requests the resources, the QMC job is killed.
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the results of two VMC simulations with a different number of

walkers can be combined together. A 32-bit cyclic redundancy

code (CRC-32 key) is associated with the critical data to char-

acterize a simulation. This key will be used to guarantee that

the results obtained in one simulation will never be mixed

with the results coming from another simulation and corrupt

the database. It will also be used to check that the input data

have been well transferred on every computing node.

Program execution

When the program starts its execution, the manager process

runs on the master node and spawns two other processes: a

data server and a main worker process.

At any time, new clients can connect to the data server to

add dynamically more computational resources to a running

calculation, and some running clients can be terminated with-

out stopping the whole calculation. The manager periodically

queries the database and computes the running averages

using all the blocks stored in the database. It controls the run-

ning/stopping state of the workers by checking if the stopping

condition is reached (based, e.g., on the wall-clock time, on

the error bar of the average energy, a Unix signal, etc).

When running on super-computers, the main worker process

spawns one single instance of a forwarder on each computing

node given by the batch scheduler system using an MPI

launcher. As soon as the forwarders are started the MPI launcher

terminates, and each forwarder connects to the data server to

retrieve the needed input data. The forwarder then starts multi-

ple workers on the node with different initial walker positions.

Each worker is an instance of the single-core Fortran execut-

able, connected to the forwarder by Unix pipes. Its behavior is

the following:while (.True.)

{

compute_a_block_of_data();

send_the_results_to_the_forwarder();

}

Unix signals SIGTERM and SIGUSR2 are trapped to trigger the

send_the_results_to_the_forwarder procedure followed by the

termination of the process. Using this mechanism, any single-

core executable can be stopped immediately without losing a

single Monte Carlo step. This aspect is essential to obtain the

best possible speed-up on massively parallel machines. Indeed,

using the matrix product presented in the previous section

makes the CPU time of a block nonconstant. Without this

mechanism, the run would finish when the last CPU finishes,

and the parallel efficiency would be reduced when using a

very large number of CPU cores.

While the workers are computing the next block, the for-

warder sends the current results to the data-server using a

path going through other forwarders. The forwarders are

organized in a binary tree as displayed in Figure 4: every node

of the tree can send data to all its ancestors, to deal with pos-

sible failures of computing nodes. This tree-organization

reduces the number of connections to the data server, and

also enlarges the size of the messages by combining in a sin-

gle message the results of many forwarders.

At the end of each block, the last walker positions are sent

from the worker to the forwarder. The forwarder keeps a

fixed-sized list of Nkept walkers enforcing the distribution of

local energies: when a forwarder receives a set of N walkers, it

appends the list of new walkers to its Nkept list, and sorts the

Nkept þ N list by increasing local energies. A random number

g is drawn to keep all list entries at indices bg þ i (Nkept þ N)/

Nkeptc, i ¼ {1,…Nkept}. After a random timeout, if the forwarder

is idle, it sends its list of walkers to its parent in the binary

tree which repeats the list merging process. Finally, the data

server receives a list of walkers, merges it with its own list and

writes it to disk when idle. This mechanism ensures that the

walkers saved to disk will represent homogeneously the whole

run and avoids sending all the walkers to the data server.

These walkers will be used as new starting points for the next

QMC run.

Using such a design the program is robust to system fail-

ures. Any computing node can fail with a minimal impact on

the simulation:

• If a worker process fails, only the block being computed

by this worker is lost. It does not affect the forwarder to which

it is linked.

• If a forwarder fails, then only one computing node is lost

thanks to the redundancy introduced in the binary tree of

forwarders.

• The program execution survives short network disruption

(a fixed timeout parameter). The data will arrive to the data

server when the network becomes operational again.

• The disks can crash on the computing nodes: the tempo-

rary directory used on the computing nodes is a RAM-disks (/

dev/shm).

Figure 4. Connections of the forwarders with the data server.
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• The shared file system can fail as the single-core static

executable, the python scripts and input files are broadcast to

the RAM-disks of the compute nodes with the MPI launcher

when the run starts.

• Redundancy can be introduced on the data server by

running multiple jobs using the same database. Upon a failure

of a data server, only the forwarders connected to it will be

lost.

• In the case of a general power failure, all the calculations

can be restarted without losing what has already been stored

in the database.

Finally, we have left the possibility of using different execut-

ables connected to the same forwarder. This will allow a com-

bined use of pure CPU executables with hybrid CPU/GPU and

CPU/MIC executables, to use efficiently all the available hard-

ware. The extension to hybrid architectures will be the object

of a future work.

Parallel speed-up

The benchmarks presented in this section were performed on

the Curie machine (GENCI-TGCC-CEA, France). Each computing

node is a dual socket Intel Xeon E5-2680: 2� (8 cores, 20 MiB

shared L3-cache, 2.7 GHz) with 64 GiB of RAM. The benchmark

is a DMC calculation of the b-strand system with the cc-PVTZ

basis set (Table 1) using 100 walkers per core performing 300

steps in each block. Note that these blocks are very short

compared to realistic simulations, where the typical number of

steps would be larger than 1000 to avoid the correlation

between the block averages.

Intra node. The CPU consumption of the forwarder is negligi-

ble (typically 1% of the CPU time spent in the single-core exe-

cutables). The speed-up with respect to the number of sockets

is ideal. Indeed, the single-core binaries do not communicate

between each other, and as the memory consumption per

core is very low, each socket never uses memory modules

attached to another socket. When multiple cores on the same

socket are used, we observed a slow-down for each core due

to the sharing of the L3-cache and memory modules. Running

simultaneously 16 instances of the single-core binaries on our

benchmark machine yields an increase of 10.7% of the wall-

clock time compared to running only one instance. For a 16-

core run, we obtained a 14.4 � speed-up (the Turbo feature of

the processors was deactivated for this benchmark).

Inter node. In this section, the wall-clock time is measured

from the very beginning to the very end of the program exe-

cution using the standard GNU time tool. Hence, the wall-clock

time includes the initialization and finalization steps.

The initialization step includes

• Input file consistency checking

• Creating a gzipped tar file containing the input files

(wave function parameters, simulation parameters, a pool of

initial walkers), the Python scripts and static single-core exe-

cutable needed for the program execution on the slave nodes

• MPI initialization

• Broadcasting the gzipped tar file via MPI to all the slave

nodes

• Extracting the tar file to the RAM-disk of the slave nodes

• Starting the forwarders

• Starting the single-core instances.

Note that as no synchronization is needed between the

nodes, the computation starts as soon as possible on each

node.

The finalization step occurs as follows. When the data server

receives a termination signal, it sends a termination signal to

all the forwarders that are leaves in the tree of forwarders.

When a forwarder receives such a signal, it sends a SIGTERM

signal to all the single-core binary instances of the computing

node which terminate after sending to the forwarder the aver-

ages computed over the truncated block. Then, the forwarder

sends this data to its parent in the binary tree with a termina-

tion signal and sends a message to the data server to inform

it that it is terminated. This termination step walks recursively

through the tree. When all forwarders are done, the data

server exits. Note that if a failure happened on a node during

the run, the data server never receives the message corre-

sponding to a termination of the corresponding forwarder.

Therefore, when the data server receives the termination signal

coming from the forwarders tree, if the data server is still run-

ning after a given timeout it exits.

We prepared a 10-min run for this section to compute the

parallel speed-up curve as a function of the number of 16-

core nodes given in Figure 5. The data corresponding to this

curve are given in Table 5. The reference for the speed-up is

the one-node run. The speed-up for N nodes is computed as:

tCPUðNÞ=tWallðNÞ
tCPUð1Þ=tWallð1Þ

: (18)

The initialization time was 9 s for the single node run and 22 s

for the 1000 nodes run. The finalization time was 13 s for the

single node run and 100 s for the 1000 nodes run.

Apart from the initialization and finalization steps (which

obviously do not depend on the total execution time), the

Figure 5. Parallel speed-up of QMC¼Chem with respect to 16-core com-

pute nodes (reference is one 16-core node).
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parallel speed-up is ideal. This allowed us to estimate the

speed-ups, we would have obtained for a 1-h run and for a 3-

h run. For instance, to estimate the 1-h run we added 50 min

to the wall-clock time and 50 min � 16 � number of nodes �
0.99 to the CPU time. The 99% factor takes account of the

CPU consumption of the forwarder for communications. Our

simple model was checked by performing a 1-h run on one

node and a 1-h run on 100 nodes. An excellent agreement

with the prediction was found: a 99.5 � speed-up was pre-

dicted for 100 nodes and a 99.3 � speed-up was measured.

Finally, a production run was made using 76,800 cores of

Curie (4800 nodes) on the b-strand molecule with a cc-pVTZ

basis set via 12 runs of 40 nodes, and a sustained performance

of 960 TFlops/s was measured. All the details and scientific

results of this application will be presented elsewhere (Caffarel

and Scemama, Unpublished).

Summary

Let us summarize the main results of this work. First, to

enhance the computational efficiency of the expensive inner-

most floating-point operations (calculation and multiplication of

matrices), we propose to take advantage of the highly localized

character of the atomic Gaussian basis functions, in contrast

with the standard approaches using localized MOs. The advan-

tages of relying on atomic localization have been illustrated on

a series of molecules of increasing sizes (number of electrons

ranging from 158 to 1731). In this article, it is emphasized that

the notion of scaling of the computational cost as a function of

the system size has to be considered with caution. Here,

although the algorithm proposed is formally quadratic it dis-

plays a small enough prefactor to become very efficient in the

range of number of electrons considered. Furthermore, our

implementation of the linear-algebra computational part has

allowed to enlighten a fundamental issue rarely discussed,

namely the importance of taking into consideration the close

links between algorithmic structure and CPU core architecture.

Using efficient techniques and optimization tools for enhancing

single-core performance, this point has been illustrated in vari-

ous situations. Remark that this aspect is particularly important:

as the parallel speed-up is very good, the gain in execution

time obtained for the single-core executable will also be effec-

tive in the total parallel simulation.

In our implementation, we have chosen to minimize the mem-

ory footprint. This choice is justified first by the fact that today the

amount of memory per CPU core tends to decrease and second

by the fact that small memory footprints allow in general a more

efficient usage of caches. In this spirit, we propose not to use 3D-

spline representation of the MOs as usually done. We have shown

that this can be realized without increasing the CPU cost. For our

largest system with 1731 electrons, only 313 MiB of memory per

core was required. As a consequence, the key limiting factor of

our code is only the available CPU time and neither the memory

nor disk space requirements, nor the network performance. Let us

reemphasize that this feature is well aligned with the current

trends in computer architecture for large HPC systems.

Finally, let us conclude by the fact that there is no funda-

mental reason why the implementation of such a QMC simula-

tion environment which has been validated at petaflops level

could not be extended to exascale.
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