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Abstract

Explicitly correlated molecular electronic-structure calculations with the damped correlation factorr12exp(−γ r2
12) require

two-electron integrals that are different from the already implemented R12 integrals. The aim of such a correlation factor,
which combines the interelectronic distance with a Gaussian-type function, is to avoid integrals with large interelectronic
distances, thus making it possible to use R12 methods for large molecular systems. In particular, an important perspective of
the new correlation factor is to be able to utilizelocal-correlation techniques for explicitly correlated wave functions, such that
computation times will asymptotically scale linearly with the size of the molecule. For the development of such techniques, the
correlation factor must be restricted to the (physically meaningful) short range of the correlation cusp of the Coulomb hole. In
the present paper, the evaluation of all two-electron integrals needed for damped-R12 theory is described, as implemented in
a local version of the Dalton program.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Most ab initio methods represent the electronic wave function by a linear combination of products of one-
electron functions, which do not describe accurately the Coulomb hole and which cannot represent the electron-
correlation cusp [1–5]. The R12 method improves this description by using two-electron basis functions of the
form f12ψi(r1)ψj (r2), whereψi(r1) andψj(r2) are molecular spin-orbitals andf12 a correlation factor.

So far, the only correlation factor explored in R12 theory is the interelectronic distancef12 = r12 = |r1 − r2|.
In combination with several types of approximations designed to remove the three- and four-electron integrals
involved [6–8], this factor has given very accurate results for a variety of small and medium-sized molecules.
Nevertheless, use of the linearr12 factor, which does not vanish for large electronic separations, becomes awkward
for large molecules. For such systems, therefore, we wish to investigate the correlation factorf12 = r12exp(−γ r2

12),
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Fig. 1. Correlation factorf12 = r12exp(−γ r2
12) for various values ofγ .

which vanishes for large separations between the electrons—see Fig. 1. Rather than expanding the correlation factor
in a basis of Gaussian geminals alone [9–11], which also vanish for larger12, we wish to investigate products of
the linearr12 factor with such Gaussians.

Clearly, with the introduction of a new correlation factor, we must develop a scheme for the calculation of two-
electron integrals involving this factor. The scheme presented in this paper is based on the McMurchie–Davidson
method for the evaluation of one- and two-electron integrals over Gaussian atomic orbitals [12]. As demonstrated
here, none of the five nonstandard two-electron integrals that arise from the use of the dampedr12 factors require
much more effort than do the usual two-electron integrals over Gaussian functions, indicating that the damped-R12
method will be practicable for large systems. Indeed, the particular damping function chosen for our correlation
factor—that is, the Gaussian factor exp(−γ r2

12)—was selected with computational ease in mind. Other damping
factors such as the complementary error function erfc(γ r12) are possible but lead to a more complicated integral
evaluation.

2. Integral evaluation

We begin our discussion of two-electron integral evaluation by examining the overall structure of the integrals
in Section 2.1. Next, in Section 2.2, we introduce the McMurchie–Davidson expansion of overlap distributions in
Hermite functions followed by the expansion of Cartesian integrals in Hermite integrals in Section 2.3. Finally, the
recursive evaluation of the spherical and nonspherical Hermite integrals is treated in Sections 2.4 and 2.5.

2.1. Structure of the Cartesian two-electron damped-R12 integrals

Within the standard approximations of R12 theory, there are six different two-electron integrals to be evaluated.
The integralsI1 andI2 originate from the Coulomb repulsion:



C.C.M. Samson et al. / Computer Physics Communications 149 (2002) 1–10 3

I1 = (
ab

∣∣r−1
12

∣∣cd) =
∫ ∫

ψ∗
a (r1)ψ

∗
c (r2)r

−1
12 ψb(r1)ψd(r2)dr1 dr2, (1)

I2 = (
ab

∣∣r−1
12 f12

∣∣cd) = (
ab

∣∣exp
(−γ r2

12

)∣∣cd) =
∫ ∫

ψ∗
a (r1)ψ

∗
c (r2)exp

(−γ r2
12

)
ψb(r1)ψd(r2)dr1 dr2; (2)

the integralsI3 andI4 are overlap integrals:

I3 = (ab|f12|cd)= (
ab

∣∣r12exp
(−γ r2

12

)∣∣cd)
=

∫ ∫
ψ∗
a (r1)ψ

∗
c (r2)r12exp

(−γ r2
12

)
ψb(r1)ψd(r2)dr1 dr2, (3)

I4 = (ab|f12f
′
12|cd)= (

ab
∣∣r2

12exp
(−(γ + γ ′)r2

12

)∣∣cd)
=

∫ ∫
ψ∗
a (r1)ψ

∗
c (r2)r

2
12exp

(−(γ + γ ′)r2
12

)
ψb(r1)ψd(r2)dr1 dr2; (4)

and the integralsI5 andI6 involve commutators with the kinetic-energy operatorT̂ :

I5 = (ab|[f12, T̂1]|cd)= (
ab

∣∣[r12exp
(−γ r2

12

)
, T̂1

]∣∣cd)
=

∫ ∫
ψ∗
a (r1)ψ

∗
c (r2)

[
r12exp

(−γ r2
12

)
, T̂1

]
ψb(r1)ψd(r2)dr1 dr2, (5)

I6 = (
ab

∣∣[[f12, T̂1], f ′
12

]∣∣cd) = (
ab

∣∣[[r12exp
(−γ r2

12

)
, T̂1

]
, r12exp

(−γ ′r2
12

)]∣∣cd)
=

∫ ∫
ψ∗
a (r1)ψ

∗
c (r2)

[[
r12exp

(−γ r2
12

)
, T̂1

]
, r12exp

(−γ ′r2
12

)]
ψb(r1)ψd(r2)dr1 dr2. (6)

For flexibility in the choice of the correlation factor, two different exponentsγ and γ ′ and thus two different
correlation factorsf12 = r12exp(−γ r2

12) andf ′
12 = r12exp(−γ ′r2

12) have been introduced inI4 andI6.
Before we begin our discussion of the evaluation of the damped-R12 integrals, a few general remarks on their

structure are in order. In the following, we assume that the integration is over real, primitive Cartesian orbitals with
exponentsa, b, c, andd centered onA, B, C, andD, respectively:

ψa(r1, a,A) = xi1Ay
k
1Az

m
1A exp

(−ar2
1A

)
, (7)

ψb(r1, b,B)= x
j

1By
l
1Bz

n
1B exp

(−br2
1B

)
, (8)

ψc(r2, c,C) = xi
′

2Cy
k′
2Cz

m′
2C exp

(−cr2
2C

)
, (9)

ψd(r2, d,D) = x
j ′
2Dy

l′
2Dz

n′
2D exp

(−dr2
2D

)
. (10)

The transformation of integrals to a symmetrized, contracted spherical-harmonic basis may be carried out in the
same manner as for the usual two-electron integralsI1 and is not discussed further here.

Next, we observe that the integrals involving the kinetic-energy operator can be expressed in the following
manner [13]:

I5 = 1
2

(
ab

∣∣∇2
1r12exp

(−γ r2
12

) − r12exp
(−γ r2

12

)∇2
1

∣∣cd)
= 1

2

((∇2
1a

)
b − a

(∇2
1b

)∣∣r12exp
(−γ r2

12

)∣∣cd)
= 1

2

(∇2
A − ∇2

B

)
I3, (11)

I6 = (
ab

∣∣(∇1f12
) · (∇1f

′
12

)∣∣cd)
= (

ab
∣∣(1− 2γ r2

12

)(
1− 2γ ′r2

12

)
exp

[−(
γ + γ ′)r2

12

]∣∣cd)
, (12)

where∇1 is the gradient operator with respect to the coordinates of the first electron and whereas∇A and∇B

denote gradients with respect toA andB, respectively. Comparing these expressions forI5 andI6 with those for
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I2 − I4 in Eqs. (2)–(4), we conclude that all two-electron integrals needed in damped-R12 theory can be computed
from integrals over the operatorsrk12exp(−βr2

12) with k = 0,1,2,4 andβ = γ or β = γ + γ ′. We note, however,
that theI5 integrals are obtained as second derivatives of the integralsI3; as we shall see, the evaluation ofI5
according to Eq. (11) can be carried out in an efficient manner, requiring not much more effort than the evaluation
of the other damped-R12 integrals.

In the standard R12 approach, the correlation factorf12 is chosen to be equal tor12. In this special case, the
integralI2 need not to be evaluated since the operator inI2 reduces tor−1

12 r12 = 1. Also, the integralI4 over r2
12

factorizes into products of one-electron integrals and the operatorI6 reduces to[[r12, T̂1], r12] = 1. With the use of
the new, damped correlation factor, these simplifications do not occur.

2.2. Expansion of Cartesian overlap distributions in Hermite functions

In our evaluation of two-electron integrals, we adopt the McMurchie–Davidson scheme [12], expanding
the Cartesian overlap distributions in Hermite integrals. In this approach, we write the overlap distribution
ψa(r1, a,A)ψb(r1, b,B) as a linear combination of Hermite functions

Λtuv(r1,p,P) = dt

dP t
x

du

dPu
y

dv

dPv
z

exp
(−pr2

1P

)
, (13)

with exponentp and centered atP,

p = a + b, (14)

P = aA + bB
p

, (15)

in the following manner [12]:

ψa(r1, a,A)ψb(r1, b,B) =
i+j∑
t=0

E
ij
t

k+l∑
u=0

Ekl
u

m+n∑
v=0

Emn
v Λtuv(r1,p,P) =

∑
tuv

Eab
tuvΛtuv(r1,p,P). (16)

As demonstrated in Ref. [14], the expansion coefficientsE
ij
t of the first electron may be evaluated from the

following two-term recurrence relations

E00
0 = exp

(
− ab

a + b
X2

AB

)
, (17)

E
i+1,j
0 = − b

p
XABE

ij

0 +E
ij

1 , (18)

E
i,j+1
0 = a

p
XABE

ij

0 +E
ij

1 , (19)

E
ij
t = 1

2pt

(
iE

i−1,j
t−1 + jE

i,j−1
t−1

)
, (20)

and likewise forEkl
u andEmn

v . Similar relations may be used for the second electron. In the original McMurchie–
Davidson method, three-term recurrence relations are used for these coefficients [12]. Similarly, we may expand
the overlap distribution of the second electron as

ψc(r2, c,C)ψd(r2, d,D) =
∑
τυφ

Ecd
τυφΛτυφ(r2, q,Q) (21)

whereq = c+ d andQ = (cC + dD)/q , and where the coefficientsEcd
τυφ of the second electron are different from

the coefficientsEab
tuv of the first electron.
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2.3. Expansion of Cartesian integrals in Hermite integrals

We now introduce the following basic two-electron integrals over spherical Gaussian functions with centers at
P andQ:

Dk(β) =
∫ ∫

exp
(−pr2

1P

)
exp

(−qr2
2Q

)
rk12exp

(−βr2
12

)
dr1 dr2. (22)

Inserting the Hermite expansions of the overlap distributions Eqs. (16) and (21) in the integrals (1)–(4) and (6), we
obtain

Ik =
∑
tuv

Eab
tuv

∑
τυφ

(−1)τ+υ+φEcd
τυφR

t+τ,u+υ,v+φ
k , k = 1,2,3,4,6; (23)

with

Rtuv
1 = dt

dP t
x

du

dPu
y

dv

dPv
z

D−1(0), (24)

Rtuv
2 = dt

dP t
x

du

dPu
y

dv

dPv
z

D0(γ ), (25)

Rtuv
3 = dt

dP t
x

du

dPu
y

dv

dPv
z

D1(γ ), (26)

Rtuv
4 = dt

dP t
x

du

dPu
y

dv

dPv
z

D2(γ + γ ′), (27)

Rtuv
6 = dt

dP t
x

du

dPu
y

dv

dPv
z

[
D0(γ + γ ′)− 2(γ + γ ′)D2(γ + γ ′)+ 4γ γ ′D4(γ + γ ′)

]
. (28)

To obtain these expressions, we have taken the differentiation operators with respect to the components ofP andQ
outside the integration and invoked the translational invariance of the integrals to replace derivatives with respect
to Q by derivatives with respect to−P.

The integralsI5 in Eq. (11) require special attention. By substituting Eq. (23) in Eq. (11), we obtain:

I5 = 1

2

(∇2
A − ∇2

B

)∑
tuv

Eab
tuv

∑
τυφ

(−1)τ+υ+φEcd
τυφR

t+τ,u+υ,v+φ
3 . (29)

Since the coefficientsEab
tuv depend only onA − B and the integralsRtuv

3 only onP, it is advantageous to expressI5
in terms of derivatives with respect to these coordinates rather than with respect toA andB [15]. From the relations

d

dAx

= a

p

d

dPx

+ d

dXAB

, (30)

d

dBx

= b

p

d

dPx

− d

dXAB

, (31)

whereXAB is thex component ofA − B, we then obtain [13]:

I5 = a − b

2p

∑
tuv

Eab
tuv

∑
τυφ

(−1)τ+υ+φEcd
τυφ∇2

PR
t+τ,u+υ,v+φ
3

+
∑
tuv

∇XE
ab
tuv ·

∑
τυφ

(−1)τ+υ+φEcd
τυφ∇PR

t+τ,u+υ,v+φ

3 . (32)

The derivatives of the Hermite integrals (26) are given by
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∇PR
tuv
3 = [

R
t+1,u,v
3 ,R

t,u+1,v
3 ,R

t,u,v+1
3

]T
, (33)

∇2
PR

tuv
3 = R

t+2,u,v
3 +R

t,u+2,v
3 +R

t,u,v+2
3 , (34)

while the elements of∇XE
ij
t are obtained from recurrence relations obtained by differentiating Eqs. (17)–(20).

For thex component, for example, we obtain for the coefficients

F
ij
t = dEij

t

dXAB

(35)

the recurrence relations

F 00
0 = −2ab

p
XABE

00
0 , (36)

F
i+1,j
0 = − b

p
XABF

ij

0 +F
ij

1 − b

p
E

i,j

0 , (37)

F
i,j+1
0 = a

p
XABF

ij
0 + F

ij
1 + a

p
E

i,j
0 , (38)

F
ij
t = 1

2pt

(
iF

i−1,j
t−1 + jF

i,j−1
t−1

)
, (39)

and similarly for they andz components.

2.4. Evaluation of the spherical Hermite integrals

In the present section, we consider the evaluation of the spherical Hermite integralsDk(β) of Eq. (22). We begin
by noting the following relations among these integrals:

Dk+1(β) = −D′
k−1(β), (40)

D2k−1(β) = 2√
π

∞∫
0

D2k
(
β + t2

)
dt . (41)

The first relation is obtained straightforwardly by differentiation of Eq. (22); the second relation follows by
introducing in Eq. (22) the integral transform

1

r12
= 2√

π

∞∫
0

exp
(−t2r2

12

)
dt, (42)

as pioneered by Boys for the two-electron repulsion integrals [16]. We may therefore generate the necessary
integralsDk(β) by explicit integration forD0(β), followed by application of Eqs. (40) and (41) to yield the
remaining integrals.

The overlap integralD0(β) is easily evaluated as it contains only Gaussian functions. By integrating over thex,
y, andz coordinates separately,

D0(β) =
∞∫

−∞

∞∫
−∞

exp
[−p(x1 − Px)

2 − q(x2 −Qx)
2 − β(x1 − x2)

2]dx1 dx2

×
∞∫

−∞

∞∫
−∞

exp
[−p(y1 − Py)

2 − q(y2 −Qy)
2 − β(y1 − y2)

2]dy1 dy2
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×
∞∫

−∞

∞∫
−∞

exp
[−p(z1 − Pz)

2 − q(z2 −Qz)
2 − β(z1 − z2)

2]dz1 dz2, (43)

and introducing the reduced exponent

α = pq

p + q
, (44)

we obtain

D0(β) =
(
π2

pq

)3/2(
α

α + β

)3/2

exp

(
− αβ

α + β
R2
PQ

)
, (45)

D2(β) =
(

3

2
+ α2

α + β
R2
PQ

)
D0(β)

α + β
, (46)

D4(β) =
[

15

4
+ 5α2

α + β
R2
PQ + α4

(α + β)2
R4
PQ

]
D0(β)

(α + β)2
, (47)

where we have applied Eq. (40) to yieldD2(β) andD4(β). The even-order integralsD2n(β) are thus easily
evaluated in closed form.

To calculate the odd-order spherical integralsD2n−1(β), we begin by deriving an expression forD−1(β), from
which we next generateD1(β) by differentiation according to Eq. (40). From Eqs. (41) and (45), we obtain

D−1(β) = 2√
π

(
π2

pq

)3/2 ∞∫
0

(
α

α + β + t2

)3/2

exp

(
−αR2

PQ

β + t2

α + β + t2

)
dt . (48)

The variable substitution

u2 = t2

α + β + t2
(49)

gives

dt = (α + β)−1(α + β + t2
)3/2 du, (50)

with integration limits 0 and 1 foru. Integral (48) then becomes

D−1(β) = 2

√
α + β

π
F0

(
α2

α + β
R2
PQ

)
D0(β), (51)

where we have introduced the Boys function of ordern:

Fn(x)=
1∫

0

exp
(−xt2

)
t2n dt . (52)

Finally, differentiation ofD−1 with respect toβ according to Eq. (40) and use of the relations

F ′
n(x) = −Fn+1(x), (53)

F ′
n(x) = exp(−x)− (2n+ 1)Fn(x)

2x
, (54)

yields:

D1(β) =
[
exp

(
− α2

α + β
R2
PQ

)
+

(
1+ 2α2

α + β
R2
PQ

)
F0

(
α2

α + β
R2
PQ

)]
D0(β)√
π(α + β)

. (55)
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For a more compact representation of the integrals, we introduce

�R 2
PQ = α

α + β
R2
PQ, (56)

and obtain for the damped integrals:

D0(β) =
(
π2

pq

)3/2( α

α + β

)3/2

exp
(−β�R 2

PQ

)
, (57)

D2(β) =
(
π2

pq

)3/2(
�R 2
PQ + 3

2α

)(
α

α + β

)5/2

exp
(−β�R 2

PQ

)
, (58)

D4(β) =
(
π2

pq

)3/2(
�R4
PQ + 5

α
�R 2
PQ + 15

4α2

)(
α

α + β

)7/2

exp
(−β�R 2

PQ

)
, (59)

D−1(β) =
(
π2

pq

)3/2√4α

π
F0

(
α�R 2

PQ

)( α

α + β

)
exp

(−β�R 2
PQ

)
, (60)

D1(β) =
(
π2

pq

)3/2√4α

π

[(
�R 2
PQ + 1

2α

)
F0

(
α�R 2

PQ

) + 1

2α
exp

(−α�R 2
PQ

)]

×
(

α

α + β

)2

exp
(−β�R 2

PQ

)
. (61)

In the special case whenβ = 0 (no damping),�R 2
PQ becomesR2

PQ and the two last factors in each integral become
equal to one.

2.5. Evaluation of nonspherical Hermite integrals

To evaluate the nonspherical Hermite integrals (24)–(28) from the spherical integrals discussed in Section 2.4,
we first introduce the auxiliary integrals

Hmn
tuv(µ, ν) = dt

dP t
x

du

dPu
y

dv

dPv
z

dm

dµm
exp

(−µR2
PQ

)
Fn

(
νR2

PQ

)
(62)

which correspond to the Boys function (52) damped by a Gaussian. Inserting the expressions (57)–(61) in
Eqs. (24)–(28), we obtain:

Rtuv
1 =

(
π2

pq

)3/2√4α

π
H 00

tuv(0, α), (63)

Rtuv
2 =

(
π2

pq

)3/2(
α

α + γ

)3/2

H 00
tuv

(
αγ

α + γ
,0

)
, (64)

Rtuv
3 =

(
π2

pq

)3/2√4α

π

(
α

α + γ

)2

×
[

1

2α
H 00

tuv(α,0)+ 1

2α
H 00

tuv

(
αγ

α + γ
,

α2

α + γ

)
− α

α + γ
H 10

tuv

(
αγ

α + γ
,

α2

α + γ

)]
, (65)

Rtuv
4 =

(
π2

pq

)3/2(
α

α + γ + γ ′

)5/2

×
[

3

2α
H 00

tuv

(
αγ + αγ ′

α + γ + γ ′ ,0

)
− α

α + γ + γ ′H
10
tuv

(
αγ + αγ ′

α + γ + γ ′ ,0

)]
, (66)
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Rtuv
6 =

(
π2

pq

)3/2( α

α + γ + γ ′

)3/2{[
1− 3(γ + γ ′)

α + γ + γ ′ + 15γ γ ′

(α + γ + γ ′)2

]
H 00

tuv

(
αγ + αγ ′

α + γ + γ ′ ,0

)

+ 2

[
γ + γ ′ − 10γ γ ′

α + γ + γ ′

](
α

α + γ + γ ′

)2

H 10
tuv

(
αγ + αγ ′

α + γ + γ ′ ,0

)

+ 4γ γ ′
(

α

α + γ + γ ′

)4

H 20
tuv

(
αγ + αγ ′

α + γ + γ ′ ,0

)}
. (67)

Clearly, the integralsRtuv
k needed for the evaluation of the damped-R12 integrals are simple linear combinations

of the damped Hermite integrals (62), whose recursive evaluation is now considered.
To determine recurrence relations for the damped Hermite integrals, we proceed as follows:

Hmn
t+1,u,v = dt

dP t
x

du

dPu
y

dv

dPv
z

dm

dµm

d

dPx

exp
(−µR2

PQ

)
Fn

(
νR2

PQ

)
(68)

= −2
dt

dP t
x

dm

dµm
µXPQH

0n
0uv − 2ν

dt

dP t
x

XPQH
m,n+1
0uv . (69)

By making use of the relations

dt

dP t
x

XPQ = t
dt−1

dP t−1
x

+XPQ
dt

dP t
x

, (70)

dm

dµm
µ = m

dm−1

dµm−1 +µ
dm

dµm
, (71)

we obtain:

Hmn
t+1,u,v = −2

(
t

dt−1

dP t−1
x

+XPQ
dt

dP t
x

)(
m

dm−1

dµm−1 +µ
dm

dµm

)
H 0n

0uv − 2ν

(
t

dt−1

dP t−1
x

+XPQ
dt

dP t
x

)
H

m,n+1
0uv

= −2tmH
m−1,n
t−1,u,v − 2tµHmn

t−1,u,v − 2XPQmH
m−1,n
tuv − 2XPQµH

mn
tuv

−2νtHm,n+1
t−1,u,v − 2νXPQH

m,n+1
tuv . (72)

Similar relations may be established for increments inu andv, giving the following three sets of six-term recurrence
relations:

Hmn
t+1,u,v(µ, ν) = −2µ

[
tHmn

t−1,u,v(µ, ν)+XPQH
mn
tuv(µ, ν)

]
− 2m

[
tH

m−1,n
t−1,u,v(µ, ν)+XPQH

m−1,n
tuv (µ, ν)

]
− 2ν

[
tH

m,n+1
t−1,u,v(µ, ν)+XPQH

m,n+1
tuv (µ, ν)

]
, (73)

Hmn
t,u+1,v(µ, ν) = −2µ

[
uHmn

t,u−1,v(µ, ν) + YPQHmn
tuv(µ, ν)

]
− 2m

[
uH

m−1,n
t,u−1,v(µ, ν) + YPQH

m−1,n
tuv (µ, ν)

]
− 2ν

[
uH

m,n+1
t,u−1,v(µ, ν)+ YPQH

m,n+1
tuv (µ, ν)

]
, (74)

Hmn
t,u,v+1(µ, ν) = −2µ

[
vHmn

t,u,v−1(µ, ν)+ZPQH
mn
tuv(µ, ν)

]
− 2m

[
vH

m−1,n
t,u,v−1(µ, ν) +ZPQH

m−1,n
tuv (µ, ν)

]
− 2ν

[
vH

m,n+1
t,u,v−1(µ, ν)+ZPQH

m,n+1
tuv (µ, ν)

]
. (75)

Using these recurrence relations, we may generate all the necessary integralsHmn
tuv , starting from the source

integrals

Hmn
000(µ, ν) = (−1)mR2m

PQ exp
(−µR2

PQ

)
Fn

(
νR2

PQ

)
. (76)
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The evaluation of the Boys functionFn(νR
2
PQ) may be carried out as discussed in Ref. [14].

Although the recurrence relations Eqs. (73)–(75) look rather complicated, some simplifications occur in
important special cases. For example, whenever one of the two argumentsµ or ν toHmn

tuv(µ, ν) is zero—as happens
in many cases in Eqs. (63)–(67)—the six-term recurrence relations reduce to four-term recurrences. We also note
that, in the evaluation of the Hermite integrals (63)–(67), only integrals of the typeHm0

tuv(µ, ν) are needed. The
integralsHmn

tuv(µ, ν) with n > 0 were introduced only because they arise upon differentiation ofHm0
tuv(µ, ν), playing

the role of intermediates in the recurrence relations (73)–(75). Finally, it should be realized that, in the application
of the recurrence relations (73)–(75), all integralsH

k,n
tuv with k < m and all integralsHm,k

tuv with k > n must be
evaluated before the integralsHmn

tuv are attempted.

3. Conclusion

All integrals discussed in this paper have been implemented in a local version of the Dalton [17] program and
will be used to investigate explicitly correlated methods for large molecular systems. For small systems, some
preliminary calculations on systems such as H2O, CO and F2 have shown that the computation time does not differ
significantly from previous R12 methods. For large systems, however, the new correlation factor is expected to
reduce dramatically the number of significant integrals, thereby making the calculations more efficient.
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