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Abstract

Explicitly correlated molecular electronic-structure calculations with the damped correlationrfgmxp(—yrfz) require
two-electron integrals that are different from the already implemented R12 integrals. The aim of such a correlation factor,
which combines the interelectronic distance with a Gaussian-type function, is to avoid integrals with large interelectronic
distances, thus making it possible to use R12 methods for large molecular systems. In particular, an important perspective of
the new correlation factor is to be able to utilineal-correlation techniques for explicitly correlated wave functions, such that
computation times will asymptotically scale linearly with the size of the molecule. For the development of such techniques, the
correlation factor must be restricted to the (physically meaningful) short range of the correlation cusp of the Coulomb hole. In
the present paper, the evaluation of all two-electron integrals needed for damped-R12 theory is described, as implemented in
a local version of the Dalton program.
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1. Introduction

Most ab initio methods represent the electronic wave function by a linear combination of products of one-
electron functions, which do not describe accurately the Coulomb hole and which cannot represent the electron-
correlation cusp [1-5]. The R12 method improves this description by using two-electron basis functions of the
form fio¥; (r1)yr; (r2), wherey; (r1) andy; (r2) are molecular spin-orbitals anfd» a correlation factor.

So far, the only correlation factor explored in R12 theory is the interelectronic disfapeerio = |r1 — ro|.

In combination with several types of approximations designed to remove the three- and four-electron integrals
involved [6-8], this factor has given very accurate results for a variety of small and medium-sized molecules.
Nevertheless, use of the lineap factor, which does not vanish for large electronic separations, becomes awkward
for large molecules. For such systems, therefore, we wish to investigate the correlatiorffactot» exp(—yrlzz),
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Fig. 1. Correlation factorfyo = r12 exp(fyrfz) for various values of .

which vanishes for large separations between the electrons—see Fig. 1. Rather than expanding the correlation factor
in a basis of Gaussian geminals alone [9-11], which also vanish for tgggee wish to investigate products of
the linearry, factor with such Gaussians.

Clearly, with the introduction of a new correlation factor, we must develop a scheme for the calculation of two-
electron integrals involving this factor. The scheme presented in this paper is based on the McMurchie—Davidson
method for the evaluation of one- and two-electron integrals over Gaussian atomic orbitals [12]. As demonstrated
here, none of the five nonstandard two-electron integrals that arise from the use of the dgnfipetbrs require
much more effort than do the usual two-electron integrals over Gaussian functions, indicating that the damped-R12
method will be practicable for large systems. Indeed, the particular damping function chosen for our correlation
factor—that is, the Gaussian factor e*p/rlzz)—was selected with computational ease in mind. Other damping
factors such as the complementary error function(grfgy) are possible but lead to a more complicated integral
evaluation.

2. Integral evaluation

We begin our discussion of two-electron integral evaluation by examining the overall structure of the integrals
in Section 2.1. Next, in Section 2.2, we introduce the McMurchie—Davidson expansion of overlap distributions in
Hermite functions followed by the expansion of Cartesian integrals in Hermite integrals in Section 2.3. Finally, the
recursive evaluation of the spherical and nonspherical Hermite integrals is treated in Sections 2.4 and 2.5.

2.1. Structure of the Cartesian two-electron damped-R12 integrals

Within the standard approximations of R12 theory, there are six different two-electron integrals to be evaluated.
The integralg; and /> originate from the Coulomb repulsion:
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I = (ablri; |cd) ff Y (r )Y (r2)ry Y (f)Ya (r2) drodra, (1)

L= (ab|riy fiz]ed) = (ablexp(—yriy)|ed) = / / YtV (r2) exp(—yri) v r)Ya(r2) drodra;  (2)
the integralds and i, are overlap integrals:

I3 = (ab| fioled) = (ab|rizexp(—yrd)|cd)

= // Y (r) Y (r)rizexp(—yriy) ¥ (r)va (r2) drodro, (3)
Is = (ab| fr2fisled) = (ab|rZexp(—(y + y')rdy)|cd)
= / / YECDYE(rrZexp(—(y +y)rZ) vp(r)Ya(rz) dridry; ()

and the integralés and Is involve commutators with the kinetic-energy operafor

Is = (ab|[ f12, 7"\1]|cd) = (ab![rlzexr(—yrlzz), f1]|cd)

= // VDY () [rizexp(—yrdy). Ta]vn(r)va(rz) drodra, ()
Is = (abl[[f12, Tl, fip]|cd) = (ab|[[ri2exp(—yr), Ta], raexp(—y'r$)]|cd)
= / / YECDYE (r)[[rizexp(—yrdy), Ti], rizexp(—y'r) [¥s(r)va(r2) drodro. (6)

For flexibility in the choice of the correlation factor, two different exponentand y’ and thus two different
correlation factorsfiz = ri2exp(—yri,) and f;, = ri2exp(—y’'r2,) have been introduced i andJs.

Before we begin our discussion of the evaluation of the damped-R12 integrals, a few general remarks on their
structure are in order. In the following, we assume that the integration is over real, primitive Cartesian orbitals with
exponents, b, ¢, andd centered o\, B, C, andD, respectively:

Va1, a, A) = X, 1,210 exp(—ariy), ™
Ub(r1, b, B) = x{, 15715 exp(—brip), ®
Ve(ra. e, C) = xjevhe 2 exp(—cric). ®)
Va(r2,d. D) = x3p by eXp(—drdy). (10)

The transformation of integrals to a symmetrized, contracted spherical-harmonic basis may be carried out in the

same manner as for the usual two-electron integragsd is not discussed further here.

Next, we observe that the integrals involving the kinetic-energy operator can be expressed in the following

manner [13]:

Is = (ab‘Vlrlzqu yrlz)—rlzexp( yrlz)Vl|cd)

B((53a)0 — a(V) pizexel—yr)|ed)

(Vi - Vh)e o
Io = (ab|(Vafz2) (V1 fip)ed)

= (@1~ 20 (1= 2y rE) X~y +7 riea). 12

where V1 is the gradient operator with respect to the coordinates of the first electron and wNereasl V 5
denote gradients with respectAoandB, respectively. Comparing these expressiongfaand /s with those for
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I — 14 in Egs. (2)—(4), we conclude that all two-electron integrals needed in damped-R12 theory can be computed
from integrals over the operatars, exp(—pr2,) with k =0, 1,2, 4 andf = y or g =y + y'. We note, however,

that theIs integrals are obtained as second derivatives of the intedggakss we shall see, the evaluation &f
according to Eqg. (11) can be carried out in an efficient manner, requiring not much more effort than the evaluation
of the other damped-R12 integrals.

In the standard R12 approach, the correlation fagieris chosen to be equal tq». In this special case, the
integral I need not to be evaluated since the operatdpireduces tcrl‘zlrlz =1. Ajso, the integraly overr122
factorizes into products of one-electron integrals and the opefateduces td[r12, T1], r12] = 1. With the use of
the new, damped correlation factor, these simplifications do not occur.

2.2. Expansion of Cartesian overlap distributionsin Hermite functions

In our evaluation of two-electron integrals, we adopt the McMurchie-Davidson scheme [12], expanding
the Cartesian overlap distributions in Hermite integrals. In this approach, we write the overlap distribution
Y (r1,a, A)Yp(re, b, B) as a linear combination of Hermite functions

dt dLl dv

Anw(ra, p,P) = d—P)i dP‘” dPY
y Z

exd—prlzp), (13)

with exponenip and centered &,

p=a-+b, (14)
A B
p_ (A+HB (15)
p

in the following manner [12]:

i+j k+1 m+n

Va(r1.a, AYp(r1.b.B) = Y EP S EN N EM Ay (1, p.P) =Y ES Au(ra, p.P). (16)

t=0 u=0 v=0 tuv

As demonstrated in Ref. [14], the expansion coeﬁicieﬁﬁ:’é of the first electron may be evaluated from the
following two-term recurrence relations

ab

EQ —expl ———Xx2 ., 17
0 p( ath AB) (17)
i1 b g g

Ey™ = —;xABEg +EY, (18)

gLy, BV 4 Bl 19
0 — ; AB 0 + 1> ( )
. 1 i A
ij .=l o 2y

ES = 2pt (l E " +IE ), (20)

and likewise forEX" and E". Similar relations may be used for the second electron. In the original McMurchie—
Davidson method, three-term recurrence relations are used for these coefficients [12]. Similarly, we may expand
the overlap distribution of the second electron as

Ye(r2.¢,CWa(ra.d. D)= EX Acuy(12.4.Q) (21)
TV

whereq = c+d andQ = (¢cC + dD)/q, and where the coeﬁicienEﬁ‘é(b of the second electron are different from
the coefficientsz¢?, of the first electron.

uv
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2.3. Expansion of Cartesian integralsin Hermite integrals

We now introduce the following basic two-electron integrals over spherical Gaussian functions with centers at
P andQ:

De(B) = / / exp(—pr2y) exp(—gr2y)rkyexp(—pri) dradra. 22)

Inserting the Hermite expansions of the overlap distributions Eqgs. (16) and (21) in the integrals (1)—(4) and (6), we
obtain

L=y Eh S (-)Trvteped RIS k=1.2.3.4.6; (23)
tuv TV
with
da dt
Rtuv -~ D_ O , 24
1 7 dp: dpy dP? 10 &9
dt dLl dv
Rtuv — D 25
2 = ap; dpy apr 00 (29)
dt dLl dv
RtLll) — D s 26
3 7 dp{ dPy dP? 1) (20)
da dv
Rtuv — D / 27
4 7 dPt dP¥ dPY 20y +v), &
uv dt d” dv / / / / I
RUY = [Do(y +7) = 2(y +y) D2y +v') +4yy'Daly +v)]- (28)

dp! dP dPp

To obtain these expressions, we have taken the differentiation operators with respect to the compBrardQof
outside the integration and invoked the translational invariance of the integrals to replace derivatives with respect
to Q by derivatives with respect teP.

The integralds in Eg. (11) require special attention. By substituting Eq. (23) in Eq. (11), we obtain:

1
Is=5 (V4= VE) D Eiy D_(~DTTIPEL RN (29)

tuv Tvh

Since the coefficient8®> depend only ol — B and the integral®%'’ only onP, it is advantageous to express

in terms of derivatives with respect to these coordinates rather than with respeahttB [15]. From the relations
d a d d

= ) 30
dA, — pdP. | dXag (30)
d b d d 31)
dB, - p dP; dXap’
whereX 4 p is thex component oA — B, we then obtain [13]:
a—>b .
Is = 5 Z E%’v Z(_l)wwqu%qbV% R13+t,u+v,v+(b
tuv Tvp
+ Y VRED, S (~)THAeE v p R (32)

tuv v

The derivatives of the Hermite integrals (26) are given by
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VPRguU _ [Rt3+1,u,v Rt3,u+1,v’ Rtg,u,v+1]T’ (33)
V%Ré’w — Rt+2 u,v + Rt 42,0 + Rt U, v+2 (34)

while the elements OVXE,” are obtained from recurrence relations obtained by differentiating Eqgs. (17)—(20).
For thex component, for example, we obtain for the coefficients

. dEY
Ft’j = . (35)
dXag
the recurrence relations
2ab
i b g b
o™ = —=XapF§ + FY — —E}’, 37)
p p
Fiitt = %XABFgf +F 4 ﬁEé’j, (38)
i 1 1 1
Fl] - = l j Fl j 39
/=gy R H IR, (39)

and similarly for they andz components.
2.4. Evaluation of the spherical Hermite integrals

In the present section, we consider the evaluation of the spherical Hermite integ¢gsof Eq. (22). We begin
by noting the following relations among these integrals:

Di+1(B) =—D;_1(B), (40)
2 o
Do_1(B) = ﬁfDZk(ﬂ +1?) dr. (41)
0

The first relation is obtained straightforwardly by differentiation of Eq. (22); the second relation follows by
introducing in Eq. (22) the integral transform

a NG f exp(—1%r7,) d (42)

as pioneered by Boys for the two-electron repulsion integrals [16]. We may therefore generate the necessary
integrals Dy (8) by explicit integration forDg(8), followed by application of Eqgs. (40) and (41) to yield the
remaining integrals.

The overlap integrabo(8) is easily evaluated as it contains only Gaussian functions. By integrating over the
y, andz coordinates separately,

Do(B) = / /EXP[—P(Xl—Px)Z—q(xz—Qx)z—ﬁ(X1—X2)2]dX1dX2

X / / exg—p(y1— Py)? —q(y2— 0y)? = B(y1— yz)z] dy1 dy2

—00 =00
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X 7 fexp[—p(m — P)? —q(z2— Q)% — B(z1— 22)%] dza dza, (43)
and introducing tr::r;:uced exponent
= %, (44)
we obtain
Do() = (Z—;)g/z<ai ﬁ>3/2exp<—%1€%g>, (45)
D2(B) = (3 + o_‘: 5 R%Q) f‘iﬁ; (46)
Da) = [? " Sj-zﬁ Rrot G fﬁ)z ?’Q} (f i(?ﬁ’ “n

where we have applied Eq. (40) to yieldh(8) and D4(8). The even-order integral®,,(8) are thus easily
evaluated in closed form.

To calculate the odd-order spherical integrBls —1(8), we begin by deriving an expression fbr_1(8), from
which we next generatB;(8) by differentiation according to Eq. (40). From Egs. (41) and (45), we obtain

2 (22N ][ o« %2 ,  BA1P
0

The variable substitution
2

2 t
= 49
S B+ 12 (49)
gives
=@+B) Yo+ p+13)*du, (50)
with integration limits 0 and 1 for. Integral (48) then becomes
o+ o?
Da(p)=2,/2EF Fo( y; R%Q>Do<ﬁ> (51)
where we have introduced the Boys function of order
1
Fo(x) = / exp(—xt%)t?" dt. (52)
0
Finally, differentiation ofD_1 with respect tg8 according to Eq. (40) and use of the relations
Fy(x) = —Fpi1(x), (53)
—x)—2n+1F,
Fir) = BN @ E DR, (54)

2x
yields:

D(ﬂ)—[exp( o —R? >+<1+ 20* — R? >F< o R2 )]M (55)
R atp e +5°70) Navp re) [ Um@rp
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For a more compact representation of the integrals, we introduce

52 _ “ 2
RPQ_mRPQ’ (56)

and obtain for the damped integrals:

22\32/ o4 \32 _,

Do(B) = (E) <a+ﬂ> eXp(_ﬂRPQ)v (57)
2\ 3/2 _, 3 a 22 —,

o () (0 3)(25) oo
n2\%¥2/_ 5_ 15 a \'7? —

Da(B) = (E) <R§Q+ER,§Q+@> (m) exp(—BR3,). (59)
72\%? [4q —

D_1(p) = (E) \/;Fo(aRPQ)< +ﬂ>exp( ,BRPQ) (60)
2N\%2 Jaq T /- 1 _ 1 —

D1(B) = (Z ) \/;[<R}2,Q+§>Fo(aR}2>Q)+§exp(—aRlz,Q):|

Pa
2
x( j—ﬁ) exp(—BR3,). (61)

In the special case wheh=0 (no damping)l?,%Q becomesR2 P0 and the two last factors in each integral become
equal to one.

2.5. Evaluation of nonspherical Hermite integrals

To evaluate the nonspherical Hermite integrals (24)—(28) from the spherical integrals discussed in Section 2.4,
we first introduce the auxiliary integrals

- ¢ @ )
Hpypy (e, v) = dapi dpy dp! o exp(— MRPQ)FH(”RPQ) (62)

which correspond to the Boys function (52) damped by a Gaussian. Inserting the expressions (57)—(61) in
Egs. (24)-(28), we obtain:

4o
Ry = ( J—H® (0, ), (63)
o

e >3/2
P4
2\ 3/2 3/2
thuv — (ﬂ_) ( ) H[([)g( ody ’0>’ (64)
Pq o+y oa+y
3/2 2
- () VE6)
3 pPq T\a+Yy
H 0+ — , - H , , 65
|:2 tuv( )+ tuv Cl—}—)/ Ot+]/ Ot+]/ tuv Cl—}—)/ Cl—i—]/ ( )

3/2 5/2
we = (5) (7“ )/
4 pq at+y+y

3

/ /
[ (o) s (S o)) =
20 a+y+y a+y+y a+y+y
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2 2
Riuv _ (77_2>3/ ( o )3/ {|:1_ 3(V+V/) + 157/)// :|H()0<Oly +Olyl O)
6 pq aty+y aty+y  (at+y+yH2] "N\a+y+y”
1 ’ 2 ’
+2[y+y’— Wy }( - )Hig(w,o)
aty+y [Nat+y+y aty+y

4 /

o ay +ay
+4 /(7> H20<7,0)}. 67
"\aty+y) T\ery+y ©n

Clearly, the integral®®;"’ needed for the evaluation of the damped-R12 integrals are simple linear combinations
of the damped Hermite integrals (62), whose recursive evaluation is now considered.
To determine recurrence relations for the damped Hermite integrals, we proceed as follows:

d o dv d* d 2 2
mn _
Hl oy = d—P; —dP;l —dP} —d;ﬂ" ap. eXp(—MRPQ)Fn(VRPQ) (68)
d dn on o —
= —Zd—l); —dﬂm /,LXPQ HOMU — 2vd—]))£ XPQ Houv . (69)
By making use of the relations
o dt—l dt
— Xpo=t——+Xpo——, (70)
dp! dP! 1 dp!
am dm—l dn
de "= md/,Lm71 + Mdlj,m , (71)
we obtain:
t—1 d dmfl dn o dtfl d 41
mn — n m,n
Ht+l>”>v - _2<t dP;—l + XPQ d—P)é> (I’I’l de—l + Mdﬂm > HOuv —2v (t dP;_l + XPQ d—P)é) H()uv
= —2mH" %" — 2 ™, |~ 2X pomHyyy " = 2X pouH]ln
—2utH" 1t — 20X po HIp . (72)

Similar relations may be established for incrementsamdv, giving the following three sets of six-term recurrence
relations:
HYy o (wv) = =2u[tH™) (wv) 4+ Xpo Hfn (1, v)]
—2m[tH" 2" (o v) + Xpo Hpmy M (1, )]

t—1u,v tuv

— [t H" T (1) + Xpo HI (e v)], (73)

H;Tlun+1yu(u'v V) = _ZM[MH;T’Mnf]_VU(Mv V) + YPQH;Z:)l (Ma U)]
—2m[uH""Y" (1, v) + Ypo Hity 2" (11, 1)]

t,u—1v tuv

— 20[uH"" 5 (v) + Yo Hppy (e v)] (74)

Hp 1 v) = =2u[vH], y (o v) + Zpo Hiyy (i v)]
—2m[vH" " (1, v) + Zpo Hppy " (1, v)]

tu,v—1

— 20[0 """ () + Zpo Hipl (. v)]. (75)

tau,v—1

Using these recurrence relations, we may generate all the necessary inféfjfalstarting from the source
integrals

Hygo(w. v) = (=1 RZY, exp(—uR3 o) Fu(VR3,). (76)
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The evaluation of the Boys functith(va, ) may be carried out as discussed in Ref. [14].
Although the recurrence relations Eqgs. (73)—(75) look rather complicated, some simplifications occur in
important special cases. For example, whenever one of the two argymantdo H™" (u, v) is zero—as happens

tuv

in many cases in Egs. (63)—(67)—the six-term recurrence relations reduce to four-term recurrences. We also note
that, in the evaluation of the Hermite integrals (63)—(67), only integrals of the)b}[p%(u, v) are needed. The
integralsH/™" (11, v) with n > 0 were introduced only because they arise upon differentiati«b!jj;ﬁf(u, v), playing

uv

the role of intermediates in the recurrence relations (73)—(75). Finally, it should be realized that, in the application
of the recurrence relations (73)—(75), all integraﬂ,é;,'j with ¥ < m and all integraIsHt';’;f‘ with & > n must be
evaluated before the integrag!)? are attempted.

3. Conclusion

All integrals discussed in this paper have been implemented in a local version of the Dalton [17] program and
will be used to investigate explicitly correlated methods for large molecular systems. For small systems, some
preliminary calculations on systems such a&HCO and | have shown that the computation time does not differ
significantly from previous R12 methods. For large systems, however, the new correlation factor is expected to
reduce dramatically the number of significant integrals, thereby making the calculations more efficient.
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