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Configuration interaction calculations with terms linear in the 
interelectronic coordinate for the ground state of Ht. A benchmark study 

Robert R15hse, Wim Klopper,a) and Werner Kutzelnigg 
Lehrstuhl fUr Theoretische Chemie, Ruhr Universitiit Bochum, D 44780 Bochum, Germany 

(Received 8 June 1993; accepted 16 July 1993) 

The CISD-R 12 method is applied to the ground states of H2 and Hi at their equilibrium 
configurations, with both bare nuclear Hamiltonian (BNH) and self-consistent field (SCF) 
references with eight basis sets that range from 10 s (i.e., ten contracted s-type Gaussians) to 
30s20p1 2d9j. With the largest basis set, the energy of H2 is obtained with an error of 2JlEh , 

while for Hi, the error is probably smaller and the best calculated energy of -1.343 835Eh is 
supposed to be accurate to all indicated figures. The BNH reference is always superior to the 
SCF reference. The relativistic corrections are evaluated at the SCF level by means of "direct 
perturbation theory" both for H2 and Hi. The Hylleraas-SCF methods and related concepts 
for the construction of an optimum reference function are discussed in the Appendix. 

I. INTRODUCTION 

The ion Hi is the simplest polyatomic molecule con
sisting of three nuclei and two electrons and is hence-as 
suggested a few years agol-a possible benchmark mole
cule for computational chemistry in the 90s. Accurate cal
culations of Hi are, in fact, much more difficult than, e.g., 
for H2• 

In this paper, we are concerned with the energy of the 
ground state of Hi at its (equilateral triangular) equilib
rium geometry, i.e., with the lowest eigenvalue of the non
relativistic Born-Oppenheimer (or rather clamped nuclei) 
Hamiltonian at this geometry. A rather complete bibliog
raphy on this particular problem has recently been given,2 

such that we need not repeat it. In a forthcoming paper, we 
shall deal with the potential energy surface and properties 
related to it, such as the fundamental vibrational frequen
cies. 

While the ground state energy of H2 has been calcu
lated to six significant figures almost 30 years ag03 and is 
now known to ten figure accuracy,4 the situation is much 
different for Hi, where up to about 1970 only two figure 
accuracy (1.3"·Eh ), up to about 1980 not more than 
three-figure accuracy (-1.34'" Eh ), and up to about 1990 
four-figure accuracy (-1.343" 'Eh ) was achievable. Only 
very recently the fifth figure became stable 
(-1.3438" 'Eh ), provided one used either method with 
sophisticated inclusion of electron correlation, or Green's 
function Monte Carlo methods. The best strictly varia
tional result is - 1.343 827 9Eh , 

5 but only the first five 
figures are definite. The so far best "traditional" quantum 
chemical approach of configuration interaction (CI) type6 

led to -1.34340" 'Eh , although one must admit that this 
study was not meant just for the equilibrium geometry, but 
for the entire potential surface, for which it did very well, 
while some more accurate calculations2

,7 were limited to 
the equilibrium nuclear configuration. 

We have decided to apply our CISD-RI2 method8,9 to 

a)Present address: Interdiszipliniires Projektzentrum fUr Supercomputing, 
ETH Zentrum, CH-8092 Ziirich, Switzerland. 

the Hi problem using a systematic hierarchy of basis sets. 
To test the accuracy that is achievable, we have first per
formed similar calculations for H2. 

The method is outlined in Sec. II, and technical details 
on the program and on the basis sets are described in Sec. 
III. The results for H2 are discussed in Sec. IV and those 
for Hi in Sec. V. In addition to energies, we have also 
calculated properties. This is, e.g., not possible (or has not 
been done) with the Green's function Monte Carlo 
method.2 We have further included relativistic corrections 
to the ground state energy of Hi (this only at the SCF 
level). 

Our method is not variational, i.e., it does not satisfy 
an upper bound property, but it converges much faster to 
the exact energy than most conventional variational calcu
lations. 

The main message of this paper is that for both H2 and 
Hi the CISD-R 12 calculations converge sufficiently well 
that the final error is only of the order of at most 2-3 
Jlhartree. The approach based on the bare nuclear Hamil
tonian reference is always superior to that with SCF refer
ence. We further conclude that a lOs8p6d basis is suffi
ciently close to saturation and can hence be used for highly 
accurate calculations of the potential hypersurface. 

II. METHOD 

The method is essentially that described in Ref. 8. 
The ansatz for the wave function is 

(2.1 ) 

X= L c/l<P/l' (2.2) 
/l 

where <l> is a single Slater determinant reference function, 
either the two-electron eigenfunction of the bare nuclear 
Hamiltonian (without electron interaction), referred to as 
BNH, or the SCF wave function. 

The function X that accounts for the electron correla
tion not taken care of by the '12 term is expanded in prod
ucts <PI-' of basis functions as in ordinary CI with single and 
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double substitutions. Since there is only a single term linear 
in '12' it is obvious that the reference function to be mul
tiplied by '12 should be chosen carefully. In a previous 
study of He-like atoms,8 it was found that the BNH refer
ence is usually very good and much better than the SCF 
reference. The optimum reference corresponds to a slight 
shielding of the BNH, but this concept is not easily gener
alized to the molecular case. In the Appendix on Hylleraas 
SCF, we say a few words on the optimum reference. 

We have to deal with the following matrix elements: 

D=(<I>I (1 +i'12)2 I <1», 

SOl' = (<I> 11 + hzl IPI') / .[D, 
Sl'v= (IPI' I IPv), for 11-=1=0, v=/=O, 

Hoo= (<I> 1(1 +4rI2)H( 1 +h2) 1<1»/ D, 

HoI' = (<I> I (1 +~r12)HI IPI')/ .[D, 
Hl'v= (IPI' I HI IPv), for wl=O, v:f=O. 

(2.3) 

(2.4 ) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

We assume all functions and matrix elements to be real. 
An essential ingredient of the CISD-RI2 method is the 

assumption that the unperturbed problem (BNH or SCF) 
is solved exactly, i.e., that the basis is saturated at the 
one-electron level for the required symmetry species. This 
has, of course, to be checked. This assumption allows us to 
rewrite the matrix elements (2.6) and (2.7). Let us do this 
first for the BNH case for which 

Ho<l>= (T + V) <I> = Eo<l>. (2.9) 

It is convenient to introduce the operator U IZ (Ref. 8) 

1 1 
UI2 =-2 [T,rI2J +

rl2 

1 rl -r2 
=----(V I -V2), T=T(l)+T(2). 

2 rl2 

It has the properties 

(2.10) 

(2.11 ) 

(2.12) 

for arbitrary <1>. Moreover, there is the general operator 
identity 

(2.13 ) 

which allows us to rewrite Eq. (2.6) as 

or assuming the validity of Eq. (2.9) as 

For Eq. (2.7), we get 

HoI' = Hl'o = ( IPI' I ( 1 +~ rl2) ( Ho+ r:J I <l» / .[D 

+ ( IPI'I [T, ~ r12]I<I» / .[D 

If <I> is a Hartree-Fock wave function, it satisfies 

F<I>= [F( 1) +F(2) J <l> =2€<I> 

instead of Eq. (2.9). 

F( 1) = T( 1) + V( 1) +2J( 1) -K( 1), 

(2.17) 

(2.18 ) 

where J( 1) and K( 1) are the Coulomb and exchange Cou
lomb operators, respectively. 

Then Eqs. (2.14) and (2.15) are replaced by 

Hoo= ( <1>1 (1+~ rl2 r (F+ r~2 -2J+K+l) /<1» / D 

=2f+ [~+ (<I>I r~2I<1» +l (<I>lr12I<1» 

- (<l>I( 1+~rl2)\2J-K)I<l»] / D. (2.19) 

The evaluation of Eq. (2.19) is somewhat more difficult 
than that ofEq. (2.16) due to the contribution 

(<I>l rl2(2J-K) 1<1», (2.20) 

the exact evaluation of which would lead to three-electron 
int~grals involving r12 and ri3 1 

.10 We approximate this in 
the spirit of our standard approximation 10 by means of a 
completeness insertion. The validity of this completeness 
insertion only requires that the basis is saturated at the 
one-electron level. In the atomic case, it is even sufficient 
that the basis is saturated up to a given finite I value. 

Our CISD-R 12 just described is, of course, a special 
case of Hylleraas CI. One important advantage over con
ventional Hylleraas CI is that matrix elements such as 

(2.21) 

which require numerical integration, II and which make 
Hylleraas CI slow even for two-electron systems, are not 
needed here. 

The price that we pay is that we lose the upper bound 
property, but we gain from the fact that we can use a much 
larger one-electron basis than in conventional Hylleraas 
CI, such that at the end, we achieve a higher accuracy. 

The difference between our CISD-RI2 for BNH refer
ence and conventional Hylleraas CI, limited to the ansatz 
(2.1), is easily seen. In Hylleraas CI, one would evaluate 
the matrix elements (2.6) and (2.7) without making the 
assumption (2.9). One would usually not make the trans
formations to Eqs. (2.15) and (2.16), but Eq. (2.14) and 
the first line of Eq. (2.16) would still be valid. 

The "errors" of our matrix elements with respect to 
rigorously calculated ones are hence 
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I:ilioo= (<I> 1 (1 +!rI2)2(Ho-Eo) 1 <1»/ D, 

l:ilifJ.o=('PfJ.1 (1+!r12)(Ho-Eo) 1<1» {D. 

(2.22) 

(2.23) 

The errors can be made arbitrarily small by choosing the 
orbital basis close to complete at one-electron level. Al
though a definite proof is not available, there is evidence12 

that the convergence at the one-electron level is exponen
tial with the number of angular moments included (unlike 
at the two-electron level, where it only goes as an inverse
power law). In the atomic case, the basis need only be 
saturated up to a fixed I value. 

Of course, one may decide to evaluate these errors 
explicitly, but this would require matrix elements of type 
(2.21), the evaluation of which is very SIOW,l1 and which 
represent the bottleneck of Hylleraas-CI calculations of 
two-electron systems. 

The same conclusions are also reached for CISD-R 12 
with Hartree-Fock reference. The error of our CISD-R 12 
energy (i.e., its difference to the exact eigenvalue of the 
Born-Oppenheimer Hamiltonian) consists of three parts 
of which the first two are positive (i.e., consistent with the 
variation principle), while the third one is unbounded. 
These are (L is always the highest I value included in the 
basis): 

( 1) the fact that the correlation cusp condition is not 
satisfied exactly leads to an error contribution _ (L + 1) - 3 
with a very small coefficient8; 

(2) the basis incompleteness at the two-electron level 
implies an error of - (L + 1) -7; 

(3) the fact that the one-electron problem is not solved 
exactly is supposed to cause an error exponential in L, as is 
the completeness insertion for the SCF reference. 

Taking these three errors together, one has to conclude 
that for sufficiently large L, the third error will always be 
negligible with respect to the other two, such that eventu
ally an upper bound property holds. 

In the case of He-like ions, the BNH eigenfunction is a 
very good choice, while the optimum choice8 corresponds 
to the eigenfunctions of a slightly screened BNH with 

z*=Z-O.304/Z+0.14/Z2. (2.24) 

The screening which minimizes the one-configuration en
ergy 

(2.25 ) 

leads to much poorer results. In Ref. 8, a tentative expla
nation of the unexpected excellent performance of the 
BNH reference has been given. A corollary of this is that 
for this choice, the formal partial wave expansion of Hoo 
practically coincides with that of the exact energy. 13 

We have investigated the possibility to choose <I> such 
that it minimizes the expectation value Hoo. We refer to 
this as the Hylleraas SCF.14 Details are found in the Ap
pendix. 

For the present study (see Secs. IV and V), a better 
reference than BNH is not needed. 

It should be mentioned that the option between differ
ent reference configurations only exists for genuine two
electron systems. For atoms or molecules with more than 

two electrons, it is almost compulsory to stay in the frame
work of M011er-Plesset (MP) perturbation theory or cou
pled cluster (CC) theory with a SCF (or MCSCF) refer
ence. In fact, in our MP-R12 (Ref. 9) and CC-R12 (Ref. 
15), we have used the SCF reference, accepting that one 
loses somewhat with respect to optimum convergence. 

In our work on systems with more than two electrons, 
two "standard approximations" "A" and "B" have been 
introduced. 1O Either of them implied the assumption that 
the unperturbed problem is solved exactly and, in addition, 
some completeness insertions at the many-electron level 
were assumed to hold {which imply truncation errors-in 
the atomic case--of O[ ( L + 1) - 5] for approximation A and 
O[ (L + 1) - 7] for approximation B}. For two-electron sys
tems, there is no need to introduce such completeness re
lations (only for SCF reference at the one-electron level) 
and we are automatically at least at the level of standard 
approximation B. 

Let us finally mention that another simplification of 
the matrix elements (2.6) and (2.7) alternatively to Eqs. 
(2.15) and (2.16) is possible. Let us choose 'PfJ. such that 
they are eigenfunctions of Ho with eigenvalue €fJ.' 

Ho'PfJ.=€fJ.'PfJ." (2.26) 

This is formally possible by taking 'PfJ. as a product of one
electron functions that diagonalize Ho( 1) or F( 1) in the 
given basis, but it relies on assuming that the BNH or HF 
problem is solved exactly for all eigenvalues and not just 
for the lowest one. This is much more restrictive than the 
assumption that Eq. (2.9) is solved exactly. Anyhow, as
suming Eq. (2.26), one can simplify Eq. (2.7) to 

HOfJ.~€fJ.(<I>1 (1+!rI2) 1'PfJ.)/ {D=€fJ.SOfJ.' (2.27) 

which is evaluated more easily than Eq. (2.16), mainly 
since the matrix elements of the U12 operator are not 
needed. 

There is no change for Hoo. 
One should expect that the simplification characterized 

by Eq. (2.26) is much poorer than that characterized by 
Eq. (2.16). We have performed some numerical tests with 
this simplification (see Sec. VI), which confirmed this ex
pectation on the whole, although the results are not as bad 
as one might have thought. 

III. COMPUTER PROGRAMS AND BASIS SETS 

The TURBOMOLE16 suite of programs was used for 
SCF (and BNH) calculations. The two-electron integrals 
needed by the CISD-R 12 approach were calculated by a 
modified17 version of the HERMIT18 integral generator. 
The transformation of atomic orbital (AO) integrals into 
the orthogonal basis was done by the SORE19 program. 
The aforementioned programs rest on direct integral eval
uation techniques. It is noteworthy that without such tech
niques, the benchmarks of the present work would have 
been prohibited by disk space limitations. 

The computations were carried out on the IBM 
RS/6000 workstations (models 550 and 320 H) of the 
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TABLE I. Contraction coefficients. 

H2 Hj 

BNH SCF BNH SCF 

s 0.026535 0.026523 0.026709 0.026637 
0.007224 0.007071 0.008165 0.007695 
0.114186 0.114442 0.113 001 0.113 649 
0.216107 0.214512 0.226022 0.221 104 
0.706792 0.708238 0.697443 0.702032 

s 0.090 375 0.090843 0.091733 0.091618 
0.254801 0.257504 0.246378 0.251387 
0.700 611 0.697626 0.707733 0.702966 

P 0.070528 0.071 856 0.069553 0.071 762 
0.183818 0.213737 0.113401 0.142383 
0.804 313 0.776182 0.867915 0.841 826 

d 0.027242 0.027959 0.034690 0.040 595 
0.010 217 0.013 219 0.043363 0.010 525 
0.982552 0.979981 0.953981 0.977284 

f 0.016667 0.Q25081 0.011 480 O.ot5910 
0.476660 0.535 151 0.200902 0.303741 
0.601102 0.538617 0.846657 0.759353 

Lehrstuhl fUr Theoretische Chemie at Bochum and on the 
Cray Y-MP/8-32 of the Forschungszentrum Jiilich 
(KFA). 

We have used two basis sets of Gaussian-type orbitals 
(GTOs). The first one is a contracted lOs8p6d41 set con
structed from a 16slOp8d61 primitive set. Two diffuse 
s-type functions were added to the 14s even-tempered GTO 
basis set of Schmidt and Ruedenberg20 by straightforward 
extrapolation. If these exponents are numbered 1-16 from 
highest to lowest, then the numbers 6-15 are used for the 
p set, the numbers 7-14 are used for the d set, and the 
I-type set consists of the functions 8-13. This primitive set 
has been contracted as (5,3,8 X 1 )s, (3,7 X 1 )p, (3,5 X 1 )d, 

and (3,3 X 1) I, where four different sets of contraction 
coefficients have been used. The contraction coefficients are 
the coefficients of the doubly occupied BNH or SCF orbital 
for H2 (R = 1.400 ) or Hi (D3h, R = 1.65ao), calculated 
with the full 16slOp8d61 set. Only pure spherical harmonic 
components of GTO basis sets were used in the present 
work. Then, the contraction coefficients for H2 are 
uniquely defined, since the totally symmetric ug represen
tation is contained only once in the representations 
spanned by the s, p, d, or I functions. However, in the case 
of Hi in D3h symmetry, the totally symmetric ai repre
sentation is contained twice in the reducible representation 
spanned by the d or I functions. Therefore, the contraction 
coefficients for these functions are chosen as a compromise 
between the coefficients of the two a; components. We give 
the contraction coefficients in Table I. 

The second set is a fully uncontracted 30s20p12d91 
basis corresponding to the 30s20p12d9/4g set used by 
Franke and Kutzelnigg (basis III of Ref. 21), but without 
g functions. The recommended BNH limits were calcu
lated with the above 30s20p12d91 basis augmented with 
six g functions with s exponents 19-24. 

Orthogonal sets were constructed by canonical orthog
onalization.22 Eigenvectors of the overlap matrix with ei
genvalues less than 10-5 were eliminated throughout. Ta
ble II shows the number of eliminated functions in each 
irreducible representation. This number is the same for 
both BNH and SCF contractions. 

IV. DISCUSSION OF THE RESULTS FOR H2 

In Table III, the results of conventional CISD calcu
lations as well as CISD-R 12 calculations both with BNH 
reference and SCF reference for the H2 ground state at the 
distance of 1.4 bohr are collected. 

TABLE II. The number of functions eliminated by canonical orthogonalization with the criterion 
f;(S)<lO-s. 

Basis set Irreducible representation 
H2 
D .. h• R= 1.4ao CTg CTu 1I'g 1I'u 6g 6u 4>, 4>u N" 

lOs 0 0 20 
10s8p 0 2 0 0 66 
10s8p6d 0 4 0 0 0 0 124 
I 0s8p6d4f 1 4 0 2 0 0 0 0 175 
30s 0 0 60 
30s20p 0 4 0 0 176 
30s20pl2d 0 7 0 1 0 0 291 
30s20p 12d9 f 2 8 0 2 0 0 0 0 412 

Hi N" 
D3/r> R = 1.6500 a' I a' 2 e' a' I a" 2 e" 

lOs 0 0 30 
10s8p 0 0 2 0 0 98 
10s8p6d 0 2 3 0 0 0 184 
1 0s8p6d4f 0 3 5 1 0 1 260 
30s 0 1 90 
30s20p 0 1 4 0 0 261 
30s20pl2d 0 3 6 0 0 0 435 
30s20p12d9f 2 5 8 0 0 I 614 

'The number of remaining orthonormal basis functions. 
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TABLE III. Ground state energy of the H2 molecule at R= 1.4ao. En
ergies are in -Eh • Results are obtained with contracted (l0s8p6d4j) 
and uncontracted (30s20p 12d9 j) basis sets. 

BNH reference SCF reference 
Basis set CISDa CISD-RI2 CISD-RI2 

lOs 1.154875 1.174718 1.173 138 
lOs8p 1.172 271 1.174392 1.174357 
lOs8p6d 1.173955 1.174469 1.174454 
lOs8p6d4j 1.174223 1.174474 1.174467 

30s 1.154891 1.174716 1.173 132 
30s20p 1.172 293 1.174393 1.174359 
30s20pl2d 1.173985 1.174470 1.174456 
30s20p 12d9 j 1.174285 1.174474 1.174469 

-In case of contraction, the coefficients are taken from the BNH calcula-
tion with the lOs8p6d4j basis set. 

While the conventional CI results converge slowly 
with an increase of the basis size, being in error of 0.2 
mhartree for the largest basis, the CISD-R 12 results con
verge much faster. For the BNH reference, both for the 
basis sets (lOs8p6d4J) and (30s20pI2d9J), there is only 
a difference of - 2 /-Lhartree with respect to the exact result. 
For the SCF reference, the convergence is somewhat 
poorer, and for the largest basis, the error is - 7 /-LE h' 

One also reads from Table Ill-comparing the 
(lOs···) with the (30s"') basis set-that saturation 
within one I value (s,p,d, ... ) is practically achieved with 

the (lOs···) sets for the CISD-R 12 calculations, but not at 
all for the ordinary CISD calculations. 

Reference values from the literature are found on Ta
ble IV. 

To reduce the error to less than I/-LEh' one probably 
has to include g functions or functions with higher I in the 
basis. A better alternative is possibly to care for an opti
mum reference (see the Appendix). 

We have pointed out in Sec. II that our method is not 
strictly variational, i.e., it is not guaranteed that the exact 
energy is approached from above. However, we have also 
mentioned that it is relatively easy to satisfy the assump
tion (2.9) to any desired accuracy. One sees, in fact, from 
Table V that the reference-state energy Eo is only in error 
by a few /-LEh provided that the basis is sufficiently satu
rated up to d AOs. This means that for sufficiently large 
basis sets, the deviations from an upper bound property are 
negligible and one does approach the exact energy from 
above. This is confirmed by the values in Table III. Only 
for the BNH reference with basis sets limited to s functions 
one overshoots the exact energy, though only by 
-O.3mEh • 

Further inspection of Table V reveals that Eo con
verges somewhat faster for the SCF reference. This is not 
unexpected. The BNH reference corresponds to the Hi 
ground state, in which induction (polarization) effects are 
large. To take care of the polarization of the wave function 
at one nucleus by the other nucleus, basis functions with 

TABLE IV. A comparison of the best results of the present work with reliable ab initio calculations. 
Geometries are the same as in Table II (if not indicated otherwise). Energies are in -Eh • 

Methodlbasis set 

ESNH 30s20p12d9j GTO 
30s20p12d9j6g GTO 

30s20p12d9j GTO 
Finite element method 
Finite difference method 
CISD-RI2/30s20pI2d9j GTO 
Explicitly correlated functions 
Hy\leraas-CI/15s7p2dlj 
Gaussian geminals 
Variational Monte Carlo 

H{ 
ESNH 30s20p 12d9 j 

30s20p12d9j6g GTO 

ESCF 30s20p12d9j GTO 
13s5p3d GTO 
30s20p12d9j GTO 
Coordinate space numerical HF 
Momentum space numerical HF 
CISD-RI2/30s20pI2d9j GTO 
Green's function Monte Carlo 
Hy\leraas-CI/13s5p3d GTO 
Gaussian geminals 
Gaussian geminals 
Variational Monte Carlo 

-Calculated at R= 1.4011ao. 
bCalculated at R = 1.6405ao. 

Energy Literature 

1.8542524 This work 
1.8542527 This work 
1.8542527 Wind (Ref. 31) 
1.1336295 This work 
1.133 629 572 Yang et al. (Ref. 32) 
1.133 629 573 Sundholm (Ref. 33) 
1.1744744 This work 
1.174475 668 Kolos et al. (Ref. 4) 
1.17447467- Frye et al (Ref. 34) 
1.174474 85- Alexander et al. (Ref. 35) 
1.174453(26) Alexander et al. (Ref. 7) 

2.0419022 This work 
2.0419029 This work 
1.300 3717 This work 
1.300 365 Frye et al (Ref. 5) 
1.300 399 8b This work 
1.300 40b Becke and Dickson (Ref. 36) 
1.30041(4)b Alexander et al. (Ref. 37) 
1.343835 1 This work 
1.343835(1 ) Anderson (Ref. 2) 
1.3438279 Frye et al (Ref. 5) 
1.3438220 Alexander et al. (Ref. 35) 
1.343814 Wenzel (Ref. 38) 
1.343819(66) Alexander et al. (Ref. 7) 
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TABLE V. Reference state energy Eo' and expectation value Boo b cal
culated with BNH and SCF wave functions of the H2 molecule at 
R = 1.4<10. Energies are in - Eh • Results are obtained with contracted 
(10s8p6d4[) and uncontracted (30s20pI2d9[) basis sets. 

BNH reference SCF reference 

Basis set Eo Boo Eo Boo 

lOs 1.834957 1.167633 1.128538 1.139498 
10s8p 1.854045 1.165292 1.133570 1.138 173 
10s8p6d 1.854249 1.165313 1.133 628 1.138203 
10sSp6d4[ 1.854252 1.165314 1.133629 1.138204 
30s 1.834961 1.167633 1.128542 1.139490 
30s20p 1.854050 1.165292 1.133572 1.138174 
30s20pl2d 1.854250 1.165 313 1.133629 1.138204 
30s20pI 2d9[ 1.854252 1.165314 1.133629 1.138204 

'Expectation value of the BNH or SCF reference function <1>0' 
bExpectation value of (I +!rI2)<1>0 [Eq. (2.6)1. 

large I are needed. In a SCF calculation ofH2 , on the other 
hand, the other nucleus is essentially shielded and induc
tion effects are much smaller. So for the SCF calculation of 
H 2, a smaller basis is sufficient than for Hi . 

The "dominant" matrix element Hoo , also documented 
in Table V, shows a similar convergence pattern as Eo. The 
superiority of the BNH reference is obviously somehow 
related to the fact that Hoo for BNH is much closer to the 
exact ground state energy of H2 than the Hoo for SCF 
reference. 

Ifwe call E-Hoo the "residual correlation energy," then 
this is 1O.2mEh for BNH reference and 37.3mEh for SCF 
reference. The corresponding value for the He atom 
ground state with BNH reference is 27.1mEh' and it is 
reduced for the optimum shielding reference (OS) to 
15.0mEh • For He, the error of calculations including up to 
1=7 was8 2.3f.LEh for BNH reference and OAf.LEh for as 
reference. The analogous errors for 1 truncated at L = 3 
were - 5 and -1f.LEh , respectively. So actually, the BNH 
reference is definitely better for H2 than for He, and also 
the convergence in terms of 1 is faster for H 2 • There is 
hence less need for an improved reference than in the case 
of He. 

Calculated properties of H2 are found in Tables VI and 
VII. The agreement with the best available values from the 
literature is usually quite good. However, the improvement 
of CISD-R 12 with respect to conventional CISD, at least 
for the (lOs8p6d4j ) basis, is rather small. This is not too 
surprising since all these properties are related to one
electron operators that are not very sensitive to short-range 
correlation. 

It should be mentioned that the one-particle properties 
in Table VI were not evaluated as expectation values, but 
from a one-particle density matrix constructed from the 
wave functions by means of a completeness insertion. 
Therefore the last word on the effect of the r12 term on 
properties has probably not yet been said. 

The one-electron properties were actually calculated as 
matrix traces of products of operators and density matrix 
representations. In conventional CISD, this is equivalent to 
the expectation value of the operator from the wave func-

TABLE VI. Ground state properties (in atomic units) of the H2 molecule 
(R = 1.400 along the z axis). Results are obtained with the 10s8p6d4[ 
basis sets. 

Literature 

SCP CISDb CISD-RI2c Monte Carlod Other theory" 

p; 0.8376 0.8693 0.8694 0.870(1 ) 
p; 0.5769 0.6109 0.6110 0.611(1) 
riA 1.5554 1.5491 1.5488 1.548(2) 1.5488 
'fA 3.0639 3.0377 3.0368 3.031(6) 3.0364 
1/rlA 0.9081 0.9127 0.9128 0.910(2) 0.9128 
xl 0.7769 0.7619 0.7617 0.764(2) 0.7617 
:l- 1.0202 1.0239 1.0235 1.017(2) 1.0230 
p4 12.254 13.065 13.094 13.0( 4) 13.249 
a(rIA) 0.4450 0.4545 0.4551 0.459(1 ) 0.460 15 

"The IOs8p6d4[ basis set with SCF contraction. 
~ith BNH contraction. 
"With BNH reference and contraction coefficients. 
dAlexander et aL (Ref. 23). 
-Kolos and Wolniewicz (Ref. 3). 

tion, but in CISD-R12, it is not. In the latter case, we first 
project the CISD-R12 wave function onto the space 
spanned by the conventional Slater determinants, normal
ize the projection, and then form a density matrix as usual. 

With respect to factors of 2 (number of electrons) 
contained in the definitions of the one-electron operators, 
we adopt the notation of Ref. 23. Expectation values of 
two-electron operators such as ri21 or 153 (r12) depend some
what more on the r12 term. 

The polarizabilities in Table VII have been evaluated 
by finite perturbation theory as second derivatives of the 
energy. 

v. DISCUSSION OF THE RESULTS FOR Ht 
The results for the energy of the Ht ground state in its 

equilateral triangular configuration are collected in Table 
VIII. 

TABLE VII. Static dipole polarizabilities in atomic units of the H2 and 
Ht molecules at their eqUilibrium geometries (as in Tables III and V), 
obtained with the lOs8p6d4[ basis set. An electric field of om a.u. was 
applied as finite perturbation. 

Literature 

SCP CISDb CISD-RI2e Monte Carlod Other theory 

H2 
a xx 4.615 4.584 4.583 4.4(2) 

azz 6.455 6.397 6.393 6.3(2) 

Ht 
a xx 3.593 3.546 3.546 3.5(3) 
azz 2.252 2.202 2.202 2.0(3) 

"The IOs8p6d4[ basis set with SCF contraction. 
bWith BNH contraction. 
CWith BNH reference and contraction coefficients. 
dAlexander et al. (Ref. 23). 
"Bishop and Cheung (Ref. 39). 

4.5786< 
4.5074f 
6.3866-
6.4454f 

3.5949f 

2.2357f 

fSCF results obtained by Augspurger and Dykstra (Ref. 40) calculated at 
R= 1.650400 , 
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TABLE VIII. Ground state energy of the Hj molecule at equilibrium 
geometry (D3h, R = 1.6500). Energies are in - Eh • Results obtained with 
contracted (lOs8p6d4j) and uncontracted (30s20pI2d9j) basis sets. 

BNH reference SCF reference 
Basis set CISO" CISO-RI2 CISO-RI2 

lOs 1.311 812 1.334382 1.333993 
IOs8p 1.341 148 1.343898 1.343962 
IOs8p6d 1.343287 1.343834 1.343823 
10s8p6d4j 1.343578 1.343834 1.343828 
30s 1.311 981 1.334632 1.334401 
30s20p 1.341 232 1.343913 1.343974 
30s20p12d 1.343338 1.343835 1.343825 
30s20p 12d9 j 1.343656 1.343835 1.343831 

"The same as footnote a in Table III. 

The convergence pattern is similar to that for H2. 
Again with the largest basis, the conventional CISD is off 
by ~0.2mEh. The contribution of I-type AOs is 0.3mEh 
both for H2 and Hi, while d-type AOs contribute 
~ 1.7mEh in H2 and ~2.1mEh in Hi. In CISD-R12 with 
BNH reference, the energy appears to be converged to 
-1.343 835Eh, while with the best SCF reference we miss 
~4J.LEh· 

The convergence of the reference state energy Eo and 
the expectation value Hoo are seen in Table IX. For Hi , Eo 
converges somewhat more slowly than for H2. The incre
ment of I AOs for BNH is as much as 13J.LEh. However, as 
seen from Table IV, inclusion of g functions lowers this 
value by only ~ IJ.LEh, such that it can be regarded as 
practically converged. The explanation of the slower con
vergence is of course that BNH corresponds to Hi , an H 
atom polarized by two protons. Hence there are much 
larger induction effects than in H2. 

Again, as for H2, the SCF energy of Hi converges 
faster than the BNH energy. The value of -1.300 372Eh 
can be regarded as stable. It may be compared with the 
best value of -1.300 365 from the literatureS (see Table 
IV) for this geometry, obtained with a significantly smaller 
basis, that is close to the value for our (IOs8p6d) basis. 

TABLE IX. Reference state energy Eo" and expectation value HOOb cal
culated with BNH and SCF wave functions of the Hj molecule (D3h, 

R=1.65ao). Energies are in -Eh • Results obtained with contracted 
(lOs8p6d4j) and uncontracted (30s20pI2d9j) basis sets. 

BNH reference SCF reference 

Basis set Eo Hoo Eo Hoo 

lOs 1.988417 1.331931 1.280852 1.303443 
IOs8p 2.040 846 1.340 759 1.300 151 1.307786 
IOs8p6d 2.041 887 1.340 662 1.300 369 1.307682 
IOs8p6d4j 2.041902 1.340 659 1.300 371 1.307681 

30s 1.988872 1.332 160 1.281037 1.303771 
30s20p 2.040 937 1.340 778 1.300 174 1.307797 
30s20p12d 2.041 889 1.340 662 1.300 370 1.307683 
30s20p 12d9 j 2.041902 1.340 659 1.300 372 1.307682 

"The same as footnote a in Table V. 
hne same as footnote b in Table V. 

The expectation value Hoo converges faster than Eo, 
and we can regard the value of - 1.340 659 for BNH ref
erence as converged. Again Hoo for BNH is very close to 
the exact Hi energy (residual correlation energy 
~3mEh)' while for SCF reference, the residual correlation 
energy is 43mEh. The superiority of the BNH reference is 
even more pronounced than in the case of H2. The trend 
from He to H2 is continued. 

To estimate the error of our best Hi energy of 
-1.343 835 in a reliable way is, of course, not easy. One 
can certainly not object that it should be of the same order 
of magnitude as for H2, where it was 2J.LEh. There are 
indications that the error should be smaller for Hi. For 
the same number of electrons, the basis is larger for Hi. 
The much smaller residual correlation energy (i.e., the 
small importance of excited configurations) is another in
dication. Furthermore the stability of E on the addition of 
I functions to the basis is an indication that the error may 
be less than IJ.LE h . 

The effect of I AOs is not seen from Table VIII be
cause we have rounded off at the microhartree position. 
With more figures, we get for BNH reference 

IOs8p6d, 
IOs8p6d4/, 
30s20p1 2d, 
30s20p 12d9 I, 

-1.343 833 67, 
- 1.343 834 28, 
- 1.343 834 75, 
- 1.343 835 09. 

The I AOs lower the energy by 0.61J.LEh for the first family 
of basis sets and by 0.34J.LEh for the second family. 

One should not overlook that the convergence to the 
exact energy of CISD-R 12 with BNH reference for Hi is 
from below up to the sets without I functions, while it 
appears to be from above for larger sets. For H2, it was 
from above-excluding s-only basis sets. Again this is not 
too surprising. In fact, for the basis sets used here (except 
the largest one), the one-particle energy Eo is not fully 
converged, and hence the deviations from the upper-bound 
property controlled by the validity of Eq. (2.9), dominate 
the error, while the corrections to the (1 +~r12)<I> term are 
less important than in the case of H2. This confirms our 
expectation that increments for I> 3 should lower the en
ergy such that the value with I AOs is actually an upper 
bound. This is consistent with the observation for the SCF 
reference, where the validity of the counterpart of Eq. 
(2.9) is reached earlier (essentially for the basis sets with
out I functions), such that the results for the largest basis 
sets appear to be practically upper bounds. 

The best previous variational result is that of Frye 
et al. 5 (see Table IV), using a Hylleraas-CI method. This 
does obviously not represent the limit of what is achievable 
with Hylleraas CI, but rather what is feasible with present 
computer facilities. 

If one argues that the basis of Frye et al. (13s5p3d) is 
not saturated, as is seen from the missing 7 J.LE h at the SCF 
level, while it is probably good enough for the correlation 
part, one might add the SCF error to the overall energy 
and get -1.343 835, in agreement with our best result. 
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TABLE X. Ground state properties (in atomic units) of the Hj molecule 
(equilateral triangle in the xy plane with R= 1.65ao). Results are ob
tained with the iOs8p6d4f basis sets. 

Literature 

SCP CISDb CISD-RI2c Monte Cariod Other theorye 

JJ. 0.7594 0.7942 0.7942 0.792(4) 
p; 1.0650 1.0987 1.0989 1.104(6) 
rIA 1.5755 1.5715 1.5714 1.572(8) 

riA 2.9850 2.9686 2.9680 2.97(2) 
1/r lA 0.8522 0.8553 0.8553 0.856(5) 0.855 19 
x? 0.7631 0.7607 0.7605 0.760(4) 0.75913 
r 0.5514 0.5397 0.5396 0.541(4) 0.540 85 
p4 7.1780 7.6319 7.6532 7.7(1) 
S(rIA) 0.3518 0.3592 0.3597 0.363(2) 

"The 10s8p6d4f basis set with SCF contraction. 
t>with BNH contraction. 
<With BNH reference and contraction coefficients. 
d Alexander et al. (Ref. 23). 
esaImon and Poshusta (Ref. 41). 

We are not dissatisfied that the same value has also 
been suggested recently by Anderson2 on the basis of his 
Green's function Monte Carlo calculation, with an indi
cated statistical error of If.LEh • We have no feeling for the 
reliability of this error estimate, noting that there were a 
few earlier calculations by Anderson et al., namely, 
-1.344±0.013Eh from 1975,24 -1.3439±0.cX)()2Eh from 
1981,25 -1.343 76±0.(X)() 03Eh from 1987,26 and 
- 1.343 87 ± O.(X)() 05 from 1988,27 such that the 1987 and 
1988 estimates hardly overlapped and that that of 1987 
does definitely not include the present best value.2 

Some expectation values for Hi are found on Table X. 
The reference values from the literature are probably less 
accurate than ours, such that these can be regarded as 
recommended values. Again the difference between the re
sults from conventional CISD and CISD-R 12 is very 
small. 

VI. THE SIMPLIFIED APPROACH 

In Table XI, we compare the results of the "standard" 
CISD-R12 method with those of the simplified version 

TABLE Xl. A comparison of the original method [Eq. (2.16)1 with an 
alternative method which avoids integrals of the type [T,rlil, i.e., Eq. 
(2.27). 

BNH reference SCF reference 

Basis set Eq. (2.16) Eq. (2.27) Eq. (2.16) Eq. (2.27) 

H2 R= l.4ao 
lOs 1.174718 1.173520 1.173 138 1.172 117 
iOs8p 1.174392 1.174469 1.174357 1.174414 
10s8p6d 1.174469 1.174476 1.174454 1.174456 
iOs8p6d4f 1.174474 1.174480 1.174467 1.174468 

Ht D3", R= 1.65ao 
lOs 1.334381 1.333266 1.333993 1.333 147 
10s8p 1.343898 1.344 124 1.343962 1.344 172 
10s8p6d 1.343834 1.343853 1.343823 1.343832 
I 0s8p6d4f 1.343834 1.343839 1.343828 1.343831 

TABLE XII. First order relativistic direct perturbation theory (DPT) 
applied to H2 (R=1.4ao) and Ht (D3h, R=1.65ao). Contributions to 
Eq. (7.1) as expectation values of the SCF determinant obtained with the 
contracted lOs8p6d4f basis sets. E.~) is in J.LEh ; all other entries are in 
atomic units. 

H2 Hj 

E;O -0.59466 -1.20788 

<Xo I Xo) 0.56304 0.64595 

<Xol VIXo) -0.95911 -1.47633 
<XoIJIXo) 0.35399 0.40829 
E!:2)a reI -14.394 -15.326 
Literatureb -14.399 

ae;~)= (l1i?)E2 with c= 137.0359895 a.u., as in Ref. 21. 
hne Dirac-Fock result by Yang, Heinemann, and Kolb (Ref. 32). 

characterized by Eq. (2.27). For the (lOs8p6d4j) basis, 
the simplified version does not look too bad, in particular, 
in connection with the SCF reference, but on the whole, 
the convergence pattern is less systematic and definitely 
inferior to the standard approach. 

The simplification with respect to our standard ap
proach (where matrix elements of the operator Ul2 explic
itly arise) is actually not so important that there is any 
reason to prefer the "simplified approach." 

VII. RELATIVISTIC CORRECTION TO THE SCF 
ENERGY OF Ht 

If one is able to calculate energies to microhartree ac
curacy, one also needs to worry about corrections that go 
beyond the nonrelativistic Born-Oppenheimer Hamil
tonian. We have therefore decided to evaluate approximate 
relativistic corrections, by means of the direct perturbation 
theory,21,28 that has turned out to be rather powerful-and 
numerically much better behaved than the use of the Breit
Pauli Hamiltonian. We have limited ourselves to the lowest 
order in c- 1, i.e., to c-2E2• Neglect of the Breit interaction 
and of correlation effects are additional approximations. 
One should later go beyond these two approximations, 
while the limitation to the leading term in c- I is perfectly 
uncritical (the next term will be smaller by _10-4

). 

Within the direct perturbation approach, the leading 
correction E2 at the SCF level is obtained as 

E 2 =2(Xol V+J-EoIXo), Xo=~o-·p'Po, (7.1) 

where 'Po is the occupied Hartree-Fock spin orbital with 
energy EO, Vis the nuclear attraction, and J is the Coulomb 
operator generated by 'Po. 

The contributions that enter Eq. (7.1) and the final 
value for the relativistic correction are given in Table XII. 
These must not be confused with the contributions that 
arise from the Breit-Pauli Hamiltonian (velocity mass, 
Darwin, etc.). 

VIII. COMPUTER TIMES 

In Table XIII, we give central processing unit (CPU) 
times in minutes as obtained on an IBM RS/6000 model 
320 H workstation. Some calculations were done on a 
model 550 workstation. These were almost twice as fast. 
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TABLE XIII. CPU times in minutes on an IBM RS/6000 model 320 H 
workstation. 

Integral 
Basis set IS iterations" transformationb 

H2 
10s8p6d 60 80 
lOs8p6d4j 390 460 
30s20p12d 940 1280 
30s20p12d9j 5120 6050 

Hr 
10s8p6d 105 160 
lOs8p6d4j 680 950 
30s20p12d 2360 2690 
30s20p12d9j 10040 12310 

"Typical values for SCF or CISD(-RI2) iterations performed with the 
TURBOMOLE (Ref. 16) suite of programs. 

bUtilizing the SORE (Ref. 19) program. 
<In D3h symmetry. 

SORE calculations on the Cray Y-MP/8-32 (KFA, 
Jiilich) performed about ten times faster than those of 
Table XIII. 

The SORE19 program generates integrals of the type 
(lPIJQ) over 1/r12 , r12' [rI2,Ttl, and [r12,T:z], where I and 
J are doubly occupied obitals, and where P and Q denote 
arbitrary orbitals. These integrals are evaluated only once 
and then stored. We see from Table XIII that evaluating 
these integrals in the orthogonal basis does not take more 
time than about 18 SCF iterations performed with the 
TURBOMOLE16 program. 

In a "direct-CI" approach for two-electron systems, a 
single CI iteration is essentially the same computation as 
one SCF iteration. Therefore, the CISD and CISD-R 12 
iterations were performed with the TURBOMOLE pack
age, and the computer times are given in Table XIII. 

All other computational work demands only negligible 
effort. 

As an example, consider the Hi ion with the 
IOs8p6d4J basis set. The total cost of one CISD-R 12 cal
culation is 1630 minutes on a 320H workstation, consisting 
of one BNH calculation (negligible), one SORE integral 
transformation (950 min), and 15 CISD-RI2 iterations 
(680 min) with TURBOMOLE. This means that such a 
calculation can be done easily within 24 h on a (desig
nated) model 550 workstation. It is noteworthy that such 
a day's work is accurate to within a few (2-3) microhar
trees. 

We see from Table XIII that the calculations on Hi 
take roughly twice as long as those on H2. This holds as 
long as the D3h symmetry of the equilateral triangular ion 
is fully exploited. Points on the potential energy surface 
with lower symmetry will, of course, take considerably 
longer. 

IX. CONCLUSIONS 

It has been possible to get a very accurate ground state 
energy of Hi with the CISD-R12 method. There is strong 
evidence that the energy of - 1.343 835Eh is in error by at 

most 1 to 2fJ,E h' Although our ansatz is more restricted 
than Hylleraas CI, the fact that no "expensive" integrals 
such as Eq. (2.21) are needed allows one to use very large 
basis sets and thus to beat the accuracy of the more flexible 
Hylleraas CI. Although the same accuracy has also been 
claimed for Green's functions Monte Carlo calculations, 
we doubt that these will be applicable to the accurate cal
culation of a full potential surface or to the evaluation of 
properties, which our method is. 

We are in the somewhat fortunate situation that the 
convergence to the exact result is faster for Hi than for H2 
and this is faster than for He-like ions. This means that in 
order to achieve microhartree accuracy for Hi, the BNH 
reference is perfectly alright. If one wants to push the ac
curacy still further, one has probably to care for an opti
mum single Slater determinant reference, or even to use a 
multiconfiguration reference. 

The present results encourage us to be optimistic also 
with respect to CISD-RI2 or CCSD-RI2 calculations for 
molecules with more than two electrons. 
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APPENDIX: HYLLERAAS SCF 

A good reference function is essential for the fast con
vergence of the CISD-R 12 method. It is therefore worth
while to ask how one can find an optimum reference. One 
possibility is to minimize the expectation value Hoo as de
fined by Eq. (2.6) with respect to the single Slater deter
minant <1>. We call this the Hylleraas SCF. In a "general
ized Hylleraas SCF," one can replace the factor 1/2 in Eq. 
(2.6) by some arbitrary parameter r and minimize with 
respect to r as well. One can also minimize just with re
spect to r for given <1>, but this is, of course, no longer the 
Hylleraas SCF. For the case of the He ground state, gen
eralized Hylleraas-SCF calculations have been performed 
long ag029,30 with the result 

r=0.35, Hoo= -2.898 06Eh , (AI) 

i.e., a "residual correlation energy" of -5.7mEh , com
pared to -27.1mEh for BNH reference and -15.0mEh 
for optimum shielded reference as characterized by 
Eq. (2.24). 

With a 10 s Huzinaga basis, we were able to reproduce 
the result (A 1). It should also be mentioned that the result 
for r=0.5 does not differ much from the optimum Hoo; 
one namely gets Hoo=2.895 273Eh for r=0.5. 
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For H2 at R = 1.400 , we have obtained the Hylleraas
SCF energy (using a 6s3p ld basis) 14 

r=O.S, Hoo= -1.171698, 
(A2) 

ropt=0.43, Hoo= -1.171970. 

The residual correlation energy is -2.SmEh (for r=O.5), 
while for BNH reference, it is -9.2mEh. So the gain with 
respect to BNH is less spectacular than in the case of He 
and it will probably be even smaller for Hi. 

Some tentative studies with the Hylleraas SCF as ref
erence for CISD-R12 were not too encouraging (i.e., they 
did not appear to be really superior to BNH reference), but 
more careful studies are necessary. 

The criterion for the best reference is probably not that 
one should minimize Hoo. In fact, the Brillouin condition 
corresponding to the minimum of Hoo is that 

(A3) 

where ct>r is a singly excited configuration. What we need 
is, however, that matrix elements of the type (2.16) are as 
small as possible, in particular, that 

(A4) 

(<1>1 ut2-Arl2l<1>r> =0. (AS) 

A method where one determines ct> such that Eqs. (A4) 
and (AS) hold may be termed a "Hylleraas-Brillouin" 
method. 

We can now return to the observation that the "best" 
reference <1> is obviously much closer to the BNH than the 
SCF wave functions. In other words, the reference <1> does 
not want to be shielded much. There are two partial ex
planations. One is illustrated for the He ground state. 

A wave function 

'II ( 1,2) =Ne-arl-ar2( 1 +h2) 

can for small rl2 be written as 

'II ( 1,2);:::;N exp( -arl-ar2+~rI2)' 

(A6) 

(A7) 

If rl and r2 are collinear and r2> rl, the effective nuclear 
charge for electron 2 is a-4, i.e., rl2 introduces automat
ically some shielding. 

Another explanation starts from the condition (AS). 
The effective one-electron operator, of which the ~cupied 
molecular orbital (MO) is eigenfunction, is Ho+J with 

J(1)= f (Ut2-ArI2) Icp(2) 12d7'2' (A8) 

The operator J( 1) which replaces the operator J( 1) of 
Hartree theory is much different from the latter. Especially 
there is no strong short-range repUlsion. 

In spite of their long experience, the authors are still 
somewhat suprised how well the ansatz (2.1) works. The 
factor 1 +h2 has been introduced to correct the behavior 
of the wave function for small r12' However, this factor 
should be unphysical for large rl2 and one might have 
thought that one ought to multiply rl2 by a damping factor 
that falls off rapidly for large r12' It turns out that the 

exponential decay of the wave function with rl and r2 
makes the situation extremely unlikely that rl2 is large, at 
least for atoms.8 In a diatomic molecule such as H2, the 
"pair distribution function" has a local maximum (or 
shoulder) near r12=R (R being the internuclear distance). 
This local maximum is somewhat underestimated in the 
one-determinant approximations; it is enhanced by the (1 
+h2) factor, which is a desired feature, introducing some 
left-right correlation. This means that the need to use a 
two-configuration reference necessary for large R is some
what reduced. A similar argument holds for Hi. This ex
plains somehow why H2 and Hi take even more advantage 
from the rl2 term than does He. 
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