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Efficient recursive computation of molecular integrals over Cartesian 
Gaussian functions 

S. Obara and A. Saika 
Department oj Chemistry, Kyoto University, Kyoto 606, Japan 

(Received 25 October 1985; accepted 4 November 1985) 

Recurrence expressions are derived for various types of molecular integrals over Cartesian 
Gaussian functions by the use of the recurrence formula for three-center overlap integrals. A 
number of characteristics inherent in the recursive formalism allow an efficient scheme to be 
developed for molecular integral computations. With respect to electron repulsion integrals and 
their derivatives, the present scheme with a significant saving of computer time is found superior 
to other currently available methods. A long innermost loop incorporated in the present scheme 
facilitates a fast computation on a vector processing computer. 

I. INTRODUCTION 
Computation of molecular integrals is still a problem of 

paramount importance in theoretical studies of molecular 
systems by ab initio calculations. As the system gets larger, 
computation of electron repulsion integrals (ERI's) be­
comes one of the most laborious and time-consuming steps 
in the process. Improvement of the computational methods 
of molecular integrals, especially of ERI's would be indis­
pensable to a further development in computational studies 
of large molecular systems, such as transition metal com­
pounds and biologically important molecular systems. 

One apparent method for reducing the computer time is 
to take advantage of molecular symmetry, 1 if it is available. 
However, one cannot resort to molecular symmetry, for in­
stance, in calculations of potential energy hypersurfaces, be­
cause the energies at nonsymmetric molecular geometries 
have to be calculated. Although recent developments of 
computers such as a vector processing machine would some­
what relieve the difficulty of the time consuming procedure, 
it is desirable to develop a fast computational algorithm. The 
purpose of this work is to describe a new formulation of 
molecular integrals leading to an efficient method of com­
puting them. 

Since Boys2 proposed to use Gaussian functions as basic 
functions in theoretical studies of atoms and molecules, they 
have been utilized widely, and several modifications for the 
angular part of the function have been introduced. Here we 
are concerned with molecular integrals over Cartesian 
Gaussian functions in most common use. For other modifi­
cations, we only refer to excellent reviews by Saunders. 3 

Boys2 gave formulas for molecular integrals over s func­
tions and suggested to differentiate these formulas with re­
spect to the nuclear coordinates to obtain those over higher 
angular momentum functions. Taketa, Huzinaga, and 0-
ohata4 gave general expressions for one- and two-electron 
molecular integrals. Since then, several improvements have 
been embodied for saving of computation time. McMurchie 
and Davidsons (MD) proposed to use the Hermite Gaus­
sian functions as the intermediaries for the calculation of 
molecular integrals over Cartesian Gaussian functions, and 
showed that the computation can be carried out efficiently 
by using the differential relation of the Hermite Gaussian 
functions. 

If one confines oneself to ERI's there are now in use 
several powerful methods.3

(b) Pople and Hehre6 (PH) de­
veloped a method using a local coordinate system defined by 
four centers of functions in an ERI. The method requires 
only one fifth of the computation time required by the MD 
method in the calculation of hydrogen peroxide.s However, 
it is not applied to ERI's including higher angular momen­
tum functions than p, and the calculated ERI's are, in some 
cases, subject to a round-off error.3

(b) Dupuis, Rys, and 
King (DRK) proposed to use a numerical quadrature meth­
od, 7.8 and to take advantage of a recurrence relation 9 of two­
dimensional integrals. The computer timeS required by their 
method is about five times longer than that by the PH meth­
od. Saunders10 introduced a compromised method between 
the MD and DRK methods, and van der Yeldell modified 
the summation procedure in the ERI expression. Hegarty 
and van der Veldel2 analyzed the number of arithmetic oper­
ations in these methods as well as in the MD method, and 
found that the Saunders method requires the least number of 
arithmetic operations. In view of the trivial differences 
among these methods, however, they adopted the MD meth­
od for their implementation on a vector processing comput-
er. 

In the analytical "force method" 13.14 the derivatives of 
ERI's and one-electron integrals with respect to the nuclear 
coordinates come into play. Since the derivatives of ERI's 
can be expressed as a linear combination of ERI's including 
higher and lower angular momentum functions, they are 
usually calculated by the method for the ERI computation. 
Recently Schlegel IS devised a method of calculation where 
the first derivative of the total energy is calculated directly, 
while Schlegel, Binkley, and Pople16 applied a numerical 
quadrature method for the calculation of the first and the 
second derivatives ofERI's without employing higher angu­
lar momentum functions. 

In this paper we develop a new procedure for evaluating 
ERI's as well as one-electron integrals, i.e., overlap integrals, 
kinetic energy integrals, moment integrals, nuclear attrac­
tion integrals, electric field and electric field gradient inte­
grals, angular momentum integrals, and spin-orbit interac­
tion integrals. The formulation is based on the recurrence 
formula for three-center overlap integrals. The derived ex­
pressions are in recursive form with respect to the angular 
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momenta of functions in the integral. In effect, they can be 
given as a linear combination of integrals (and auxiliary in­
tegrals for some of the molecular integrals) over lower angu­
lar momentum functions. A number of potential merits for 
efficient computation of various types of molecular integrals 
inhabit in the present recursive formulation. Thus a new 
computational scheme based on this method is reported in 
the present paper. It has been programmed and tested in 
comparison with other methods. With respect to the compu­
tation of ERrs and their first derivatives, the proposed 
method is found to be uniformly superior to other methods 
presently in use and particularly suited for a vector process­
ing computer. 17 

In the next section the recurrence formulation of ERrs 
is described. In Sec. III the characteristics of this formula­
tion are discussed from the computational viewpoint. Sec­
tion IV outlines a strategy for the ERI computation. Com­
puter times are compared with those of the PH and the DRK 
methods in Sec. V, and concluding remarks are drawn in the 
last section. Expressions for the one-electron integrals are 
collected in the Appendix. 

II. A RECURRENCE FORMULA FOR ELECTRON 
REPULSION INTEGRALS OVER CARTESIAN 
GAUSSIAN FUNCTIONS 

A. Cartesian Gaussian functions 

We write the unnormalized Cartesian Gaussian func­
tion with origin at R as 

cp(r;s,n,R) = (x - Rx )nX( y - Ry )ny(z _ Rz )nZ 

X exp[ - s(r - R)2] , (1) 

where r = (x, y, z) represents the coordinates of the elec­
tron, S is the orbital exponent, and n denotes a set of nonneg­
ative integers nx, ny, and nz : 

n=(nx,ny,nz )' (2) 

The normalization constant of the function is then given by 

.9(S,D) = (;-Y/4(4s)(nx+ny+nzll2 

X [(2nx -1)!!(2ny -1)!!(2nz _1)!!]-1/2. 

(3) 

Letting A be defined as the sum of nx, ny, and nz, one 
notes that it is closely related to the total angular momentum 
quantum number. A and D will be hereafter termed the angu­
lar momentum and the angular momentum index, respec­
tively. The functions with A equal to 0,1,2, ... , are referred to 
ass,p,d, ... , respectively. A set of (A + 1) (A + 2)/2 func­
tions at R associated with the same angular momentum A 
and orbital exponent S constitute a shell, and the functions in 
the shell are components of the shell. The single component 
of the s shell with the angular momentum index 0 = (0,0,0) 
is usually designated s. The components of the p shell have 
the angular momentum indices Ij (i = x, y, z), where Ij is 
defined by 

Ij = (Djx,Djy,Djz) (4) 

with Kronecker's deltas. These components will be designat­
ed Px' Py, and pz· The components of the d shell with the 

angular momentum indices Ij + Ij (i,j = x, y, z) will be de­
signated dx2, dy" dr, dxy , du , and dyz . In later discussions all 
the components in a shell are assumed to be exhausted as the 
basic functions, and to be treated together in the computa­
tion of molecular integrals. 

First we give the basic equations for Cartesian Gaussian 
functions that will be utilized in the following derivations of 
molecular integrals. The Cartesian Gaussian functions sa­
tisfy the differential relation 

a 
- cp(r;s,D,R) = 2scp(r;s,D + loR) aR j 

-Nj (D)cp(r;S,D-l j ,R) (i=x,y,z), (5) 

where N j (D), standing for no is meaDt to take the value of 
the i component of the angular momentum index D, and thus 
N j (lj) plays the same role as the Kronecker's delta Dij' It 
follows readily that 

Nj (D + D') = Nj (D) + Nj (D') . (6) 

In the Cartesian Gaussian function the nuclear coordinate 
R j always appears in the form of rj - R j • Therefore, differ­
entiation with respect to R j can be replaced by that with 
respect to rj: 

a a 
- cp(r;s,n,R) = - - cp(r;s,D,R) . aR j arj 

(7) 

B. Three-center overlap integrals 

Three-center overlap integrals over unnormalized Car­
tesian Gaussian functions are of the form: 

(alclb) = f drcp(r;Sa,a,A)cp(r;Sc,c,C)cp(r;Sb,b,B). (8) 

According to Eq. (5), the integral (a + Ij Iclb) can be de­
composed as 

Here the integral (alclb) can be factored as 

(alclb) =Kabc Ix (nax,nbx,ncx) Iy(nay,nby,nCY) 

X Iz (naz,nbz,ncz) , 

where 

Kabc = exp[ - s(A - B)2]exp[ - S :c
Sc 

(P - C)2 ] 

( 10) 

(11) 

=exP[(Sa +Sb +Sc)(G2 - SaA2+SbB2+ScC2)]. 
Sa + Sb + Sc 

5= SaSb , 
Sa + Sb 

S=Sa + Sb' 

p=SaA+Sb B , 
Sa +Sb 

(12) 

(13) 

(14) 

(15) 
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G=bP+beC = baA+bbB+beC , 
b+be ba +bb +be 

(16) 

and 

nal nbi n ci 

X L L L 
kat = 0 kbi = 0 kcj = 0 

(kaJ + kbi + kcj = even) 

Differentiating Kabe and I; (nai>nb;,ne;) with respect to A;, 
we have 

and 

1 a 
--Kabe = (G; -A;) Kabe 
2ba aA; 

= n . - - I. n . - 1 n . n . {
II } 

al 2(b + be) 2ba 1 (al 'bl> el) 

1 
+ nb; I; (na;,nb; - 1,nci ) 

2(b + be) 

(18) 

1 
+ ne; I; (na;,nbi>ne; - 1) , (19) 

2(b+be) . 
respectively. Substitution ofEqs. (18) and (19) into Eq. (9) 
gives finally 

(a + l;lelb) = (G; -A;)(alelb) + 1 
2(b+bc) 

X N; (a)(a - 1; lelb) + 1 N; (b )(alelb - 1;) 
2(b+be) 

(20) 

The recurrence formula for (ale + 1; Ib), which will be used 
later, can be obtained similarly in the same functional form 
with Eq. (20) except that the coefficient G; - A; for the first 
term is replaced by Gj - C;. The integral over s functions is 
given by 

(OA 10c lOB) = ( 1T )3/2 Kabe 
ba +bb +~c 

= (_b _)3/2 (OA IIOB )exp [ _ ~ (P _ C)2] , 
b+be b+ be 

(21 ) 

where (OA IIOB) is the overlap integral between two s func­
tions centered at A and B: 

(22) 

c. Electron repulsion Integrals 

(ab,ed) = J drl J dr2[ lP(rl;ba,a,A)lP(rl;bb,b,B)] 

X Irl - r21- 1 [lP(r2;bc,e,C)lP(r2;bd,d,D)] , 

we may substitute the identity. 

Irl - f21- 1 = ~/Z (00 du exp[ - (r l - fz)2UZ] , 
1T Jo 

to obtain 

2 Loo (ab,ed) = 172 du(ablulcd) , 
1T 0 

where 

(23) 

(24) 

(25) 

(abluled) = J dr2 lP(r2;bc,c,C)lP(fz;bd,d,D) (aIO"lb) 

(26) 

and 

(aIO"lb) = J drllP(rl;~a,a,A)lP(fl;~b,b,B) 
Xexp[ - uZ(rl - rz)2] . (27) 

Since the exponential function in Eq. (27) corresponds to an 
s-type Cartesian Gaussian function with the orbital expo­
nent u2 centered at f2' (aIO"lb) is just a three-center overlap 
integral. Using Eq. (20), we obtain 

1 
(a + 1; 10, Ib) = (P j - A; )(alO, Ib) + - N; (a) 

, '2b 

( 
p U

2
) 1 X 1---- (a-1·10 Ib)+-N-(b) b P + u2 

", 2b 1 

( 
P u

2 
) 1 u

2 

X 1---- (aIO"lb-1;) +-----
bP+~ b+'P+~ 

1 Uz 
.,(rz; -P;)(aIO, Ib) ------2 .uZ(aI1;, Ib), 

'~+,p+u ' 
(28) 

where we have made use of the relations 

b (aI1;"lb) = - ~+uz (ru -P;)(aIO"lb) 

1 
+ 2(b + u2) N; (a) (a - 1; IO"lb) 

1 + 2(b + uz) Nj(b)(aIO"lb -1;) , (29) 

and 

--=- 1---- ---------1 1 ( P U
2

) 1 u2 
U

Z 

~ + U
Z b b P + U

Z ~ +, b + u2 P + U
Z 

with the parameters, and P defined by 

'=be +bd' 

p=J!L. 
b+' 

(30) 

(31) 

(32) 

For the electron repulsion integrals (ERI's) over un- The integration over f2 of the last term of Eq. (28) multi-
normalized Cartesian Gatissian functions plied by lP(r2;~e,e,C) and lP(f2;bd,d,D) can be rewritten as 

J. Chem. Phys., Vol. 84, No.7, 1 April 1986 
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u2(elli', Id) = - 7J(rli - Qi )(eIO" Id) +! Ni (c) - _1_ ~ f dr2 tp(r2;;c,e,C)tp(r2;;d,d,D)u2 

;+7JP+u 

X (all ir Ib) = -1-~fdrl tp(r1;;a,a,A) 
2 ;+7JP+U 

X (e - Ii 10" Id) + ! Ni (d)(eIO" Id - Ii) - 7J(elli" Id) , 

(34) 

Xtp(r 1;;b,b,B)u2(ell i"ld) . (33) 

Multiplying the recurrence formula for (ell i" Id) by 7J + u2 

we find 

where 

Referring to Eq. (26), and using Eqs. (28), (33), and (34), we arrive at 

u2 

[(a+ l i )bluled] = (Pi -Ai)(ablulcd) + (Wi -Pi) --2 (ablulcd) 
p+u 

(35) 

+ _1- Ni (a)(I-E-~) [(a -li )blulcd] + _l-Ni(b)(l-E-~) [a(b -li )l u lcd] 
~ ;p+u ~ ;p+u 

1 u2 1 u2 

+2(;+7J) Ni(c) p+u2 [ablul(c-li )d] +2(;+7J) Ni(d) p+u2 [ ab lulc(d-li )] , (36) 

where 

(37) 

Let us introduce an auxiliary electron repulsion integral (ab,cd) (m), which plays a central role in further manipulation of 
ERrs: 

2 1"" (u2 )m (ab,cd)(m) = 172 du --2 (ablulcd), 
1T 0 p+u 

(38) 

wherem is a nonnegative integer. Note that the integral (ab,cd)(O) is a true ERI (ab,cd). Equations (36) and (38) allow us to 
obtain 

[(a+ l i )b,cd](m) = (Pi -Ai)(ab,cd)(m) + (Wi -Pi)(ab,cd)(m+l) 

+ 2~ N i(a){[(a-li )b,cdj'm)- ~ [(a-l i )b,Cd](m+l)} 

+ ~ Ni (b) { [a(b -Ii ),cd] (m) - ~ [a(b - Ii ),cdj'm + I)} 
+ 1 N(c)[ab(c-l.)d](m+l)+ 1 N(d)[abc(d-l.)](m+l) (i=x,y,Z). 

2(;+7J) ' " 2(;+7J)'" 

Use of the above recurrence formula requires the explicit 
expression for the auxiliary integral over s functions. With 
the help ofEqs. (21) and (26), we get 

(OAOB'OCOD)(m) = (OAIIOB)(OcIlOD) ~/2 
1T 

1"" ( u
2 )m ( p )3/2 

X 0 du p + u2 P + u2 

[ 
pU2 ] X exp ___ (p_Q)2 . 

p+u2 (40) 

Integration over u can be carried out by transforming vari­
able from u to t: 

2 
t 2 =_u_ 

p+u2 ' 
du = pl/2( I _ t 2) -3/2 dt , 

(41 ) 

(42) 

(
_p_)3/2 = (1 _ t2)3/2, 
p+u2 

to obtain 

(OA OB,OCOD) (m) 

= 2 (: y12 (OA 1I 0B )(OcIlOD) Fm (T) 

(39) 

(43) 

= (; + 7J) -1/2 K(;a';b,A,B)K(;c';d,C,D)Fm (T) , 

(44) 

where 

and 

Fm (T) = f dtt 2m exp[ - Tt 2
] , 

T=p(P _ Q)2, 

(45) 

(46) 

J. Chern. Phys., Vol. 84, No.7, 1 April 1986 
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TABLE I. Recurrence expressions' for the electron repulsion integrals over 
S and P Cartesian Gaussian functions. 

(.£f, .£f)(0) = (t + 1/)-1/2 K(t., tb,A,B)K(tc,td,C,D) Fo(n 

(P,S, .£f)(0) = ( Pi - A, )(ss, .£f) (0) + (Wi - P, )(SS, .£f) (I) 

(PiS,PkS)(O) = (Qk - Ck )( P,S, .£f)(0) + (Wk - Qd (PiS, .£f)(I) 

l5'k ( ) + (SS,.£f) 1 

2(t +1/) 

(P, P" .£f)(0) = ( ~ - B,)( P,S, .£f)(0) + (JJj - ~)( PiS, .£f) (I) 

l5 + ~ {(SS, .£f) (0) - ~ (.£f, .£f)(I)} 

(Pi p"PkS)(O) = (Qk - Ck )( Pi P" .£f)(0) + (Wk - Qk)( P, P" .£f)(I) 

+ I {l5ik (sp" .£f)(I) + l5,k (PiS, Ss)(I)} 
2(t + 1/) 

(P, P"Pk P, )(0) = (Q, - D, )( P, P"PkS)(O) + (W, - Q,)( Pi P"PkS)(I) 

+ I {l5/l (SPj' PkS)(I) + l5jl (PiS,PkS)(l)} 
2(t+1/) 

+ 62kl {( Pi PI' .£f)(0) -.!!... (PIP" Ss)(I)} 
1/ 1/ 

U,j,k,l=x,y,z) 

• For the definition of the variables, see the text. 

K(t,t',R,R') =21/2 t~/;, exp [ - t ~~,(R-R')2]. 
(47) 

Explicit forms of the recurrence formulas over sand P func­
tions are given in Table I, wheres, Pi' anddij are used instead 
ofO, 1i, and 1i + 1j' respectively. 

It may be instructive to add a mathematical relation 
between a true ERI (ab,cd) and the corresponding auxiliary 
ERI's (ab,cd) (m), although the relation is not necessary for 
the calculation of ERI's. As has been shown by Taketa, 0-
ohata, and Huzinaga4 the true integral is reduced to a linear 
combination of Fk ( n's multiplied by appropriate coeffi­
cients Xk's: 

(ab,cd) = ~Xk Fk(n. (48) 
k 

The corresponding auxiliary integrals can be expressed in 
terms of the same coefficients as 

(ab,cd)(m) = ~Xk Fk+ m (T) , 
k 

which can be readily proved by Eqs. (36) and (38). 

(49) 

Recursive forms of one-electron integrals, derived from 
three-center overlap integrals, are described in the Appen­
dix. 

III. DISCUSSION 

The recurrence formula, as given by Eq. (39), involves 
true and auxiliary ERI's as intermediary integrals. Efficient 
use of these intermediary integrals can be made in calculat­
ing target ERI's, if all the components of each shell are 
adopted as basic functions. As an illustration, let us consider 

the ERI's (Pi Pj' ss) (i,j =x,y, z). Calculation ofthe nine 
integrals resulting from all possible combinations of i and j 
requires the intermediary integrals (PiS, ss) (m) (i = x, y, z 
andm = 0,1) and (ss, ss)(m) (m = 0,1,2). All of these inter­
mediary integrals except (ss, SS)(2) can be used three times, 
because for each of three j values the integral can be ex­
pressed as 

(Pi Pj' ss) = ( Pj - Bj ) (PiS, ss)(O) + (JJj - ~) (PiS, ss)(J) 

+ ~ {(SS, ss)(O) - ~ (ss, SS)(I)} . (50) 

Furthermore the intermediary integrals ( PiS, ss) (m) can also 
be calculated efficiently from the three intermediary inte­
grals (ss,ss)(m) (m =0,1,2). 

The present algorithm would be most efficient for a ba­
sis set consisting of constrained funCtions, namely, a basis set 
in which a common set of orbital exponents is employed for 
functions with different angular momenta. When P func­
tions in the above example are sp-constrained, the interme­
diary integrals (PiS, ss)(O) and (ss, ss)(O) also become target 
ERI's. Hence, the extra integrals to be calculated are 
(sPj' ss)(O) (j = x, y, z). 

The coefficients, such as ( Pi - Ai)' (2t) - \ and pt - \ 
in the recurrence formula do not depend on the angular mo­
menta of functions in the integrals. The independence is an 
advantage of this method in comparison with the usual 
method based on the overlap distributions.3 The overlap dis­
tribution is defined as a product of two Gaussian functions, 
and can be reduced to a linear combination of Gaussian 
functions multiplied by appropriate coefficients. These coef­
ficients depend on the angular momentum indices, namely, 
not only on the angular momenta but also on their compo­
nents. Therefore, the number of the coefficients increases as 
the sum of the angular momenta of the functions increases. 
By this increase, the calculation ofERI's becomes more time 
consuming, and the coding of an efficient program more dif­
ficult. The present scheme, with a program structure involv­
ing a long innermost loop, alleviates this problem as will be 
detailed in the next section. 

The differential relation (5) allows the derivatives of 
ERI's to be written as a linear conbination ofERI's. The first 
derivative, for instance, becomes 

a~. (ab,cd) (m) = 2ta [(a + 1i )b,cd] (m) 

I 

- Ni(a) [(a -1i )b,cd] (m). (51) 

The second term on the right-hand side of Eq. (51) can be 
calculated as an intermediary for the first term using the 
recurrence formula. Thus it is noted that the number of 
arithmetic operations is largely determined by that of the 
operations for the integral over the highest angular momen­
tum functions. 

A brief additional comment may be in order here. Sub­
stitution of Eq. (39) into the first term of Eq. (51) gives an 
expression for the derivative which does not include higher 
angular momentum functions. This expression corresponds 
to that given by Schlegel, Binkley, and Pople16

; however ours 
is for ERI's, whereas theirs is for two-dimensional integrals. 
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SCHEMEl. 

(First step) 
DO ICS = I,ncs loops for the contracted shells 
DO JCS = I,ICS 
DO IPS = I,m,cs loops for the primitive shells 
DOJPS = l,mJcs 
The calculation of the parameters P, t, and K(t,t',R,R') 
for each pair of primitive shells 
CONTINUE 

(Second Step) 
DO IPPS = I ,N PPS a loop for the first pair of primitive shells 
DO JPPS = I, IPPS a loop for the second pair of primitive shells 
The evaluation of ERrs 
CONTINUE 

The expressions for the one-electron integrals in the 
present formalism bear all the desirable characteristics of 
those for ERl's described above. Accordingly, fast computa­
tion can be expected also for one-electron integrals. 

IV. STRATEGY OF ERI COMPUTATION 

In usual ab initio calculations contracted Gaussian 
functions are used as the basis set. The contracted function, 
X, takes the form: 

x(r;n,R) = L dk 9l(;k,n)tp(r;;k,n,R) , (52) 
k=1 

where dk is the contraction coefficient. In this section we 
term tp a primitive function in order to distinguish it from a 
contracted one. 

The overall structure of the program is composed of two 
main steps. The first step is to calculate the parameters P,;, 
and K(;,; ',R,R') and the second step is to evaluate ERl's 
using the recurrence formula. Since the parameters do not 
require a large area for their storage as has been discussed 
previously, they can be calculated in a bunch for all possible 
combinations of primitive shells rather than separately for 
each primitive component. The first step includes four loops, 
as shown in Scheme I, where ncs is the number of contracted 
shells in the basis set, and the m;cs and m jCS are the number of 
primitive shells in the ICSth and JCSth contracted shells, 
respectively. The second step is composed of two loops. The 
Npps in the scheme is the number of the sets of parameters 
generated in the first step. The feature of this program struc­
ture is that the inner loop in the second step is iterated, at 
most, Npps times. If a hundred primitive shells are included 
in the basis set, the number becomes 5500, which would be 
sufficiently large for a vector processing computer. 

As can be seen from Eq. (39) or Table I, ERl's having 
the same combination off our angular momenta irrespective 
of function centers, such as all (ss, ss)'s or ( ps, ss) 's require 
the same explicit form of the recurrence formula. Then the 
second step in Scheme I may be executed only once for each 
of these assemblies because the programs for this algorithm 
become simpler at a little sacrifice of the largeness of Npps 

for a vector processing computer. In implementing the above 
procedure the parameters originating from the same combi­
nation of two angular momenta are to be collected by reor-

dering the shells in the basis set according to their angular 
momenta beforehand. For derivatives ofERl's, reduction of 
the computer time taking advantage of the translational in­
variance can be immediately accomplished by subgrouping 
the collected parameters according to the centers of the func­
tions. 

By means of the recurrence formula for the ERl's the 
angular momentum of one of the four functions is reduced. 
The function with the lowest angular momentum should be 
chosen first, since then the factor N; (n) will become zero at 
an early stage of the reduction, and thus the total number of 
necessary intermediary integrals will become least. 

In the present program the functions Fn (T) are evalu­
ated using two formulas depending on the value T. For val­
ues from zero to a certain threshold value TF , we employ the 
seven-term Taylor expansion: 

6 

Fn (T) = L Fn+dT*)(T* - T)k /k!, (53) 
k=O 

where Fn + k (T *) has been evaluated by the Shavitt meth­
od 18 for T * at intervals of 0.05 and tabulated. Another for­
mula, used for T greater than T F' is an asymptotic formula of 
Fn ( T), where the upper limit of the integration range is re­
placed by positive infinity: 

Fn(T)- ('" t2nexp( _ Tt 2 ) dt= (2n -I)!! (!!...)II2. 
Jo 2(2T)n T 

(54) 

The relative error a of the expansion by Eq. (53) can be 
estimated using Lagrange's remainder 

a = IT* - TI7 
7! 

X [Fn+7{T* + ()(T - T*)}] (O<()< 1) ; (55) 
Fn(T) 

it is roughly 1.2 X 10- 15 by assuming that IT * - T I takes the 
maximum value, i.e., 0.025 and the factor in the square 
brackets ofEq. (55) to be unity. A more precise estimate was 
made for the ranges of nand Tbetween 0 and 16 and between 
o and 80, respectively. The maximum relative error was 
found to be 0.9X 10- 15

, which corresponds to F I6(0.025). 
A relative error of about 10- 15 seems to be sufficiently small 
for usual ab initio calculations. Therefore the value of the 
threshold TF was determined so that the asymptotic formula 
may have a relative error of less than 10- 15 as is given in 
Table II. 

McMurchie and Davidson5 gave an efficient computa­
tional method for Fn (T), where seven formulas are used, 

TABLE II. Values of TF used in the evaluation ofF. (T). 

n TF n TF n TF 

0 33 6 51 12 66 
I 37 7 54 13 68 
2 41 8 56 14 70 
3 43 9 58 15 72 
4 46 10 61 16 74 
5 49 11 63 
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TABLE III. CPU time' for ERI computation (in seconds). 

Molecule Basis set PHb PresentC Ratio DRKd Present Ratio 

H20 2 3-210· 0.40 0.27 1.5 1.5 0.29 5.2 
~H.O 3-210 2.7 1.7 1.6 10.6 2.0 5.3 
C2H.O 4-310' 4.5 4.0 1.1 23.3 5.5 4.2 

H20 2 MIDI-I' 1.0 0.53 1.9 3.5 0.55 6.4 
C2H.O MIDI-l 6.4 3.3 1.9 23.0 3.9 5.9 
C2H.O MIDI-4' 9.9 7.0 1.4 41.0 8.9 4.6 

H20 2 3-210 + d h 4.0 1.5 2.7 
C2H.O 3-210 +d 25.8 8.7 3.0 
H20 2 MIDI-I +d 7.3 2.1 3.5 
C2H.O MIDI-I +d 45.9 12.9 3.6 

"The CPU time only for the arithmetic operations measured on FACOM M-382, a scalar computer. 
bThe Pople and Hehre method (Ref. 20). 
cThe threshold values of Tv and TF are 10-8 a.u. and 15, respectively. 
dThe Dupuis, Rys, and King method (Ref21) . 
• Reference 22. 
'Reference 23. 
'Reference 24. 
h A primitive d function (t = 0.8) is added on each carbon and/or oxygen atom. 

and Harris19 proposed another method using three formu­
las. The present method of evaluating Fn (T) would be 
slower on a scalar computer than theirs. On a vector process­
ing computer, however, it would become faster, since a pro­
gram with a fewer number of branches to use one of these 
formulas in an inner loop can be more efficiently vectorized. 

The computer time can be reduced further by omitting 
ERI's over primitive functions that make a small contribu­
tion to ERI's over the contracted functions. In the present 
program, the omission is actually carried out in the calcula­
tion of the parameters. For the product Vofthe contraction 
coefficients, the normalization constants, and the factor K, 

V = da, . .9C(;-a,a) . db' . 9C(;-b,b) . K(;-a';-b,A,B) (56) 

smaller than a given threshold Tv the corresponding param­
eters are omitted, and hence the corresponding ERI's are not 
calculated. We take Tv to be to- 15 a.u., because the maxi­
mum relative error to- 15 allowed for Fn (T) would result in 
this order of error. 

v. COMPARISON WITH OTHER METHODS 

Execution times on a scalar computer FACOM M-382 
and on a vector processing computer FACOM VP-1OO are 
compared with those required by the Pople and Hehre (PH) 
method in GAUSSIAN 8020 and the Dupuis, Rys, and King 
(DRK) method in GAMESS.21 The basis sets used are of va­
lence-double zeta quality, i.e., 3-21G,22 4_31G,23 MIDI-l,24 
and MIDI-4,24 where the former two sets contain sp-con­
strained functions while the latter two sets do not. The CPU 
time is for the evaluation without utilizing molecular sym­
metry, and does not include I/O operations. All programs 
are written in FORTRAN, and are compiled at the highest 
level of optimization with the intention of reducing ineffi­
ciencies in program codes. Incidentally the optimization is 
found to reduce the computer times to about 60% (PH), 
about 40% (DRK), and about 50% (ours) of those for the 

unoptimized versions. The speeds ofM-382 and VP-lOO are 
23 MIPS (mega instructions per second) and 250 MFLOPS 
(mega floating operations per second), respectively, al­
though they have the same speed for scalar operations. 

Table III lists the CPU times of ERI calculations for 
ethylene oxide and hydrogen peroxide on the scalar comput­
er. For the basis sets with sp-constrained functions, i.e., the 
3-21G and 4-31G sets, the present method is from 1.1 to 1.6 
times faster than the PH method, with the accuracy of the 
present method intentionally reduced almost to that (about 
eight decimal characters) of the PH method by setting the 
thresholds TF and Tv at 15 and 10-8

, respectively. For the 
basis sets without sp-constrained functions, i.e., the MIDI-l 
and MIDI-4 sets, the CPU time ratio is somewhat enhanced, 
but this may not be a fair comparison, since the program of 
the PH method treats all p functions as sp-constrained ones, 
and thus calculates unnecessary ERI's for these basis sets. 
The CPU time ratio of the DRK method to the present 
method ranges between 4.2 and 6.4 in the calculation of 
ERI's with the above basis sets. For the 3-21G and MIDI-l 
basis sets augmented by a primitive d function on each car­
bon and/or oxygen atom, the CPU time ratio ranges 
between 2.7 and 3.6. The decrease in the ratio is a reflection 
of the efficiency of the DRK method for higher angular mo­
mentum functions.9 

From Table IV we observe that the present method is 
from 4.1 to 6.7 times faster than the DRK method for the 
first derivative of ERI's on the scalar computer. We expect 
that the present method is also faster than the method pro­
posed by Schlegel, Binkley, and Pople16 since their method 
requires almost the same number of arithmetic operations 
with that required by the DRK method for the calculation of 
the first derivative of (dd,dd). 

The computer times on the vector processing computer 
are presented in Table V for the calculation of ERI's for 
ethylene oxide, together with the maximum number of itera­
tions N PPS in the second step of Scheme I. The calculation of 
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TABLE IV. CPU time" for the computation of the first derivative of ERI's 
(in seconds). 

Molecule Basis set DRKb Present Ratio 

H 20 2 3-21Gc 5.3 1.3 4.1 
~H40 3-21G 47.6 9.0 5.3 
~H40 4-31Gd 102.3 22.7 4.5 

H 20 2 MIDI-I· 10.8 1.7 6.4 
~H.O . MIDI-l 82.2 12.2 6.7 
~H40 MlDI-4· 153.8 27.6 5.6 

"The CPU time only for the arithmetic operations measured on PACOM 
M-382, a scalar computer. 

bThe Dupuis, Rys, and King method (Ref. 21). 
C Reference 22. 
d Reference 23. 
• Reference 24. 

ERI's is accomplished from 4.1 to 5.4 faster than on the 
scalar computer. The CPU time for integrals involving 
smaller N PPS such as (pp, pp) in the table does not give a 
good estimate for large molecular systems having Npps 

much larger than a hundred. If we count the CPU time ex­
cluding (pp, pp), the CPU time ratio becomes 5.2 - 6.1 as 
given in parentheses in the last row of Table V. In these 
calculations the programs have not been rewritten for the 
vector processing computer, and hence revision of the pro­
grams would further reduce the CPU time. In any event, the 
results are indicative of the efficiency of the long innermost 
loop in the second step in Scheme I. 

VI. CONCLUDING REMARKS 

In this paper we have shown how the recurrence for­
mula for three-center overlap integrals can be efficiently uti­
lized in developing recursive formulation of ERl's and one-

electron integrals over Cartesian Gaussian functions. The 
method proposed for the evaluation of a wide variety of mo­
lecular integrals, when implemented on a computer, exhibits 
the following outstanding characteristics: (1) an efficient 
use of intermediary integrals; (2) an efficient treatment of 
constrained functions; (3) a smaller storage for coefficients 
in the recurrence formulas due to their independence on the 
angular momenta of functions; and (4) a large number of 
iterations in the innermost loop. 

Computer times have been compared with various 
methods for the calculation of ERl's and their first deriva­
tive with respect to the nuclear coordinates. The comparison 
shows that the above characteristics of the present method 
offer a definite advantage over the PH and the DRK meth­
ods in current use. The characteristic ( 4) is particularly suit­
ed for a vector processing computer, and indeed the CPU 
time on a vector processing machine is reduced to about one 
fifth of that on a scalar computer. The method should thus 
prove useful in molecular integral calculations over Carte­
sian Gaussian functions. 
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APPENDIX 

Two-center overlap Integrals 

The two-center overlap integral over unnormalized 
Cartesian Gaussian functions 

TABLE V. CPU time" for the computation ofERI's for ethylene oxide on a scalar (S)b and a vector (V)C processing computers (in milliseconds). 

3-21G 

Npps 
d S 

(ss,ss) 179 105 
(ss, sp) 179 370 
(ss,pp) 179 184 
(sp, sp) 177 385 
(sp,pp) 177 690 
(pp,pp) 45 295 
Others· 17 

Sumr 2046 
(1751 ) 

Ratio (SlY)' 4.1 
(5.2) 

• The CPU time only for the arithmetic operations. 
bPACOM M-382. 
cPACOM VP-l00. 

MIDI-l 

V Npps 
d S 

18 397 550 
54 397 1185 
28 397 360 
80 258 775 

146 258 780 
160 45 199 

9 23 

495 3872 
(335) (3673) 

4.8 
(5.4) 

d The maximum number of iterations in the innermost loop of the second step in Scheme I. 

V Npps 

79 578 
168 578 
63 578 

147 412 
213 412 
122 75 
14 

806 
(684) 

• Most part of the CPU time is spent for the calculation of the parameters generated in the first step in Scheme I. 
rThe number in parentheses is the sum of the CPU time excluding that for ( pp, pp). 
·The number in parentheses is the ratio of the sums excluding the CPU time for (pp,pp). 
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MlDI-4 

d S V 

1184 150 
2802 340 

843 120 
1880 304 
1672 450 
449 250 

34 15 

8864 1629 
(8415) ( 1379) 

5.4 
(6.1) 
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(allb) = J dr q?(r;;a,a,A)q?(r;;b,b,B) (Al) 

corresponds to the three-center overlap integral where one 
of the three functions is unity, namely, an s function having 
the orbital exponent of zero. Using Eq. (20), the two-center 
overlap integrals reduces to 

(a+ 1; lib) = (P; -A;)(allb) 

+ ~ N,(a)(a-l,lIb) +~ N;(b)(allb-l;). 

(A2) 

The integral over s functions has been given by Eq. (22). 

Moment Integrals 

The moment integrals around C can be written in the 
form: 

(al!m( .... ) Ib) = J dr q?(r;ta,a,A)!m( .... )q?(r;tb'b,B), (A3) 

where 

and 

(A5) 

By expressing the operator !m ( .... ) in terms of a Cartesian 
Gaussian function as 

!m( .... ) = {<p(r;tc' .... ,C)}'c=o , (A6) 

the moment integral is deduced from Eq. (20) as 

(a+ 1;1!m( .... )lb) = (PI -A,)(al!m( .... )lb) 

+ ~N/(aHa-I;I!m( .... )lb)+ ~N/(b) 

x(al!m( .... )lb-l/) + ~N;( .... )(al!m(""-I;)lb). 

(A7) 

The moment integrals over s functions are given by 

(0,. l!m( .... + 1;)IOB) = (P; - C;HO,. IIDH .... )IOB) 

+ _1_ NI ( .... )(0,. l!m( .... - 1/) lOB) , 
2t 

(AB) 

and (0,. 1!m(0) lOB) becomes a two-center overlap integral 
over s functions [Eq. (22)]. 

Kinetic energy Integrals 

The kinetic energy integral has the form: 

(aIYlb) = J dr q?(r;;a,a,A) ( - ! V2)q?(r;tb,b,B), (A9) 

where 

(AlO) 

I 

with a nonnegative integer m, it satisfies the recurrence formula 

Using Eqs. (5) and (7), and the identity 

J drq?;V2q?j = - J dr(Vq?;) . (Vq?j) , (All) 

the kinetic energy integral reduces to a linear combination of 
the two-center overlap integrals. Then with the aid of Eq. 
(A2), we find 

(a+ 1;IYlb) 

1 = (p/ -A/)(aIYlb) +-N/(a)(a-l/IYlb) 
2t 

1 
+2fN/(b)(aIYlb -1/) 

+ 2t {(a + Idlb) - ~a N;(aHa -1;lIb)} . (AI2) 

The iteration begins with the kinetic energy integral over s 
functions: 

(0,. IYIOB) = t{3 - 2S( A - B)2}(0,. 1I0B)' (AI3) 

Nuclear attraction Integral~ 

The nuclear attraction integral for a nucleus located at 
C, 

(al..ca1(O)lb) = Jdrq?(r;ta,a,A) 1 1q?(r;tb,b,B) 
Ir-C 

reduces to 

2 Loo (al..ca1(O) Ib) = ---v2 du(alOe Ib) , 
1T 0 

where 

(aIOelb) = J drq?(r;ta,a,A)<p(r;;tb,b,B) 

xexp[ - u2(r - C)2] , 

(AI4) 

(A15) 

(A16) 

and we have used Eq. (24). The exponential function in Eq. 
(A 16) corresponds to an s-type Cartesian Gaussian function 
having the exponent u2 and centered at C, so the integral is a 
three-center overlap integral. Using Eq. (20), we get 

(a+ 1;IOelb) 

u2 

= (P; -AI)(aIOelb) - (p/ - CI ) --2 (aIOelb) 
t+u 

+_l-N;(a)(l-~)(a-l/IOelb) 
2t t+u 

+_l-NI(b)(l-~)(aIOelb-l;). (A17) 
2t t+u 

Now if we define an auxiliary nuclear attraction integral as 

(al..ca1(O) Ib)(m} = ;/2 roo dU(~)m (aIOelb) (A18) 
1T Jo t+u 

(a + 1;1..ca1(O)lb)(m) = (PI -AI)(al..ca1(O)lb)(m) - (PI - C;)(al..ca1(O)lb)(m+1) + ~ NI(a) 
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X{(a - Ij IJaf(O) Ib)(m) - (a -lj IJaf(O) Ib)(m + I)} + TNj (b){(aIJaf(O) Ib - Ij )(m) - (aIJaf(O) Ib _lym + I)}. 

; (A19) 

The auxiliary integral over s functions is found to be 

(OA IJaf(O)IOB)(m) 

2 roo (U2 )m( ; )3/2 
= 1T1/2 Jo du ; + u2 ; + u2 (OA HOB) 

x exp [ - ;(P - C)2~] 
;+ u2 

= 2( ~) l/\OA IIOB) Fm (U) , (A20) 

where 

Electric field and electric field gradient Integrals 

The operators for electric fields and electric field gradi­
ents are obtained by differentiating the nuclear attraction 
operator: 

Jaf(~)- - - -( a) /Lx ( a )/LY ( a )/LZ 1 
- acx acy acz Ir - q 

(A22) 

The operator with ~ = Ij or Ij + Ij (i,j = x, y, z) corre­
sponds to that of the electric field or the electric field gradi­
ent, respectively. These integrals are obtained by differenti­
ating the nuclear attraction integrals: 

(aIJaf(~)lb)(m) 

= (~)/Lx(~)/LY(~)/LZ (aIJaf(O) Ib)(m) . (A23) 
acx acy acz 

Differentiation ofEq. (A19) yields finally 

(a + IjIJaf(~)lb)(m) = (Pj -Aj)(aIJaf(~)lb)(m) - (Pj _ Cj)(aIJaf(~)lb)(m+ I) 

+ 2~ Nj (a){(a - 1; IJaf(~) Ib) (m) - (a - 1; IJaf (~) Ib)(m + I)} 

+ 2~ N; (b){(aIJaf(~) Ib _lym) - (aIJaf(~) Ib - lym + I)} + N j (~)(aIJaf(~ - Ij) Ib)(m + I) • (A24) 

The electric field and electric field gradient integrals over s 
functions are obtained from Eqs. (A20) and (A23) as 

(OA IJaf(lj ) lOB) (m) = 2;( P; - Cj )(OA IJaf (0) lOB) (m + I) , 

(A25) 

and 

(OA IJaf(lj + Ij)IOB)(m) = - 2;c5ij(OA IJaf(O)IOB)(m+ I) 

+~2( P; _ Cj )( Pj - Cj)(OA IJaf(0)IOB)(m+2), 

(A26) 

TABLE VI. Recurrence expressions' for overlap integrals over s, P, and d 
Cartesian Gaussian functions. 

(slls) = (; r2 
exp{ - t(A - B)2} 

(Pills) = (Pi -Ai)(slls) 

8· 
(Pill Pj) = (~ - Bj )( ptlls) + -2.... (slls) 2; 

8 
(dulls) = (Pj -Aj)(ptlls) +-2.... (slls) 2; 

1
1ft 8i. 8j • 

(du lI") = (P. -B.)(dijlls) +'2; (pjlls) +'2; (pills) 

(dulld./ ) = (PI -BI)(dijIlPk) 

8i1 8p 8'1 +'2; (pjllP.) +'2; (PilIP.) +'2; (dijlls) 

(i,j, k, l=x,Y,z) 

• For the definition of the variables, see the text. 

I 
respectively. 

Angular momentum Integrals 

The matrix element of the orbital angular momentum 
around C requires an integral 

TABLE VII. Recurrence expressions' for the first moment integrals over s, 
P, and d Cartesian Gaussian functions. 

(slW1" Is) = (P" - C" )( ;t2 

exp{ - t(A - B)2} = (P" - C" )(slls) 

8. 
(ptlW1" Is) = (Pi -Ai )(slW1" Is) +2!.. (slls) 2; 

8.. 8 <1 

(Pil W1 "lpj) = (~-Bj)(PilW1"ls) + 2t (slW1" Is) + ;;. (Pills) 

8.. 81'1 
(dijlW1" Is) = ( ~ - Aj)( PilW1" Is) + -2.... (slW1" Is) + - (Pills) 2; 2; 

8i, 8J, 8". +'2; (PJIW1" Is) +'2; (pilW1" Is) +'2; (dijlls) 

8i1 
(dijlW1"ld'/) = (PI -BI)(dijlW1"IP') +'2; (pj lW1"IP,) 

8j1 8'1 8,,1 +'2; (ptl W1 "IP.) +'2; (dijlW1" Is) + z; (dijllP.) 

W1" = W1(1,,) 

(i,j, k, I,p. =x,y,z) 

• For the definition of the variables, see the text. 
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TABLE VIII. Recurrence expressions' for the kinetic energy integrals over 
s, p, and d Cartesian Gaussian functions. 

TABLE IX. Recurrence expressions" for the nuclear attraction integrals 
over s, p, and d Cartesian Gaussian functions. 

(sIYls) = s{3 - 2s(A - B)2}(slls) 

(PIIYls) = ( P, - A,) (slY Is) + 2s( p, lis) 

8y 
(p,JYlp) = (~-B)(p,IYls) +- (sIYls) 

2t 

+ 2s( Plllpj) 

(i,j, k, I = x, y, z) 

• For the definition of the variables, see the text. 

217 (t)112 (sid oIS)IO) = Texp{ - SeA - B)2} Fo( U) = 2 -;;: (slls) Fo( U) 

(Plldols)IO) = (PI -AI}{sldols)IO) - (PI - C/}(Sldols)(I) 

(PI Idol PJ)IO) = (~- BJ)( Plldols)IO) - (~ - £;){ Plldols)lI) 

8 
+-L {(Sldols)(O)- (Sldols)(I)} 

2t 
(dyldols)IO) = (~ -A,)( Plld oIS)IO) - (P, - C,)( Plldols)(J) 

8 + _u {(sldols)IO) - (Sldols)(I)} 
2t 

(duldol Pk )(0) = ( Pk - Bk )(dyldols)(O) - ( Pk - Ck )(dyldols)(I) 

8 + ;; {(p,ldols)(O)- (PJldols)(I)} 

8 + ;; {(Plldols)IO)- (Plldols)(I)} 

(dqldoldk})IO) = (PI - BI)(dqldoIPk)(O) - (PI - C/)(dqldolpd)) 

+ :~ {(p,ldoIPk )(0) - (p,ldoIPk )(I)} 

+ ~ {(Plldolpk)(O)- (Plldolpk)(I)} 

+ ~ {(dy Id ols)(O) - (dy Id ols)(I)} 

do = d(O) (i,j, k, J = x,y,z) 

" For the definition of the variables, see the text. 

TABLE X. Recurrence expressions' for the electric field integrals over s, P, and d Cartesian Gaussian func­
tions. 

(Sid ,.ls)(O) = 2t( P,. - C,.) (Sid ols)(I) 

(Plld,.ls)(O) = (P, -A, )(sld,.ls)IO) - (P, - C,)(Sld ,.ls)(I) + 8,., (sldols)(1) 

(Plld,.1 p,)IO) = (~ - B,){ p,Jd,.ls)IO) - (P, - C,){ Plld ,.ls)(I) 

+ :, {(Sld,.ls)(O)- (sld,.ls)(I)}+8w(Plldols)(I) 

(d"ld ,.ls)(O) = ( P, - .04,)( Plld,.ls)(O) - ( ~ - £;)( p,Jd,.ls)(I) 

8 + ~ {(sld,.ls)(O) - (sid ,.ls)(I)} + 8w( p,Jdols)(I) 

(dqld,.1 Pk )10) = ( Pk - Bk )(dqld,.ls)(O) - (Pk - Ck}(dyld,.ls)(I) 

+ ~ {(p,ld,.ls)(O)_ (PJld,.ls)(I)}+8,.k(duldols)(I) 

+ ~ {(p,ld,.ls)(O)_ (p,Jd,.ls)ll)} 

(dllld,.ldk})(O) = (PI -BI)(dllld,.1 Pk)(O) - (PI - CI)(dqld,.1 Pk)(I) 

+ ~~ {(p,ld,.lpk)IO)- (p,ld,. I Pk)(I)} + 8,.1 (dll Idol Pk)(I) 

+ ~ {(Plld,.lpk)(O)- (Plld,.lpk)(I)} + ~ {(duld,.ls)(O)- (dllld,.ls)(I)} 

do=d(O) d,.=d(l,.) (i,j,k,I,Il=x,y,z) 

• For the definition of the variables, see the text. 
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(al2" I' Ib) = f dr tp(r;ba ,a,A)2" I'tp(r;bb,b,D) , 

where 

2"1' ={(r-C)XV}I' (j.t=x,y,z). 

(A27) 

(A28) 

Using Eq. (7), thez component of the integral, for instance, 
becomes 

(al2"zlb) = - f drtp(r;ba,a,A) 

X {(X - Cx) ~ - (y - Cy ) ~} tp(r;bb,b,D) . 
aBy aBx 

(A29) 

Then Eq. (5) allows the angular momentum integral to be 
written as a linear combination of the first moment integrals. 
Through the use ofEq. (A7) we have 

(a + 1; 12"1' Ib) = ( P; - A; )(al2" I'lb) 

1 1 
+ ~N;(a)(a -1;12"1' Ib) + ~N;(b)(al2"1' Ib -1;) 

+ bb {I; X (D - C)}I' (allb) 
b 

(A30) 

starting with the integral over s functions: 

(0.412"1' lOB) = 2s{(A - C) X (D - C)}I' (0.4110B) . 

(A31) 

Spin-orbit Interaction Integrals 

The matrix element of the orbital part of the spin-orbit 
interaction requires an integral 

(aIYl'lb) = f drtp(r;ba,a,A)Yl'tp(r;bb,b,D) , 

where 

( j.t = X, y, z) . 

(A32) 

(A33) 

Equations (5) and (7) reduce the integral to a linear combi­
nation of electric field integrals, which can be expressed by 
the auxiliary nuclear attraction integrals. The expression be­
comes finally 

(a+ 1;IYl'lb)(m) 

= (PI -A;)(aIYl'lb)(m) - (P; - C;)(aIYl'lb)(m+1) 

+~ N;(a){(a-l;IYl'lb)(m)- (a-l;IY l'lb)(m+I)} 

+ 2~ N;(b){(aIYl'lb-l;)(m)- (aIYl'lb-lym+l)} 

+ 2bb {I; X (D - C)}I' (al--'l1'(O)lb)(m+ I) 

+ L Ndb ){I;Xlk }l'(al--'l1'(O)lb-lk )(m+l) , 
k=x,y,z 

(A34) 

and the integral over s functions is given by 

(O.4I Y I'IOB)(m) 

= 4babb {(A - C) X (D - C)}I' (0.41--'11'(0) lOB )(m+ I) • 

(A35) 

The expressions for two-center overlap integrals, first 
moment integrals, kinetic energy integrals, nuclear attrac­
tion integrals, and electric field integrals including up to d 
functions are assembled in Tables VI, VII, VIII, IX, and X, 
respectively. 
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