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The present work proposes a consistent combination of two recently reported computational schemes, namely a size-consistent 
selected CI and a non-divergent second-order perturbation evaluation. The method treats large doubles (and any set of higher 
excited determinants) in a variational manner and the small doubles in a perturbative mode, without any unlinked contributions 
and exactly treating the EPV terms. Strict separability into closed-shell subsystems is ensured if the localized MOs are used. The 
efficiency of our proposal is illustrated by a few calculations (NHs in the DZP basis set, Hz0 in the DZ basis set and the water 
dimer 2(HrO)). 

1. Introduction 

The size-consistency problem is a major difficulty 
in the approximate treatments of electronic correla- 
tion. Coupled-cluster [ 1 ] algorithms solve this prob- 
lem, at least for the closed-shell, single-reference case, 
but their computational cost is high, they face con- 
vergence difficulties when bonds are broken, and they 
are not flexible. All the double excitations are consid- 
ered, which may become impossible for large prob- 
lems, and then all triples (in approximations like 
CCSD (T ) ) [ 2 ] are also taken into account at the next 
stage, whereas only a few of them play a significant 
role. In principle, as shown by the linked-cluster 
theorem, the Moller-Plesset Rayleigh-Schriidinger 
perturbation expansion is size-consistent when start- 
ing from a single reference. But it diverges when 
chemical bonds are broken if one uses a closed-shell 
reference. Going to a spin unrestricted reference one 

’ On leave from Department of Computer Methods, Nicholas 
Copernicus University, ul. Grudziadzka 5, 87-100 Torud, Poland. 

faces in turn both spin contamination and poor con- 
vergence difficulties [ 3 1. 

The quasi-degenerate perturbation theory [ 41 may 
in principle solve the divergence problem and ensure 
size extensivity when the model space is a complete 
active space (CAS) [ 5 1, but in practice these pertur- 
bative expansions face an intruder state problem and 
are almost useless in the context of quantum chem- 
istry. Variational CI approaches do not diverge even 
for excited states and there is no problem with a mul- 
tireference zeroth-order description. But full-C1 is 
possible only in special cases and one must take care 
in selecting or truncating the CI expansion. Despite 
the progress in the dimension of CI expansions treated 
by direct selected CI algorithms, these approaches are 
never free from the size-consistency problem. 

Recent efforts have brought simple solutions to two 
of the above difficulties. Both are based on the devel- 
opment of the intermediate Hamiltonian theory pro- 
posed by the quantum physics group of Toulouse [ 6 1. 
For the time being they are restricted to the closed- 
shell ground state problem. Initial progress [ 7 ] led to 
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self-consistent, non-divergent evaluation of the sec- 
ond-order type correlation energies. The cost of this 
self-consistent second-order (SCPT2) procedure is a 
few times that of a classical MP2 calculation and the 
behaviour reported so far of the potential energy for 
single bond breaking is encouraging. However this 
simple method could not be applied to the breaking 
of multiple bonds. 

Further progress [ 8 ] achieved the size extensivity 
of any selected CI by a proper shift of the diagonal 
energies of the CI matrix. This method has been called 
self-consistent size-consistent CI ( (SC)*CI). For 
SDCI this may be seen as an improved CEPA [ 8 ] 
version with an accurate treatment of all EPV (exclu- 
sion principle violating) contributions, which en- 
sures the strict separability when localized MOs are 
used. However the method is completely general and 
may be applied to any selected CI including arbitrary 
fractions of the various classes of excitations. 

In the present Letter, we would like to join these 
two self-consistent size-consistent processes. The 
proposed algorithm is only relevant when all doubles 
are not included in the variational CI step, otherwise 
it reduces to the (SC)*CI algorithm. At the other 
border it reduces to self-consistent second order 
(SCPT2) when the number of selected doubles falls 
to 1, so the method proceeds continuously from 
SCPT2 to (SC)*CI by increasing the number of the 
doubles included in the variational CI. But it is al- 
ways possible to add the important triples, quadru- 
poles to this selected space. We propose to label the 
method (SC)* (CI + PT2). The general features of the 
method as well as comments about the practical im- 
plementation will be given in section 2. The formal 
properties and especially the strict separability will 
also be discussed. Section 3 will be devoted to a com- 
parison with other popular combinations of varia- 
tion and perturbation, and it will be shown that we 
may keep the full flexibility of this combination, 
whilst keeping also the size extensivity. The physical 
content and the relative cost of the present method 
and other MRPT2 methods will be discussed. Sec- 
tion 4 gives a few illustrative examples of the 
efficiency. 

2. The method 

The correlation energy may be written as 

where ci is the coefficient of the determinant +i in the 
expansion of the eigenvector in the intermediate 
normalization 

I 

tie being the reference (for instance HF) determi- 
nant. Due to the bielectronic nature of H, it is suffi- 
cient to know the amplitudes of the singles and dou- 
bles. Then one may think of obtaining ci by a 
perturbative technique if I CiI is small, and from a 
(large) variational CI if 1 CiI is larger than a certain 
threshold. The variational CI may include more than 
the so selected large doubles. 

Of course we must avoid two drawbacks; namely 
the crudeness of the first-order evaluation of ci for 
the small doubles due to its perturbative character and 
the impact of size inconsistency of the variational CI 
on the large c,. To avoid the first difficulty one may 
think of determining ci through a 2x2 matrix dia- 
gonalization, i.e. of the matrix spanned by Go and @i, 

@i 

; (5 H..) 

00 Hoi 7 

IO II 

as done in the independent excitation pair approxi- 
mation [ 9 1. As shown elsewhere [ 7 1, a better evalu- 
ation is obtained by considering a slightly modified 
matrix 

$0 $i 

$0 HOO +~OO Hoi 

( @i ffio Hii + Sii > ’ 

where the diagonal energy shifts represent the effect 
of all the double excitations D,f that are possible 
when acting on either tioo, except 0: if @i= D~&y 
since it is already considered, 

&o= j~iC,(@olHl@j> , 

or on @i. Many double excitations Dj’ become im- 
possible on $i since they employ at least one hole or 
one particle also involved in @i, so that 

&= 1 Cj(@olHl@ji> . 
j 

D,+& 20 
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These dressings (the shifts on the diagonal of the ma- 
trix) incorporate the effects of the doubles 
q+ D:Q&, on go and of quadruples DT@i on $i which 
must cancel when both exist. From a practical point 
of view for the determination of ci, it is sufficient to 
consider the shifted matrix 

$0 9i 

40 

@i ( 

0 Hoi 
Hi0 > Hii -Ho, +6ii -SW . 

Now 

+Ci(hlHl@i> . 

The dressing eliminates all unlinked terms and incor- 
porates an infinite summation of EPV terms that ac- 
tually go through the D,‘@i = 0 processes. 

Regarding the CI matrix we do the same, with the 
only difference that we should restrict our summa- 
tion to avoid a double counting of the effect of the 
double excitations leading to configurations inside the 
variational space S. For instance we should not con- 
sider the contribution Cj( @o I HI $j) on Sii if DJf& is a 
quadruple appearing among the selected determi- 
nants. Hence, for all determinants the dressing should 
be written 

Notice that it differs from the expression given in ref. 
[ 81 due to fact that at that time the summation was 
only extended over the doubles belonging to the S 
space. Now $. is shifted by the effect of all small dou- 
bles, while this was not the case in ref. [ 8 1. 

Here we have a unique and complete set of coeffi- 
cients of all doubles, coming from either small 2 x 2 
or large n x n diagonalizations of matrices which are 
themself shifted, in a self-consistent way, using the 
complete set of the cis. 

It is possible to demonstrate that the proposed al- 
gorithm provides strict separability of the energy of a 
supersystem AB composed of two non-interacting 
subsystems A and B 

E AB =EA+EB, 

provided that the MOs are localized on either A or B. 
The demonstration is quite easy and follows the same 
logic as that given in ref. [ 81 except for the fact that 
the small coefficients result from 2x2 diagonaliza- 
tions. The generalisation of the proof of separability 
for an arbitrary selected space S also follows that of 
ref. [8]. 

Regarding the practical implementation, one does 
not perform explicit summations over all EPV con- 
tributions (the number of which is approximately 
proportional to N3, N being the size of the basis set). 
One benefits from a trick proposed in a previous study 
on infinite summation of EPV diagrams [ lo]. One-, 
two- and three-index arrays store the contributions to 
the correlation energy of each orbital 

e(r) = 
? 

G(@olHlk) 2 
0: involving the MO I 

of each pair of orbitals 

e(r,s)= 
T 

Df involving the MOs r and s 

and of each triplet of orbitals 

e(r,s,p)= 
? 

ci(hlHlh) . 
D,f involving the MOs r,smdp 

Using these quantities, the calculation of the diag- 
onal dressing Sit becomes straightforward since it only 
requires summations over the holes and particles of 
&. In practice all determinants are dressed by all the 
possible excitations. 

3. Comparison with other methods 

The method may first be compared with the usual 
single reference Msller-Plesset perturbative expan- 
sion. On the perturbative part (the small doubles ) , it 
includes the fulLMP2, plus an infinite order sum- 
mation over diagrams which normally leads to the 
definition of the Epstein-Nesbet zeroth-order Ham- 
iltonian [ 111, plus another infinite order summation 
over EPVs for the small doubles. From the varia- 
tional part (the large doubles plus some higher ex- 
cited determinants if needed) it includes also the full 
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MP2 but also the MP3, . ..MPn contributions which 
come from the interaction between large doubles, and 
if triples and quadruples are present the correspond- 
ing MP4 and higher-order corrections are included, 
without any undesirable unlinked terms. 

More interesting is the comparison with some pop- 
ular multireference MP2 methods. It should be 
pointed out that we are not comparing this method 
with multireference methods which use effective 
Hamiltonians [ 12 ] but rather with state selective 
multireference methods [ 13 1. Standard MRMP2 
methods proceed first by a diagonalization of the 
PJ3Ps matrix and later perturb the multiconfigura- 
tional vector as a whole. Our method differs in two 
important aspects: the treatment of size-consistency 
which is of crucial importance in treating dissocia- 
tion processes, and the contributions from the inter- 
actions of the model space excited determinants with 
the outer space. Size-consistency is obtained because 
before the diagonalization of PsHPs each diagonal 
term of this matrix is shifted, removing any unlinked 
terms and including important EPV terms. Such a 
correction is not necessary when the model space 
is complete (CAS) as in the CASPT2 method of 
Andersson [ 13 1. The second difference comes from 
the fact that obviously some effects treated in 
MRMPZ methods are neglected in our scheme, 
mainly the MP3 contribution incorporating the in- 
teractions between small and large doubles. The 
MRMPZ methods calculate all matrix elements be- 
tween the model space determinants gi and the outer 
space determinants &: (@i 1 H I@,) whereas we only 

use explicitly the matrix elements of the first line 

($,, 1 HI &a> because we only perturb the reference 
determinant and not the others. This is the reason why 
the computational cost of our procedure is simply that 
of the diagonalization plus that of an MP2, while in 
MRMPZ techniques the bottleneck becomes the per- 
turbative step for which the cost increases rapidly with 
the number of reference determinants. 

4. Test calculations 

The efficiency of the algorithm proposed here has 
been tested through three sets of computations. 

The first one concerns the NH3 molecule in the 
DZP basis set for which an estimate of the full-C1 en- 
ergy was proposed a few years ago [ 141. The results 
appear in Table 1 and Fig. 1 for different variational 
spaces selected according to the CIPSI scheme, and 
which contain from 5% to 85% of the doubles, plus 
the most important triples and quadruples. The error 
never exceeds 5 m&. The present procedure gives 
slightly better values than a previous approximation 
that consisted in dressing the variational CI by the 
large doubles only and adding the MP2 effect of the 
small doubles. The relative success of the previous 
calculation comes from the cancellation of two er- 
rors, namely terms between large and small double 
excitations. Comparing the results from ref. [ 81 and 
Table 1, one can notice that including 2633 doubles 
and 174 of the most important triples and quadru- 
ples in the S space, and treating the other 3 182 dou- 
bles in a perturbative mode, one gets a better value 
for the energy ( -0.205 au) than treating all doubles 

Table 1 
Results for ammonia in the DZP basis set. Geometry and basis set from Knowles and Handy [ 141, 1s orbital frozen. Energy differences 
in m&, with respect to the SCF energy. The full-C1 energy is estimated as - 209.9 n& [ 141. nm means the number of large doubles, 
whereas nsD is the number of small ones. E- refers to undressed CI, &to (SC)*CI energy (dressed only by large doubles) and J? refers 
to (SC)2(CI+PT) energy. eMP2 and escm denote the usual MP2 and SCPT contributions of small doubles, respectively 

Var. space 

dim 

397 
1440 
2807 
3381 
4957 

13588 

nLD 

392 
1414 
2633 
3061 
3947 
4892 

Var. energies Small doubles Energies 

E” E’ nSD pfP2 pT 6+ F2 lz 

- 135.6 - 138.8 5426 - 62.0 -13.5 - 200.8 -210.9 
- 180.0 - 185.0 4401 - 17.3 -20.3 -202.3 -204.8 
- 194.4 - 199.7 3182 -4.4 -5.1 -204.1 -204.7 
- 196.9 -202.2 2765 -2.3 -2.7 -204.5 -204.8 
-200.1 -205.1 1861 -0.4 -0.5 -205.5 -205.6 
- 203.2 -207.3 918 0.0 0.0 -207.3 -207.3 
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0 Zoo0 4000 6C+O 8COO 10003 12000 14000 

number of configurations 

Fig. 1. NHs correlation energies for different dimensions of the 
variational space. (A) (SC)*(CI+PT); (0) (SC)‘CI+eMP2; 
( 0 ) (SC)‘CI; ( * ) undressed CL 

in the SDCI ( -0.197 au) or in the (SC)2SDCI 
( -0.203 au). This example shows the value of in- 
cluding the most important higher excitations in the 
variational process while treating small doubles at a 
low level. As can be seen from Table 1 small doubles 
still give 5.1 mEi,. In cases with a much larger num- 
ber of double excitations, where only a fraction of 
them could be treated variationally and where any 
MRMPZ would be difficult (if possible ) , the advan- 
tage of our combination of (SC) %I and SCPTZ may 
be even more encouraging. 

In order to test the behaviour of our proposal when 
bonds are broken, the Hz0 molecule in the DZ basis 
set has been examined for three interatomic dis- 
tances ( r,, 1.5r,, 2r,). Comparison is possible not only 
with the full-C1 [ 15 1, but with other approximate al- 
gorithms combining variation and perturbation [ 161. 
The results appear in Table 2. Regarding the compar- 

Table 2 
Results for water in the DZ basis set. Geometry and basis set from Saxe et al. [ 15 1. Energy differences in m& with respect to the SCF 
energy. The full-C1 energies are - 148.0, -211.0, - 310.1 m&, for r,, 1.5r. and 2r., respectively [ 81. I?” means the number of large 
doubles, whereas nsD is the number of small ones. EW refers to undressed CI, g to (SC)‘( CI+PT) energy. eserr denotes SCPT contri- 
butions of small doubles, whereas CMp and Ca’” denote Moller-Plesset and Epstein-Nesbet CIPSI energies. Single reference CISD and 
CISDTQ energies are also given for comparison 

Var. space 

dim nLD 

Small doubles 

ilsn e SCF-r 

Energies 

CUP CuN B 

re 1 0 
8 7 

32 31 
82 81 

767 364 
6478 709 
CISD= - 140.2 

l.Sr, 1 0 
33 30 
54 50 

117 107 
1329 366 
6965 683 
CISD= - 188.6 

2re 1 0 
38 32 
73 61 

123 89 
1483 360 
6551 649 
CISD= -249.6 

0 841 - 177.0 
-32.9 834 - 139.7 
-69.0 810 -90.9 
-97.1 760 - 50.5 

- 142.5 477 -1.6 
- 147.4 132 -0.01 

0 841 -256.2 
- 112.5 811 -115.9 
- 136.6 791 -81.0 
- 160.8 734 -37.4 
-189.1 613 -6.6 
- 209.2 158 -0.02 

0 841 -348.1 
-212.1 809 - 102.9 
-234.0 780 -52.9 
-253.0 752 - 34.8 
-298.7 481 -1.2 
- 304.6 192 -0.02 

- 130.5 - 183.3 
-134.5 - 161.5 
- 136.1 - 150.9 
- 140.2 - 147.3 
- 147.3 - 148.0 

CISDTQ= - 147.8 

-191.1 -288.8 
- 199.5 -218.0 
-201.5 -213.3 
-204.1 -211.2 
- 209.9 -210.6 

CISDTQ= - 209.9 

-257.3 -519.8 
-303.3 -314.4 
- 302.3 -312.1 
- 303.3 - 309.4 
- 308.4 - 309.4 

CISDTQ= -305.7 

- 177.0 
- 172.0 
- 159.9 
- 148.6 
- 146.2 
- 147.9 

-256.2 
-226.5 
-218.0 
-202.6 
- 209.0 
-210.1 

-348.1 
-307.8 
- 294.4 
-297.5 
- 305.3 
- 307.2 
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ison with the CIPSI method, one should notice that 
our proposal is free from the uncertainty that comes 
from the choice of Ho (which has a large impact on 
the final energy) and it is much cheaper. The CIPSI 
MP2 values ensure an approximate size extensivity 
and give similar errors (in the absolute numbers) to 
the present results. However the perturbative CIPSI 
step is much more expensive. The method behaves 
satisfactorily when bonds are broken, giving with the 
lowest threshold of selection of the variational space 
S, errors of 0.1, 0.9 and 2.9 m& at r,, 1.5r, and 2r, 
geometries, respectively (for comparison CISDTQ 
gives errors of 0.2, 1.1 and 4.4 m&,, respectively, see 
ref. [ 141). For stretched geometries some doubles 
and even quadruples have large coefficients and the 
dressing becomes crucial as may be seen from Table 
2 - it brings in some cases more than 10 rn& (for 
instance for 1.5r,, dim= 1329, the difference be- 
tween I? and Eva’+ cscm is about 13 m&, the effect 
of dressing is comparable to that difference). 

We have verified the separability property by cal- 
culating two water molecules at very large distances, 
using localized MOs. When the selection only intro- 
duces doubles in the variational space, for the super- 
system AB as well as for A and B, the variational space 
is the simple reunion of those coresponding to the 
subsystems and the additivity follows from the proof 
given in refs. [ 7,8 1. A stronger and more surprising 
property concerns the separability in the case where, 
using the same thresholds for the selections, the vari- 
ational space contains some intermolecular quadru- 
ples product of intramolecular doubles that are not 
contained in the subsystem selected spaces. 

5. Conclusion 

Although the test calculations have not been per- 
formed on real-scale problems since they concern 
medium basis sets and small numbers of electrons, 
they illustrate the efficiency and possibilities of the 
method. The reciprocal dressing of the variational and 
perturbative type treatments significantly improves 
the results when the contribution of the small dou- 
bles remains important and this should be the case 
for the relevant domains of application of the method. 

The procedure is flexible and powerful first be- 
cause it is size-consistent, but essentially because one 

may incorporate higher-order effects including the 
most important triples and quadruples. This should 
be important for many problems in quantum chem- 
istry where a subset of highly correlated electrons ap- 
pears, while the electronic correlation of the remain- 
der may be treated at a lower level of accuracy. One 
may think of chemical reactions where only a few 
bonds are strongly affected, or of the n electrons above 
the o electrons in conjugated molecules. 

Another field of application may be the interaction 
between molecules (and any problem where size ex- 
tensivity is required). 

In comparison with MRMP2 methods, the present 
scheme may be seen as more approximate since it ne- 
glects the interaction between small and large dou- 
bles, but it is formally rigorous and much cheaper for 
a given size of the variational space since we do not 
generate all the determinants interacting with the se- 
lected configurations. The bottleneck is no longer the 
perturbative step and one may go to a large dimen- 
sion of the CI space (especially if one uses direct se- 
lected algorithms). 

Work to generalize the method to excited states is 
in progress. 
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7. Appendix 

The scheme of the program for obtaining the 
( SC)2 (CI +PT) energy is given in Fig. A. 1, where 

( 1) in practice two iterations of CIPSI were done, 
so that some doubles and most important triples and 
quadruples were included in S; 

( 6 ) for a given double @i= 0: $0 instead of explicit 
summation over all doubles impossible on ei in the 
expression for Sii one can sum over particles and holes 
in & (using e-arrays) and then the corresponding di- 
agonal element in 2 x 2 or CI matrix is modified; 

( 7 ) the undressing is done analogously to ref. [ 8 ] ; 
(8) the contribution of small doubles is added to 
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I 1. Select reference space I 

1 
2. Diagonalize Hamiltonian matrix 

in S space: AHA 
1 

3. Generate all doubles and find c+ coeff for them. 
f rom undressed 2 x 2 matrices 

1 
4. For doubles belonging to S 

take qs from step no 2 

6. Having the e-arrays dress CI matrix or 2 x 2 matrieces 
for large or small doubles respectively 

I 
4 

7. Undress the doubles belonging to S by the effect of these 
doubles that lead again to S acting on a given double 

1 
8. From the new CI and 2 x 2 matrices find a 

new energy 8 and new qs. Go to step no 5 
Repeat until1 self-consistency is achieved 

Fig. A. 1. 

the (&, IHI q&,) element of the dressed-C1 matrix (for 
every double @iES the corresponding diagonal ele- 
ment ( @i 1 H 1 @i) is modified by the effect of all other 
possible doubles), which is diagonalized to obtain the 
next value of g and the Ci coeffkients of large doubles. 
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