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An explicitly correlated second order Mgller-Plesset theory
using a frozen Gaussian geminal

Andrew J. May and Frederick R. Manby®
School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom

(Received 7 June 2004; accepted 17 June R004

A variant of the MP2-R12 class of theories is introduced using an arbitrary geminal function in the
place ofr 1,. Integrals are derived for the case where the geminal is expanded in a basis of Gaussian
functions in the interelectronic distance. Recurrence relations are derived that do not depend on the
exponents of the Gaussian geminals, allowing much of the integration work to be performed after
summations over the geminal expansion. Sample calculations at various levels of explicitly
correlated MP2 theory are presented for He, Ne, and water20@4 American Institute of Physics.
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I. INTRODUCTION by usingn Gaussian geminals in place of a single dampgd
term is minimal.

Accurate quantum chemical calculations are limited to  In this work we develop a version of MP2-R12 theory
small molecules partly owing to the poor convergence offor an arbitrary correlation factor and derive recurrence rela-
orbital based methods. One solution to this problem is to us&ons for the integrals needed when the correlations factor is
explicitly correlated electronic structure theorfedhese a frozen Gaussian geminal.
methods give very accurate energies for small molecules, but It will be possible in the current framework to vary the
become computationally difficult for larger systems. Thegeminal function to obtain more accurate results; further-
problem arises from the need to compute three- and fourmore it is possible to compute the three-electron integrals
electron integrals, which are both complicated and extremelgirectly when the correlation factor has the form of a Gauss-
numerous. ian geminal. These aspects are not discussed further here, but

Since the bottleneck in explicitly correlated calculationsWill be the subject of future investigations.
lies in the computation of the many-electron integrals, most
work in the field has concentrated on finding ways either to
approximate these integrals, or to eliminate them aItogetheH' THEORY
In practice only the R12 methods of Kutzelnigg andA. The MP2-F12/2** A’ Ansatz
Kloppe~* can be applied to nontrivial problems.

Th thods lead t v i q ¢ In MP2-R12 theories various approximations are applied
ese methods lead fo greatly Improved CONVErgence qf, e the matrix elements that appear in the Hylleraas

correlation energies, t.)Ut have two di_sadv_antages: First, SOMfinctional more tractable, and this leads to a varietyAnf
of the many—electron integrals mvolvmg “n%rz can.not be saze To illustrate our frozen geminal implementation we
solved in closed form; second, the inclusionrgf in the develop anAnsatzreferred to a2** A’, mentioned in the
wave function leads to integrals that become increasingly, . ¢ Klopper and SamsofKS) (Ref é)and referred to as
large as basis functions become further apart. This does ned15_ s elsewherd® The theory will be developed with
present physical problems: the ratio of the exact wave funCzegq|ytions of the identityRIs) in an auxiliary basis. The
tion to the Hartree-Fock wave function diverges even morgyariyation follows closely that of Ref. 10, but with the linear
qwck_ly inrq,. Ne_zvertheless these large integrals uItlmaterr12 factor replaced by an arbitrary functidn, of the inter-
contribute very little to the total energy, and may lead t0g|ectronic distance. Throughout, we employ the following
numerical errors. _ _ _ notation for the labeling of orbitalsikimn for occupied mo-
This problem can be avoided by using a correlatlc_)n_ _facjecular orbitals(MOs); abcd for virtual MOs; pgrs for any
tor that decays to zero at long range. One such possibility ig10s: andp’q’r’s’ for the orthonormal RI basis. We use

to use a linear combination of Gaussian type gemifidls. ABCD for density fitting basis functions. Summation over
These functions cannot exactly reproduce the interelectronigepeated dummy indices is assumed throughout.

cusps in the wave function owing to their vanishing gradient  \We minimize the Hylleraas pair functiortaf?

atr,,=0. However the volume element;42,, ensures that . . B

the contribution to the correlation energy at very shiggtis ei(j2)2<uij [TitTo—ei—gjluy)+ 2<uij|r121|ij ) 1)
negligible. An alternative is to use a damped term, such  \yhere in the MP2-F12nsatzthe standard MP2 basis of
asrexp(— 1) .° As we will show, the extra work implied  goubly excited determinants is augmented by explicitly cor-
related terms

dauthor to whom correspondence should be addressed. Electronic mail: i i A
fred.manby@bris.ac.uk |Uij>:ta{b|ab>+tkle12f12|k|>! (2)
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wheref, is a function ofr ,. The terms containing two projection operators factorize, so
Expanding the Hylleraas functional gives that, for example,
|(12)_ ’\j/lpz"' Erjlz"’ZthtEKk'|f12©12(?1+f2—8i_8j)|ab>1 (KI[f120105r 1517 )= (kI f il mn)y(mnfr 5411} ); 9

those that contain a single projector, however, take the form
where eMPZ is the conventional MP2 pair energy expressionof unfactorizable three-electron integrals,
and

kI f 1041 1211 )= (KIm|f 1r o5 mji). 10
eiFjlz tBkImn” +2t i @ (KI[f 1041 15 ]ij)=¢ |f1af 53 IMji) (10
Using the notation (F);t=(palfyirs), (Ipy
where =(pglri7|rs), and(FJ), (quflzr12 |rs), we have
BLijn:<m”|f12©12(f1+fz_Si—Sj)leflﬂk') ) V= (F) = (k| f 1501+ O, r ij)
and + (FYAY) = (PR (11
Vi =(kl|f12Q12r1’21|ij )- (6)  The three-electron integrals are avoided in the standard R12

The remaining term in Eq3) couples the standard MP2 and Wa: "amely, by the introduction of an approximate resolu-
F12 parts, but the inconvenience of this coupling can bdion of the identity. LetP’=|p’ )(p'| be such an approxi-
avoided by choosing an appropriate form for the projectionmate identity operator, thed,~0,P} and

operator. In this work we have 1 "
(KIf 1050 iy~ (F)i® <J> (12

lez(l_él)(l_62)(1_\71\72)1 (7) Then we have
where O=[i)(i| projects onto the one-particle occupied i o’/ i o/ i
space, andv/=|a)(a| onto the virtual space in the atomic =(FIa=(Foa" (Dmp = (FHa (D prm
orbital (AO) basis. Other choices for this operator are avail- F(FYMN NI (F)aP(gYi, (13)

able, the only essential feature being that it ensures strong
orthogonality to the occupied space; alternatives discusse@nd this expression straightforwardly reflects the structure of

elsewher® include Q%=(1-0,)(1-0,) and Qf,=(1  the projection operator after the insertion of RIs,

—P,)(1-P,), where P=|p)(p| projects onto the entire A AR
MO space. In the absence o>f<further approximations it makes Qur=1-01P>— P 02+0102 ViV, a4
no difference whether one usés, or @2, but the com- The exact form ofBy, ., is given in Eq.(5), but several
m0n|y used approximaﬂons in R12 theories may make OnéIIStlnCt apprOX|mat|0ns are made to arrive at an expression
choice more accurate than the oth@E, is distinct owing to that can be evaluated efficiently It is first assumed that the
the presence of additional terms that are singly exterior to th&BC holds, because thé®y,,f;,+f,]=0, and
given AO basis.

Even with the projection operator of E@7), the cou- Bk' mn— (mn|f12Q12(fl+f2 ei—ep)filkl). (15)

pling betweerjab) andQ.,f1,kl) does not exactly vanish; it The relationship in Eq(15) is only approximate in a finite
can however be seen to be small by assuming the validity dbasis, and care has to be taken to symmetrize the final, ap-
the so-called generalized and extended Brillouin conditiongproximateB' to restore Hermiticity.
(GBC and EBC, respectively In the GBC it is assumed that The second step is to observe the identity
the Fock equations are solved exactly for the occupied orbit- ' .
als (f|iy=e¢]i)); this is clearly not the case in a finite basis Bimn= (M f1Qu1A[T1+12,f15]
set, but becomes more valid as the basis set is extended. In 2
the EBC it is further assumed that the Fock equations are Fhiafitfomei—eg ki), (16
exactly satisfied by the virtual orbitalf|@)=¢,]a)). As-  Relying on the GBC and symmetrizing we have
suming the EBC to hold, we havgQ,,,f;]=0. Since
~ 9 . EQlZ l] BLJI mn— Z{Bkl mnt an kl}
Q17 ab)=0 the coupling terms of Eq3) can then be seen to
vanish, and the MP2 and F12 pair energies can be evaluated +3(ext &1 emten— 28— 28) Xt mn, 17
n |solgt|on. . S . .. where
Spin adaptation and minimization of the pair energies in
Eq. (4)9|s dealt with gtrmghtfo_rwardly 'ghrough Eq@)—(lO) Bkl’mn:(mnlflzélifl_i_'fz’fli”kw (18
of KS;” all that remains here is to derive expressions for the
Fock-like B and exchange-lik¢/!) matrices. and
We first consider the evaluation of the simplgf matrix

elements. Inserting the definition &f;, into Eq. (6) gives Xia,mn= (M f1Quaf 1 K1). (19

The “overlap” matrix X is computed exactly lik&/: using
= (KIf1d1-01=0,+0:0,~V1Volri,'lij).  (8)  the RI approximation one has
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in’ kl ’i Kkl H H H pq .
Xkl,mn:<F2>ﬁ1ln_<F>lrﬁn<F>ip' _<F>M<F>p,i thatThe kinetic energy integralsIF) ' are treated by noting

F ij = kl_ = ab = ki ’ 20 R
A <F2>k.+<<>mn|<f2>|':d>< i 20 (prllty,fozllas)=([pa]lfsdrs), (26
whnere mn— mn 12| .

A further approximation is made in the evaluation of the Where[[pal)=[{tip}q—pt,q), and that[pq)) is a density
B mn: the local parts of the Fock operator naturally com-that can also be subjected to fitting. Thes before’) one
mute with the projection operat@);,, and here we further
assume thafQ;,,K,]~0. This in the language of Klopper ([pAllf1drs) =~ (TP (F)rs+(TR)H(re
and Kutzelnigd renders the current work an approximation _ _
of type A. We are therefore left only with kinetic energy, so —(TIhg(FIAI) (27)

that and

Bit,mn=(Mnf12Q1d £+ 5, Fsl|KI). (2D (TF)PI=([pa]lf1drs)+(palfi[rs]). (29)
This can immediately be treated in the same way as before gy Eq. (27) one requires the integrals TO)éq
obtain(in the RI approximation =(Al[ty,r,t1|pq) the evaluation of which has been de-

ip’ kI '] kI scribed before:
Bkl,mn:<FTF>Ir(r:n_<F>Irrr1)n<TF>ip'_<F>ﬁqu1<TF>p’i
+(F) i TR — (F)a{ TF) 5. (220 C. Integrals
where (FTF)X =(mn|f Jt;+1,,f,]kl) and (TF)X =~ 1. Cartesian Gaussian functions
=(mn|[t;+1t,,f5]|Kl). We consider two-index two-electron integrals over un-

To summarize, the MP2-F12 method implemented here usasormalized Cartesian Gaussian functitins
Egs.(13), (20), and(22) to form all of the necessary matrix o v A Ay A Ay o A\
elements. The four-index two-electron integrals are gener- [@)=g(r;a.aA)=(x=A)™y Ay)H(z=A7)

ated by density fitting, as described in the following section. xexfd — a|r—A|?]. (29

It is important to note that a single Gaussian geminal func-

tion can be represented as
B. Density fitting

- I'2 — — .

Following previous work® we compute the integrals & T=01=0(ri7.0r). (30
overrl’zl, f1, f12rI211 [t,,f1,], andfif1;,f1,] using robust As detailed above several types of inte_gral are required_for
density fitting formulas. We treat in detail only those casedh® MP2-F122** A’ method. Here we will present the deri-
that do not form a trivial extension of our previous work. We vation of all integral classes using a frozen Gaussian geminal
consider the expansion of a general orbital product densit§f the form

|pg) in an auxiliary basis f1o=c,9l%. (31)
lpa)=[Pa) = (3)4A), (23)  The analysis closely follows the work of Obara and Safka.

Since both two- and three-index integrals are needed we
compute two-index integrals as the basic quantities and use
precomputed Gaussian product tensors to build three-index
integrals, as described previousyThis also makes any fu-
ture development of a four-index program comparatively

where 0)p,=[J""1as(J)p, and whereJag=(J)a=(A[B)
and (J)’;q:(Alpq), the two- and three-index Coulomb inte-
grals, respectively. The coefﬁcients])@q are used to com-
pute all classes of four-index integrals.

The normal exchange integrals are given by

straightforward.
(== DI 2 integral e a lgdy
. Integra e (a
but integrals over other kernels must be computed using ex- g ] yp 912 ) .
ity et oo g roconsn mroviug A et This integral forms the basis for the computation of the
for example, the integrals ovég, are given by other integral classes so we present its derivation is some

- o _ . detail. The two-electron, six-dimensional integral is defined
(F) = (F)pg st Dpg(Fis— Dpg(Fla()i, (25 explicitly as

where F)4 and ()%, are two- and three-index integrals
overfy, a (alg}lb)= f dr, f drog(ry,@,a,A)g}9(rs.8,b,B).
In r 1, methods, the RJ)FS integrals are trivialbecause (32

-1_ H 2\rs A Wi
r1af1, =1) and the integralsK®) 5, factorize; with a general 4 ¢onyenience we define a number of constants related to
correlation factorfy, neither of these simplifications take iho Gaussian exponents,

place, and one needs to compute expressions analogous to

Eq. (25 wusing two- and three-index integralsFJ)é, - :ﬁ = B+ Bt
(FJ)Sq,(FZ)S,and G:Z)Sq. g a B! é: g! n aﬁ :87 Ya.
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We begin by rewriting Eq(32) in the form

(@atdb) - | drfeopuirainbB). @9

The overlap integralgalg},) obey the well known recur-
rence relatiof?

+yro

—A [(algly)

(a+ 19l = (

a;
+ m(a— 1Ll97y. (34)

Now performing the integral of Eq33) we obtain
Y(r2;
2 ( — )< algiy)

* 5t +7)<a 1|9I2>} (r:8.b.B),

(39
Bi_ABi, ABi:Ai_Bi and Eq

(at 1i|912|b)=f d

which, usingrs—A;=r,—
(33), can be rewritten as

A. J. May and F. R. Manby

(41

t_2 jwdu e*“2r§2
12 JmJo '

In the following section recurrence relations for thé&inte-
grals are derived using this transform.

3. Integral type FJ

The target integral can be represented as

2 %
ridop = | dude . @2

Substituting y— y+ u?
respect tau gives

into Eq. (37) and integrating with

2 o0
Z [ auaraje o riip

Bly+U?)AB

n+ (W (ale™ (" ¥*rigb)

:%Kdu[_

y+u? —(y+u?)r?
YAB; Y + 2+ idd) bi(ale” """ idb— 1))
(a+1i|gf,lb) = —— (a9 b) + ——Dbj(algib+ 1)) K
a+y aty
B+ y+u? oy ud)r2
a + o i@ Lile g b) (43)
+m(a—1i|932|b)- (36) (+4u%)
4 By making use of an auxiliary integral
An analogous expression can be derived faig{,|b+ 1) ) 5 'm
and these two equations can be used to obtain a recurrengg . —1_y (1,\(m)_ fw —r2 U2+ )
r b)W=— | dul——=]| (ale" 2" "7Y|b
relation for @+ 1;|g?,/b) that involves only integrals with Cleaiel) JrJo Tz @ b)
lower angular momentum, (44)
,37 (wherek= 5/{) and the formula
(a+ Llgplo) =~ = = (algio) + 5 bi(alghlb-1) Lo
B+y K+U2:;( —K+U2 (45)
- " a. —1.1a0?
* 27 ai(a—1g7jb). (37 it is possible to complete the integration,
The recurrence relation requires the initial case (at1]r,'g3,b)™
s —|A=B|?aBy BAB;
(0/g150)= ;mexp[f]- (38) == T[v(alr 297b) ™+ E(@r 5 'g7,lb) M ]
Integrals of types andF? are linear combinations of these b; m
basic integrals over Gaussians, so that, for example, + —[y(a|r 912|b 1)
(afilb)=c,(alg]x[b). (39 +&(alr gl lb— 1) M+ D)
The recurrence relation of E§37) appears to be quite gen- a
erally useful. For example, by using the Gaussian represen-  + 5 o (y+B)(a—1|r 597 )™
tation of the Diracé function it is possible to see that 5
B
1/2 1
— —(a—1|r;glb) ™). 46
lim (% (alg}lb)=(alb); (40 7 (- trzotdd) 49
Yy—®

applying this limit to the recurrence relation yields the recur-

rence relation for the overlap integrafsSimilarly, integra-

tion of Eq. (37) yields the recurrence relation for two-index
Coulomb integrals owing to the well known Gaussian

transfornt’

The starting case for the recurrence relation is

2 5/2 —|IA—B 2
721/2 exp[ | 77| aﬂy] Fm(T),
(47)

(Olr 15

912|0)( )=

whereF (T) is the Boys functioh’
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1 where R=A—-B and P=(aA+ BB)/{. The integrals over
Fm(T)= JO dt t*"exp{ — Tt} (49 v2f,, are computed using the relation
and Vifi=4arifis 613, (54)
T=|A—B|2apBél . (49 Wwhere
f=c.vhas. (55)

4. The transfer equation ] 5 o ) )
The integrals over?, multiplied by a geminal expansion are

5 _ .
Integral typesF, F*, andFJ involve a summation over giscyssed in the following section. The evaluation of inte-

exponents defining the Gaussian geminal. This increases %‘?als analogous to the second term on the right-hand side of
time for the integrals significantly so it is desirable to per- Eq. (53 is discussed elsewhel?.

form this summation as early as possible in the integral

evaluation. This is not possible using E&7) directly be-

causey, the geminal exponent, appears in the coefficients of. Integral type FTF

the recursioy. By tak.in.g Ec(37_) and the _equivalent expres- When ry, is used, the kinetic energy integrals over
sion for (alg},|b+ 1)) it is possible to derive a transfer equa- f 1 £, +1,,r1,] become trivial' but in the general case they

tion in which the coefficients do not have this dependence,have to be computed explicitly. Some manipulation reveals

2a(a+1j|g7,b)+28(algl,b+1) that the matrix elements of twice the symmetrized operator
[f1,.[t1,f15]]/2 have the form
~ay(a— 1|7 b) + by (algb—1,). 50 Lheltnhll
(@[ f12.[t1,f1211lb) = (8| V1 f1d?|b) (56)

This transfer equation can be used directly for any linear
combination of Gaussian, or indeed for any two-electron in{cf. Egs.(6) and(12) of Ref. 8|. The kernel of this integral
tegrals having a kernel that can be expressed as a Gaussiean readily be shown to be

transform. Supposé is a two-electron operator that can be

_ 2
written in the form Vifil?=4c,c,y, 7,116 Tt re=ar? {512 (57)
5
b1o= fwdu?j,(u)efuzrfz; (51 Combining Eqs(56) and(57) we have
0
1 “
then the integrals ovep,, satisfy the recurrence relation z(a|[f12,[t1,flﬂ]|b)=2(a|r§2{f(112)}2|b). (58)

2a(at L ¢1ib) +2p(al 1+ 1) The integral on the right-hand side of EGS8) can be ex-
=a;(a— 1| ¢15b) +b;i(a p1b—1;). (520  pressed in terms of integrals over the geminal with higher

. . , angular momenta,
Angular momentum is built up say i) by the normal re- 9

currence relation§37) to the total angular momentum of the
target integral. Theq ng|0) integrals are then summed over
the geminal coefficients, and only then the transfer equation ¢ ¢
is used to build the target integrals. Since only a small pro- +2AB;(at 1i|f1,b) + (alfi]b+2)

portion of the time is spent building the,4|0) integrals, —2AB;(af,|b+1)+AB%afi,|b)}. (59

the overhead for having Gaussian geminals is minimal. If ) . o

the geminal is varied it will not be possible to perform this BY @PPlying the transfer equatidiq. (52)] to Eq.(59) itis
summation in advance. However, two points should be conPOSSible to obtain expressions for RéF (andTF) integrals
sidered:(1) the increased accuracy from varying the geminalthat have increased angular momentum only in the bra.
may be worth the extra effor2) the O(n?) computation of

the (F?) integrals can be avoided by using a direct solver toy;. EXAMPLES

minimize the Hylleraas functional. In this case one of the ) )

two summations can be performed ear'y, |eading to a linear To illustrate the behavior of the MP2-F12 me’[hOd, and to

dependence on the length of the geminal expansion. check for code correctness, we have performed some pre-
liminary calculations on helium, neon, and the water mol-

ecule. Explicitly correlated calculations using various MP2
5. Integral type FT Ansdze were performed using the cc-pVQZ AO baSis?
) ) ) _ When used, the auxiliary Rl basis was the uncontracted cc-
These m_tegrals are computed directly in three-_|nde>bVQZ basis, and the cc-pVQZ fitting basis of Weigend
form. Following our own previous wofR and the earlier gt 5121 was used for density fitting. The Gaussian geminal

(@rifidb)= 2 {(a+2fidb)-2(a+1filb+1)

work of Klopper and Rbseé® we write consisted of 21 even tempered Gaussians with exponents
. 1a—p centered on 15 and with a ratio of 2. The coefficients were
(abl[ty,f1o]l0)= Em(abHfolMC) determined by a least squares fit itg, using a Gaussian
weight function with exponent 0.2. The geometry ofH
+Vp- Vg(ablfqjc), (53)  was taken from Ref. 22. The results are shown in Table I. It
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TABLE I. Correlation energief— Eo (millihartrea] for He, Ne, and water  nality functionaf”-?® as this may shed light on the errors

using a variety of MP2 methods. Details of the calculations are in the text; : ;
Basis sets of the form cc-p) are abbreviated asnZ. Footnotes refer to introduced by the GBC and other approximations.

sources for the MP2 methods, rather than to the data presented. Fina”y we have begun to inveStigate an Aaltemative form
for the strong orthogonality projection opera@r Using Eq.

Method Basi H N oA A s A AL A
etho asts N N $0 (7), the identityP=0O+V and the definitiorP =P’ —P, it
MP2 vQz 35478 293573 282.816 s possible to show that in the RI approximation
V52Z° 36.407 306.164 291.522
vez* 36.807 311791 295.218
v[5,6z¢ 37.358 319.519  300.295 . f . s aa
MP2-R12/%£ Vo4 36.371 309.567  293.633 Q=1-P,P,—0O;P;—P70,. (60)
DF-MP2-R12/A vQz 36.340 309.571 293.643
DF-MP2-R12/A¢ vQz 36.340 309.913  294.062
DF-MP2-R122** A’" vQz 36.317 311162 294.915 i ; . f ;
DE-MP2-FLo9** A’ voz 36319 311137 204803 This s wierestmg for two reasons: first because it reygals
that the2** Ansatzhas the projection operator of the origi-
“References 19 and 20. nal MP2-R12 Ansat? plus a correction term—O,P5
PReferences 19 and 20. N .
°Reference 29. - P_loz that takes account of the incompleteness of the AO
YExtrapolation based on V5Z and V6Z resulRefs. 30 and 31 basis set.
‘Reference 4. But secondly it reveals that the Rl need only be per-

'Reference 13. . .
9Density fitted version of Ref. 32. formed in the orthogonal complement of the AO basis. Thus,

hDensity fitted version of Ref. 9. for example, in a calculation on the neon atom, it is possible
to use thes, p, andd functions of cc-pVQZ for the AO basis
and only the f functions for the orthogonal RI basis that is

N S
can be seen that DF-MP2-F12f2A’ achieves approxi- used to formP-. This yields exactly the same energy as a

. . . .
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less trivial, and requires further investigation.
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