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An explicitly correlated second order Møller-Plesset theory
using a frozen Gaussian geminal

Andrew J. May and Frederick R. Manbya)

School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom

~Received 7 June 2004; accepted 17 June 2004!

A variant of the MP2-R12 class of theories is introduced using an arbitrary geminal function in the
place ofr 12. Integrals are derived for the case where the geminal is expanded in a basis of Gaussian
functions in the interelectronic distance. Recurrence relations are derived that do not depend on the
exponents of the Gaussian geminals, allowing much of the integration work to be performed after
summations over the geminal expansion. Sample calculations at various levels of explicitly
correlated MP2 theory are presented for He, Ne, and water. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1780891#

I. INTRODUCTION

Accurate quantum chemical calculations are limited to
small molecules partly owing to the poor convergence of
orbital based methods. One solution to this problem is to use
explicitly correlated electronic structure theories.1 These
methods give very accurate energies for small molecules, but
become computationally difficult for larger systems. The
problem arises from the need to compute three- and four-
electron integrals, which are both complicated and extremely
numerous.

Since the bottleneck in explicitly correlated calculations
lies in the computation of the many-electron integrals, most
work in the field has concentrated on finding ways either to
approximate these integrals, or to eliminate them altogether.
In practice only the R12 methods of Kutzelnigg and
Klopper2–4 can be applied to nontrivial problems.

These methods lead to greatly improved convergence of
correlation energies, but have two disadvantages: First, some
of the many-electron integrals involving linearr 12 cannot be
solved in closed form; second, the inclusion ofr 12 in the
wave function leads to integrals that become increasingly
large as basis functions become further apart. This does not
present physical problems: the ratio of the exact wave func-
tion to the Hartree-Fock wave function diverges even more
quickly in r 12. Nevertheless these large integrals ultimately
contribute very little to the total energy, and may lead to
numerical errors.

This problem can be avoided by using a correlation fac-
tor that decays to zero at long range. One such possibility is
to use a linear combination of Gaussian type geminals.5–7

These functions cannot exactly reproduce the interelectronic
cusps in the wave function owing to their vanishing gradient
at r 1250. However the volume element, 4pr 12

2 , ensures that
the contribution to the correlation energy at very shortr 12 is
negligible. An alternative is to use a dampedr 12 term, such
asr 12exp(2gr12

2 ).8 As we will show, the extra work implied

by usingn Gaussian geminals in place of a single dampedr 12

term is minimal.
In this work we develop a version of MP2-R12 theory

for an arbitrary correlation factor and derive recurrence rela-
tions for the integrals needed when the correlations factor is
a frozen Gaussian geminal.

It will be possible in the current framework to vary the
geminal function to obtain more accurate results; further-
more it is possible to compute the three-electron integrals
directly when the correlation factor has the form of a Gauss-
ian geminal. These aspects are not discussed further here, but
will be the subject of future investigations.

II. THEORY

A. The MP2-F12 Õ2** A8 Ansatz

In MP2-R12 theories various approximations are applied
to make the matrix elements that appear in the Hylleraas
functional more tractable, and this leads to a variety ofAn-
sätze. To illustrate our frozen geminal implementation we
develop anAnsatzreferred to as2** A8, mentioned in the
work of Klopper and Samson~KS! ~Ref. 9! and referred to as
R12-SO* elsewhere.10 The theory will be developed with
resolutions of the identity~RIs! in an auxiliary basis. The
derivation follows closely that of Ref. 10, but with the linear
r 12 factor replaced by an arbitrary functionf 12 of the inter-
electronic distance. Throughout, we employ the following
notation for the labeling of orbitals:ijklmn for occupied mo-
lecular orbitals~MOs!; abcd for virtual MOs; pqrs for any
MOs; andp8q8r 8s8 for the orthonormal RI basis. We use
ABCD for density fitting basis functions. Summation over
repeated dummy indices is assumed throughout.

We minimize the Hylleraas pair functional11,12

e i j
~2!5^ui j u f̂ 11 f̂ 22« i2« j uui j &12^ui j ur 12

21u i j &, ~1!

where in the MP2-F12Ansatz the standard MP2 basis of
doubly excited determinants is augmented by explicitly cor-
related terms

uui j &5tab
i j uab&1tkl

i j Q̂12f 12ukl&, ~2!
a!Author to whom correspondence should be addressed. Electronic mail:
fred.manby@bris.ac.uk
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where f 12 is a function ofr 12.
Expanding the Hylleraas functional gives

e i j
~2!5e i j

MP21e i j
F1212tab

i j tkl
i j ^klu f 12Q̂12~ f̂ 11 f̂ 22« i2« j !uab&,

~3!

wheree i j
MP2 is the conventional MP2 pair energy expression

and

e i j
F125tkl

i j Bkl,mn
i j tmn

i j 12tkl
i j Vkl

i j , ~4!

where

Bkl,mn
i j 5^mnu f 12Q̂12~ f̂ 11 f̂ 22« i2« j !Q̂12f 12ukl& ~5!

and

Vkl
i j 5^klu f 12Q̂12r 12

21u i j &. ~6!

The remaining term in Eq.~3! couples the standard MP2 and
F12 parts, but the inconvenience of this coupling can be
avoided by choosing an appropriate form for the projection
operator. In this work we have

Q̂125~12Ô1!~12Ô2!~12V̂1V̂2!, ~7!

where Ô5u i &^ i u projects onto the one-particle occupied
space, andV̂5ua&^au onto the virtual space in the atomic
orbital ~AO! basis. Other choices for this operator are avail-
able, the only essential feature being that it ensures strong
orthogonality to the occupied space; alternatives discussed
elsewhere9 include Q̂12

O 5(12Ô1)(12Ô2) and Q̂12
P 5(1

2 P̂1)(12 P̂2), where P̂5up&^pu projects onto the entire
MO space. In the absence of further approximations it makes
no difference whether one usesQ̂12 or Q̂12

O , but the com-
monly used approximations in R12 theories may make one
choice more accurate than the other.Q̂12

P is distinct owing to
the presence of additional terms that are singly exterior to the
given AO basis.

Even with the projection operator of Eq.~7!, the cou-
pling betweenuab& andQ̂12f 12ukl& does not exactly vanish; it
can however be seen to be small by assuming the validity of
the so-called generalized and extended Brillouin conditions
~GBC and EBC, respectively!.4 In the GBC it is assumed that
the Fock equations are solved exactly for the occupied orbit-
als (f̂ u i &5« i u i &); this is clearly not the case in a finite basis
set, but becomes more valid as the basis set is extended. In
the EBC it is further assumed that the Fock equations are
exactly satisfied by the virtual orbitals (f̂ ua&5«aua&). As-
suming the EBC to hold, we have@Q̂12, f̂ 1#50. Since
Q̂12uab&50 the coupling terms of Eq.~3! can then be seen to
vanish, and the MP2 and F12 pair energies can be evaluated
in isolation.

Spin adaptation and minimization of the pair energies in
Eq. ~4! is dealt with straightforwardly through Eqs.~7!–~10!
of KS;9 all that remains here is to derive expressions for the
Fock-like Bi j and exchange-likeV i j matrices.

We first consider the evaluation of the simplerVkl
i j matrix

elements. Inserting the definition ofQ̂12 into Eq. ~6! gives

Vkl
i j 5^klu f 12@12Ô12Ô21Ô1Ô22V̂1V̂2#r 12

21u i j &. ~8!

The terms containing two projection operators factorize, so
that, for example,

^klu f 12Ô1Ô2r 12
21u i j &5^klu f 12umn&^mnur 23

21u i j &; ~9!

those that contain a single projector, however, take the form
of unfactorizable three-electron integrals,

^klu f 12Ô1r 12
21u i j &5^klmu f 12r 23

21um ji&. ~10!

Using the notation ^F&pq
rs 5^pqu f 12urs&, ^J&pq

rs

5^pqur 12
21urs&, and^FJ&pq

rs 5^pqu f 12r 12
21urs&, we have

Vkl
i j 5^FJ&kl

i j 2^klu f 12~Ô11Ô2!r 12
21u i j &

1^F&kl
mn^J&mn

i j 2^F&kl
ab^J&ab

i j . ~11!

The three-electron integrals are avoided in the standard R12
way, namely, by the introduction of an approximate resolu-
tion of the identity. LetP̂85up8&^p8u be such an approxi-
mate identity operator; thenÔ1'Ô1P̂28 and

^klu f 12Ô1r 12
21u i j &'^F&kl

mp8^J&mp8
i j . ~12!

Then we have

Vkl
i j 5^FJ&kl

i j 2^F&kl
mp8^J&mp8

i j
2^F&kl

p8m^J&p8m
i j

1^F&kl
mn^J&mn

i j 2^F&kl
ab^J&ab

i j , ~13!

and this expression straightforwardly reflects the structure of
the projection operator after the insertion of RIs,

Q̂12'12Ô1P̂282 P̂18Ô21Ô1Ô22V̂1V̂2 . ~14!

The exact form ofBkl,mn
i j is given in Eq.~5!, but several

distinct approximations are made to arrive at an expression
that can be evaluated efficiently. It is first assumed that the
EBC holds, because then@Q̂12, f̂ 11 f̂ 2#50, and

Bkl,mn
i j 5^mnu f 12Q̂12~ f̂ 11 f̂ 22« i2« j ! f 12ukl&. ~15!

The relationship in Eq.~15! is only approximate in a finite
basis, and care has to be taken to symmetrize the final, ap-
proximateBi j to restore Hermiticity.

The second step is to observe the identity

Bkl,mn
i j 5^mnu f 12Q̂12$@ f̂ 11 f̂ 2 , f 12#

1 f 12~ f̂ 11 f̂ 22« i2« j !%ukl&. ~16!

Relying on the GBC and symmetrizing we have

Bkl,mn
i j 5 1

2$Bkl,mn1Bmn,kl%

1 1
2~«k1« l1«m1«n22« i22« j !Xkl,mn , ~17!

where

Bkl,mn5^mnu f 12Q̂12@ f̂ 11 f̂ 2 , f 12#ukl& ~18!

and

Xkl,mn5^mnu f 12Q̂12f 12ukl&. ~19!

The ‘‘overlap’’ matrix X is computed exactly likeV: using
the RI approximation one has
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Xkl,mn5^F2&mn
kl 2^F&mn

ip8^F& ip8
kl

2^F&mn
p8 i^F&p8 i

kl

1^F&mn
i j ^F& i j

kl2^F&mn
ab ^F&ab

kl , ~20!

where^F2&mn
kl 5^mnu f 12

2 ukl&.
A further approximation is made in the evaluation of the

Bkl,mn : the local parts of the Fock operator naturally com-
mute with the projection operatorQ̂12, and here we further
assume that@Q̂12,K̂1#'0. This in the language of Klopper
and Kutzelnigg4 renders the current work an approximation
of type A. We are therefore left only with kinetic energy, so
that

Bkl,mn5^mnu f 12Q̂12@ t̂11 t̂2 , f 12#ukl&. ~21!

This can immediately be treated in the same way as before to
obtain ~in the RI approximation!

Bkl,mn5^FTF&mn
kl 2^F&mn

ip8^TF& ip8
kl

2^F&mn
p8 i^TF&p8 i

kl

1^F&mn
i j ^TF& i j

kl2^F&mn
ab ^TF&ab

kl , ~22!

where ^FTF&mn
kl 5^mnu f 12@ t̂11 t̂2 , f 12#ukl& and ^TF&mn

kl

5^mnu@ t̂11 t̂2 , f 12#ukl&.
To summarize, the MP2-F12 method implemented here uses
Eqs.~13!, ~20!, and~22! to form all of the necessary matrix
elements. The four-index two-electron integrals are gener-
ated by density fitting, as described in the following section.

B. Density fitting

Following previous work13 we compute the integrals
over r 12

21, f 12, f 12r 12
21, @ t̂1 , f 12#, andf 12@ t̂1 , f 12# using robust

density fitting formulas. We treat in detail only those cases
that do not form a trivial extension of our previous work. We
consider the expansion of a general orbital product density
upq! in an auxiliary basis

upq)'upq̃)5~ J̄!pq
A uA), ~23!

where (J̄)pq
A 5@J21#AB(J)pq

A and whereJAB5(J)B
A5(AuB)

and (J)pq
A 5(Aupq), the two- and three-index Coulomb inte-

grals, respectively. The coefficients (J̄)pq
A are used to com-

pute all classes of four-index integrals.
The normal exchange integrals are given by

^J&pr
qs[~J!pq

rs '~ J̄!pq
A ~J!rs

A ~24!

but integrals over other kernels must be computed using ex-
plicitly robust equations14,15 as discussed previously.13 Thus,
for example, the integrals overf 12 are given by

~F !pq
rs '~F !pq

A ~ J̄!rs
A 1~ J̄!pq

A ~F !rs
A 2~ J̄!pq

A ~F !B
A~ J̄!rs

B , ~25!

where (F)B
A and (F)pq

A are two- and three-index integrals
over f 12.

In r 12 methods, the (FJ) rs
pq integrals are trivial~because

r 12r 12
2151) and the integrals (F2)pq

rs factorize; with a general
correlation factorf 12 neither of these simplifications take
place, and one needs to compute expressions analogous to
Eq. ~25! using two- and three-index integrals (FJ)B

A ,
(FJ)pq

A , (F2)B
A , and (F2)pq

A .

The kinetic energy integrals (TF) rs
pq are treated by noting

that

^pru@ t̂1 , f 12#uqs&5~@pq#u f 12urs!, ~26!

where u@pq#)5u$ t̂1p%q2p t̂1q), and thatu@pq#! is a density
that can also be subjected to fitting. Then~as before13! one
has

~@pq#u f 12urs!'~TJ!pq
A ~F !rs

A 1~TF!pq
A ~ J̄!rs

A

2~TJ!pq
A ~F !B

A~ J̄!rs
B ~27!

and

~TF!rs
pq5~@pq#u f 12urs!1~pqu f 12u@rs# !. ~28!

In Eq. ~27! one requires the integrals (TJ)pq
A

5(Au@ t̂1 ,r 12
21#upq) the evaluation of which has been de-

scribed before.13

C. Integrals

1. Cartesian Gaussian functions

We consider two-index two-electron integrals over un-
normalized Cartesian Gaussian functions16

ua)[g~r ;a,a,A!5~x2Ax!
ax~y2Ay!ay~z2Az!

az

3exp@2aur2Au2#. ~29!

It is important to note that a single Gaussian geminal func-
tion can be represented as

e2gr 12
2

[g12
g 5g~r1 ;g,0,r2!. ~30!

As detailed above several types of integral are required for
the MP2-F12/2** A8 method. Here we will present the deri-
vation of all integral classes using a frozen Gaussian geminal
of the form

f 125cmg12
gm. ~31!

The analysis closely follows the work of Obara and Saika.16

Since both two- and three-index integrals are needed we
compute two-index integrals as the basic quantities and use
precomputed Gaussian product tensors to build three-index
integrals, as described previously.13 This also makes any fu-
ture development of a four-index program comparatively
straightforward.

2. Integral type (a zg12
g zb)

This integral forms the basis for the computation of the
other integral classes so we present its derivation is some
detail. The two-electron, six-dimensional integral is defined
explicitly as

~aug12
g ub!5E dr1E dr2g~r1 ,a,a,A!g12

g g~r2 ,b,b,B!.

~32!

For convenience we define a number of constants related to
the Gaussian exponents,

z5a1b, j5
ab

z
, h5ab1bg1ga.
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We begin by rewriting Eq.~32! in the form

~aug12
g ub!5E dr2^aug12

g &g~r2 ;b,b,B!. ~33!

The overlap integralŝaug12
g & obey the well known recur-

rence relation16

^a11i ug12
g &5S aAi1gr 2i

a1g
2Ai D ^aug12

g &

1
ai

2~a1g!
^a21i ug12

g &. ~34!

Now performing the integral of Eq.~33! we obtain

~a11i ug12
g ub!5E dr2F S g~r 2i2Ai !

a1g D ^aug12
g &

1
ai

2~a1g!
^a21i ug12

g &Gg~r2 ;b,b,B!,

~35!

which, usingr 2i2Ai5r 2i2Bi2AB i , ABi5A i2Bi and Eq.
~33!, can be rewritten as

~a11i ug12
g ub!5

gAB i

a1g
~aug12

g ub!1
g

a1g
bi~aug12

g ub11i !

1
ai

2~a1g!
~a21i ug12

g ub!. ~36!

An analogous expression can be derived for (aug12
g ub11i)

and these two equations can be used to obtain a recurrence
relation for (a11i ug12

g ub) that involves only integrals with
lower angular momentum,

~a11i ug12
g ub!52

bgAB i

h
~aug12

g ub!1
g

2h
bi~aug12

g ub21i !

1
b1g

2h
ai~a21i ug12

g ub!. ~37!

The recurrence relation requires the initial case

~0ug12
g u0!5

p3

h3/2expH 2uA2Bu2abg

h J . ~38!

Integrals of typesF andF2 are linear combinations of these
basic integrals over Gaussians, so that, for example,

~au f 12ub!5cm~aug12
gmub!. ~39!

The recurrence relation of Eq.~37! appears to be quite gen-
erally useful. For example, by using the Gaussian represen-
tation of the Diracd function it is possible to see that

lim
g→`

S g

p D 1/2

~aug12
g ub!5^aub&; ~40!

applying this limit to the recurrence relation yields the recur-
rence relation for the overlap integrals.16 Similarly, integra-
tion of Eq. ~37! yields the recurrence relation for two-index
Coulomb integrals owing to the well known Gaussian
transform17

1

r 12
5

2

Ap
E

0

`

du e2u2r 12
2

. ~41!

In the following section recurrence relations for theFJ inte-
grals are derived using this transform.

3. Integral type FJ

The target integral can be represented as

~aur 12
21g12

g ub!5
2

Ap
E

0

`

du~aue2~g1u2!r 12
2

ub!. ~42!

Substitutingg→g1u2 into Eq. ~37! and integrating with
respect tou gives

2

Ap
E

0

`

du~a11i ue2~g1u2!r 12
2

ub!

5
2

Ap
E

0

`

duH 2
b~y1u2!AB i

h1zu2 ~aue2~g1u2!r 12
2

ub!

1
g1u2

2~h1zu2!
bi~aue2~g1u2!r 12

2
ub21i !

1
b1g1u2

2~h1zu2!
ai~a21i ue2~g1u2!r 12

2
ub!J . ~43!

By making use of an auxiliary integral

~aur 12
21g12

g ub!~m!5
2

Ap
E

0

`

duS u2

k1u2D m

~aue2r 12
2

~u21g!ub!

~44!

~wherek5h/z) and the formula

1

k1u2 5
1

k H 12
u2

k1u2J , ~45!

it is possible to complete the integration,

~a11i ur 12
21g12

g ub!~m!

52
bAB i

h
@g~aur 12

21g12
g ub!~m!1j~aur 12

21g12
g ub!~m11!#

1
bi

2h
@g~aur 12

21g12
g ub21i !

~m!

1j~aur 12
21g12

g ub21i !
~m11!#

1
ai

2h F ~g1b!~a21i ur 12
21g12

g ub!~m!

2
b2

z
~a21i ur 12

21g12
g ub!~m11!G . ~46!

The starting case for the recurrence relation is

~0ur 12
21g12

g u0!~m!5
2p5/2

hz1/2 expH 2uA2Bu2abg

h J Fm~T!,

~47!

whereFm(T) is the Boys function17
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Fm~T!5E
0

1

dt t2m exp$2Tt2% ~48!

and

T5uA2Bu2abj/h. ~49!

4. The transfer equation

Integral typesF, F2, andFJ involve a summation over
exponents defining the Gaussian geminal. This increases the
time for the integrals significantly so it is desirable to per-
form this summation as early as possible in the integral
evaluation. This is not possible using Eq.~37! directly be-
causeg, the geminal exponent, appears in the coefficients of
the recursion. By taking Eq.~37! and the equivalent expres-
sion for (aug12

g ub11i) it is possible to derive a transfer equa-
tion in which the coefficients do not have this dependence,

2a~a11i ug12
g ub!12b~aug12

g ub11i !

5ai~a21i ug12
g ub!1bi~aug12

g ub21i !. ~50!

This transfer equation can be used directly for any linear
combination of Gaussian, or indeed for any two-electron in-
tegrals having a kernel that can be expressed as a Gaussian
transform. Supposef12 is a two-electron operator that can be
written in the form

f125E
0

`

duf̃~u!e2u2r 12
2

; ~51!

then the integrals overf12 satisfy the recurrence relation

2a~a11i uf12ub!12b~auf12ub11i !

5ai~a21i uf12ub!1bi~auf12ub21i !. ~52!

Angular momentum is built up say inua! by the normal re-
currence relations~37! to the total angular momentum of the
target integral. The (aug12

gmu0) integrals are then summed over
the geminal coefficients, and only then the transfer equation
is used to build the target integrals. Since only a small pro-
portion of the time is spent building the (aug12

gmu0) integrals,
the overhead for havingn Gaussian geminals is minimal. If
the geminal is varied it will not be possible to perform this
summation in advance. However, two points should be con-
sidered:~1! the increased accuracy from varying the geminal
may be worth the extra effort;~2! theO(n2) computation of
the ^F2& integrals can be avoided by using a direct solver to
minimize the Hylleraas functional. In this case one of the
two summations can be performed early, leading to a linear
dependence on the length of the geminal expansion.

5. Integral type FT

These integrals are computed directly in three-index
form. Following our own previous work13 and the earlier
work of Klopper and Ro¨hse18 we write

~abu@ t̂1 , f 12#uc!5
1

2

a2b

a1b
~abu$¹1

2f 12%uc!

1“P•“R~abu f 12uc!, ~53!

where R5A2B and P5(aA1bB)/z. The integrals over
¹1

2f 12 are computed using the relation

¹1
2f 1254r 12

2 f 12
~2!26 f 12

~1! , ~54!

where

f 12
~n!5cmgm

n g12
gm. ~55!

The integrals overr 12
2 multiplied by a geminal expansion are

discussed in the following section. The evaluation of inte-
grals analogous to the second term on the right-hand side of
Eq. ~53! is discussed elsewhere.13

6. Integral type FTF

When r 12 is used, the kinetic energy integrals over
r 12@ t̂11 t̂2 ,r 12# become trivial,4 but in the general case they
have to be computed explicitly. Some manipulation reveals
that the matrix elements of twice the symmetrized operator

@ f 12,@ t̂1 , f 12##/2 have the form

~au@ f 12,@ t̂1 , f 12##ub!5~auu“1f 12u2ub! ~56!

@cf. Eqs.~6! and ~12! of Ref. 8#. The kernel of this integral
can readily be shown to be

u“1f 12u254cmcngmgnr 12
2 e2~gm1gn!r 12

2
54r 12

2 $ f 12
~1!%2.

~57!

Combining Eqs.~56! and ~57! we have

1

2
~au@ f 12,@ t̂1 , f 12##ub!52~aur 12

2 $ f 12
~1!%2ub!. ~58!

The integral on the right-hand side of Eq.~58! can be ex-
pressed in terms of integrals over the geminal with higher
angular momenta,

~aur 12
2 f 12

t ub!5 (
i 5x,y,z

$~a12i u f 12
t ub!22~a11i u f 12

t ub11i !

12ABi~a11i u f 12
t ub!1~au f 12

t ub12i !

22ABi~au f 12
t ub11i !1AB i

2~au f 12
t ub!%. ~59!

By applying the transfer equation@Eq. ~52!# to Eq. ~59! it is
possible to obtain expressions for theFTF ~andTF! integrals
that have increased angular momentum only in the bra.

III. EXAMPLES

To illustrate the behavior of the MP2-F12 method, and to
check for code correctness, we have performed some pre-
liminary calculations on helium, neon, and the water mol-
ecule. Explicitly correlated calculations using various MP2
Ansätze were performed using the cc-pVQZ AO basis.19,20

When used, the auxiliary RI basis was the uncontracted cc-
pVQZ basis, and the cc-pVQZ fitting basis of Weigend
et al.21 was used for density fitting. The Gaussian geminal
consisted of 21 even tempered Gaussians with exponents
centered on 15 and with a ratio of 2. The coefficients were
determined by a least squares fit tor 12 using a Gaussian
weight function with exponent 0.2. The geometry of H2O
was taken from Ref. 22. The results are shown in Table I. It
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can be seen that DF-MP2-F12/2** A8 achieves approxi-
mately cc-pV6Z accuracy using only the cc-pVQZ basis. The
deviation between the R12 and F12 results is on the order of
20 microhartree.

IV. CONCLUSIONS

We have developed an explicitly correlated MP2 theory
that uses a frozen geminal function in place of the more
usual linearr 12. The three-electron integrals are calculated
using RI approximations4 in an auxiliary basis.9 All of the
resulting two-electron integrals are computed using density
fitting. This has a very small effect on the computed corre-
lation energies, consistent with previous work.13

Much of the extra work associated with using a geminal
expansion ofn Gaussians arises from the need to compute
O(n2) more integrals than in linearr 12 methods. This extra
load has been mitigated in the current work by the introduc-
tion of a transfer equation@Eq. ~52!# that allows most of the
integration work to be performed after the summation over
Gaussian geminals. The transfer equation is analogous to the
horizontal recursion relation of Head-Gordon and Pople,
which allows the contraction loops to be performed before
the transfer of angular momenta in the construction of stan-
dard Gaussian electron repulsion integrals.23

This work forms the basis of a number of future projects.
We are in the first instance interested in relaxing the coeffi-
cients of the Gaussian geminal to provide an MP2 method
with greater variational flexibility. Second, we also are inves-
tigating the use of density fitting directly on the three-
electron integrals, without the use of the RI approximation.
This is relatively straightforward in an F12 theory, because
all of the three-electron integrals required can be computed
analytically.24–26 Third, we are examining the status of the
various approximations used in MP2-R12~or-F12! theories.
In particular, it will be interesting to compare the current
work with geminals methods that rely on the weak orthogo-

nality functional27,28 as this may shed light on the errors
introduced by the GBC and other approximations.

Finally we have begun to investigate an alternative form
for the strong orthogonality projection operatorQ̂. Using Eq.
~7!, the identityP̂5Ô1V̂ and the definitionP̂'5 P̂82 P̂, it
is possible to show that in the RI approximation

Q̂'12 P̂1P̂22Ô1P̂2
'2 P̂1

'Ô2 . ~60!

This is interesting for two reasons: first because it reveals
that the2** Ansatzhas the projection operator of the origi-
nal MP2-R12 Ansatz4 plus a correction term2Ô1P̂2

'

2 P̂1
'Ô2 that takes account of the incompleteness of the AO

basis set.
But secondly it reveals that the RI need only be per-

formed in the orthogonal complement of the AO basis. Thus,
for example, in a calculation on the neon atom, it is possible
to use thes, p, andd functions of cc-pVQZ for the AO basis
and only the f functions for the orthogonal RI basis that is
used to formP'. This yields exactly the same energy as a
conventional MP2-R12/2** A8 calculation using the full cc-
pVQZ basis for the resolution of the identity. Of course for
molecules, the construction of such an orthogonal RI basis is
less trivial, and requires further investigation.
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