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Abstract

Obtaining chemical accuracy in electronic structure calculations on systems of more than

a few atoms can be computationally very expensive. This is often due to the poor conver-

gence of the correlation energy with respect to the basis set size used for the calculation.

Explicitly correlated methods are significantly better at describing electron correlation by

incorporating the inter-electronic distance explicitly into the wavefunction. However, the

early work that proved very encouraging in this area could not be extended to systems of

more than a few electrons. The reason for this is the large number multi-electron integrals

required, which are computationally expensive and difficult to evaluate.

Since the late 1980s and early 1990s these methods have been developed with renewed

interest. This is due to the introduction of an approximation known as the resolution of

identity which allows many electron integrals to be reduced to products of two-electron

integrals.

The methods developed subsequently were able to produce good results, significantly

better than not using an explicitly correlated wavefunction. However, they still require

large basis sets and do not give answers as good as one would hope for the extra work

incurred.

The aim of this work is to investigate the approximations in the explicitly correlated

MP2-R12 method in order to try and increase the convergence of correlation energy with

respect to basis size. New methods are introduced and new integrals derived and calcu-

lated. A detailed analysis of the errors is given in the results chapter and summarised in

the conclusions, where recommendations are given for future work that should be under-

taken.



Acknowledgements

I would like to gratefully acknowledge the enthusiastic supervision of Dr. Fred Manby

during this research work and ceaseless support during the write up period.

I am grateful to the EPSRC for funding this research (GR/R93704/01).



Author’s Declaration

”I declare that the work in this dissertation was carried out in accordance with the Reg-

ulations of the University of Bristol. The work is original except where indicated by

special reference in the text and no part of the dissertation has been submitted for any

other degree. Any views expressed in the dissertation are those of the author and in no

way represent those of the University of Bristol. The dissertation has not been presented

to any other University for examination either in the United Kingdom or overseas.

SIGNED: ......................................... DATE: ..........................”



Contents

1 Introduction 6

1.1 Hartree Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Size extensivity and size consistency . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Size consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Size extensivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Electron correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Static correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Dynamic correlation . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Configuration Interaction . . . . . . . . . . . . . . . . . . . . . . 14

1.3.4 Coupled Cluster Theory . . . . . . . . . . . . . . . . . . . . . . 17

1.3.5 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.6 Møller-Plesset Theory . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.7 CCSD(T) theory . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.8 Correlation-consistent basis sets . . . . . . . . . . . . . . . . . . 27

1.3.9 Basis set superposition error . . . . . . . . . . . . . . . . . . . . 28

1.4 Explicitly Correlated Methods . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.1 Transcorrelated Method . . . . . . . . . . . . . . . . . . . . . . 31

1.4.2 R12 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.3 Gaussian Geminals . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Aims of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Theory 36

2.1 The MP2-F12/2*A and 2*A’ methods . . . . . . . . . . . . . . . . . . . 40

2.1.1 Matrix V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.2 Matrix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1



2 CONTENTS

2.1.3 Matrix X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.4 Matrix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 The MP2-F12/2A and /2A’ methods . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Matrix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Integrals 49

3.1 Density Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Two-electron recurrence relations . . . . . . . . . . . . . . . . . 64

3.2.2 Three-electron Recurrence Relations . . . . . . . . . . . . . . . . 78

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Implementation 88

4.1 Indexing of the integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Integral Codes into MOLPRO . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 The transfer equation . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Testing the integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.1 Integral type G . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.2 Integral type GJ . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.3 Integral type F, FJ, FF and FTF . . . . . . . . . . . . . . . . . . 104

4.3.4 Integral type G-G and J-G . . . . . . . . . . . . . . . . . . . . . 104

4.4 Intelligent integral generation . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Results 106

5.1 The test set of molecules and reactions . . . . . . . . . . . . . . . . . . . 106

5.2 Density Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 F12 fitted linearly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Errors in the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 The RI approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Approximations in evaluating matrix elements . . . . . . . . . . . . . . . 113

5.6.1 Neglect of exchange commutators . . . . . . . . . . . . . . . . . 114

5.6.2 GBC and EBC . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 The form of the correlation factor . . . . . . . . . . . . . . . . . . . . . 118

5.7.1 A single Gaussian vs. R12 . . . . . . . . . . . . . . . . . . . . . 118



CONTENTS 3

5.7.2 Other forms for the correlation factor . . . . . . . . . . . . . . . 124

6 Conclusions 125

6.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography 130

A List of Abbreviations 139

B Tables of data 141



List of Tables

1.1 Number of functions in standard basis sets . . . . . . . . . . . . . . . . . 28

3.1 Nomenclature of integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 List of allowed indices for the automatic integral generator . . . . . . . . 105

5.1 Approximations used in the MP2-R12 and -F12 methods . . . . . . . . . 113

B.1 Geometries of some elemental hydrides . . . . . . . . . . . . . . . . . . 141

B.2 HF energies for the test set of molecules . . . . . . . . . . . . . . . . . . 142

B.3 MP2 valence correlation energies for the test set of molecules . . . . . . . 143

B.4 HF energies for the test set of reactions . . . . . . . . . . . . . . . . . . . 144

B.5 MP2 energies for the test set of reactions . . . . . . . . . . . . . . . . . . 145

B.6 DF-MP2-R12/2*A’ correlation energies for the test set of molecules . . . 146

B.7 DF-MP2-R12/2*A’ correlation energies for the test set of molecules . . . 147

B.8 DF-MP2-F12/2*A’ correlation energies for the test set of molecules . . . 148

B.9 Calculations on the RI convergence for the test set of molecules . . . . . 149

B.10 Calculations on the RI convergence for the test set of molecules . . . . . 150

B.11 Optimum vaule of ω for the test set of molecules . . . . . . . . . . . . . 151

B.12 Calculations using average optimum ω for the test set of molecules . . . . 152

B.13 Calculations using different geminals for the test set of molecules . . . . 153

4



List of Figures

1.1 RHF and MCSCF potential energy curves for H2 . . . . . . . . . . . . . 13

1.2 Sketch of HF and exact wavefunction for the helium atom . . . . . . . . . 14

1.3 Correlation hole convergence of MP2 method with respect to basis . . . . 25

2.1 Graphical representation of notation for orbital indices . . . . . . . . . . 36

3.1 Sketch of a shell of integrals . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Ordering of one-electron integrals for angular momentum zero to three . . 89

5.1 DF PDFs for MP2-R12/2*A’ calculations using a VDZ AO basis set . . . 108

5.2 DF PDFs for MP2-R12/2*A’ calculations using a VTZ AO basis set . . . 109

5.3 Convergence of F12 to R12 with respect to geminal size . . . . . . . . . 110

5.4 Geminal PDFs for MP2-F12/2*A’ calculations using a VDZ basis set . . . 111

5.5 GBC and EBC errors in a VDZ basis set for the test set of molecules . . . 115

5.6 GBC and EBC errors in a VTZ basis set for the test set of molecules . . . 116

5.7 GBC and EBC errors in a VQZ basis set for the test set of molecules . . . 117

5.8 Plots of correlation energy vs Gaussian exponent for the neon atom . . . . 118

5.9 Optimum value of ω for the test set of molecules . . . . . . . . . . . . . 120

5.10 PDFs for a single Gaussian function vs R12 for the test set of molecules. . 122

5.11 Optimum value of ω for the elemental hydrides . . . . . . . . . . . . . . 123

5



Chapter 1

Introduction

By the late Nineteenth century some physicists believed that they were in a position where

the fundamental laws of physics had been found. However, the discovery of quantum me-

chanics by Einstein in the early twentieth century, motivated by observations of phenom-

ena such as the photoelectric effect, transformed the field of physics and had a profound

effect upon the field of chemistry. Quantum mechanics, along with statistical mechanics,

forms the theoretical basis of chemistry. In essence quantum mechanics tells us that the

forces which hold together atoms and molecules cannot be fully described by classical

mechanics.

In 1925 Erwin Schrödinger and Werner Heisenberg independently developed new

quantum theories which subsequently proved to be mathematically equivalent. The easier

to interpret physically is Schrödinger’s wave-mechanics [1, 2] and thus the Schrödinger

equation is the starting equation for this thesis. The time-independent form of the Schrö-

dinger equation is given by
ˆHΨ = EΨ, (1.1)

where Ψ is the wavefunction of the atomic or molecular system in question and the Hamil-

tonian ˆH is the operator corresponding to the energy of the system, E. The Hamiltonian

for a molecule is a two-term expression comprising of a kinetic and potential operator

acting upon all particles in the system. When these operators are expanded for a system

of N nuclei and n-electrons it generates a five term Hamiltonian with the form

ˆH = −
n

X

i=1

∇2
i

2

−
n

X

i=1

N

X

A=1

Z
A

R
iA

+

n

X

i=1

n

X

j>i

1

r
ij

−
N

X

A=1

∇2
A

2M
A

+

N

X

A=1

N

X

B>A

Z
A

Z
B

R
AB

(1.2)
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CHAPTER 1. INTRODUCTION 7

where Z denotes a nuclear charge, M a nuclear mass and all quantities are expressed in

terms of atomic units. One of the problems with the Hamiltonian is that it generates a

continuous spectrum of energies. The reason for this is that a freely translating atom or

molecule has kinetic energy which could take any value, hence a complete distribution of

energies are accessible by the system.

The first step in simplifying the Hamiltonian is to use the Born-Oppenheimer (BO) ap-

proximation [3], a fundamental approximation in the field of quantum chemistry. The BO

approximation makes use of the fact that nuclei are at least 1800 times more massive than

electrons, and travel much more slowly. This allows the motion of nuclei and electrons to

be uncoupled and hence one can treat nuclei as stationary particles that move in a potential

generated by the electrons. The BO approximation gives only small errors in expectation

values for many problems of interest. This gives rise to an electronic Hamiltonian

ˆHelecΨelec = Eelec(R)Ψelec (1.3)

that depends only parametrically on the coordinates of the nuclei and generates electronic

energies and wavefunctions. The function Eelec(R) is known as a potential energy surface

and can be evaluated at fixed R to give energies. Approximate solutions to equation 1.3

are termed ab initio providing no empirical fitting to experimental data has been em-

ployed. From here onwards the subscripts of equation 1.3 will be dropped and it is always

assumed that it is the electronic form that is referred to.

The Variational Principle

Equation 1.3 is still too complicated to solve analytically. The reason for this is that the

electron-electron interaction resulting from the electron-electron repulsion operator in the

electronic Hamiltonian
n

X

i=1

n

X

j=i+1

1

r
ij

(1.4)

couples the coordinates of all of the electrons. One way to get around this problem does

not involve further simplification to the Hamiltonian, rather an approximate construction

of the wavefunction. The approximate wavefunction Ψapprox gives rise to an approximate

energy Eapprox which is evaluated by using the Rayleigh-Ritz expression

Eapprox =

�Ψapprox| ˆH|Ψapprox�
�Ψapprox|Ψapprox�

. (1.5)
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The variational principle states that the approximate energy Eapprox is always above the

exact energy Eexact, i.e.

Eapprox ≥ Eexact (1.6)

provided Ψapprox is an acceptable wavefunction. An acceptable wavefunction must obey

the Pauli principle and must have a finite kinetic energy, i.e. be sufficiently smooth, and

be able to be normalised. If all of these are obeyed then equation 1.6 holds true.

Molecular Orbitals

The BO electronic Hamiltonian operator takes the form

ˆH = −
n

X

i=1

∇2
i

2

−
n

X

i=1

N

X

A=1

Z
A

R
iA

+

n

X

i=1

n

X

j>i

1

r
ij

. (1.7)

Despite this approximation the electronic Schrödinger equation is still too complicated to

solve analytically for all but the very simplest systems, such as the hydrogen atom. In

most cases it is necessary to use numerical methods, that is to say methods that assume

the real wavefunction is too complicated to be found directly, but can be usefully approxi-

mated by a simpler function. In Hartree theory the n-electron wavefunction is represented

as a product of one-electron wavefunctions known as molecular orbitals (MOs) such that

Ψ(�r1,�r2, · · · ,�r
n

) =

n

Y

i=1

ψ
i

(�r
i

). (1.8)

The MOs are usually expanded in a basis set of atomic functions

ψ
i

(�r
i

) =

nbas
X

α=1

c
iα

φ
α

(�r
i

) (1.9)

where nbas is the number of basis functions in the basis set and c
iα

are expansion coeffi-

cients. The summation of the atomic functions is commonly known as the Linear Com-

bination of Atomic Orbitals (LCAO) method. There are two types of atomic functions

in common use within quantum chemistry, Slater type orbitals (STOs) and Gaussian type

orbitals (GTOs). STO basis sets generally give more accurate wavefunctions than GTO

basis sets consisting of the same number of functions. This is because the STO functions

have the correct form at short range. However, STO basis sets lead to many-centre two-

electron integrals that cannot be evaluated analytically. GTOs on the other hand lead to

much more tractable integrals and for this reason they will be used throughout. There
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are several fast analytical methods for solving integrals over GTOs and this more than

compensates for the slightly larger number of functions needed when using a GTO basis

set.

Electrons are indistinguishable, i.e. they cannot be differentiated from each other.

Mathematically this means that the wavefunction must be constructed in such a manner

that interchange of electrons does not change the probability distribution. This can be

achieved by either using a symmetric or antisymmetric wavefunction. Experiment shows

that electrons (like all fermions) have wavefunctions that are antisymmetric with respect

to interchange of electrons (particles that require a symmetric wavefunction are known

as bosons). If one were to proceed using a symmetric wavefunction for the electrons the

ground state found would involve electrons very close together, whereas the ground state

using an antisymmetric wavefunction has particles avoiding each other.

The Pauli principle that two electrons cannot occupy the same spin orbital results

directly from the fact that the wavefunction must be antisymmetric with respect to electron

interchange. For example, an acceptable two-electron wavefunction could have the form

Ψ(�x1, �x2) = ϕ1(�x1)ϕ2(�x2)− ϕ1(�x2)ϕ2(�x1). (1.10)

If however the electrons occupied the same orbital, i.e. ϕ1 = ϕ2 then Ψ(�x1, �x2) = 0

which is not a valid state.

Hartree products alone do not make acceptable wavefunctions as they do not ensure

the Pauli principle. By using a Slater Determinant (SD) [4] antisymmetry can be enforced

in the wavefunction, and as a result the Pauli principle is satisfied, namely two electrons

cannot occupy the same spin orbital. Each spatial orbital can take either α or β spin, thus

forming two spin orbitals

ϕ(�x) = ψ
i

(�r)α(σ) or ψ
i

(�r)β(σ), (1.11)

where �x = {�r, σ}, σ ± 1
2 and

α
°

1
2

¢

= 1 β
°

1
2

¢

= 0

α
°

−1
2

¢

= 0 β
°

−1
2

¢

= 1.
(1.12)
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A SD can be written concisely as

Ψ(�x1, �x2, · · · , �x
n

) =

1√
n!

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

ϕ1(�x1) ϕ2(�x1) · · · ϕ
n

(�x1)

ϕ1(�x2) ϕ2(�x2) · · · ϕ
n

(�x2)

...
... . . . ...

ϕ1(�xn

) ϕ2(�xn

) · · · ϕ
n

(�x
n

)

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

. (1.13)

1.1 Hartree Fock Theory

Hartree Fock (HF) [5] theory was originally formulated by Douglas Hartree who de-

vised the self consistent field (SCF) method. The method was subsequently modified by

Vladimir Fock to obey the Pauli principle [6]. Most ab initio quantum chemistry methods

use HF theory as their starting point. Equation 1.5 is minimised using a SD as the approx-

imate wavefunction Ψapprox. The SD chosen is that which leads to the lowest expectation

value of the Hamiltonian ˆH . This process leads to n coupled 1-particle integro-differential

equations, known as the Fock equations

ˆf |ψ
i

(�r)� = ε
i

|ψ
i

(�r)� (1.14)

where ˆf is the Fock operator

ˆf = −∇
2

2

−
N

X

A=1

Z
A

r
A

+ [

ˆJ − ˆK] (1.15)

and ε
i

is the energy of orbital i. The Coulomb operator ˆJ and exchange operator ˆK are

defined as
ˆJψ

j

(�r1) = ψ
j

(�r1)

X

i

Z

d�r2
|ψ

i

(�r2)|2

r12
, (1.16)

and
ˆKψ

j

(�r1) =

X

i

ψ
i

(�r1)

Z

d�r2
ψ∗

i

(�r2)ψj

(�r2)

r12
. (1.17)

The Fock equations are solved using the self consistent field (SCF) method. The SCF

method is an iterative procedure around the eigensystem equation

Fc = Scε (1.18)

where F is the Fock matrix, S is the overlap matrix and ε is a diagonal matrix containing

the orbital eigenvalues on the diagonal. In restricted HF theory for a closed-shell system
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the Fock matrix is constructed as

F
αβ

= H
αβ

+ Γ

γδ

[2(αβ|γδ)− (αγ|βδ)]; (1.19)

here and in what follows Einstein summation over repeated indices is assumed. The

density matrix, Γ, is given by

Γ

αβ

=

X

i∈occ

c∗
iα

c
iβ

, (1.20)

and

H
αβ

= �η
α

|− 1

2

∇2
1 −

N

X

A=1

Z
A

R
A1

|η
β

�. (1.21)

where η
α

and η
β

are AOs. In the first instance the Fock matrix could be defined to be

the one-electron Hamiltonian matrix in order to start the iterative procedure. Other initial

guesses can be constructed, for example guesses based on atomic densities. This allows

the density matrix to be constructed and the iteration to begin.

Solving the HF equations yields a wavefunction with special properties. One of the

most important in the present context is the Brillouin condition which states that the

ground state HF wavefunction does not interact with singly excited determinants. The

Brillouin condition itself is exact within the HF framework and results in

�i| ˆf |a� = 0, (1.22)

where the indices i and a represent occupied and virtual indices respectively, forms an

alternative definition of HF theory. There are several approximations based upon the

Brillouin condition known as the generalised Brillouin condition (GBC) and extended

Brillouin condition (EBC) which are described in the theory chapter.

1.2 Size extensivity and size consistency

When describing methods in quantum chemistry two important concepts are that of size

consistency and size extensivity.

1.2.1 Size consistency

The first definition of size consistency was made by Pople as a criterion for constructing

a well formed quantum method. It can be demonstrated with two neon atoms. At large
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separation distances the neon atoms are not interacting with each other, they are said to

be in the non-interacting limit. At this large distance the energy of the system should be

exactly twice that of a system containing a single neon atom. This original formulation of

size consistency simply ensured something known as additive separability. The definition

of size consistency has more recently been expanded such that a method must correctly

describe the system at all separation distances in order to be size consistent. This can

cause confusion as RHF is size consistent under the original Pople definition, but not

under the modified definition.

1.2.2 Size extensivity

Size extensivity states that the total energy must scale correctly, i.e. in a linear manner,

with respect to the number of electrons in the system. Methods that are not size extensive

will have energies that increase in error from the exact value as the number of electrons is

increased.

1.3 Electron correlation

The motion of electrons in an atom or molecule is correlated. HF theory does not in-

clude any electron correlation, thus it assumes that electrons behave independently of

each other. Of course this is not the case and electron correlation must be accounted for

to perform accurate calculations of system properties. In terms of energy the HF total

energy differs from the exact non-relativistic energy by an amount which is known as the

correlation energy. The correlation energy can be subdivided into static correlation and

dynamic correlation.

1.3.1 Static correlation

Static correlation, also known as non-dynamical correlation, can be demonstrated using

the simple hydrogen molecule. When one electron is near nucleus A it is expected that the

other electron will spend more time in the vicinity of nucleus B. This is a result of basic

electrostatics, attraction of opposite charges and repulsion of like charges. Indeed this is

exactly the case for the exact probability distribution of H2. However, this is not what is
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obtained in HF theory. As shown in figure 1.1 the hydrogen molecule does not dissociate

to twice the energy of two hydrogen atoms.

2 4 6 8 10
!1.2

!1.1

!1

!0.9

!0.8

!0.7

!0.6

RHF

MCSCF

bond length/angstrom

H
F

en
er

gy
/h

ar
tre

e

Figure 1.1: Plot of RHF and MCSCF energy for H2 at varying bond lengths. Horizontal

line is twice the RHF energy of a H atom.

Static correlation occurs due to near degeneracy and can be addressed by increasing

the flexibility of the reference wavefunction. Multi-reference methods incorporate the

effects of static correlation by including enough SDs in the wavefunction to describe

the degenerate or near-degenerate states independently. In figure 1.1 the MCSCF [7]

calculation uses both the ground state and excited state configurations in order to lower

the energy of the system, thus describing correctly the dissociation process.

1.3.2 Dynamic correlation

Dynamic correlation arises because the motion of one electron depends on the instanta-

neous positions of all of the others. All systems of more than one-electron have dynamic

correlation.

In HF theory electrons only see an average potential arising from the other electrons.

As a result in the example of helium the probability distribution for electron 1 does not

depend on the position of electron 2. This phenomenon results from the use of one-

electron orbitals to describe an n-electron problem. In probability theory, the probability

of two entirely independent events is given by

P (A and B) = P (A)P (B). (1.23)
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This is the relation used in HF theory when describing electrons. However, it is not

accurate as the instantaneous positions of electrons are not independent of each other.

This loss of information about the position of all of the other electrons results in

expectation values for the energy being greater than the exact answer due to the variational

principle.

Pictorially this can be demonstrated by a plot of the wavefunction for the simple two-

electron problem of helium shown by figure 1.2. The HF wavefunction is obviously not

ψ(r12)

r12

HF

Exact

Figure 1.2: Sketch of HF and exact wavefunction for the helium atom

correct at r12 = 0 as it does not have a cusp. However, since the probability density is

calculated by integration with r2
12 this does not cause significant error in the area around

r12 = 0. It is instead the region between r12 = 0 and the exact most probable value of r12

where the HF method is introducing the bulk of its error.

1.3.3 Configuration Interaction

Configuration interaction (CI) is the simplest (conceptually) way to try to correct for the

inaccurate description of electrons in HF theory. The error comes from the attempt to

describe an n-electron problem as a product of n one-electron problems. The CI method

uses a sum of products of n one-electron functions instead. Put simply the trial wavefunc-

tion is constructed from a linear combination of SDs.

The trial wavefunction is typically constructed from the ground state SD and excited

state SDs for the atom or molecule. For a general problem this leads to the following

expression for the CI wavefunction

|CI� = (1 +

ˆT )|0� (1.24)
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where |0� is the ground state SD and ˆT is known as the cluster operator. The cluster

operator has the form
ˆT =

ˆT1 +

ˆT2 + · · · (1.25)

where ˆT1 is the singles cluster operator, ˆT2 the doubles cluster operator etc. The CI wave-

function is then constructed as

|CI� = (1 +

ˆT1 +

ˆT2 + · · · )|0� = |0�+

ˆT1|0�+

ˆT2|0�+ · · · (1.26)

where the excited SDs are constructed by applying excitation operators to the ground state

SD. The first two cluster operators in second quantisation [7] have the form

ˆT1 = ci

a

â†
ˆi (1.27)

ˆT2 =

X

i<j

X

a<b

cij

ab

â†
ˆb†

ˆiˆj =

1

4

cij

ab

â†
ˆb†

ˆiˆj (1.28)

where coefficients ci

a

etc. are known as the amplitudes and â† and ˆi are annihilation and

excitation operators respectively.

The total number of SDs that could be constructed is given by the binomial coefficient

of n electrons and m molecular orbitals:

NSD =

µ

m

n

∂

=

m!

n!(m− n)!

. (1.29)

The number of possible SDs rises sharply with the size of the basis set. The CI method

that uses all of the possible SDs in a given basis set is known as full CI (FCI). FCI is

exceptionally computationally expensive and is limited to the smallest of problems. It is

nevertheless an exceptionally accurate method which gives answers that are exact within

the limits of the AO basis: for that reason it is used to benchmark calculations on very

small systems.

Attempting to perform FCI calculations on systems of more than around ten electrons

is simply not practical. However, the FCI expansion can be truncated such that excitation

operators only up to a certain level are included. The wavefunctions for three such meth-

ods, CI singles (CIS), CI doubles (CID), and CI singles and doubles (CISD) are given

by

|CIS� = (1 +

ˆT1)|0� (1.30)

|CID� = (1 +

ˆT2)|0� (1.31)

|CISD� = (1 +

ˆT1 +

ˆT2)|0�. (1.32)
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Singly excited determinants do not mix with the HF ground state SD (Brillouin con-

dition) so it may seem odd to bother with a CIS method [8]. Although singly excited

determinants do not increase the accuracy of the ground state energy they do provide a

simple method for extracting information about excited states from a HF solution.

The simplest CI method that improves the HF ground state energy is CID [8]. Histor-

ically the CID method was employed, but today the singles are almost always included

since there is almost no extra computational cost and they can only improve the solu-

tion. This leads to the CISD method [8]. Singly excited determinants do not interact

with the ground state SD, but they do interact with the doubly excited determinants, and

consequently improve the ground state energy.

The method for optimising the energy is to minimise the CI energy expression with

respect to the amplitudes. First it is useful to rewrite the energy expression as

E =

�CI| ˆH|CI�
�CI|CI� =

c∗
I

c
J

�I| ˆH|J�
c∗
I

c
J

�I|J� =

c∗
I

c
J

H
IJ

c∗
I

c
J

S
IJ

(1.33)

where the identity |CI� = c
I

|I� has been used. Rearranging the expression for the CI

energy and differentiating with respect to one of the CI coefficients yields

∂

∂c
K

c∗
I

c
J

H
IJ

=

∂

∂c
K

Ec∗
I

c
J

S
IJ

(1.34)

which upon completion of the differentiation gives

2c
J

H
KJ

=

µ

∂E

∂c
K

∂

c∗
I

c
J

S
IJ

+ 2Ec
J

S
KJ

. (1.35)

At the minimum energy the gradient ∂E/∂c
K

will be zero and hence the expression be-

comes

c
J

H
KJ

= Ec
J

S
KJ

, (1.36)

which can be written in matrix notation as

Hc = ESc. (1.37)

This generalised eigenvalue problem can be solved exactly to obtain the CI eigenvalues

and coefficients. The equation is of the same type that is solved at every iteration of a

HF-SCF calculation.
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1.3.4 Coupled Cluster Theory

Coupled cluster theory was initially developed in the late 1950s by Coester and Kümmel

for studying nuclear physics [9] but was later reformulated by Čı́žek [10] for dealing with

the electron correlation problem. Coupled cluster (CC) theory differs from CI theory by

introducing the exponential of the cluster operator to create a wavefunction

|CC� = exp(

ˆT )|0� (1.38)

where the cluster operator ˆT is that defined in equation 1.25. The exponential form of the

cluster operator can be expanded in a Taylor series to give

exp(

ˆT ) = 1 +

ˆT +

1

2

ˆT 2
+ · · · (1.39)

which yields the expression for the CC wavefunction as

|CC� =(1 +

ˆT +

1

2

ˆT 2
+ · · · )|0� (1.40)

= |0�+

ˆT |0�+

1

2

ˆT 2|0�+ · · · (1.41)

= |0�+ (1 +

ˆT1 +

ˆT2 + · · · )|0�+

1

2

(1 +

ˆT1 +

ˆT2 + · · · )2|0�+ · · · (1.42)

The key difference between CC and CI is the addition of so-called disconnected terms in

the wavefunction. For example the connected doubles ˆT2 are supplemented by the discon-

nected term ˆT 2
1 . This has the effect of increasing the number of terms in the wavefunction

and this can be shown by collecting together terms in the expansion that contribute the

same level of excitation:

|CC� =

h

1 +

ˆT1 + (

ˆT2 +

1
2
ˆT 2
1 ) + (

ˆT3 +

ˆT1
ˆT2 +

1
6
ˆT 3
1 ) + · · ·

i

|0�

|CI� =

h

1 +

ˆT1 +

ˆT2 +

ˆT3 + · · ·
i

|0� .

(1.43)

When the theories are truncated at the second-order level (forming CCSD and CISD) then

the comparison looks like

|CCSD� =

h

1 +

ˆT1 + (

ˆT2 +

1
2
ˆT 2
1 ) + (

ˆT1
ˆT2 +

1
6
ˆT 3
1 ) + · · ·

i

|0�

|CISD� =

h

1 +

ˆT1 +

ˆT2

i

|0� .

(1.44)
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The CISD wavefunction cannot approximate the triple and higher contributions as it con-

tains no terms of that level. The CCSD wavefunction contains no connected contributions

above two-body, but does contain disconnected contributions.

The variational principle could in theory be applied to give the expression for the CC

energy

E =

�CC| ˆH|CC�
�CC|CC� =

�0| exp(

ˆT )

†
ˆH exp(

ˆT )|0�
�0| exp(

ˆT )

†
exp(

ˆT )|0�
(1.45)

which could be minimised with respect to the cluster amplitudes. However if one proceeds

with this method a set of non-linear equations result which contain contributions from

every determinant in the FCI expansion. This obviously means that minimisation by use

of the variational principle is impractical.

In CI theory it can be shown that minimising the energy with respect to the coefficients

is exactly equivalent to projecting the Schrödinger equation to the left with the determi-

nants and integrating. However, it is not exact to use the same method for a truncated CC

method. Nevertheless, the error associated with a non-variational CCSD method is very

much smaller than the error associated with CISD not being size extensive. Proceeding

by the projection method yields the amplitude equations

�µ| exp(− ˆT )

ˆH exp(

ˆT )|0� = 0 (1.46)

and energy equation

�0| exp(− ˆT )

ˆH exp(

ˆT )|0� = E (1.47)

where the Schrödinger equation has been multiplied to the left by exp(− ˆT ) for conve-

nience, and where |µ� represents all excited SDs truncated to the given excitation level.

The energy equations can be simplified by observing

�0| exp(− ˆT ) = �0|(1− ˆT +

1

2

ˆT 2
+ · · · ) = �0|. (1.48)

This identity exists as the hermitian conjugate of an excitation operator is a de-excitation

operator, and de-exciting from a HF ground state gives zero. Therefore the energy equa-

tion reduces to

�0| ˆH exp(

ˆT )|0� = E (1.49)

which on expansion of the exponential yields

�0| ˆH(1 +

ˆT +

1

2

ˆT 2
+ · · · )|0� = E. (1.50)
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The energy equations simplify because nearly all of the matrix elements of the form

�0| ˆH τ̂
µ

|0� vanish, where τ̂
µ

is an excitation operator. Elements containing only single

excitations vanish through the Brillouin theorem. Triple and higher-order terms vanish as

the Hamiltonian has at most two-particle operators. Thus the energy expression simplifies

enormously retaining only double excitation terms

�0| ˆH(1 +

ˆT2 +

1

2

ˆT 2
1 )|0� = E. (1.51)

The amplitude equations can be expanded using the identity of Baker, Campbell and

Hausdorff which fortunately in this case terminate exactly at fourth order

�µ| exp(− ˆT )

ˆH exp(

ˆT )|0� = �µ| ˆH|0�+ �µ|[ ˆH, ˆT ]|0�+

1

2!

�µ|[[ ˆH, ˆT ], ˆT ]|0�

+

1

3!

�µ|[[[ ˆH, ˆT ], ˆT ], ˆT ]|0�+

1

4!

�µ|[[[[ ˆH, ˆT ], ˆT ], ˆT ], ˆT ]|0�. (1.52)

As with the energy expression, the simplification arises from the two-body nature of the

Hamiltonian. Furthermore, when CC theory is truncated equation 1.52 simplifies still

further. For example, in CCD theory

�µ| exp(− ˆT )

ˆH exp(

ˆT2)|0� = �µ| ˆH|0�+ �µ|[ ˆH, ˆT2]|0�+

1

2!

�µ|[[ ˆH, ˆT2], ˆT2]|0�. (1.53)

The CC equations are of comparable cost to the CI equations to solve but the most

important difference is that CC theory is size extensive for a given level of truncation,

whereas CI theory is not. This considerably increases the accuracy of a calculation for

a given level of truncation of the cluster operator. Obviously without truncation both

methods are equivalent to FCI.

1.3.5 Perturbation Theory

The Schrödinger equation in its original form cannot be solved for all but the simplest

problems. However, in many cases it is possible to split the Hamiltonian into a large part

whose Schrödinger equation can be solved and a small, difficult correction

ˆH =

ˆH0 +

ˆH1. (1.54)

The zeroth order Hamiltonian ˆH0 is simple enough that the Schrödinger equation can be

solved exactly to give a ground state solution to the zeroth order problem

ˆH0|0� = E0|0�. (1.55)
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The small correction ˆH1 is known as the perturbation.

The exact energy and wavefunction are approximated by introducing a parameter λ

which moderates the perturbation so that ˆH =

ˆH0+λ ˆH1. The parameter λ can take values

0 ≤ λ ≤ 1, where λ = 0 represents the zeroth-order approximation and λ = 1 represents

the true situation. However, the equations could be solved for all allowed values of λ and

one expects to find a smooth variation in energy as λ is changed. Since ˆH depends upon

λ it eigenvectors and eigenvalues must also, thus

(

ˆH0+λ ˆH1)(|0�+λ|1�+λ2|2�+· · · ) = (E0+λE1+λ2E2+· · · )(|0�+λ|1�+λ2|2�+· · · ).
(1.56)

Expanding this expression, terms of varying powers of λ are obtained on both the left and

right hand side of the expression. If the equality indeed holds for all allowed values of

λ then equalities must hold for each given power of λ independently. Using this one can

obtain n-th order expressions

ˆH0|0� = E0|0� n = 0 (1.57)

ˆH0|1�+

ˆH1|0� = E0|1�+ E1|0� n = 1 (1.58)

ˆH0|2�+

ˆH1|1� = E0|2�+ E1|1�+ E2|0� n = 2 (1.59)
...

The level of perturbation theory is determined how many equation are solved, for example

if the series is truncated at n = 1 then it is first-order perturbation theory.

Starting with the first-order expression, projecting to the left with the zeroth-order

ground state and rearranging gives

�0| ˆH0 − E0|1�+ �0| ˆH1 − E1|0� = 0. (1.60)

On inspection the first term in this expression is zero as it is identical to the zeroth-order

equation when one considers the hermiticity of the Hamiltonian operator. This leaves the

following expression for the first-order energy

E1 = �0| ˆH1|0�. (1.61)

This expression is of the utmost importance as it allows the computation of the first-

order energy of a system without needing to compute the first-order correction to the

wavefunction. Exactly this type of expression is used throughout quantum mechanics
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when perturbatively evaluating, for example, relativistic corrections, BO corrections and

responses to weak external fields.

The first-order correction to the wavefunction can of course be obtained by rearrang-

ing the first-order equation to yield

|1� = −(

ˆH0 − E0)
−1

(

ˆH1 − E1)|0�. (1.62)

Although not necessary for evaluating the first-order energy it is needed for higher pertur-

bation levels.

The second-order equation can also be projected with the zeroth-order ground state

and rearranged to give

�0| ˆH0 − E0|2�+ �0| ˆH1 − E1|1� = E2�0|0�. (1.63)

Removing the first term for the same reason as used in the derivation of the first-order

energy and observing that �0|0� = 1 simplifies the expression to

E2 = �0| ˆH1 − E1|1�. (1.64)

It is not necessary to assume that the zeroth-order and first-order wavefunction are or-

thogonal, but if they are not, then the expression becomes

E2 = �0| ˆH1 − E1|1 + δ0�. (1.65)

where δ is an arbitrary constant. However, on expansion this yields

E2 = �0| ˆH1 − E1|1�+ δ�0| ˆH1 − E1|0� (1.66)

where the second term is clearly zero. Therefore it has no effect to assume that the zeroth-

order and first-order wavefunction are orthogonal (�0|1� = 0), and doing so gives the

expression for the second-order energy as

E2 = �0| ˆH1|1�. (1.67)

By inspection there is a pattern emerging: the (n + 1)th-order energy can be expressed

generally as

E
n+1 = �0| ˆH1|n�. (1.68)
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1.3.6 Møller-Plesset Theory

Møller-Plesset (MP) theory [7, 11] is PT when the zeroth-order problem is defined to be

HF theory. It is also referred to as many-body perturbation theory in some texts. The

zeroth-order energy is not however defined to be the HF energy. The HF energy is the

sum of the zeroth-order and first-order energies, thus the correct expression for the HF

energy is

EHF = �0| ˆH|0� = �0| ˆH0 +

ˆH1|0� = E0 + E1. (1.69)

The first-order Hamiltonian is simply the HF n-electron Hamiltonian defined as a sum of

Fock operators, one for each electron

ˆH0 =

n

X

i=1

ˆf(i). (1.70)

Inserting the Hamiltonian ˆH0 into the Schrödinger equation yields the Fock equations

which when solved yield the zeroth-order energy calculated as the sum of HF eigenvalues

E0 =

n

X

i=1

ε
i

. (1.71)

Rearranging equation 1.69 defines the first-order Hamiltonian as

ˆH1 =

ˆH − ˆH0. (1.72)

Using the definition of ˆH defined earlier in equation 1.7 and the definition of the one-

electron Fock operator (assuming spin orbitals)

ˆf = −∇
2

2

−
N

X

A=1

Z
A

r
A

+ [

ˆJ − ˆK], (1.73)

the expression for the first-order Hamiltonian can be obtained

ˆH1 =

n

X

i<j

1

r
ij

−
n

X

i=1

[

ˆJ(i)− ˆK(i)]. (1.74)

Closer inspection of this expression shows that it is the difference between the exact two-

electron interaction and the effective model interaction of HF theory.

Having established in equation 1.69 that first-order MP theory is automatically incor-

porated into HF theory then what of higher-order MP perturbations? The next perturbation
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is second-order MP theory, which is denoted as MP2. The expression for the MP2 energy

was derived earlier and is given by

E2 = �0| ˆH1|1�. (1.75)

The expression contains the first-order wavefunction, which is given in equation 1.62

and contains the resolvent operator (

ˆH0 − E0)
−1. Treating the equation without further

simplification would prove difficult, but if one expands everything in a basis set then

things become much more simple. This is because the operators become matrices, and

operations involving matrices, such as inversion, are easy to evaluate.

The first-order wavefunction can be expanded, in a manner similar to full CI, as

|1� = t
µ

|µ�, (1.76)

where the first-order wavefunction is chosen to be orthogonal to the zeroth-order wave-

function. Expansion of the first-order wavefunction may initially seem to be an odd thing

to do, but as will be seen many of the terms disappear. Substitution of the above expres-

sion into equation 1.62 gives

t
µ

(

ˆH0 − E0)|µ� = −(

ˆH1 − E1)|0�. (1.77)

By projecting the equation to the left with all of the determinants one obtains

t
µ

�ν| ˆH0 − E0|µ� = −�ν| ˆH1 − E1|0�. (1.78)

As with all of the methods discussed thus far, many of the matrix elements turn out to

be zero. For the matrix elements of the form �0| ˆH1 − E1|ν� only the doubly excited

determinants yield non-zero matrix elements. Singly excited determinants do not interact

with |0� (the Brillouin condition) and determinants that are more than doubly excited do

not interact due to the Hamiltonian being a two-body operator. Thus only doubly excited

determinants are required in the first-order expansion. This vastly simplifies things such

that

�0| ˆH1 − E1|ν� = �0| ˆH1 − E1|0ab

ij

� = �0| ˆH1|0ab

ij

� (1.79)

since �0|E1|0ab

ij

� = 0. This can be further simplified by evaluating the matrix element to

give

�0| ˆH1 − E1|ν� = �ij|ab� − �ij|ba�. (1.80)
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The other type of matrix element in equation 1.78 simplifies such that

�ν| ˆH0 − E0|µ� = δ
µν

�ν| ˆH0 − E0|ν�. (1.81)

Using the fact that only doubly excited determinants contribute in the first order equations

yields a much simpler expression to solve

tij
ab

�0ab

ij

| ˆH0 − E0|0ab

ij

� = −�ij|ab�+ �ij|ba�. (1.82)

The matrix elements between two doubly excited determinants are given by

�0ab

ij

| ˆH0 − E0|0ab

ij

� = �0ab

ij

| ˆH0|0ab

ij

� − E0

= ε
a

+ ε
b

− ε
i

− ε
j

(1.83)

which allows one to rewrite equation 1.82 as

tij
ab

= −�ij|ab� − �ij|ba�
ε

a

+ ε
b

− ε
i

− ε
j

. (1.84)

The above amplitudes combined with equation 1.76 completely define the first-order

wavefunction. Inserting the first-order wavefunction into the second-order energy ex-

pression now yields

E2 = �0| ˆH1|1� = tij
ab

�0| ˆH1|0ab

ij

�. (1.85)

The matrix element �0| ˆH1|0ab

ij

� = �ij|ab� − �ij|ba�, and using this and the expression for

the amplitudes yields the final expression for the second-order energy correction

E2 = −
X

i<j

X

a<b

|�ij|ab� − �ij|ba�|2

ε
a

+ ε
b

− ε
i

− ε
j

. (1.86)

The MP2 energy can be calculated from

EMP2 = EHF + E2 = E0 + E1 + E2. (1.87)

Higher levels of MP theory are possible. MP4 theory is the most widely used beyond

second-order MP theory. The higher the level of MP theory the greater the accuracy of

the calculation for any given basis set. It is of course implied that the higher the level of

MP theory invoked the greater the cost of calculation.

For a given level of MP theory the energy convergence is poor with respect to basis

set. In figure 1.3 plots of the MP2 wavefunction with respect to basis set are shown. As
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Figure 1.3: Plot of the MP2 wavefunction with respect to basis set for the helium atom.

The data for the plot was obtained by evaluating the wavefunction at fixed distance of

1 Bohr from the nucleus. The horizontal axis is the angle between the two electrons in

radians. Plot shows the correlation hole slowly converging as the basis set increases
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one increases the basis set the wavefunction converges towards the exact cusp-like picture.

However the extra expense of using the next basis set in cardinal number yields only a

small increase in the accuracy.

Thus from what has been discussed above one realises that much work is needed to

get the basis set limit for a MP calculation. The basis set limit is still some way off the

exact energy for low order MP theory. For increased accuracy higher level MP theory or

CC theory are required, which come at a greater computational cost but are capable of

delivering chemical accuracy.

1.3.7 CCSD(T) theory

CC theory has been discussed previously and included details of the CCSD truncation.

Sadly CCSD does not give energies that are chemically accurate. The next level of trun-

cation, CCSDT is simply too expensive to consider for all but the smallest systems. How-

ever, a method where the triples are included perturbatively is more tractable and is de-

noted as CCSD(T) [12]. The cost of a CCSD(T) calculation is approximately one-order

of magnitude higher than a CCSD theory, computed in a single non-iterative step. It is

one-order of magnitude lower in cost than the CCSDT method which obviously allows a

greater number of problems to be treated.

The perturbative triples correction has the form

E(T ) =

X

µ∈SD

t
µ

�µ|[ ˆH1, ˆT (2)
3 ]|0� (1.88)

where the operator ˆT (2)
3 has the same form as ˆT3 with modified amplitudes

ˆT (2)
3 =

X

i<j<k

X

a<b<c

tijk (2)
abc

â†
ˆb†ĉ†

ˆiˆjˆk. (1.89)

The modified amplitudes have the form

tijk (2)
abc

= − ˆP abc

ijl

Labc

ijk

−Mabc

ijk

ε
a

+ ε
b

+ ε
c

− ε
i

− ε
j

− ε
k

(1.90)

where

Labc

ijk

=

X

d

tij
ad

�ck|bd� and Mabc

ijk

=

X

l

til
ab

�ck|lj�. (1.91)

and the operator ˆP abc

ijl

symmetrises over particle permutations. Clearly there are notable

similarities between the form of tijk (2)
abc

and the amplitudes of MP2 theory.
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MP2, CCSD and CCSD(T) energies can be combined together as detailed in [7] to

produce very accurate results. The method involves making use of the accuracy of the

CCSD(T) method and the relative cheapness of a MP2 calculation. The formula has the

form

Eaccurate = EMP2(large)

+ ECCSD(medium)− EMP2(medium)

+ ECCSD(T)(small)− ECCSD(small) (1.92)

where the subscript denotes the method and the size in parenthesis denotes the size of the

basis set employed.

1.3.8 Correlation-consistent basis sets

There are two important criteria for forming basis sets which allow approach towards the

limit in a systematic manner. Firstly the energy should converge smoothly towards the

full basis set limit as more and more functions are added. Secondly, the smallest basis set

should be able to recover the largest portion of the energy. Development of basis sets is

very challenging due to the difficulty associated with optimising the parameters, namely

the exponents and contraction coefficients. The difficulty arises from the non-linear nature

of the equations that need to be solved for optimisation.

There have been many GTO basis sets developed over the years but in recent years the

most widely used are the correlation-consistent basis sets of Dunning [13–18]. Developed

in the late 1980s and early 1990s the correlation-consistent basis sets are denoted as cc-

pVXZ where X is called the cardinal number. The possible values of X are D, T, Q, 5 and 6

which are referred to as valence double-, triple-, quadruple-, quintuple-, and sextuple- zeta

respectively. There are two other basis sets based upon the standard correlation-consistent

basis sets. These basis sets are known as the augmented correlation-consistent basis

set [14], denoted by aug-cc-pVXZ, and the polarised core-valence correlation-consistent

basis set [17], denoted by cc-pCVXZ. The augmented correlation-consistent basis sets are

primarily used to describe situations involving diffuse electronic structure such as excited

states and anions. The polarised core-valence correlation-consistent basis sets are used

for calculations involving correlation of the core electrons with both themselves and the

valence electrons. Table 1.1 shows the number of functions for the three types of basis
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sets for each cardinal number for second-row atoms.

Cardinality cc-pVXZ aug-cc-pVXZ cc-pCVXZ

D 3s,2p,1d 4s,3p,2d 4s,3p,1d

T 4s,3p,2d,1f 5s,4p,3d,2f 6s,5p,3d,1f

Q 5s,4p,3d,2f,1g 6s,5p,4d,3f,2g 8s,7p,5d,3f,1g

5 6s,5p,4d,3f,2g,1h 7s,6p,5d,4f,3g,2h 10s,9p,7d,5f,3g,1h

6 7s,6p,5d,4f,3g,2h,1i 8s,7p,6d,5f,4g,3h,2i 12s,11p,9d,7f,5g,3h,1i

Table 1.1: Number of functions for second row atoms for the cc-pVXZ, aug-cc-pVXZ

and cc-pCVXZ basis sets.

The smooth convergence of the correlation-consistent basis sets led people to con-

sider the basis set dependence of computed molecular properties in terms of these basis

sets. Being able to make use of the smoothness would allow more accurate results from

cheaper calculations. It has been observed that the convergence of the correlation energy

with respect to the correlation-consistent basis sets is approximately proportional to X−3.

Using this relationship and performing two calculations with cardinal numbers X and Y

allows a two point extrapolation using the following formula [19, 20]

EV[X,Y]Z =

EVYZ × Y3 − EVXZ × X3

Y3 − X3 . (1.93)

The notation V[X,Y]Z denotes an extrapolated calculation using calculations performed

with basis sets of cardinal numbers X and Y. The notation V∞Z is also sometimes used

as the formula is an approximation to the basis set limit. As with most extrapolation

techniques, the closer to the asymptote the data the more accurate the extrapolated value,

thus a V[5,6]Z calculation will give a significantly more accurate value than a V[D,T]Z

calculation. It is important to note that the extrapolation formula is valid only for the

correlation contribution towards the energy, not the HF contribution. Any method hoping

to take account of the extrapolation technique must therefore be able to separate these two

contributions in order to apply the formula.

1.3.9 Basis set superposition error

Basis set superposition error (BSSE) is a problem that results from the incompleteness of

a one-electron basis set. BSSE can be demonstrated with a simple system of two helium



CHAPTER 1. INTRODUCTION 29

atoms weakly bound together. To calculate the binding energy generally one subtracts

twice the energy of the helium atom from the energy of the bound system. However, the

energy of the atomic helium is typically calculated in a smaller basis set than the bound

system since functions for just one centre are included. This is the source of the BSSE,

since each helium atom in the bound system has more functions to help lower the energy.

BSSE can be attributed to the use of fintite basis sets. The most common method to

correct for this is known as the counterpoise (CP) correction [21, 22]. The CP correction

is evaluated by performing the calculations on the monomers in the dimer basis set, thus

including functions not on the atomic centres of the monomer being treated. BSSE disap-

pears for a complete basis set, but it does not necessarily converge smoothly as the basis

set is increased. The reason for this is that as more functions are added they may be able

to lower the energy, irrespective of their centre, and hence increase the BSSE. This makes

BSSE hard to predict for a given basis set.

1.4 Explicitly Correlated Methods

The aim of all of the ab initio methods described thus far, assuming a reasonably con-

verged HF wavefunction, is to treat the electron correlation of a system. Up until now all

have constructed their wavefunctions from a basis set of one-electron AO functions, used

to create MOs. The trouble with these methods is that they often require large basis sets to

obtain accurate results or, to put it another way, the wavefunction converges slowly with

respect to the size of the basis set. The reason for this is that the basis set does not contain

any functions of the correct shape, i.e. that correctly describe the electronic cusp. The

basis functions required to describe correlation must take into account the fundamental

property of correlation: it is at the very least two-body. The way to solve this is to include

basis functions that depend upon the position of more than one electron. The argument

for use of multi-electron basis functions is almost the same as whether STOs or GTOs

should be used as one-electron basis functions. In that case STOs are better at describing

the nuclear cusp, and here multi-electron basis functions are better at describing electron

correlation. However, both these types of basis functions lead to integrals that are much

harder to evaluate than standard one-electron GTO functions. Before proceeding it is

worth noting that inclusion of a correlation factor into the wavefunction is equivalent to
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having multi-electron basis functions.

The pioneering work on multi-electron basis expansions was done by Hylleraas as

early as 1929 [23]. His work centred around including the inter-electronic distance r12

into the wavefunction for the helium atom, the simplest charge neutral case of electron

correlation. In the initial work on helium [23] and subsequent work on its isoelectronic

series [24] an accurate wavefunction was constructed for the 1S ground state. The ansatz

used was of the form

Ψ(ks, kt, ku) = e−s/2
X

n,l,m=0

c
n,2l,m

snt2lum (1.94)

where

s = r1 + r2, t = −r1 + r2 and u = r12. (1.95)

In the above ansatz it is the coordinate u which contributes the crucial difference from

traditional ab initio methods. The scaling factor k and expansion coefficients c
i

for sev-

eral selected sets of non-negative integers {n, l, m} are determined on the basis of the

variational principle. The energy obtained by Hylleraas was only fractionally higher than

the exact value and was a vast improvement upon any other calculated value of the time.

In 1979 Jolly [25] proved that the scaling factor k obtained by Hylleraas was not optimal

and improved the energy. Further work by Koga [26] confirmed this and improved upon

the set of integers for the six-term expansion to decrease the energy even more. His work

also continued onto optimal Hylleraas expansions of up to twenty terms [27]. The wave-

function has been modified for the more general cases of half-integral powers [28] and

negative integers [29] for the variables m,n and l. These modifications both increase the

flexibility of the wavefunction.

The Hylleraas results were astoundingly good and it was not long before others started

using this idea. In 1933 James and Coolidge extended the idea of using a correlation factor

to the hydrogen molecule [30]: however, subsequent progress was slow. Even by the late

fifties the most advanced calculations using a correlation factor were restricted to ground

and excited state atoms [31–33] and later the potential energy curve of the hydrogen

molecule [34], building on the earlier work of James and Coolidge.

The reason for the lack of progress to larger systems was the presence of integrals de-

pending upon the positions of more than two electrons. These occur numerously through-

out explicitly correlated theories and are also very difficult to evaluate. This severely
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hampered the progress of explicitly correlated theories until the eighties when several

breakthroughs occurred for the approximate evaluation of many-electron integrals. Some

of the resulting theories are documented in this section.

1.4.1 Transcorrelated Method

The transcorrelated method was really the only significant explicitly correlated method to

be developed prior to the breakthroughs of the 1980s. Suggested by Boys and Handy in

1969 [35] it involves transforming the Hamiltonian with an exponential correlation factor

to yield the transcorrelated Hamiltonian

ˆH
C

= exp(− ˆC)

ˆH exp(

ˆC) (1.96)

where
ˆC =

X

i<j

f(�r
i

,�r
j

). (1.97)

This transformation is similar to the one in CC theory, except a correlation operator is

used instead of a cluster operator. In fact, as a result of this, much of the theory in the

transcorrelated method bears great similarity to CC theory.

The correlation function f(�r
i

,�r
j

) is given as

f(�r
i

,�r
j

) =

X

k

D
k

G
k

(r
ij

) +

X

k

d
k

(g
k

(�r
i

) + g
k

(�r
j

)) (1.98)

where g
k

and G
k

are one-electron and two-electron functions. The first order form of

G
k

(r
ij

) presented by Boys and Handy was

G
k

(r
ij

) =

1

2

ar
ij

a + r
ij

. (1.99)

It is important to remember G
k

(r
ij

) constitutes ˆC which is used as an exponent, thus

the correlation factor used is related to an exponential Slater-like function, not a linear

one as equation 1.99 might imply. The form of the correlation factor can be chosen such

that there are no singularities in the transcorrelated Hamiltonian [36]. The wavefunction

used by Boys and Handy in their transcorrelated method was a CI expansion of SDs.

The method introduced three-electron integrals, but no integrals of more than three elec-

trons. This is a distinct feature of the transcorrelated method when compared with other

explicitly correlated methods described later which do introduce integrals of more than

three electrons. Recently Ten-no has used the transcorrelated Hamiltonian with a frozen

Gaussian geminal as the correlation factor [37, 38].
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1.4.2 R12 Theory

R12 theory, as the name implies, is an explicitly correlated method where the correlation

factor is very simply r12. Whilst r12 may be the simplest possible form, it does not follow

that it will lead to the simplest possible theory. Indeed, the transcorrelated method came

about over a decade earlier because of the advantages of using a exponential form of r12.

R12 theory itself was pioneered by Kutzelnigg [39]. The basic theory involves adding an

explicitly correlated term based on the linear correlation factor r12 to the wavefunction

as Hylleraas did many years before. The crucial difference in R12 theory is the method

for evaluating three- and four-electron integrals, known as the resolution of identity (RI)

approximation. This approximation is so important that it will be described at some length

a little later on.

The R12 method was quickly applied to MP2 theory by Kutzelnigg and Klopper [40]

with great success yielding a so-called MP2-R12 theory. This theory has been developed

extensively over the past decade with various ansätze resulting. Details of these ansätze

and associated approximations will be given in the next chapter.

R12 theory has also been applied to the more accurate CC theory by Noga et al. [41,

42] resulting in a CC-R12 theory. Perturbative approximations of the form CCSD(R12)

and CCSD-R12(T) [43] have also been developed.

The resolution of identity approximation

The RI approximation comes from the need to evaluate three- and four-electron integrals

which occur numerously in explicitly correlated methods. The RI approximation can be

expressed simply by the projection operator

ˆP
n

ψ(n) =

Z

d�rp�(�r)p�(n)ψ(�r) ≈ ψ(n) (1.100)

where {p�(n)} is an orthonormal orbital basis set for electron n. The MO basis set can be

used and provides the simplest ansatz but generally an auxiliary RI basis set is employed.

Using an example three-electron integral one can write

�ijk|r12r
−1
23 |lmn� ≈ �ijk|r12

ˆP2r
−1
23 |lmn� (1.101)

which on expansion of ˆP2 yields

�ijk|r12r
−1
23 |lmn� ≈ �ijkp�|r12π̂24r

−1
23 |lmnp��, (1.102)
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where π̂24 is the permutation operator that transposes electrons two and four. Applying

the permutation operator gives the following expression

�ijk|r12r
−1
23 |lmn� ≈ �ijkp�|r12r

−1
34 |lp�nm�. (1.103)

which when written as

�ijk|r12r
−1
23 |lmn� ≈ �ij|r12|lp���kp�|r−1

12 |nm� (1.104)

can be seen to be a sum of products of two-electron integrals which can be readily eval-

uated. Analysis of the error associated with the RI approximation will feature as part of

the results of this thesis.

Until 2002 only two methods were widely used for the evaluation of three-electron

integrals: exact computation [38, 44–46] and RI in the AO basis set [39, 47]. The former

method is practical for molecules only when both the atomic orbitals and the correlation

factor are expanded in Gaussians (see for example [48, 49]). The latter uses the identity

operator in the AO basis set to approximately resolve the three-electron integrals into

sums of products of two-electron integrals.

Over the past few years there have been several developments. First amongst these

chronologically as well as in terms of importance is the use of the RI approximation

in an auxiliary basis set [50]. This allows one to study the effect of the accuracy of

the integrals independently, and also allows one to converge the accuracy of the many-

electron integrals whilst retaining a reasonably modest basis set for the molecular orbitals.

The idea has been extended to formulations that need only the RI approximation in

the orthogonal complement of the AO basis [51]. Density fitting (DF) can also be used as

an alternative to the RI approximation for the three-electron integrals although this does

not appear to offer significant advantages; however combined RI/DF approaches offer

enhanced efficiency [52] and accuracy [53]. Finally one can use numerical quadrature

for the many-electron integrals as shown by Boys and Handy [35] and recently by Ten-

no [54].

1.4.3 Gaussian Geminals

Gaussian Geminals (GG) methods were developed by Szalewicz et al. for PT [49, 55].

The correlation factor used is expanded in Gaussian functions instead of linear r12. The
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Gaussian correlation factor is inserted into the wavefunction which is the difference from

the transcorrelated method where the Hamiltonian is transformed with a Gaussian corre-

lation factor. The first order wavefunction has the form

u
ij

= a
k

exp{−α
k

(r
i

− A
k

)− β
k

(r
j

−B
k

)− γ
k

r2
ij

}, (1.105)

where the parameters a
k

, α
k

, A
k

, β
k

, B
k

, and γ
ij

are optimised for each GG pair function.

The GG function entirely replaces the traditional functions for the doubles so that the

doubles are entirely constructed from explicitly correlated terms, whereas in R12 theory

they supplement the doubly excited terms. For instance, in the case of CC theory the

cluster operator has the form

ˆT = 1 +

ˆT1 +

ˆG2 +

ˆT3 + · · · (1.106)

where ˆG2 represents double excitations into the new explicitly correlated basis functions.

1.5 Aims of this work

This chapter should by now have given the background information required to put this

work into context. Given the poor convergence of orbital based methods it is clear that

explicitly correlated methods warrant some work. Whilst explicitly correlated methods

do give a marked improvement upon the convergence of energies with respect to basis

set, the improvement is not as great as one might hope for, certainly when one considers

the success of the work of Hylleraas. The aim of this thesis is to investigate the errors

associated with R12 theory and investigate an alternative to the RI approximation, with

the hope of increasing the convergence with respect to basis set. As will be seen later,

complexities associated with implementing such a method led to an implementation of a

theory for a frozen Gaussian geminal as opposed to linear r12. This twist of fate actually

resulted in a program where the correlation factor could be set arbitrarily by altering the

fitting criteria of the frozen Gaussian geminal and actually led to the most interesting

conclusions.

Chapter two describes in detail how the various R12 methods were derived. It also

gives details of all of the ansätze which exist as a result of approximations that can be

made when evaluating the matrix elements.
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Chapter three describes the development of new classes of integrals and is the core of

the theoretical work presented in the thesis. Details of the integral derivations are given

along with their final recurrence relations. The computer implementations in chapter four

are shown mainly in pseudo code to make them more accessible to the general reader.

Chapter five contains results of calculations performed with the new programs and

analysis of the errors associated with them. The final conclusions and comment are then

given in chapter six.



Chapter 2

Theory

The theories derived in this Chapter are based on the R12 methods of Kutzelnigg and

Klopper [39,40] with the derivations closely following those of Klopper and Samson [50].

Firstly the notation that will be used throughout is defined, the convention for labels used

being

i, j, k, . . . occupied in the reference Slater determinant

a, b, c, . . . unoccupied, but contained in the given basis

p, q, r, . . . arbitrary, but contained in the given basis

α, β, γ, . . . unoccupied, belonging to a complete set

κ,λ, µ, . . . arbitrary, forming a complete basis.

This can be viewed illustratively as shown in figure 2.1.

Given basis Complete basis

occupied unoccupied

i, j, k, . . . a, b, c, . . .

p, q, r, . . .

α,β, γ, . . .

κ,λ, µ, . . .

Figure 2.1: Graphical representation of notation for orbital indices

The MP2-R12 theories contain several matrix elements which must be evaluated. Var-

ious approximations can be applied to make their evaluation more attainable and these

lead to various ansätze. Details of the approximations and ansätze will be given later but

36
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first an account of the basic equations and their origin will be given. The derivations pre-

sented will be for an MP2-F12 method where F12 indicates an arbitrary correlation factor

that is a function of r12.

The start point is to minimise the Hylleraas pair functional [24, 56]

�(2)
ij

= �u
ij

| ˆf1 +

ˆf2 − ε
i

− ε
j

|u
ij

�+ 2�u
ij

|r−1
12 |ij�, (2.1)

where in the F12 ansatz the standard MP2 basis of doubly excited determinants is aug-

mented by explicitly correlated terms construced from a products of occupied orbitals

|u
ij

� = tij
ab

|ab�+ tij
kl

ˆQ12f12|kl�. (2.2)

The function f12 is an arbitrary function of r12 whose form will be discussed in the next

chapter.

On expanding the Hylleraas functional one obtains

�(2)
ij

= �(MP2)
ij

+ �(F12)
ij

+ 2tij
ab

tij
kl

�kl|f12
ˆQ12(

ˆf1 +

ˆf2 − ε
i

− ε
j

)|ab� (2.3)

where �(MP2)
ij

is the conventional MP2 pair energy expression, �(F12)
ij

is the F12 pair con-

tribution and the third term in the expression is a coupling between the two terms. The

second and third term contain a projection operator, ˆQ12 which can take several forms

depending on the exact method; details of which projection operator used will always be

given. The F12 contribution, �(F12)
ij

, is defined as

�(F12)
ij

= tij
kl

Bij

kl,mn

tij
mn

+ 2tij
kl

V ij

kl

, (2.4)

where the matrix elements Bij

kl,mn

and V ij

kl

are defined as

Bij

kl,mn

= �mn|f12
ˆQ12(

ˆf1 +

ˆf2 − ε
i

− ε
j

)

ˆQ12f12|kl�, (2.5)

and

V ij

kl

= �kl|f12
ˆQ12r

−1
12 |ij�. (2.6)

The matrix element Cij

kl,ab

is also defined

Cij

kl,ab

= �kl|f12
ˆQ12(

ˆf1 +

ˆf2 − ε
i

− ε
j

)|ab� (2.7)

for the coupling term of equation 2.3 and a matrix element X
kl,mn

is defined for use later

in the derivations

X
kl,mn

= �mn|f12
ˆQ12f12|kl�. (2.8)
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All of the derivations that will be presented differ only in their method of evaluation for

the key matrices Bij

kl,mn

, V ij

kl

, Cij

kl,ab

and X
kl,mn

. In some cases the difference in evaluation

comes only from the choice of the projection operator ˆQ12, but in others it comes from

the various approximations that are used within the different ansätze. An account of the

approximations used within these theories is now given along with a summary of the

resulting ansätze.

The Resolution of Identity approximation

The Resolution of Identity (RI) approximation is the only approximation which will be

used universally in these methods. The RI approximation arises from the need to evaluate

three-electron integrals which occur in great numbers in these theories. Not only are these

integrals numerous, they are immensely difficult to evaluate individually in terms of CPU

time. The solution proposed by Kutzelnigg and Klopper [39, 40] in their original method

is as follows,

�ijk|r12r
−1
13 |lmn� ≈ �ij|r12|pm��kp|r−1

12 |nl�, (2.9)

where the MO basis has been used for the RI. A more general choice for the RI [50] is

given by

�ijk|r12r
−1
13 |lmn� ≈ �ij|r12|p�m��kp�|r−1

12 |nl�, (2.10)

where an auxiliary RI basis has been used. Further details of the RI approximation are

given in the introduction.

The Generalised and Extended Brillouin conditions

The generalised Brillouin condition (GBC) and extended Brillouin condition (EBC) are

important approximations that when used can make evaluation of certain integrals much

simpler. The GBC states that
ˆf |i� = ε

i

|i� (2.11)

which is exactly equivalent to �i| ˆf |α� = 0. The extended Brillouin condition takes the

approximation one step further, and as such is a less accurate approximation. The EBC

states that
ˆf |a� = ε

a

|a� (2.12)

which is exactly equivalent to �a| ˆf |σ� = 0.
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Projection Operators

The projection operator ˆQ12 has not been discussed in any detail up until now. The pur-

pose of ˆQ12 is to ensure orthogonality of the explicitly correlated space to the occupied

orbitals. There are two projection operators in common use in this field. The first is the

projection operator that ensures orthogonality to all the MOs

ˆQ12 = (1− ˆP1)(1− ˆP2) (2.13)

where
ˆP1 =

X

p

|p(1)��p(1)|. (2.14)

When this projection operator is used the ansatz name will contain a 1 to denote its use

[50]. The second choice of projection operator ensures orthogonality to the occupied

space only
ˆQ12 = (1− ˆO1)(1− ˆO2) (2.15)

where
ˆO1 =

X

i

|i(1)��i(1)|. (2.16)

and methods using this projection operator will contain a 2 in their ansatz name. The

choice of ansatz 1 or 2 is not an approximation, it is in fact a different wavefunction

expansion so any differences in expectation values are due to the differences in size of

these expansions.

A computationally more convenient projection operator (which leads to the same the-

ory as equation 2.15) ensures orthogonality to the virtual space:

ˆQ12 = (1− ˆO1)(1− ˆO2)(1− ˆV1
ˆV2) (2.17)

where
ˆV1 =

X

i

|a(1)��a(1)|. (2.18)

The (diag) energy

The (diag) energy can be calculated for all methods and is non-invariant. This means that

there are no excitations to all occupied pairs and the pair function is defined by replacing

equation 2.2 by

|u
ij

� = tij
ab

|ab�+

ˆQ12f12|ij�. (2.19)
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The energy can be calculated easily enough for any of the methods. All that must be done

is to take certain parts of the matrices V, B, X and C and recompute the energy. Mainly

this involves using the diagonal elements only, hence the name (diag).

2.1 The MP2-F12/2*A and 2*A’ methods

These methods are the natural starting point when embarking on implementing such the-

ories due to the large number of approximations. This makes derivation of the method

and writing a computer code implementation a little more tractable for a first attempt. In

order to implement any method the evaluation of the four matrix elements V ij

kl

, Bij

kl,mn

,

X
kl,mn

and Cij

kl,ab

must be considered. Each of these matrices will be dealt with in turn

stating all of the approximations used. Subsequent methods will only detail the differ-

ences from this method. The nomenclature of these methods is based on that of Klopper

and Samson [50].

2.1.1 Matrix V

The matrix V ij

kl

is the simplest and this provides the starting point for the derivation. The

first step is to insert the definition of the occupied projection operator into equation 2.6.

For convenience the alternate form of ˆQ12 given in equation 2.17 is used. To obtain the

expressions for the occupied projection operator that does not ensure orthogonality to the

virtual space simply delete the last term from all of the expressions for V. Expanding out

the projection operator gives the five term expression

V ij

kl

= �kl|f12r
−1
12 |ij� − �kl|f12

ˆO1r
−1
12 |ij� − �kl|f12

ˆO2r
−1
12 |ij�+ �kl|f12

ˆO1
ˆO2r

−1
12 |ij�

− �kl|f12
ˆV1

ˆV2r
−1
12 |ij�. (2.20)

The next step is to insert the definition of the projectors to form

V ij

kl

= �kl|f12r
−1
12 |ij�−�klm|f12r

−1
23 |mji�−�klm|f12r

−1
13 |imj�+ �klmn|f12r

−1
34 |mnij�

− �klab|f12r
−1
34 |abij�. (2.21)

which contains two-, three- and four-electron integrals. Two-electron integrals can be

evaluated easily and by observation it can be seen that the four-electron integrals can
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decouple to products of two-electron integrals

V ij

kl

= �kl|f12r
−1
12 |ij� − �klm|f12r

−1
23 |mji� − �klm|f12r

−1
13 |imj�

+ �kl|f12|mn��mn|r−1
12 |ij� − �kl|f12|ab��ab|r−1

12 |ij�. (2.22)

To evaluate the three-electron integrals in the above expression the RI approximation is

inserted as follows

V ij

kl

= �kl|f12r
−1
12 |ij� − �klm|f12

ˆP �
2r
−1
23 |mji� − �klm|f12

ˆP �
1r
−1
13 |imj�

+ �kl|f12|mn��mn|r−1
12 |ij� − �kl|f12|ab��ab|r−1

12 |ij�. (2.23)

Expanding the RI projectors gives

V ij

kl

= �kl|f12r
−1
12 |ij� − �kl|f12|mp���mp�|r−1

12 |ij� − �kl|f12|p�m��mp�|r−1
12 |ji�

+ �kl|f12|mn��mn|r−1
12 |ij� − �kl|f12|ab��ab|r−1

12 |ij�, (2.24)

which is the final expression for V ij

kl

as all the integrals are two-electron and can be eval-

uated by the methods discussed in the next chapter. It is worth noting that the only ap-

proximation employed in evaluating V ij

kl

was the RI approximation which is used in all

the methods. As a consequence the expression for V ij

kl

is general for all methods that use

the same projection operator, ˆQ12. The projection operator used above ensures orthogo-

nality to both the occupied and virtual space. To obtain the expression for the projection

operator that ensures orthogonality to the occupied space only one simply needs to delete

the last term of the expression for V ij

kl

.

2.1.2 Matrix B

The matrix element Bij

kl,mn

is a little more complicated

Bij

kl,mn

= �mn|f12
ˆQ12(

ˆf1 +

ˆf2 − ε
i

− ε
j

)

ˆQ12f12|kl�. (2.25)

The first step to simplification is to make use of the identity

f12
ˆQ12(

ˆf1 +

ˆf2 − ε
i

− ε
j

)

ˆQ12f12 =

1

2

f12
ˆQ12[

ˆf1 +

ˆf2, ˆQ12f12]

+

1

2

[f12
ˆQ12, ˆf1 +

ˆf2]
ˆQ12f12

+

1

2

f12
ˆQ12

ˆQ12f12(
ˆf1 +

ˆf2 − ε
i

− ε
j

)

+

1

2

(

ˆf1 +

ˆf2 − ε
i

− ε
j

)f12
ˆQ12

ˆQ12f12 (2.26)
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which when substituted into the expression for Bij

kl,mn

gives

Bij

kl,mn

=

1

2

�mn|f12
ˆQ12[

ˆf1 +

ˆf2, ˆQ12f12]|kl�

+

1

2

�mn|[f12
ˆQ12, ˆf1 +

ˆf2]
ˆQ12f12|kl�

+

1

2

�mn|f12
ˆQ12f12(

ˆf1 +

ˆf2 − ε
i

− ε
j

)|kl�

+

1

2

�mn|( ˆf1 +

ˆf2 − ε
i

− ε
j

)f12
ˆQ12f12|kl� (2.27)

where the simplification ˆQ12 =

ˆQ12
ˆQ12 has been used since the operator ˆQ12 is idem-

potent. The identity used maintains symmetry thus ensuring that the operator remains

Hermitian. Assuming the GBC and making use of the Hermiticity of the Fock operator

allows the last two terms to be simplified as

Bij

kl,mn

=

1

2

{B
kl,mn

+ B
mn,kl

}

+

1

2

(ε
k

+ ε
l

− ε
i

− ε
j

)�mn|f12
ˆQ12f12|kl�

+

1

2

(ε
m

+ ε
n

− ε
i

− ε
j

)�mn|f12
ˆQ12f12|kl� (2.28)

where the matrix elements used to represent the first two terms are given by

B
kl,mn

= �mn|f12
ˆQ12[

ˆf1 +

ˆf2, ˆQ12f12]|kl�. (2.29)

Factorising this expression and rewriting in terms of a matrix element X yields

Bij

kl,mn

=

1

2

{B
kl,mn

+ B
mn,kl

} +

1

2

(ε
k

+ ε
l

+ ε
m

+ ε
n

− 2ε
i

− 2ε
j

)X
kl,mn

(2.30)

where details on evaluating matrix element X will be given later.

The matrix element B
kl,mn

is also simplified by use of the EBC as under the EBC

[

ˆf1 +

ˆf2, ˆQ12] = 0 and thus

[

ˆf1 +

ˆf2, ˆQ12f12] =

ˆQ12[
ˆf1 +

ˆf2, f12] =

ˆQ12[
ˆT1 +

ˆT2, f12]− ˆQ12[
ˆK1 +

ˆK2, f12] (2.31)

since only the kinetic and exchange operators do not commute. Under ansatz A of the

MP2-F12 method there is one further approximation which is that the contribution from

the exchange commutators are assumed to be zero and hence

[

ˆf1 +

ˆf2, f12] = [

ˆT1 +

ˆT2, f12]. (2.32)
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Substituting this into equation 2.29 yields

B
kl,mn

= �mn|f12
ˆQ12[

ˆT1 +

ˆT2, f12]|kl� (2.33)

where the idempotency of ˆQ12 has been observed. The next step is to expand the projec-

tion operator to yield the five term expression

B
kl,mn

= �mn|f12[
ˆT1 +

ˆT2, f12]|kl�

− �mn|f12
ˆO1[

ˆT1 +

ˆT2, f12]|kl� − �mn|f12
ˆO2[

ˆT1 +

ˆT2, f12]|kl�

+ �mn|f12
ˆO1

ˆO2[
ˆT1 +

ˆT2, f12]|kl� − �mn|f12
ˆV1

ˆV2[
ˆT1 +

ˆT2, f12]|kl�. (2.34)

Inserting the definition of the projector yields

B
kl,mn

= �mn|f12[
ˆT1 +

ˆT2, f12]|kl�

− �mno|f12[
ˆT2 +

ˆT3, f23]|olk� − �mno|f12[
ˆT1 +

ˆT3, f13]|kol�

+ �mnop|f12[
ˆT3 +

ˆT4, f34]|opkl� − �mnab|f12[
ˆT3 +

ˆT4, f34]|abkl�. (2.35)

where in this case the index p in the fourth term is used to represent an occupied orbital.

The four-electron integrals are now decoupled and the RI approximation is inserted into

the three-electron integrals

B
kl,mn

= �mn|f12[
ˆT1 +

ˆT2, f12]|kl�

− �mno|f12
ˆP �
2[

ˆT2 +

ˆT3, f23]|olk� − �mno|f12
ˆP �
1[

ˆT1 +

ˆT3, f13]|kol�

+ �mn|f12|op��op|[ ˆT1 +

ˆT2, f12]|kl� − �mn|f12|ab��ab|[ ˆT1 +

ˆT2, f12]|kl�. (2.36)

Expansion of the RI projector and decoupling the integrals give the final expression in

terms of integrals that can be evaluated as detailed in the next chapter

B
kl,mn

= �mn|f12[
ˆT1 +

ˆT2, f12]|kl�

− �mn|f12|op���op�|[ ˆT1 +

ˆT2, f12]|kl� − �mn|f12|op���p�o|[ ˆT1 +

ˆT2, f12]|lk�

+ �mn|f12|op��op|[ ˆT1 +

ˆT2, f12]|kl� − �mn|f12|ab��ab|[ ˆT1 +

ˆT2, f12]|kl�. (2.37)

2.1.3 Matrix X

The form of X
kl,mn

is given in equation 2.8. Under ansatz A the approximation X
kl,mn

=

0 is made, thus there is never a need to evaluate X
kl,mn

. The difference, and this is indeed
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the only difference, between the A’ and A ansätze is that the matrix element X
kl,mn

is

evaluated under the A’ ansatz. Starting with equation 2.8 and expanding the projection

operator ˆQ12 yields

X
kl,mn

= �mn|f2
12|kl� − �mn|f12

ˆO1f12|kl� − �mn|f12
ˆO2f12|kl�

+ �mn|f12
ˆO1

ˆO2f12|kl�+ �mn|f12
ˆV1

ˆV2f12|kl�. (2.38)

Inserting the definition of the projection operator gives

X
kl,mn

= �mn|f2
12|kl� − �mno|f12f23|olk� − �mno|f12f13|kol�

+ �mnop|f12f34|opkl�+ �mnab|f12f34|abkl� (2.39)

where the index p represents an occupied orbital. The four-electron integral can be de-

coupled and the RI is inserted into the three-electron integrals to give

X
kl,mn

= �mn|f2
12|kl� − �mno|f12

ˆP �
2f23|olk� − �mno|f12

ˆP �
1f13|kol�

+ �mn|f12|op��op|f12|kl�+ �mn|f12|ab��ab|f12|kl�. (2.40)

Expanding the RI projection operators and decoupling the integrals yields the final ex-

pression

X
mn,kl

= �mn|f2
12|kl� − �mn|f12|op���op�|f12|kl� − �mn|f12|p�o��op�|f12|lk�

+ �mn|f12|op��op|f12|kl�+ �mn|f12|ab��ab|f12|kl�. (2.41)

Just as was the case for matrix element V ij

kl

the only approximation used in the evaluation

of X
kl,mn

is the RI approximation which makes the derivation of X
kl,mn

valid for all

ansatz 2 methods.

2.1.4 Matrix C

The matrix element Cij

kl,ab

given by equation 2.7 reduces under the EBC to

Cij

kl,ab

= (ε
a

+ ε
b

− ε
i

− ε
j

)�kl|f12
ˆQ12|ab�. (2.42)

Expansion of the operator ˆQ12 yields the expression

Cij

kl,ab

= (ε
a

+ ε
b

− ε
i

− ε
j

)

n

�kl|f12|ab� − �kl|f12
ˆO1|ab�

−�kl|f12
ˆO2|ab�+ �kl|f12

ˆO1
ˆO2|ab� − �kl|f12

ˆV1
ˆV2|ab�

o

, (2.43)
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which upon insertion of the definition of the occupied and virtual projectors gives

Cij

kl,ab

= (ε
a

+ ε
b

− ε
i

− ε
j

) {�kl|f12|ab� − �klm|f12|mba�

−�klm|f12|amb�+ �klmn|f12|mnab� − �klcd|f12|cdab�} . (2.44)

Factorising the integrals in the above expression gives

Cij

kl,ab

= (ε
a

+ ε
b

− ε
i

− ε
j

) {�kl|f12|ab� − �kl|f12|mb��m|a�

−�kl|f12|am��m|b�+ �kl|f12|mn��mn|ab� − �kl|f12|cd��cd|ab�} (2.45)

where the overlap integrals can be simplified such that

Cij

kl,ab

= (ε
a

+ ε
b

− ε
i

− ε
j

) {�kl|f12|ab� − �kl|f12|cd�δac

δ
bd

}

= (ε
a

+ ε
b

− ε
i

− ε
j

) {�kl|f12|ab� − �kl|f12|ab�} = 0. (2.46)

Thus, under the 2* ansatz the matrix Cij

kl,ab

does not require evaluation since it is zero.

2.2 The MP2-F12/2A and /2A’ methods

These methods do not assume the EBC which has consequences on the way in which

the matrix elements in the method are evaluated. In the previous section the projection

operator chosen ensured orthogonality to both the occupied and virtual space. This was

convenient as Cij

kl,ab

= 0. However, when the EBC cannot be assumed this form of ˆQ12

does not allow the same sort of simplifications needed for the evaluation of matrix B as

before. Because of this the projection operator that ensures orthogonality to the occupied

space only
ˆQ12 = (1− ˆO1)(1− ˆO2) (2.47)

will be used.

The new choice of projection operator and lack of EBC will affect all of the matrix

elements. In the case of V and X it is only the form of ˆQ12 that has an effect. Their new

form can be obtained simply by deleting the last term of their 2*A’ expressions to give

V ij

kl

= �kl|f12r
−1
12 |ij� − �kl|f12|mp���mp�|r−1

12 |ij�

− �kl|f12|p�m��mp�|r−1
12 |ji�+ �kl|f12|mn��mn|r−1

12 |ij�, (2.48)
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and

X
mn,kl

= �mn|f2
12|kl� − �mn|f12|op���op�|f12|kl�

− �mn|f12|p�o��op�|f12|lk�+ �mn|f12|op��op|f12|kl�. (2.49)

Matrix element B assumed the EBC in equation 2.31. However, using the different form

of ˆQ12 means that equation 2.31 still applies as only the GBC is now required for it to

stand. Thus, as in the case of V and X the new expression for B is simply the previous

one without the last term

B
kl,mn

= �mn|f12[
ˆT1 +

ˆT2, f12]|kl� − �mn|f12|op���op�|[ ˆT1 +

ˆT2, f12]|kl�

− �mn|f12|op���p�o|[ ˆT1 +

ˆT2, f12]|lk�+ �mn|f12|op��op|[ ˆT1 +

ˆT2, f12]|kl�. (2.50)

2.2.1 Matrix C

This leaves matrix C; removing the restriction of the EBC means that matrix C is no

longer zero. The expression for Cij

kl,ab

is given by

Cij

kl,ab

= �kl|f12
ˆQ12(

ˆf1 +

ˆf2 − ε
i

− ε
j

)|ab�. (2.51)

Using the different projection operator allows one to write

Cij

kl,ab

= �kl|[f12, ( ˆf1 +

ˆf2 − ε
i

− ε
j

)]|ab�+ �kl|( ˆf1 +

ˆf2 − ε
i

− ε
j

)f12
ˆQ12|ab� (2.52)

using the GBC only. Making use of the hermiticity of the Fock operator and using the

GBC to simplify the second term gives

Cij

kl,ab

= �kl|[f12, ( ˆf1 +

ˆf2 − ε
i

− ε
j

)]|ab�+ (ε
k

+ ε
l

− ε
i

− ε
j

)�kl|f12
ˆQ12|ab�. (2.53)

The integral in the second term is identical to the one given in equation 2.42 except the

form of ˆQ12 has changed. Using the same method to evaluate this term with the different

form of ˆQ12 leads to

Cij

kl,ab

= �kl|[f12, ( ˆf1 +

ˆf2 − ε
i

− ε
j

)]|ab�+ (ε
k

+ ε
l

− ε
i

− ε
j

)�kl|f12|ab�. (2.54)

The eigenvalues in the first term commute with f12, as do all parts of the Fock operators

except for the kinetic and exchange operators, thus

Cij

kl,ab

= �kl|[f12, ( ˆT1 +

ˆT2 − ˆK1 − ˆK2)]|ab�+ (ε
k

+ ε
l

− ε
i

− ε
j

)�kl|f12|ab�. (2.55)
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Expanding out the expression for Cij

kl,ab

gives

Cij

kl,ab

= �kl|[f12, ˆT1 +

ˆT2]|ab� − �kl|[f12, ˆK1 +

ˆK2]|ab�+ (ε
k

+ ε
l

− ε
i

− ε
j

)�kl|f12|ab�.
(2.56)

The matrix Cij

kl,ab

requires three integral classes, of which two classes occur elsewhere in

the method leaving only the exchange integrals. The exchange term can be decomposed

by expanding the commutator and separating out ˆK1 and ˆK2 yielding

�kl|[f12, ˆK1+

ˆK2]|ab� = �kl|f12
ˆK1|ab�+�kl|f12

ˆK2|ab�−�kl| ˆK1f12|ab�−�kl| ˆK2f12|ab�.
(2.57)

The next step is to make the RI approximation by inserting the projection operator ˆP � in

order to isolate the exchange operator

�kl|[f12, ˆK1 +

ˆK2]|ab� ≈ �kl|f12
ˆP �
1

ˆK1|ab�+ �kl|f12
ˆP �
2

ˆK2|ab�

− �kl| ˆK1
ˆP �
1f12|ab� − �kl| ˆK2

ˆP �
2f12|ab�, (2.58)

and using the hermiticity of the operator expand to give

�kl|[f12, ˆK1 +

ˆK2]|ab� = �klp�|f12
ˆK3|p�ba�+ �klp�|f12

ˆK3|ap�b�

− �p�lk| ˆK3f12|abp�� − �kp�l| ˆK3f12|abp��. (2.59)

The three-electron integrals then decompose to products

�kl|[f12, ˆK1 +

ˆK2]|ab� = �kl|f12|p�b��p�| ˆK1|a�+ �kl|f12|ap���p�| ˆK1|b�

− �p�l|f12|ab��k| ˆK1|p�� − �kp�|f12|ab��l| ˆK1|p��. (2.60)

The above expression contains F type integrals which occur elsewhere in the method, but

also some one-electron exchange integrals which when expanded out, for example

�p�| ˆK1|a� = �p�i|r−1
12 |ia�, (2.61)

give special cases of two-electron J type integrals. These integrals can be evaluated by

calculating the more general case �p�i|r−1
12 |ja� and then summing over the correct compo-

nents where j = i.

In this chapter two distinct methods, the MP2-F12/2*A’ and MP2-F12/2A’ methods, have

been described as these were the ones derived and implemented during this PhD. There
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are many more flavours of MP2-R12 in existence which using similar methods could

produce their F12 counterparts.



Chapter 3

Integrals

All the integrals for the programs described in the previous chapter will be constructed

using Gaussian type orbital (GTO) basis sets [57]. Unnormalised Cartesian Gaussian

functions have the form

|a) ≡ g(�r, α, a, �A) = (x− A
x

)

a

x

(y − A
y

)

a

y

(z − A
z

)

a

z

exp

n

−α|�r − �A|2
o

(3.1)

where �r represents the coordinates of the electron and where �A is the centre of the Gaus-

sian function. The orbital exponent is given by α, and a is the vector of angular momen-

tum exponents

a = (a
x

, a
y

, a
z

) (3.2)

where a
x

, a
y

and a
z

are nonnegative integers. These are then transformed to spherical

Gaussians, contracted and normalised using standard routines in MOLPRO [58].

The integrals that arise from the derivations of the MP2-F12 methods are either four-

index two-electron integrals or six-index three-electron integrals. There are several meth-

ods of integral evaluation in existence for evaluating Coulomb integrals of which the most

important are: Obara and Saika (OS) [59]; McMurchie and Davidson (MD) [60]; Pople

and Hehre (PH) [61]; and Dupuis, Rys and King (DRK) [62, 63]. All of these methods

work directly for integrals in four-index form.

Obara & Saika Integral Evaluation

The OS [59] integral method produces expressions in the form of recursive formulae with

respect to the angular momentum of functions in the integral. This means any integral can

49
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be represented as a linear combination of lower angular momentum integrals, with the ex-

ception of the zero angular momentum case which must always be explicitly calculated.

This method of integral evaluation will be used in this work for three reasons. Firstly,

the expressions are relatively simple both to derive and to implement for all the integral

classes required. Secondly, the expressions are entirely general for all values of angular

momentum which is ideal as the code will continue to function when the angular momen-

tum in the basis set is increased. Finally, the OS method is fast in terms of CPU time,

and compares well if not better than many of the other methods available; see section V

of [59].

McMurchie & Davidson Integral Evaluation

The MD [60] integral method is based around using one-centre Hermite Gaussian func-

tions to represent Gaussian overlap distributions. Hermite Gaussian functions, like their

Cartesian counterparts, are separable and can be represented as

h(�r, α, a, �A) =

µ

∂

∂A
x

∂

a

x

µ

∂

∂A
y

∂

a

y

µ

∂

∂A
z

∂

a

z

exp[−α|�r − �A|2], (3.3)

where the definition of �r, �A, α and a are analogous with the definitions for Cartesian

Gaussian functions. This results in the integration over two-centre functions being re-

duced to a set of integrals over one-centre functions. The resulting one-centre functions

by their nature are well suited to integration. A set of recurrence relations can then be

derived using these one-centre Hermite functions.

Pople & Hehre Integral Evaluation

The PH [61] integral evaluation method is based on using a local coordinate system and

is exceptionally fast compared to many of the other methods. However there are several

problems related to the method including rounding errors and most notably the inability to

apply the method to integrals containing angular momentum greater than p functions. This

certainly makes this method of integral evaluation a non-starter for the MP2-F12 methods

as they require basis sets with angular momentum functions greater than p functions.
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Dupuis, Rys and King Integral Evaluation

The DRK [62, 63] method of integral evaluation is the very different from the OS and

MD methods which both require evaluation of the Boys function [57] when evaluating

Coulomb integrals. The DRK method employs a Gaussian quadrature scheme which cre-

ates an entirely different method for evaluation of integrals. For basis functions of angular

momentum greater than zero there are polynomial-like terms in the x, y and z direction.

Their integrands can be exactly represented as a sum of polynomials. The number of poly-

nomials required is double the maximum cardinality of the original polynomial. A weight

function is needed, and in the case of a Gaussian integral one chooses the exponential part

to perform this task. This gives rise to a very efficient quadrature scheme which is exact

for Gaussian integrals. Integrals over other functions and operators can be approximated

by increasing the number of integration points and careful choice of the weight function.

Integrals and Indices

In order to speed up the evaluation of integrals the DF approximation is used which results

in the need for three-index integrals. Details of the DF approximation will be given in

the next section. The three-index integrals are built from two-index integrals using the

Gaussian product theorem (GPT). More details of the GPT will follow shortly.

Firstly it is necessary to introduce some new notation for writing integrals. Mulliken

notation, or charge density notation as it is otherwise known, can be used instead of the

normal Dirac notation. As the nomenclature implies the new notation represents integrals

in terms of charge density denoted by a change in shape of the ’bra-ket’ and a reordering of

the indices. For example a four-index two-electron Coulomb integral can be represented

in both Dirac and Mulliken notation as,

�pq|r−1
12 |rs� ≡ (pr|r−1

12 |qs) ≡ (pr|qs). (3.4)

The indices on the right of equation 3.4 now correspond to densities |pr) for electron one

and |qs) for electron two. Now that the indices in each of these densities correspond to the

same electron it is possible to contract the indices by either the GPT or DF approximation.
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The Gaussian Product Theorem

The GPT [57] is the most common method of reducing indices as it allows the product of

two Gaussian functions

g1g2 = g(�r, α, a, �A)g(�r, β,b, �B) (3.5)

to be represented exactly as a small expansion in single Gaussian functions. The simplest

case of two Gaussian functions with zero angular momentum is expressed as

g(�r, α,0, �A)g(�r,β,0, �B) = exp

n

−α|�r − �A|2
o

exp

n

−β|�r − �B|2
o

(3.6)

which can be algebraically rearranged to give

g(�r, α,0, �A)g(�r,β,0, �B) = exp

©

−ξ|AB|2
™

exp

n

−ζ|�r − �P |2
o

= exp

©

−ξ|AB|2
™

g(�r, ζ,0, �P ) (3.7)

where

ζ = α + β, ξ =

αβ

ζ
, �P =

α �A + β �B

ζ
, and AB =

�A− �B. (3.8)

For the more general case of arbitrary angular momentum shown in equation 3.5 the

expansion is more complicated and is given by

g1g2 = (x− A
x

)

a

x

(y − A
y

)

a

y

(z − A
z

)

a

z

exp

n

−α|�r − �A|2
o

× (x−B
x

)

b

x

(y −B
y

)

b

y

(z −B
z

)

b

z

exp

n

−β|�r − �B|2
o

. (3.9)

The first obvious step when attempting to combine the Gaussian functions is to substitute

in equation 3.7 to take care of the exponential terms

g1g2 = exp

©

−ξ|AB|2
™

exp

n

−ζ|�r − �P |2
o

× (x− A
x

)

a

x

(y − A
y

)

a

y

(z − A
z

)

a

z

(x−B
x

)

b

x

(y −B
y

)

b

y

(z −B
z

)

b

z . (3.10)

Terms such as (x− A
x

)

a

x must be expressed using a binomial expansion

(x− A
x

)

a

x

= [(x− P
x

) + PA
x

]

a

x

=

a

x

X

i=0

µ

a
x

i

∂

(x− P
x

)

iPAa

x

−i

x

(3.11)
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and this allows everything to be shifted to the new centre �P . Products of such terms of

the same Cartesian coordinate can be thus be represented as follows

(x− A
x

)

a

x

(x−B
x

)

b

x

=

a

x

X

i=0

µ

a
x

i

∂

(x− P
x

)

iPAa

x

−i

x

b

x

X

j=0

µ

b
x

j

∂

(x− P
x

)

jPBb

x

−j

x

=

a

x

+b

x

X

k=0

(x− P
x

)

kf
k

(a
x

, b
x

, PA
x

, PB
x

) (3.12)

where

f
k

(a
x

, b
x

, PA
x

, PB
x

) =

i+j=k

X

i=0,a

x

X

j=0,b

x

µ

a
x

i

∂µ

b
x

j

∂

PAa

x

−i

x

PBb

x

−j

x

=

k

X

i=0

µ

a
x

i

∂µ

b
x

k − i

∂

PAa

x

−i

x

PBb

x

−k+i

x

. (3.13)

Substituting expressions of the kind above for each of the Cartesian coordinates yields the

final expression for the new single-centred Gaussian expansion

g1g2 = exp

©

−ξ|AB|2
™

exp

n

−ζ|�r − �P |2
o

×
"

a

x

+b

x

X

i=0

(x− P
x

)

if
i

(a
x

, b
x

, PA
x

, PB
x

)

#

×

"

a

y

+b

y

X

j=0

(y − P
y

)

jf
j

(a
y

, b
y

, PA
y

, PB
y

)

#

×

"

a

z

+b

z

X

k=0

(z − P
z

)

kf
k

(a
z

, b
z

, PA
z

, PB
z

)

#

. (3.14)

When applied to integrals the GPT can be used to reduce a four-index integral to a sum of

three-index integrals

(ab|r−1
12 |cd) =

X

p

T ab

p

(p|r−1
12 |cd), (3.15)

with transformation coefficients

T ab

p

= f
p

x

(a
x

, b
x

, PA
x

, PB
x

)f
p

y

(a
y

, b
y

, PA
y

, PB
y

)f
p

z

(a
z

, b
z

, PA
z

, PB
z

) exp

©

−ξ|AB|2
™

.

(3.16)

The GPT can be used once again to reduce the integral to a two-index integral, thus giving

(ab|r−1
12 |cd) =

X

pq

T ab

p

T cd

q

(p|r−1
12 |q), (3.17)

with additional set of transformation coefficients T cd

q

.
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The form of F12

In order to evaluate the integrals a form of f12 must be decided. The important factors

when deciding the form of f12 are that the resulting integrals have analytical solutions and

that the shape of f12 reflects a sensible choice of correlation factor. The argument of the

shape of the correlation factor is similar to the choice of atomic orbital basis functions:

STOs would be best, but GTOs are easier. Therefore we choose a Gaussian expansion for

f12 for ease of implementation. This also conveniently solves the problem of the shape

of the function when it is noted that a linear combination of Gaussians can be used to

least squares fit to almost any function of choice. This linear combination of Gaussians is

written explicitly as

f12 = c
i

exp

©

−γ
i

r2
12

™

, (3.18)

and is defined by a Gaussian geminal basis set of exponents γ
i

and coefficients c
i

. Frozen

geminals have been discussed in the work of Persson and Taylor [64, 65] and also by

Ten-no [37, 38].

The least squares fitting method briefly goes as follows. From a list of exponents γ

the vector a and matrix A are constructed as

a
i

=

Z ∞

0

drf(r)w(r)e−γ

i

r

2
and A

ij

=

Z ∞

0

dr w(r)e−(γ
i

+γ

j

)r2
(3.19)

where f(r) is the function being fitted and w(r) is a known as the weight function, for ex-

ample exp{−ωr2}, and is used for damping. The coefficients for each Gaussian function

c are then determined by solving the matrix equation

Ac = a. (3.20)

3.1 Density Fitting

The DF method is an approximation in which an orbital product density is expanded in

an auxiliary basis. The advantage of using the DF approximation over the GPT is that

computationally the DF approximation is significantly faster and allows calculation of

problems that would otherwise prove inaccessible.

As mentioned in the previous section the DF approximation is a method for reducing

the quantity of indices in the integrals, thereby increasing the speed of evaluation. As
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the DF approximation is a non-exact method there will be an error compared to exact

methods such as the GPT.

The DF approximation has been in use in many contexts over a long period of time,

often not explicitly referred to by the DF title. Perhaps the first use of a DF like ap-

proximation was made by Boys and Shavitt in their calculation of the potential energy

surface of H3 using STOs [66]. During their calculation they avoid the evaluation of the

intractable three-centre Coulomb integrals by performing a least squares fit of two-centre

products in a small auxiliary basis set. DF also made an early appearance in density

functional theory (DFT) [67] also using STO basis sets with least squares fitting.

A key paper in the history of the DF approximation is that of Whitten [68]. As briefly

mentioned in the previous section the DF approximation can be used to represent an or-

bital product density in an auxiliary basis

|pq) ≈ | epq) = DA

pq

|A). (3.21)

Thus an integral (pq|rs) can be approximated using DF as

(pq|rs) ≈ ( epq| ers) = DA

pq

DB

rs

(A|B), (3.22)

resulting in the need for calculation of the integrals (A|B) and coefficients DA

pq

. Whitten

came to two important conclusions in his work. Firstly he concluded that the coefficients

that best describe |pq), namely DA

pq

, are entirely independent of the ket density |rs). This

is very important since if it were not the case then the DF approximation would increase

the work required to evaluate the said integral. The second conclusion made was that

the coefficients DA

pq

should be obtained not by using least squares fitting but rather by

minimising

∆

pq

= (pq − epq|pq − epq). (3.23)

The quantity ∆

pq

is the Coulomb energy of the fitting residual |pq− epq) and is a measure

of the error in the fitting. This second conclusion was also made independently by Dunlap

et al. [69] when addressing fitting whole densities in DFT.

Since the integrals (A|B) can be readily evaluated all that is left is to obtain the coef-

ficients. The method as mentioned above is to minimise ∆

pq

which is achieved by setting

∂∆

pq

∂DA

pq

= 0. (3.24)
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The expression for ∆

pq

is given in equation 3.23 and can be expanded as

∆

pq

= (pq|pq)−DA

pq

(A|pq)−DB

pq

(pq|B) + DA

pq

DB

pq

(A|B). (3.25)

Differentiating with respect to DA

pq

and setting to zero yields the following linear equation

∂∆

pq

∂DA

pq

= −2(A|pq) + 2DB

pq

(A|B) = 0. (3.26)

Here it is convenient to introduce a compact notation for writing Coulomb integrals, il-

lustrated by the examples JA

B

= (A|B) and JA

pq

= (A|pq). Using this notation we can

rewrite equation 3.26 as

−JA

pq

+ DB

pq

JA

B

= 0, (3.27)

which is simply rearranged to give the expression for the coefficients

DB

pq

= JA

pq

(J−1
)

A

B

. (3.28)

Having determined the coefficients the integral (pq|rs) can be written using the DF ap-

proximation as

(pq|rs) ≈ ( epq| ers) = JA

pq

(J−1
)

A

B

JB

rs

. (3.29)

One must now consider the error in an integral evaluated using the DF approximation.

The expression for the error between the exact and fitted integral is given by

(pq|rs)− ( epq| ers) = (pq − epq|rs− ers) + ( epq|rs− ers) + (pq − epq| ers). (3.30)

The last two terms in the above equation are zero as shown by equation 3.26 which leaves

(pq|rs)− ( epq| ers) = (pq − epq|rs− ers), (3.31)

as the expression for the error in performing the fitting. The above expression shows that

the error associated with fitting the integral is quadratic in the error of fitting the densi-

ties. Expressions of this kind are known as robust fitting expressions. This analysis was

first conducted by Dunlap [69], whose more recent accounts of robust fitting in various

contexts including DFT can be found in the literature [70, 71].

The concise notation introduced above to represent Coulomb integrals is now ex-

panded for greater generality. Brackets are placed around the J to signify the type of

notation being used, i.e. Dirac or Mulliken. For example the integral (pq|rs) can be writ-

ten as either (J)

pq

rs

or as �J�pr

qs

(note the order of the indices). Different classes of integrals
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are represented by replacing J with the abbreviated form of the operator, for instance F

in the case of f12.

There are several other classes of two-electron integral that must be fitted in the MP2-

F12 methods, and it is important to make sure they are fitted robustly [52, 72]. If one

considers a general two-electron integral with operator ˆO then performing the same pro-

cess as for the Coulomb integrals we would expect the integral to be approximated as

(pq| ˆO|rs) ≈ ( epq| ˆO| ers) = DA

pq

DB

rs

(A| ˆO|B). (3.32)

The coefficients can then be obtained by minimising

∆

pq

= (pq − epq| ˆO|pq − epq), (3.33)

which on setting to zero gives
∂∆

pq

∂DA

pq

= −2(A| ˆO|pq) + 2DB

pq

(A| ˆO|B) = 0, (3.34)

and yields

DB

pq

= (O)

A

pq

(O−1
)

A

B

. (3.35)

This would seem to give a general method for fitting all types of integral. However, this

can only work if ∆

pq

is positive or, equivalently, if ˆO is positive definite. This condition

arises from the need to invert (O)

A

B

when calculating the coefficients. There are ways

of working around this requirement for certain types of integral, for example integrals of

the form (pq|r12|rs) [73]. However the fitting is not always as accurate as required and a

more general fitting scheme is desirable. As seen previously, fitting using the r−1
12 criterion

is very successful owing to the positive definite nature of the Coulomb operator.

A fitting scheme using the Coulomb fitting criterion gives a method of fitting that

works for most integral types. However, when the Coulomb fitting criterion is used for

different integral types the equations become non-robust. A non-robust fitting scheme

introduces unacceptable errors in the fitting and so a robust scheme [70, 71] using the

Coulomb fitting criterion must be used. This fitting scheme has the form

(pq| ˆO|rs) ≈ ( epq| ˆO|rs) + (pq| ˆO| ers)− ( epq| ˆO| ers) (3.36)

and once again reduces the error in the integral to be quadratic in the error in the fitting.

To illustrate this explicitly with an example the integral (F )

pq

rs

is given robustly by

(F )

pq

rs

≈ (J)

pq

A

(J−1
)

A

B

(F )

B

rs

+ (F )

pq

A

(J−1
)

A

B

(J)

B

rs

− (J)

pq

A

(J−1
)

A

B

(F )

B

C

(J)

D

rs

(J−1
)

C

D

.

(3.37)
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The above formula generalises for many of the operators that appear in the R12 and F12

theories reducing them to three-index objects which are then subsequently reduced to

two-index objects using the GPT.

However, the commutator integrals over the remaining operators have to be treated

slightly differently. Take for example the operator [

ˆt1, f12], the commutator of kinetic

energy and f12, which contains the differential operator ˆt1 = −1
2∇

2
1. A complication

arises when converting from Dirac to Mulliken notation

�pr|[ˆt1, f12]|qs� ≡ (pq|[ˆt1, f12]|rs) (3.38)

because the Mulliken notation does not show explicitly that the operator ˆt1 is only acting

upon the p-index, not on the whole density |pq). A simple solution would be to fit the

integral non-robustly, i.e.

(pq|[ˆt1, f12]|rs) ≈ (pq|[ˆt1, f12]| ers) ≈ (FT )

pq

A

(J−1
)

A

B

(J)

B

rs

, (3.39)

where

(FT )

pq

A

= (pq|[ˆt1, f12]|A), (3.40)

as the problems only arise in fitting the density |pq). However not performing the fitting

robustly leads to large errors in the integrals as shown by Manby [52]. The solution is to

observe

�pr|[ˆt1, f12]|qs� = ([pq]|f12|rs), (3.41)

where

|[pq]) = |{ˆt1p}q − pˆt1q). (3.42)

The object |[pq]) is itself a density, and can also be fitted as before to give a robust fitting

expression similar to that of a multiplicative operator

([pq]|f12|rs) ≈ (Y )

pq

A

(J−1
)

A

B

(F )

B

rs

+ (FT )

pq

A

(J−1
)

A

B

(J)

B

rs

− (Y )

pq

A

(J−1
)

A

B

(F )

B

C

(J−1
)

C

D

(J)

D

rs

, (3.43)

where the letter Y denotes the Coulomb integral over [pq]

(Y )

pq

A

= ({ˆt1p}q − pˆt1q|A). (3.44)
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3.2 Recurrence Relations

From the derivations of the MP2-F12 methods it is clear that many classes of integrals

must be evaluated. In the case of four-index integrals these will all be decomposed by

use of the DF approximation and GPT to two-index integrals, and in the case of six-index

integrals they will be reduced to three-index integrals. The nomenclature of table 3.1 will

be used from now onwards to refer to the integrals.

Name Definition

S �a|b�
J (a|b)

G (a|e−γr

2
12|b)

F (a|f12|b)

GJ (a|e−γr

2
12r−1

12 |b)

FJ (a|f12r
−1
12 |b)

FF (a|f 2
12|b)

FT (ab|[ˆt1, f12]|c)
FTF (a|12 [f12, [ˆt1 +

ˆt2, f12]]|b)

F-F (a|f12|b|f23|c)
J-F (a|r−1

12 |b|f23|c)
X (ab|[ˆt1, r12]|c)
Y (ab|[ˆt1, r−1

12 ]|c)

Table 3.1: Nomenclature of integrals. Bold characters denote Cartesian Gaussian primi-

tives.

A key concept in constructing integrals is the concept of ’integral shells’. Recurrence

relations inherently build upon previous results, and in the case of the integral recurrence

relations the recursion is over angular momentum components of the Cartesian Gaussian

functions. Thus for integrals over d functions integrals over both s and p functions are

required. In the case of two-index integrals lower angular momentum is required for both

Cartesian Gaussian functions. An example of the complete shell that is required for a

normal implementation of a recurrence relation for a two-index integral with d angular

momentum in both functions is shown in figure 3.1. Sections with the same shading share

the same quantity of angular momentum.
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s

px

py

pz

dxx

dxy

dxz

dyy

dyz

dzz

s px py pz dxx dxy dxz dyy dyz dzz

Figure 3.1: A ’shell’ of integrals up to angular momentum d for both functions |a) and

|b).
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As discussed previously the Obara and Saika method of integral evaluation will form

the basis of all of the integral recurrence relations. The key relation when deriving these

integrals is the derivative expression

∂

∂A
i

g(�r, α, a, �A) = 2αg(�r, α, a + 1
i

, �A)− a
i

g(�r, α, a− 1
i

, �A) (3.45)

where i can take the value of x, y or z and where 1
i

= (δ
ix

, δ
iy

, δ
iz

) is defined in terms of

the Kronecker delta.

Integral class S — overlap integrals

Recurrence relations for the integral class S, two-index one-electron overlap integrals,

have already been derived [59], but warrant some attention here since these form the basis

of many of the derivations presented in this work. The two-index one-electron overlap

integrals are defined explicitly as

�a|b� =

Z

d�r g(�r, α, a, �A)g(�r, β,b, �B). (3.46)

According to equation 3.45 the integral �a + 1
i

|b� can be decomposed as

�a + 1
i

|b� =

1

2α

∂

∂A
i

�a|b�+

a
i

2α
�a− 1

i

|b�. (3.47)

The integral �a|b� can be factored using the GPT as

�a|b� =

Z

d�r exp

n

−ζ|�r − �P |2
o

exp

©

−ξ|AB|2
™

"

a

x

+b

x

X

i=0

(x− P
x

)

if
i

(a
x

, b
x

, PA
x

, PB
x

)

#

×
"

a

y

+b

y

X

j=0

(y − P
y

)

jf
j

(a
y

, b
y

, PA
y

, PB
y

)

#"

a

z

+b

z

X

k=0

(z − P
z

)

kf
k

(a
z

, b
z

, PA
z

, PB
z

)

#

(3.48)

where the objects such as f
i

(a
x

, b
x

, PA
x

, PB
x

) are defined in equation 3.13. Rearranging

the above expression and factorising the integral over �r into its Cartesian components
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yields

�a|b� = exp

©

−ξ|AB|2
™

×
"

a

x

+b

x

X

i=0

f
i

(a
x

, b
x

, PA
x

, PB
x

)

Z

dx (x− P
x

)

i

exp

©

−ζ(x− P
x

)

2
™

#

×
"

a

y

+b

y

X

j=0

f
j

(a
y

, b
y

, PA
y

, PB
y

)

Z

dy (y − P
y

)

j

exp

©

−ζ(y − P
y

)

2
™

#

×
"

a

z

+b

z

X

k=0

f
k

(a
z

, b
z

, PA
z

, PB
z

)

Z

dz (z − P
z

)

k

exp

©

−ζ(z − P
z

)

2
™

#

. (3.49)

Integrals of the form
Z ∞

−∞
dx (x− P

x

)

i

exp

©

−ζ(x− P
x

)

2
™

=

Z ∞

−∞
du ui

exp

©

−ζu2
™

(3.50)

must be evaluated (where the substitution u = x − P
x

has been used). These integrals

have a known result which is given by
Z ∞

−∞
du ui

exp

©

−ζu2
™

=

(i− 1)!!

2ζ i/2

µ

π

ζ

∂1/2

(3.51)

if i is even and zero otherwise. Using the above relationship the integration in equa-

tion 3.49 can be completed to give

�a|b� = exp

©

−ξ|AB|2
™

×
"

a

x

+b

x

X

i=0

f
i

(a
x

, b
x

, PA
x

, PB
x

)

(i− 1)!!

2ζ i/2

µ

π

ζ

∂1/2
#

×
"

a

y

+b

y

X

j=0

f
j

(a
y

, b
y

, PA
y

, PB
y

)

(j − 1)!!

2ζj/2

µ

π

ζ

∂1/2
#

×
"

a

z

+b

z

X

k=0

f
k

(a
z

, b
z

, PA
z

, PB
z

)

(k − 1)!!

2ζk/2

µ

π

ζ

∂1/2
#

. (3.52)

Now all that is needed is to evaluate

1

2α

∂

∂A
i

�a|b�. (3.53)

To proceed the product rule is used on the expression for �a|b� in equation 3.52. The

product being between the exponential part

1

2α

∂

∂A
i

exp

©

−ξ|AB|2
™

=

ξBA
i

α
exp

©

−ξ|AB|2
™

(3.54)
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and the non-exponential parts. The non-exponential parts have only one term that contains

A
i

with the rest of the expression being constant. Concentrating on this part only

∂

∂A
i

f
k

(a
i

, b
i

, PA
i

, PB
i

) =

∂

∂A
i

k

X

j=0

µ

a
i

j

∂µ

b
i

k − j

∂

PAa

i

−j

i

PBb

i

−k+j

i

(3.55)

and using the product rule yields

∂

∂A
i

f
k

(a
i

, b
i

, PA
i

, PB
i

) =

k

X

j=0

µ

a
i

j

∂µ

b
i

k − j

∂

×

µ

− β

α + β
(a

i

− j)PAa

i

−j−1
i

PBb

i

−k+j

i

− PAa

i

−j

i

α

α + β
(b

i

− k + j)PBb

i

−k+j−1
i

∂

. (3.56)

Using the equalities
µ

a
i

j

∂

(a
i

− j) = a
i

µ

a
i

− 1

j

∂

and
µ

b
i

k − j

∂

(b
i

− k + j) = b
i

µ

b
i

− 1

k − j

∂

(3.57)

the differential can be written as

∂

∂A
i

f
k

(a
i

, b
i

, PA
i

, PB
i

) =− β

α + β
a

i

k

X

j=0

µ

a
i

− 1

j

∂µ

b
i

k − j

∂

PAa

i

−j−1
i

PBb

i

−k+j

i

− α

α + β
b
i

k

X

j=0

µ

a
i

j

∂µ

b
i

− 1

k − j

∂

PAa

i

−j

i

PBb

i

−k+j−1
i

. (3.58)

By inspection this can be seen to be

∂

∂A
i

f
k

(a
i

, b
i

, PA
i

, PB
i

) =− β

α + β
a

i

f
k

(a
i

− 1, b
i

, PA
i

, PB
i

) (3.59)

− α

α + β
b
i

f
k

(a
i

, b
i

− 1, PA
i

, PB
i

). (3.60)

Using the above expression and the expression for the differential of the exponential part

given in equation 3.54 one can write down the differential given in equation 3.53

1

2α

∂

∂A
i

�a|b� =

ξBA
i

α
�a|b� − β

2α(α + β)

a
i

�a− 1
i

|b� − 1

2(α + β)

b
i

�a|b− 1
i

�, (3.61)

which upon insertion to equation 3.47 and simplifying yields the recurrence relation for

increasing angular momentum for |a) as

�a + 1
i

|b� = (P
i

− A
i

)�a|b�+

a
i

2ζ
�a− 1

i

|b�+

b
i

2ζ
�a|b− 1

i

�. (3.62)

The starting case for the recurrence relation is given by

�0
A

|0
B

� =

µ

π

ζ

∂3/2

exp{−ξ|AB|2}. (3.63)
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In the next two sections the recurrence relations for all two- and three-electron integrals

needed will be presented. For existing recurrence relations, that is to say ones that have

previously been documented in the literature the final relation and starting case only will

be presented. Integral classes novel in this work will be presented in detail with a full

explanation of their derivation, many of which have been published in a recent paper

regarding this work [72].

3.2.1 Two-electron recurrence relations

The recurrence relations and derivations where appropriate are based on the work of Obara

and Saika [59] with the two-index one-electron recurrence relation presented in the pre-

vious section acting as the start point for many of the derivations.

Integral class J — Coulomb integrals

The Coulomb integrals are defined as

(a|b) =

Z

d�r1

Z

d�r2 g(�r1,α, a, �A)

1

r12
g(�r2, β,b, �B). (3.64)

The recursion formula for the two-index two-electron integrals is given explicitly in the

literature [52], and can also be deduced from the four-index two-electron Coulomb inte-

grals presented in [59]. The recursion relation for incrementing angular momentum in |a)

is thus given by

(a + 1
i

|b)

(m)
= PA

i

(a|b)

(m+1)
+

a
i

2α

Ω

(a− 1
i

|b)

(m) − β

ζ
(a− 1

i

|b)

(m+1)

æ

+

b
i

2ξ
(a|b− 1

i

)

(m+1), (3.65)

where

ξ =

αβ

ζ
. (3.66)

The starting case for the recurrence relation is given by

(s|s)(m)
=

2π

αβζ1/2
F

m

(T ), (3.67)

where

T = ξ|AB|2, (3.68)
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and

F
m

(T ) =

Z 1

0

dt t2m

exp

©

−Tt2
™

. (3.69)

The integral denoted by the function F
m

(T ) is known as the Boys function [57] and is

evaluated though standard methods as described in the book by Helgaker et al. [7].

Integral class G — Gaussian integrals

The integral type G does not appear in any of the derivations for the MP2-F12 methods

explicitly, however it does form the base for several of the other integral classes required.

Integrals of class G are integrals over a single Gaussian function and are identical to F

integrals when the function f12 comprises only a single Gaussian function. The exponent

of this single Gaussian function will always be referred to as γ and thus G type integrals

are defined as

(a|e−γr

2
12|b) =

Z

d�r1

Z

d�r2 g(�r1,α, a, �A)e−γr

2
12 g(�r2, β,b, �B). (3.70)

When considering the evaluation of G type integrals it is important to realise that the

Gaussian geminal function itself can be written as a Cartesian Gaussian function with

zero angular momentum

e−γr

2
12

= g(�r1, γ,0, �r2) ≡ gγ

12. (3.71)

The strategy for evaluating the integral is similar to that for the electron repulsion integrals

by Obara and Saika [59]. On inspection of the definition of G type integrals it is clear that

the expression can be integrated in two distinct steps over coordinates �r1 and �r2. The order

of integration is entirely arbitrary and here the choice is made to integrate with respect to

�r1 first:

(a + 1
i

|gγ

12|b) =

Z

d�r2 g(�r2, β,b, �B)�a + 1
i

|gγ

12�. (3.72)

The integral over the coordinate space of |a) is a known result [59] and is given by the

recurrence relation in equation 3.62. As gγ

12 has zero angular momentum the last term of

the recurrence relation vanishes and this results in a two term recurrence relation

�a + 1
i

|gγ

12� = (P
Ai

− A
i

)�a|gγ

12�+

a
i

2ζ
a

�a− 1
i

|gγ

12�, (3.73)

where

ζ
a

= α + γ and �P
A

=

α �A + γ �r2

ζ
a

. (3.74)
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Insertion of the expression for �P
A

into equation (3.73) gives

�a + 1
i

|gγ

12� =

µ

γ(r2i

− A
i

)

ζ
a

∂

�a|gγ

12�+

a
i

2ζ
a

�a− 1
i

|gγ

12�. (3.75)

Now integrating over �r2 with |b) gives

(a + 1
i

|gγ

12|b) =

Z

d�r2 b

∑µ

γ(r2i

− A
i

)

ζ
a

∂

�a|gγ

12�+

a
i

2ζ
a

�a− 1
i

|gγ

12�
∏

. (3.76)

By shifting the centre of the first term of the recurrence relation to �B it is possible to arrive

at

(a + 1
i

|gγ

12|b) =

Z

d�r2 b

∑µ

γ(r2i

−B
i

+ BA
i

)

ζ
a

∂

�a|gγ

12�+

a
i

2ζ
a

�a− 1
i

|gγ

12�
∏

, (3.77)

which can be expanded to

(a + 1
i

|gγ

12|b) =

Z

d�r2 b

∑

γBA
i

ζ
a

�a|gγ

12�+

γ(r2i

−B
i

)

ζ
a

�a|gγ

12�+

a
i

2ζ
a

�a− 1
i

|gγ

12�
∏

,

(3.78)

which on completion of the integration yields

(a + 1
i

|gγ

12|b) =

γBA
i

ζ
a

(a|gγ

12|b) +

γ

ζ
a

(a|gγ

12|b + 1
i

) +

a
i

2ζ
a

(a− 1
i

|gγ

12|b). (3.79)

The choice to integrate over the coordinate space of |a) first and |b) second was com-

pletely arbitrary. The integration can also be done by integrating over the coordinate space

of |b) first and |a) second leading to

(a|gγ

12|b + 1
i

) =

γAB
i

ζ
b

(a|gγ

12|b) +

γ

ζ
b

(a + 1
i

|gγ

12|b) +

b
i

2ζ
b

(a|gγ

12|b− 1
i

). (3.80)

Both of these recurrence relations, equations 3.79 and 3.80, contain a positive increment in

angular momentum on the RHS of the expression. It is necessary to have expressions for

incrementing angular momentum on the LHS without incrementing angular momentum

on the RHS in order to be able to build integrals from the zero angular momentum case.

By treating equations 3.79 and 3.80 as a pair of simultaneous equations and using the fact

that AB
i

= −BA
i

one can yield two separate expressions for incrementing |a) and |b).

(a + 1
i

|gγ

12|b) = −βγAB
i

η
(a|gγ

12|b) +

γb
i

2η
(a|gγ

12|b− 1
i

) +

(β + γ)a
i

2η
(a− 1

i

|gγ

12|b),

(3.81)

(a|gγ

12|b + 1
i

) =

αγAB
i

η
(a|gγ

12|b) +

γa
i

2η
(a− 1

i

|gγ

12|b) +

(α + γ)b
i

2η
(a|gγ

12|b− 1
i

),

(3.82)
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where

η = αβ + βγ + γα. (3.83)

In order to use these recursion relations a starting integral must be evaluated. In this case

the zero angular momentum integral is calculated explicitly and the expression is given

by

(s|gγ

12|s) = exp

Ω

−|AB|2αβγ

η

æµ

π
√

η

∂3

. (3.84)

With the recurrence relations for incrementing angular momentum in |a) and |b) and the

above zero angular momentum case G type integrals can now be evaluated.

It is possible to treat the two recursion relationships in equations 3.81 and 3.82 as

simultaneous equations. One can then eliminate γ from the coefficients and create a

’transfer equation’ for angular momentum

α(a + 1
i

|gγ

12|b) + β(a|gγ

12|b + 1
i

) =

a
i

2

(a− 1
i

|gγ

12|b) +

b
i

2

(a|gγ

12|b− 1
i

). (3.85)

Further discussion of applications of this equation will feature later in the description of

other classes of integrals.

The recurrence relations are at a stage where they can be implemented in the form of a

computer code. Details of the implementation will be given in the next chapter along with

general descriptions of how the code was tested. However specific mathematical proper-

ties of the integral will be given here and these can be utilised when testing the computer

code. The first property is that when applying the limit γ → ∞ into the expression for

the Gaussian function one obtains

lim

γ→∞

≥γ

π

¥3/2

e−γr

2
12

= δ(r12). (3.86)

Inserting this limit into the definition of G type integrals yields the following expression

lim

γ→∞

≥γ

π

¥3/2

(a|e−γr

2
12|b) = �a|b�, (3.87)

which is the expression for overlap integrals. Therefore in order to test the G type integrals

the size of γ must be increased and, if correct, will converge to the corresponding overlap

integrals. Another property is that the expression for the G integrals when integrated

should yield the expression for the J integrals presented earlier. This is due to the well

known Gaussian transform which will be discussed in more detail when describing the FJ
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integrals later. Finally in the limit γ → 0 the integral factorises

lim

γ→0
(a|e−γr

2
12|b) =

∑

Z

d�r a(�r)

∏ ∑

Z

d�r b(�r)

∏

(3.88)

providing an additional test.

Integral class F — Gaussian geminal integrals

The integrals of type F are the most obvious result of an F12 theory: they involve integra-

tion over the correlation factor f12, defined previously as a linear combination of Gaussian

functions. The integrals are defined explicitly as

(a|f12|b) =

Z

d�r1

Z

d�r2 g(�r1,α, a, �A)f12 g(�r2, β,b, �B). (3.89)

Having derived the expressions for the G type integrals it is clear to see one might easily

obtain F type integrals by a simple summation over G integrals and their coefficients

(a|f12|b) = c
γ

(a|gγ

12|b). (3.90)

The above expression yields exact F type integrals and this provides an exceptionally easy

method to implement the integrals. However, this method is not the most efficient way to

evaluate the integrals, and more efficient methods can be achieved by use of the transfer

equation 3.85 discussed earlier. The key to the transfer equation is that its coefficients do

not contain γ which allows the summation over γ to happen earlier in the evaluation. The

earlier this summation occurs the faster the integral evaluation will be due to the saving

in repeated operations.

On further examination of the transfer equation one will notice that it contains incre-

ments in both |a) and |b). This means it cannot be used alone to evaluate integrals as

there are too many unknowns when attempting to start the recurrence relation. Instead,

one of the original recurrence relations must be used to build angular momentum in one

function, and then angular momentum is transferred to the other. The downside to this

is that generally integrals of twice the angular momentum must be computed for one of

the functions. This does not necessarily mean more integrals in total need be evaluated.

For example a (s|f) shell of integrals contains 10 individual integrals and has total angular

momentum of 3. By comparison a (d|p) shell also has angular momentum of 3 but con-

tains 18 individual integrals. The higher the angular momentum one goes to the greater
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the savings. This is of course on top of the savings already incurred for not generating

separate shells for each value of γ.

Using the naive implementation for constructing a shell of integrals for each value of

γ it is approximately true to say the amount of time required to build a shell of F integrals

scales linearly with the number of Gaussian functions comprising the geminal. For a

Gaussian geminal comprising of nine Gaussian functions one would therefore expect the

integrals to take around nine times the time for the G integrals. With the transfer equation

most of the time is spent in processes that do not scale with increasing number of Gaussian

functions.

Integral class FJ

The integral type FJ is defined explicitly as

(a|f12r
−1
12 |b) =

Z

d�r1

Z

d�r2 g(�r1,α, a, �A)f12
1

r12
g(�r2, β,b, �B), (3.91)

and from the name it is no surprise to see the operators from the F and J type integrals

both present. The first thing to notice is that, just as the F integrals could be calculated as

a sum of G integrals, the FJ integrals can be represented as a sum of GJ integrals

(a|f12r
−1
12 |b) = c

γ

(a|gγ

12r
−1
12 |b). (3.92)

The integrals have now been reduced to the product of a single Gaussian and r−1
12 . It is

now noted that the operator r−1
12 has a Gaussian transform [57]

r−1
12 =

2√
π

Z ∞

0

du e−u

2
r

2
12 , (3.93)

so the GJ integrals share a very close relationship to G integrals. Using this important

relation one can represent the GJ integral as

(a|gγ

12r
−1
12 |b) =

2√
π

Z ∞

0

du (a|gγ

12e
−u

2
r

2
12|b) =

2√
π

Z ∞

0

du (a|gγ+u

2

12 |b), (3.94)

where

gγ+u

2

12 = gγ

12g
u

2

12 = e−(γ+u

2)r2
12 . (3.95)

On inspection of the above equation one can observe the similarity to the G type integrals.

In fact the only differences are the integration over u and the substitution γ → (γ + u2
).
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By performing the substitution γ → (γ + u2
) in equation 3.81 the following recurrence

relation is obtained

(a + 1
i

|gγ+u

2

12 |b) = −β(γ + u2
)AB

i

η�
(a|gγ+u

2

12 |b)

+

(γ + u2
)b

i

2η�
(a|gγ+u

2

12 |b− 1
i

) +

(β + γ + u2
)a

i

2η�
(a− 1

i

|gγ+u

2

12 |b), (3.96)

with

η� = η + (α + β)u2. (3.97)

To proceed further it is necessary to introduce an auxiliary integral in order to complete

the integration in a similar manner to Obara and Saika [59]:

(a|gγ

12r
−1
12 |b)

(m)
=

2√
π

Z ∞

0

du

√

u2

u2
+

η

ζ

!

m

(a|gγ+u

2

12 |b). (3.98)

It is therefore necessary to rearrange the recurrence relations into a form where each term

has the form of the integrand in equation 3.98. In order to do this it is essential to make

use of the formula
1

κ + u2
=

1

κ

Ω

1− u2

κ + u2

æ

, (3.99)

which gives

(a + 1
i

|gγ+u

2

12 |b) =− βAB
i

η

∑

γ + ξ

µ

u2

u2
+ ρ

∂∏

(a|gγ+u

2

12 |b)

+

b
i

2η

∑

γ + ξ

µ

u2

u2
+ ρ

∂∏

(a|gγ+u

2

12 |b− 1
i

)

+

a
i

2η

∑

γ + β − β2

ζ

µ

u2

u2
+ ρ

∂∏

(a− 1
i

|gγ+u

2

12 |b) (3.100)

where

ρ =

η

ζ
, ξ =

αβ

ζ
, and ζ = α + β. (3.101)

The integration can now be performed using equation 3.98 in order to give the final recur-

rence relationship for incrementing angular momentum in |a) for the GJ type integrals

(a + 1
i

|gγ

12r
−1
12 |b)

(m)
=

βBA
i

η

£

γ(a|gγ

12r
−1
12 |b)

(m)
+ ξ(a|gγ

12r
−1
12 |b)

(m+1)
§

+

b
i

2η

£

γ(a|gγ

12r
−1
12 |b− 1

i

)

(m)
+ ξ(a|gγ

12r
−1
12 |b− 1

i

)

(m+1)
§

+

a
i

2η

∑

(γ + β)(a− 1
i

|gγ

12r
−1
12 |b)

(m) − β2

ζ
(a− 1

i

|gγ

12r
−1
12 |b)

(m+1)

∏

.

(3.102)
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Using a similar process as described above one can obtain a recurrence relationship for

incrementing angular momentum in |b)

(a|gγ

12r
−1
12 |b + 1

i

)

(m)
=

αAB
i

η

£

γ(a|gγ

12r
−1
12 |b)

(m)
+ ξ(a|gγ

12r
−1
12 |b)

(m+1)
§

+

a
i

2η

£

γ(a− 1
i

|gγ

12r
−1
12 |b)

(m)
+ ξ(a− 1

i

|gγ

12r
−1
12 |b)

(m+1)
§

+

b
i

2η

∑

(γ + α)(a|gγ

12r
−1
12 |b− 1

i

)

(m) − α2

ζ
(a|gγ

12r
−1
12 |b− 1

i

)

(m+1)

∏

.

(3.103)

The starting (s|gγ

12r
−1
12 |s) case for the recurrence relation is now all that is left to be calcu-

lated

(s|gγ

12r
−1
12 |s)(m)

=

2√
π

Z ∞

0

du

√

u2

u2
+

η

ζ

!

m

Z

d�r1

Z

d�r2 e−α|�r1− �

A|2e−(u2+γ)|�r1−�r2|2e−β|�r2− �

B|2 . (3.104)

The part of the expression for (s|gγ

12r
−1
12 |s) to be integrated over �r1 and �r2 is identical to

that of G integrals but once again with the substitution γ → (γ + u2
) giving

(s|gγ

12r
−1
12 |s)(m)

=

2√
π

Z ∞

0

du

√

u2

u2
+

η

ζ

!

m

√

π
p

ζu2
+ η

!3

exp

Ω

−|AB|2αβ(γ + u2
)

ζu2
+ η

æ

.

(3.105)

Just like the recurrence relations the expression for (s|gγ

12r
−1
12 |s) must be rearranged by

making use of equation 3.99. This process is presented in the next several steps for clarity

on how the rearrangement has taken place

(s|gγ

12r
−1
12 |s)(m)

= 2π5/2

Z ∞

0

du

√

u2

u2
+

η

ζ

!

m

µ

1

ζu2
+ η

∂3/2

exp
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−|AB|2αβ

"

γ

η
+

ξ

η

√

u2

u2
+

η

ζ

!#)

(3.106)

(s|gγ

12r
−1
12 |s)(m)

=

2π5/2

ζ3/2
e−|AB|2αβγ/η

Z ∞

0

du

√

u2

u2
+

η

ζ

!

m

√

1

u2
+

η

ζ

!3/2

exp

(

−T

√

u2

u2
+

η

ζ

!)

(3.107)
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(s|gγ

12r
−1
12 |s)(m)

=

2π5/2

η3/2
e−|AB|2αβγ/η

Z ∞

0

du

√

u2

u2
+

η

ζ

!

m

√

1− u2

u2
+

η

ζ

!3/2

exp

(

−T

√

u2

u2
+

η

ζ

!)

(3.108)

where

T =

|AB|2αβξ

η
. (3.109)

The integral over u can now be performed by transforming variable from u to t. The

following substitution is made

t2 =

u2

u2
+

η

ζ

, (3.110)

which leads to the following expression for the starting case

(s|gγ

12r
−1
12 |s)(m)

=

2π5/2

η3/2
e−|AB|2αβγ/η

Z ∞

0

du
dt

dt
t2m

(1− t2)3/2
exp

©

−Tt2
™

. (3.111)

The quantity du/dt is now calculated by rearranging equation 3.110 and differentiating,

thus
du

dt
=

µ

η

ζ

∂1/2

(1− t2)−3/2 (3.112)

and using this and changing the limits gives

(s|gγ

12r
−1
12 |s)(m)

=

2π5/2

η3/2
e−|AB|2αβγ/η

Z 1

0

dt

µ

η

ζ

∂1/2

(1−t2)−3/2t2m

(1−t2)3/2
exp

©

−Tt2
™

.

(3.113)

Applying further simplification this reduces to

(s|gγ

12r
−1
12 |s)(m)

=

2π5/2

ηζ1/2
e−|AB|2αβγ/η

Z 1

0

dt t2m

exp

©

−Tt2
™

(3.114)

=

2π5/2

ηζ1/2
e−|AB|2αβγ/ηF

m

(T ). (3.115)

This now provides a way of evaluating the starting case for the recurrence relation for

GJ integrals described above which can be summed over as in equation 3.92 to give FJ

integrals. This derivation is made considerably less complicated due to the Gaussian

transform for r−1
12 . The transfer equation 3.85 discussed earlier holds for all operators for

which there is a Gaussian transform and so holds for the FJ integrals. This leads to the

same computational savings made for the F integrals.

The GJ integral recurrence relations can be checked by setting γ to zero, yielding the

recurrence relation for J integrals. This also provides a very easy way to test the computer

implementation.
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Integral class FF

The integral type FF is defined explicitly as

(a|f2
12|b) =

Z

d�r1

Z

d�r2 g(�r1,α, a, �A)f2
12 g(�r2, β,b, �B). (3.116)

When deriving the F integrals it was shown that they could be constructed from G integrals

and the same is true for the FF integrals. The function f 2
12 can be expanded as

(a|f2
12|b) = c

µ

c
ν

(a|gµ

12g
ν

12|b), (3.117)

which contains the operator gµ

12g
ν

12. Since the gµ

12 and gν

12 represent Gaussian functions

their product will also be a Gaussian function

gµ

12g
ν

12 = e−µr

2
12e−νr

2
12

= e−(µ+ν)r2
12

= gµ+ν

12 . (3.118)

Thus the FF integrals can be represented as

(a|f 2
12|b) = c

µ

c
ν

(a|gµ+ν

12 |b), (3.119)

which is simply a summation over G type integrals. The number of terms in the expression

above is quadratic in the size of the geminal expansion. It is important to note that the G

type integrals are calculated with the modified exponents µ + ν. These integrals are not

constructed in any way from normal F integrals, or the G integrals used to calculate them.

Once again, since the operator is only a Gaussian transform the transfer equation 3.85

still applies, and here it brings even greater computational savings, because f2
12 has more

terms than f12 itself.

Integral class FT

The integral type FT is defined explicitly through the operator [

ˆt1+ˆt2, f12]. These integrals

are computed directly in three-index form. Using the work of Manby [52] and the earlier

work of Klopper and Röhse [74] one can write

(ab|[ˆt1, f12]|c) =

1

2

α− β

α + β
(ab|{∇2

1f12}|c) +

�∇
P

· �∇AB(ab|f12|c). (3.120)

The integrals over ∇2
1f12 are computed using the relation

∇2
1f12 = 4r2

12f
(2)
12 − 6f (1)

12 (3.121)
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where

f (n)
12 = c

γ

γngγ

12. (3.122)

The integrals over r2
12 multiplied by a geminal expansion are discussed in the next sec-

tion. The evaluation of integrals analogous to the second term on the right hand side of

equation (3.120) is discussed elsewhere [52].

Integral class FTF

The integral type FTF is defined in symmetrised form explicitly as

(a|1
2

[f12, [ˆt1+

ˆt2, f12]]|b) =

Z

d�r1

Z

d�r2 g(�r1,α, a, �A)

1

2

[f12, [ˆt1+

ˆt2, f12]] g(�r2, β,b, �B).

(3.123)

By expanding the commutator in the above expression the following two term expression

is obtained

1

2

(a|[f12, [ˆt1 +

ˆt2, f12]]|b) =

1

2

(a|f12[ˆt1 +

ˆt2, f12]|b)− 1

2

(a|[ˆt1 +

ˆt2, f12]f12|b). (3.124)

Considering the integral contained in the first term of equation 3.124, the most obvious

thing to do is to expand the expression into two terms for each kinetic energy operator

f12[ˆt1 +

ˆt2, f12] = f12[ˆt1, f12] + f12[ˆt2, f12]. (3.125)

The evaluation of the integral over ˆt1 shall be considered, its counterpart over ˆt2 will be

given later by symmetry and inspection. Inserting the definition of the kinetic energy

operator gives

f12[ˆt1, f12] = −1

2

f12[∇2
1, f12] = −1

2

f12{∇2
1f12 − f12∇2

1}. (3.126)

The first term inside the bracket of equation 3.126 can be expressed as

∇2
1f12 =

�∇1 · �∇1f12, (3.127)

and expanded using the product rule as

∇2
1f12 =

�∇1 · {(�∇1f12) + f12
�∇1}. (3.128)

Expanding the bracket and using the product rule on both of the terms yields

∇2
1f12 = (∇2

1f12) + 2(

�∇1f12) · �∇1 + f12∇2
1. (3.129)
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The above expression can now be substituted into equation 3.126 and terms cancelled to

give

f12[ˆt1, f12] = −1

2

f12{(∇2
1f12) + 2(

�∇1f12) · �∇1}. (3.130)

Another expression can be obtained when considering the second term of equation 3.124

and following a similar derivation to the one presented above

[

ˆt1, f12]f12 = −1

2

{(∇2
1f12) + 2(

�∇1f12) · �∇1}f12. (3.131)

By combining equations 3.130 and 3.131 one can obtain the expression for the commuta-

tor

[f12, [ˆt1, f12]] = −1

2

n

f12{(∇2
1f12) + 2(

�∇1f12) · �∇1}− {(∇2
1f12) + 2(

�∇1f12) · �∇1}f12

o

(3.132)

which on expansion and cancellation of like terms yields

[f12, [ˆt1, f12]] = −f12(
�∇1f12) · �∇1 + (

�∇1f12) · �∇1f12. (3.133)

Using the product rule for a final time gives

[f12, [ˆt1, f12]] = −f12(
�∇1f12) · �∇1 + (

�∇1f12) · (�∇1f12) + (

�∇1f12) · f12
�∇1. (3.134)

which simplifies to the final expression

[f12, [ˆt1, f12]] = |�∇1f12|2. (3.135)

Now all that must be considered is the evaluation of �∇1f12. This expression can be eval-

uated by expanding the form of f12 such that

�∇1f12 =

�∇1cγ

e−γr

2
12

= −2�r12γc
γ

e−γr

2
12 . (3.136)

Inserting this into equation 3.135 gives following equation

[f12, [ˆt1, f12]] = 4r2
12µνc

µ

c
ν

e−µr

2
12e−νr

2
12

= r2
12f

(t)
12 . (3.137)

where

f (t)
12 = 4µνc

µ

c
ν

e−(µ+ν)r2
12 (3.138)

Finally r2
12 is expanded into vector form

r2
12 = |�r1 − �r2|2, (3.139)
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and vectors �A and �B are added in equal positive and negative quantities to give

r2
12 = |�r1 − �A− (�r2 − �B) + AB|2. (3.140)

This expression can be expanded to give

r2
12 = |�r1− �A|2−2(�r1− �A)·(�r2− �B)+2(�r1− �A)·AB+|�r2− �B|2−2(�r2− �B)·AB+|AB|2.

(3.141)

The FTF integrals for ˆt1 can now be expressed as

(a|[f12, [ˆt1, f12]]|b) = (a|r2
12f

(t)
12 |b). (3.142)

which on expansion of r2
12 leads to the recurrence relation

(a|[f12, [ˆt1, f12]]|b) =

X

i=x,y,z

n

(a + 2
i

|f (t)
12 |b)− 2(a + 1

i

|f (t)
12 |b + 1

i

)

+2AB
i

(a + 1
i

|f (t)
12 |b) + (a|f (t)

12 |b + 2
i

)− 2AB
i

(a|f (t)
12 |b + 1

i

) + AB2
i

(a|f (t)
12 |b)

o

.

(3.143)

The recurrence relation above contains increments in both |a) and |b), however by making

use of the transfer equation

2α(a + 1
i

|f (t)
12 |b) + 2β(a|f (t)

12 |b + 1
i

) = a
i

(a− 1
i

|f (t)
12 |b) + b

i

(a|f (t)
12 |b− 1

i

), (3.144)

which is still valid for these integrals, the recurrence relation can be rearranged so there is

never a need for greater angular momentum in both |a) and |b) than in the target integral.

The kernel of the integrals, f (t)
12 is simply a sum of G type integrals, which is evaluated

in much the same manner as the FF class of integrals. The recurrence relation resulting

from removing an increment in angular momentum from equation 3.143 is shown each

time this process is used. Firstly the (a + 2
i

|f (t)
12 |b) term is removed to yield

(a|f12[∇2
1, f12]|b) =

X

i=x,y,z

Ω

a
i

+ 1

2α
(a|f (t)

12 |b) +

b
i

2α
(a + 1

i

|f (t)
12 |b− 1

i

)

− β

α
(a + 1

i

|f (t)
12 |b + 1

i

)− 2(a + 1
i

|f (t)
12 |b + 1

i

) + 2AB
i

(a + 1
i

|f (t)
12 |b)

+(a|f (t)
12 |b + 2

i

)− 2AB
i

(a|f (t)
12 |b + 1

i

) + AB2
i

(a|f (t)
12 |b)

o

. (3.145)
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Then the transfer equation is used again to remove the (a + 1
i

|f (t)
12 |b + 1

i

) term from the

recurrence relation

(a|f12[∇2
1, f12]|b) =

X

i=x,y,z

Ω

b
i

2α
(a + 1

i

|f (t)
12 |b− 1

i

)

−
µ

β

α
+ 2

∂

a
i

2α
(a− 1

i

|f (t)
12 |b + 1

i

)

+

µ

β2

α2
+

2β

α
+ 1

∂

(a|f (t)
12 |b + 2

i

) + 2AB
i

(a + 1
i

|f (t)
12 |b)

−2AB
i

(a|f (t)
12 |b + 1

i

) +

µ

AB2
i

+

a
i

+ 1

2α
− β(b

i

+ 1)

2α2
− b

i

+ 1

α

∂

(a|f (t)
12 |b)

æ

.

(3.146)

Next the transfer equation is applied to the (a + 1
i

|f (t)
12 |b) term which leads to

(a|f12[∇2
1, f12]|b) =

X

i=x,y,z

Ω

b
i

2α
(a + 1

i

|f (t)
12 |b− 1

i

)

−
µ

β

α
+ 2

∂

a
i

2α
(a− 1

i

|f (t)
12 |b + 1

i

) +

µ

β2

α2
+

2β

α
+ 1

∂

(a|f (t)
12 |b + 2

i

)

+

AB
i

b
i

α
(a|f (t)

12 |b− 1
i

) +

AB
i

a
i

α
(a− 1

i

|f (t)
12 |b)− 2AB

i

µ

1 +

β

α

∂

(a|f (t)
12 |b + 1

i

)

+

µ

AB2
i

+

a
i

+ 1

2α
− β(b

i

+ 1)

2α2
− b

i

+ 1

α

∂

(a|f (t)
12 |b)

æ

. (3.147)

The final term which contains positive increments in |a) is the (a + 1
i

|f (t)
12 |b− 1

i

) term,

and applying the transfer equation once again yields the final recurrence relation

(a|f12[∇2
1, f12]|b) =

X

i=x,y,z

Ω

−
µ

β

α
+ 2

∂

a
i

2α
(a− 1

i

|f (t)
12 |b + 1

i

)

+

a
i

b
i

4α2
(a− 1

i

|f (t)
12 |b− 1

i

) +

µ

β2

α2
+

2β

α
+ 1

∂

(a|f (t)
12 |b + 2

i

)

+

AB
i

b
i

α
(a|f (t)

12 |b− 1
i

) +

AB
i

a
i

α
(a− 1

i

|f (t)
12 |b)

+

b
i

(b
i

− 1)

4α2
(a|f (t)

12 |b− 2
i

)− 2AB
i

µ

1 +

β

α

∂

(a|f (t)
12 |b + 1

i

)

+

µ

AB2
i

+

a
i

+ 1

2α
− β(2b

i

+ 1)

2α2
− b

i

+ 1

α

∂

(a|f (t)
12 |b)

æ

, (3.148)

which only contains positive increments in |b). The advantage of this over equation 3.143

is that the shell of f (t)
12 integrals required to build the target FT integrals is significantly

smaller, thus increasing their speed of evaluation.
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This now concludes the derivation of all of the two-electron integrals. One observes that

the G type integrals form the core of almost all of the new integrals presented. In fact, all

but the FJ class of integral use combinations of G integrals in their construction.

3.2.2 Three-electron Recurrence Relations

As mentioned in the theory chapter, three-electron integrals occur in vast numbers in the

R12 and F12 methods. However, use of the RI approximation eradicates the need for

direct evaluation of these integrals. It is of course desirable to be able to evaluate the

accuracy of the RI approximation, and for this exact three-electron integrals are required.

They are also required for a DF implementation of three-electron integrals which was

one of the original aims of this work. Since work in this area did not prove successful

the primary reasons for deriving the recurrence relations were evaluating the accuracy of

RI and testing the RI code. Therefore only two classes of three-electron integral were

derived and implemented, (a|f12|b|f23|c) and (a|r−1
12 |b|f23|c), and their derivations will

be presented in this section.

Integral class F-F

Integral class F-F is defined explicitly as

(a|f12|b|f23|c) =

Z

d�r1

Z

d�r2

Z

d�r3 g(�r1,α, a, �A)f12 g(�r2, β,b, �B)f23 g(�r3, γ, c, �C).

(3.149)

Using a similar approach to the two-electron F type integrals the F-F integrals are ex-

pressed as a sum of G-G integrals

(a|f12|b|f23|c) = c
µ

c
ν

(a|gµ

12|b|gν

23|c). (3.150)

The G-G integrals can be written as

(a|gµ

12|b|gν

23|c) =

Z

d�r1

Z

d�r3 g(�r1,α, a, �A)�gµ

12|b|gν

23�g(�r3, γ, c, �C), (3.151)

where the integral �gµ

12|b|gν

23� is a three-centre one-electron overlap integral. Now the

three-centre overlap integral recursion relation by Obara and Saika [59] is used, substitut-

ing the two Gaussian functions for two of the centres gives

�gµ

12|b + 1
i

|gν

23� = (G
i

−B
i

)�gµ

12|b|gν

23�+

b
i

2(µ + β + ν)

�gµ

12|b− 1
i

|gν

23�, (3.152)
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where

G
i

=

µr1i

+ βB
i

+ νr3i

µ + β + ν
. (3.153)

By substituting in �G and inserting �A and �C in equal positive and negative amounts yields

�gµ

12|b + 1
i

|gν

23� =

µ(r1i

− A
i

+ AB
i

) + ν(r3i

− C
i

+ CB
i

)

µ + β + ν
�gµ

12|b|gν

23�

+

b
i

2(µ + β + ν)

�gµ

12|b− 1
i

|gν

23�, (3.154)

Integration over �r1 and �r3 with |a) and |c) and expanding out the terms gives

(a|gµ

12|b + 1
i

|gν

23|c) =

µAB
i

+ νCB
i

µ + β + ν
(a|gµ

12|b|gν

23|c) +

µ

µ + β + ν
(a + 1

i

|gµ

12|b|gν

23|c)

+

ν

µ + β + ν
(a|gµ

12|b|gν

23|c + 1
i

) +

b
i

2(µ + β + ν)

(a|gµ

12|b− 1
i

|gν

23|c). (3.155)

The method for deriving recurrence relations for incrementing angular momentum in

|a) and |c) are similar to each other, but different from |b). The derivation for incre-

menting |a) will be presented along with the result if one goes through the same sort of

procedure for |c). Instead of the integral representation defined in equation 3.149 the

integral can be represented as

(a|gµ

12|b|gν

23|c) =

Z

d�r2�a|gµ

12�g(�r2, β,b, �B)�gν

23|c�. (3.156)

Using the two-centre one-electron overlap recurrence relation described earlier and sub-

stituting gµ

12 in the ket gives

�a + 1
i

|gµ

12� = (P
Ai

− A
i

)�a|gµ

12�+

a
i

2(α + µ)

�a− 1
i

|gµ

12�. (3.157)

Following exactly the same steps as when deriving the G type integrals one obtains

�a + 1
i

|gµ

12� =

µ(r2i

−B
i

− AB
i

)

α + µ
�a|gµ

12�+

a
i

2(α + µ)

�a− 1
i

|gµ

12�. (3.158)

Multiplying this expression by b�gν

23|c�, integrating and expanding out gives

(a + 1
i

|gµ

12|b|gν

23|c) = − µAB
i

α + µ
(a|gµ

12|b|gν

23|c) +

µ

α + µ
(a|gµ

12|b + 1
i

|gν

23|c)

+

a
i

2(α + µ)

(a− 1
i

|gµ

12|b|gν

23|c). (3.159)

The corresponding expression for incrementing angular momentum in |c) is given by

(a|gµ

12|b|gν

23|c + 1
i

) =

νBC
i

γ + ν
(a|gµ

12|b|gν

23|c) +

ν

γ + ν
(a|gµ

12|b + 1
i

|gν

23|c)

+

c
i

2(γ + ν)

(a|gµ

12|b|gν

23|c− 1
i

). (3.160)
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As with all the integral classes presented previously, one must have a recurrence relation

that contains only one increment in angular momentum. This can be obtained by treating

equations 3.155, 3.159 and 3.160 as simultaneous equations. The process is lengthy,

although not complex and yields the following recurrence relations for incrementing |a),

|b) and |c)
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(
a

+
1

i

|g
µ 1
2
|b
|g

ν 1
2
|c

)
=
−

µ ω
[
(
γ
ν

+
β
(
γ

+
ν
)
)
A

B
i

+
γ
ν

B
C

i

]
(
a
|g

µ 1
2
|b
|g

ν 1
2
|c

)

+

γ
(
β

+
µ
)
+

ν
(
β

+
γ

+
µ
)

2
ω

a i
(
a
−

1
i

|g
µ 1
2
|b
|g

ν 1
2
|c

)
+

µ
(
γ

+
ν
)
b i

2
ω

(
a
|g

µ 1
2
|b
−

1
i

|g
ν 1
2
|c

)
+

µ
ν
c i

2
ω

(
a
|g

µ 1
2
|b
|g

ν 1
2
|c
−

1
i

)
,

(3
.1

61
)

(
a
|g

µ 1
2
|b

+
1

i

|g
ν 1
2
|c

)
=

α
µ
(
γ

+
ν
)
A

B
i

+
γ
ν
(
α

+
µ
)
B

C
i

ω
(
a
|g

µ 1
2
|b
|g

ν 1
2
|c

)

+

µ
(
γ

+
ν
)
a i

2
ω

(
a
−

1
i

|g
µ 1
2
|b
|g

ν 1
2
|c

)
+

(
α

+
µ
)
(
γ

+
ν
)
b i

2
ω

(
a
|g

µ 1
2
|b
−

1
i

|g
ν 1
2
|c

)
+

ν
(
α

+
µ
)
c i

2
ω

(
a
|g

µ 1
2
|b
|g

ν 1
2
|c
−

1
i

)
,

(3
.1

62
)

(
a
|g

µ 1
2
|b
|g

ν 1
2
|c

+
1

i

)
=

ν ω
[
α
µ

A
B

i

+
(
α
µ

+
β
(
α

+
µ
)
B

C
i

)
]
(
a
|g

µ 1
2
|b
|g

ν 1
2
|c

)

+

µ
ν
a i

2
ω

(
a
−

1
i

|g
µ 1
2
|b
|g

ν 1
2
|c

)
+

ν
(
α

+
µ
)
b i

2
ω

(
a
|g

µ 1
2
|b
−

1
i

|g
ν 1
2
|c

)
+

α
(
β

+
ν
)
+

µ
(
β

+
α

+
ν
)

2
ω

c i
(
a
|g

µ 1
2
|b
|g

ν 1
2
|c
−

1
i

)
,

(3
.1

63
)

w
he

re

ω
=

α
β
γ

+
α
γ
µ

+
β
γ
µ

+
α
β
ν

+
α
γ
ν

+
α
µ
ν

+
β
µ
ν

+
γ
µ
ν.

(3
.1

64
)

Th
e

st
ar

tin
g

te
rm

fo
rt

he
re

cu
rr

en
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re
la

tio
n

is
gi

ve
n

by

(
s|g

µ 1
2
|s
|g

ν 1
2
|s)

=
e
x
p

Ω

−
|A

B
|2 (

α
β
γ
µ

+
α
β
µ
ν
)
−

|B
C
|2 (

α
β
γ
ν

+
β
γ
µ
ν
)
−

|A
C
|2 α

γ
µ
ν

ω

æ
µ

π
9/

2

ω
3/

2

∂

.
(3

.1
65

)
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The F-F integrals are related to F type integrals in structure and one would expect

them to share many similarities. This is indeed the case and the most useful similarity

is the existence of a so-called ’transfer equation’ for these three-electron integrals. The

transfer equation can be derived by treating the three recurrence relation for incrementing

angular momentum as simultaneous equations. However, there is another slightly easier

method to derive the equation. Starting with the equation
µ

∂

∂A
i

+

∂

∂B
i

+

∂

∂C
i

∂

(a|b|c) = 0 (3.166)

and then expanding out and using equation 3.45 yields the three-electron transfer equation

α(a + 1
i

|gµ

12|b|gν

12|c) + β(a|gµ

12|b + 1
i

|gν

12|c) + γ(a|gµ

12|b|gν

12|c + 1
i

)

=

a
i

2

(a− 1
i

|gµ

12|b|gν

12|c) +

b
i

2

(a|gµ

12|b− 1
i

|gν

12|c) +

c
i

2

(a|gµ

12|b|gν

12|c− 1
i

). (3.167)

Its application is of a similar nature to that of the two-electron transfer equation (equa-

tion 3.85) with computational saving achieved by not looping over the Gaussian geminal

exponents for the final angular momentum transfer.

The starting equation for the three-electron transfer equation 3.166 is not obvious.

However, one can imagine taking the three Gaussian centres �A, �B and �C and transforming

them to the basis

�P =

�A +

�B +

�C, �Q = 2

�A− �B − �C and �R = − �A + 2

�B − �C (3.168)

where

�A =

1

6

(2

�P + 3

�Q + 2

�R), �B =

1

3

(

�P +

�R) and �C =

1

6

(2

�P − 3

�Q− 4

�R).

(3.169)

Differentiating the integral with respect to P
i

must give zero since moving the centre of

mass should not alter the value of the integrals. Doing this yields

∂

∂P
i

(a|b|c) =

µ

∂A
i

∂P
i

∂

∂A
i

+

∂B
i

∂P
i

∂

∂B
i

+

∂C
i

∂P
i

∂

∂C
i

∂

(a|b|c) = 0 (3.170)

which on substitution of the known differentials yields

∂

∂P
i

(a|b|c) =

1

3

µ

∂

∂A
i

+

∂

∂B
i

+

∂

∂C
i

∂

(a|b|c) = 0 (3.171)
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Integral class J-F

Integral class J-F is defined explicitly as

(a|r−1
12 |b|f23|c) =

Z

d�r1

Z

d�r2

Z

d�r3 g(�r1,α, a, �A)r−1
12 g(�r2, β,b, �B)f23 g(�r3, γ, c, �C).

(3.172)

As with the F-F integrals the J-F integrals can be represented as a summation over J-G

integrals thus

(a|r−1
12 |b|f23|c) =

X

ν

c
ν

(a|r−1
12 |b|gν

23|c). (3.173)

As in the derivation of the FJ integrals the Gaussian transform of r−1
12 defined in equa-

tion 3.93 is employed such that

(a|r−1
12 |b|gν

23|c) =

2√
π

Z ∞

0

(a|gu

2

12 |b|gν

23|c)du. (3.174)

By inspecting the G-G recurrence relations, the J-G recurrence relations prior to integra-

tion over the auxiliary variable u can be obtained. All that must be done is to substitute

the exponent µ with u2. This substitution is performed for all three of the G-G recurrence

relations giving

(a|gu

2

12 |b|gν

23|c + 1
i

) =

ν(αu2AB
i

+ (βu2
+ α(β + u2

))BC
i

)

ω
(a|gu

2

12 |b|gν

23|c)

+

u2νa
i

2ω
(a− 1

i

|gu

2

12 |b|gν

23|c)

+

ν(α + u2
)b

i

2ω
(a|gu

2

12 |b− 1
i

|gν

23|c)

+

(u2
(β + ν) + α(β + u2

+ ν))c
i

2ω
(a|gu

2

12 |b|gν

23|c− 1
i

). (3.175)

(a|gu

2

12 |b + 1
i

|gν

23|c) =

u2α(γ + ν)AB
i

− γν(u2
+ α)BC

i

ω
(a|gu

2

12 |b|gν

23|c)

+

u2
(γ + ν)a

i

2ω
(a− 1

i

|gu

2

12 |b|gν

23|c)

+

(u2
+ α)(γ + ν)b

i

2ω
(a|gu

2

12 |b− 1
i

|gν

23|c)

+

ν(u2
+ α)c

i

2ω
(a|gu

2

12 |b|gν

23|c− 1
i

). (3.176)
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(a + 1
i

|gu

2

12 |b|gν

23|c) =− u2
((γν + β(γ + ν))AB

i

+ γνCB
i

)

ω
(a|gu

2

12 |b|gν

23|c)

+

(γ(β + u2
) + ν(β + γ + u2

))a
i

2ω
(a− 1

i

|gu

2

12 |b|gν

23|c)

+

u2
(γ + ν)b

i

2ω
(a|gu

2

12 |b− 1
i

|gν

23|c)

+

u2νc
i

2ω
(a|gu

2

12 |b|gν

23|c− 1
i

). (3.177)

Once again an auxiliary integral is introduced

(a|r−1
12 |b|e−νr

2
23|c)(m)

=

2√
π

Z ∞

0

du

µ

u2

u2
+ ρ

∂

m

(a|gu

2

12 |b|e−νr

2
23|c). (3.178)

The choice of ρ is not important but must be greater than zero. For simplicity it is con-

venient to ensure that the same value of ρ is used for all three recurrence relations. The

integration is performed to give
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(a|r−1
12 |b|gν

23|c + 1
i

)

(m)
=

ν

ηρ

£

αβBC
i

(a|r−1
12 |b|gν

23|c)(m)
+ (αρAB

i

+ (ρ(α + β)− αβ)BC
i

)(a|r−1
12 |b|gν

23|c)(m+1)
§

+

νa
i

2η
(a− 1

i

|r−1
12 |b|gν

23|c)(m+1)

+

νb
i

2ηρ

£

α(a|r−1
12 |b− 1

i

|gν

23|c)(m)
+ (α− ρ)(a|r−1

12 |b− 1
i

|gν

23|c)(m+1)
§

+

c
i

2ηρ

£

α(β + ν)(a|r−1
12 |b|gν

23|c− 1
i

)

(m) − (α(β + ν)− ρ(α + β + ν))(a|r−1
12 |b|gν

23|c− 1
i

)

(m+1)
§

, (3.179)

(a|r−1
12 |b + 1

i

|gν

23|c)(m)
=

1

ηρ

£

−αγνBC
i

(a|r−1
12 |b|gν

23|c)(m)
+ (α(γ + ν)AB

i

− γν(ρ− α)BC
i

)(a|r−1
12 |b|gν

23|c)(m+1)
§

+

(γ + ν)a
i

2η
(a− 1

i

|r−1
12 |b|gν

23|c)(m+1)

+

(γ + ν)b
i

2ηρ

£

α(a|r−1
12 |b− 1

i

|gν

23|c)(m) − (α− ρ)(a|r−1
12 |b− 1

i

|gν

23|c)(m+1)
§

+

νc
i

2ηρ

£

α(a|r−1
12 |b|gν

23|c− 1
i

)

(m)
+ (α− ρ)(a|r−1

12 |b|gν

23|c− 1
i

)

(m+1)
§

, (3.180)

(a + 1
i

|r−1
12 |b|gν

23|c)(m)
= −(γν + β(γ + ν))AB

i

+ γνBC
i

η
(a|r−1

12 |b|gν

23|c)(m+1)

+

a
i

2ηρ

£

(γν + β(γ + ν))(a− 1
i

|r−1
12 |b|gν

23|c)(m) − (γν + β(γ + ν)− ρ(γ + ν))(a− 1
i

|r−1
12 |b|gν

23|c)(m+1)
§

+

(γ + ν)b
i

2η
(a|r−1

12 |b− 1
i

|gν

23|c)(m+1)
+

νc
i

2η
(a|r−1

12 |b|gν

23|c− 1
i

)

(m+1), (3.181)

where

ρ =

αβγ + αν(β + γ)

η
and η = γ(α + β) + ν(α + β + γ). (3.182)
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As with the F-F class of integrals the transfer equation still holds allowing for an easier

and more efficient evaluation of the integrals. In the case of the F-J integrals it also avoids

performing the integration over u2 for building angular momentum. The (s|r−1
12 |s|gν

23|s)
case can now be calculated as follows

(s|r−1
12 |s|gν

23|s)(m)
=

2√
π

Z ∞

0

du

µ

u2

u2
+ ρ

∂

m

Z

d�r1

Z

d�r2

Z

d�r3

× e−α|�r1− �

A|2e−u

2|�r1−�r2|2e−β|�r2− �

B|2e−ν|�r2−�r3|2e−γ|�r3− �

C|2 (3.183)

=

2π4

η3/2ρ3/2
e−|BC|2αβγν/ηρ

Z ∞

0

du

µ

u2

u2
+ ρ

∂

m

µ

ρ

u2
+ ρ

∂3/2

× exp

Ω

−T

µ

u2

u2
+ ρ

∂æ

(3.184)

where

T =

1

ηρ

©

αγνρ|AC|2 + αβρ(γ + ν)|AB|2 + βγν(ρ− α)|BC|2
™

. (3.185)

The integral over u can now be performed by transforming variable form u to t

t2 =

u2

u2
+ ρ

, (3.186)

du = ρ1/2
(1− t2)−3/2dt (3.187)

µ

ρ

u2
+ ρ

∂3/2

= (1− t2)3/2 (3.188)

(s|r−1
12 |s|gν

23|s)(m)
=

2π4

η3/2ρ3/2
e−|BC|2αβγν/ηρ

Z 1

0

dt ρ1/2
(1− t2)−3/2t2m

(1− t2)3/2e−Tt

2

=

2π4

η3/2ρ
e−|BC|2αβγν/ηρF

m

(T ). (3.189)

The same sort of tests used for the G type integrals also apply to these integrals, applying

limits to the Gaussian geminal.

3.3 Summary

In this chapter all of the recurrence relations required to implement the integrals needed

for MP2-F12 theories have been derived. Three-electron integral classes for selected

integrals have been derived explicitly for evaluating the accuracy of the RI approximation

and providing a test for the integral code. The integrals take the majority of the time
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when running a calculation and similarly when implementing new theories of the kind

described here the bulk of the time is spent deriving recurrence relations for integrals and

coding them up.



Chapter 4

Implementation

This chapter details the process of implementing the various MP2-F12 methods and the

new integral codes into the MOLPRO quantum chemistry package [58].

4.1 Indexing of the integrals

The integral recurrence relationships derived in the integrals chapter were for Cartesian

primitives with angular momentum in the range 0–lmax. Once constructed there already

exist routines for converting to spherical Gaussians, and for contracting and normalising

the integrals. Recurrence relations by their very nature have to be able to access integral

quantities already constructed, thus indexing of the integrals is of the utmost importance.

The integrals are produced in shells, illustrated in figure 3.1 for a two-electron integral

with angular momentum l = 2 for both electrons, i.e. a d-d shell. The integral shells are

stored in the order by which one would most likely write them down, the rules for which

are now defined explicitly.

In the first instance the case of a one-index, one-electron integral will be considered.

The first factor in determining the ordering of the integrals is the angular momentum level,

thus s-integrals precede p-integrals, p-integrals precede d-integrals and so on ascending

until the maximum angular momentum, lmax. For Cartesian integrals angular momentum

can be spread over three components, x, y, and z. Therefore, within each level of angular

momentum the angular momentum can be spread around in variety of ways, with the

obvious exception of s-integrals where the angular momentum is zero. In this section l

will be used to represent a given level of angular momentum which is defined as l = i +

88
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j +k where i, j, and k represent the powers of x, y, and z respectively. The primary order

of angular momentum components is defined by i starting with all angular momentum

in the i component. Component i is then decremented by one and angular momentum

transferred to the j component. The j component defines the secondary ordering of the

integral components and angular momentum is decrementally transferred to k for each

fixed value of i. This is best illustrated by use of an example, for a one-electron shell of f

angular momentum (lmax=3) the order is shown in figure 4.1.

index i j k l

1 0 0 0 0

2 1 0 0

13 0 1 0

4 0 0 1

5 2 0 0

2

6 1 1 0

7 1 0 1

8 0 2 0

9 0 1 1

10 0 0 2

index i j k l

11 3 0 0

3

12 2 1 0

13 2 0 1

14 1 2 0

15 1 1 1

16 1 0 2

17 0 3 0

18 0 2 1

19 0 1 2

20 0 0 3

Figure 4.1: Ordering of one-electron integrals for angular momentum zero to three

When the integrals are stored in this order they can be conveniently accessed through

the use of figurate numbers. Figurate numbers in general can be represented by a geomet-

rical pattern of points. The triangular numbers and their d-dimensional generalizations

are given by

fn

d

=

µ

n + d− 1

d

∂

=

d

X

p=0

fn

p

. (4.1)

For each level of angular momentum there are a fixed number of ways of distributing

the angular momentum over the three components, the number of these can be calculated

using the expression

f l+1
2 = (l + 1)(l + 2)/2. (4.2)

The figurate numbers for d = 1, 2, 3 are known as the linear, triangular and tetrahedral

numbers respectively. The zero-dimensional figurate number is always unity, irrespective
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of side-length.

For an integral of angular momentum l = i+j+k the location of the integral matching

the unique combination of i, j and k in the list is given by

index(i, j, k) = f l

3 + f j+k

2 + fk

1 + f 0
0 = f l

3 + f j+k

2 + fk

1 + 1. (4.3)

The indexing is set up so that index(0, 0, 0) = 1. The only thing one needs to know in

practice, though, is how to get from one element to another. This can easily be determined

from the simple figurate recurrence

fn

d

= fn−1
d

+ fn

d−1, (4.4)

ie the side length of a figure can be incremented by adding the figure of one fewer dimen-

sions but of the incremented side-length. For example, a side-3 triangle is turned into a

side-4 triangle by addition of a side-4 line. Or if one considers the expression on the far

right hand side of equation 4.1 then a triangle of side 4 can be composed from a triangle,

a line and a point, each of side-length 3.

In all of the recurrence relations derived in the previous chapter the relations required

looking up integrals of no more than plus or minus two units of angular momentum. For

incrementing one unit of angular momentum the expressions are

index(i + 1, j, k) = index(i, j, k) + f l+1
2 (4.5)

index(i, j + 1, k) = index(i, j, k) + f l+1
2 + j + k + 1 (4.6)

index(i, j, k + 1) = index(i, j, k) + f l+1
2 + j + k + 2 (4.7)

and for decrementing one unit they are

index(i− 1, j, k) = index(i, j, k)− f l

2 (4.8)

index(i, j − 1, k) = index(i, j, k)− f l

2 − j − k (4.9)

index(i, j, k − 1) = index(i, j, k)− f l

2 − j − k − 1. (4.10)

For incrementing two units of angular momenta the expressions are

index(i + 2, j, k) = index(i, j, k) + (l + 2)

2 (4.11)

index(i, j + 2, k) = index(i, j, k) + (l + 2)

2
+ 2(j + k) + 3 (4.12)

index(i, j, k + 2) = index(i, j, k) + (l + 2)

2
+ 2(j + k) + 5 (4.13)



CHAPTER 4. IMPLEMENTATION 91

and for decrementing two units the corresponding expressions are

index(i− 2, j, k) = index(i, j, k)− l2 (4.14)

index(i, j − 2, k) = index(i, j, k)− l2 − 2(j + k) + 1 (4.15)

index(i, j, k − 2) = index(i, j, k)− l2 − 2(j + k)− 1. (4.16)

Incidentally, the square numbers appear from the fact that f l+1
2 + f l+2

2 = (l + 2)

2, ie two

triangles differing in side length by one make a square.

The above expressions allow one to move between one-index integrals stored in the

list form described previously. However, the integrals that are required are either two-

or three-index integrals. In the case of two-index integrals this means that the index is

computed from six components; index(a
i

, a
j

, a
k

, b
i

, b
j

, b
k

); and for three-index integrals,

from nine components: index(a
i

, a
j

, a
k

, b
i

, b
j

, b
k

, c
i

, c
j

, c
k

).

For the two-index case this means that a matrix of integrals are required demonstrated

previously by figure 3.1. In practice because of the way in which MOLPRO assigns its

memory it is not possible to efficiently allocate matrices within the Fortran code. There-

fore the matrix is assigned as long list with a skip of 1 for one of the electrons and the

total number of components of that electron for the other electron. This means that mov-

ing between angular momentum will in one case involve multiplying by a fixed factor.

There is a slight complication when making 1 the first index number. Consider the

case illustrated in figure 3.1. Assume that |a) runs horizontally as does the indexing, i.e.

row one consists of indices 1-10, row two 11-20 etc. Now take the example case in-

dex(0,1,0,1,0,1) which corresponds to (p
y

|d
xz

). By counting the index can be determined

to be 63. The expressions for the indices for |a) and |b) are given by

index(0, 1, 0) = f 1
3 + f 1

2 + f 0
1 + 1 = 3 (4.17)

index(1, 0, 1) = f 2
3 + f 1

2 + f 1
1 + 1 = 7. (4.18)

The skip in |a) is 1 so multiplying by its index above gives 3 × 1 = 3 as the |a) index.

The skip in |b) is the total number of components there are in |a), i.e. the matrix row

size, which is 10. Therefore the |b) index is calculated using its index given above by

7 × 10 = 70. Adding together the index numbers give the index of (p
y

|d
xz

) as 73. This

is clearly not correct, and can be seen more clearly when considering the index of (s|s)
which is obviously 1 but using the above formula is calculated to be 11. The solution
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is subtract 1 from the |b) index before multiplying by its skip. This corrects both of the

above problems. However, it is not ideal as should one choose to change the order of

|a) and |b) then the 1 must be subtracted from |a) not |b). The optimum solution is to

remove the 1 from the end of the index expressions of |a) and |b), and |c) in the case of

three-electron integrals, then multiply by the appropriate skips and add together. Finally,

after adding together a 1 must be added to make the first index be 1, not zero.

4.2 Integral Codes into MOLPRO

Now is perhaps the time to generalise the situation above and take stock of the task in

hand. The shell of integrals, be it one-, two- or three-index are to be stored in a piece of

memory. They will not necessarily start at a location defined as 0 or 1 so this quantity will

be defined as idx_s. The skip between integrals are defined as iskip_a, iskip_b

and iskip_c. These quantities are intimately related, and it is highly likely that one of

the values will be 1, but it need not be.

All the quantities described so far will be known before starting the recurrence rela-

tion. When running through the recurrence relation the current index of |a), |b) and |c)
will need to be known and these quantities will be termed idx_a, idx_b and idx_c.

Thus when the recurrence relation begins the start index will be given by idx=idx_s

and idx_a=idx_b=idx_c=0. From then onward the current location can be obtained

by

idx=idx_s+idx_a+idx_b+idx_c. (4.19)

The recurrence relations also requires integrals of more or less angular momentum. This

could potentially mean looking after six additional indices for each electron, minus 1 in

x, y and z direction and plus 1 in x, y and z direction. The situation would become even

worse for two units of angular momentum and is analogous to branches of a probability

tree. Along with all of the indices mentioned previously this would be a very large number

of quantities to take account of. Fortunately there is a way around this and we need only

keep track of one index for plus and one for minus for each electron. This might seem

strange at first but it comes from the fact that there is some flexibility and choice in

the order in which things are calculated. For instance d
xy

can be calculated by either

incrementing p
x

in the y direction or p
y

in the x direction. This will be further discussed
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when examining the routine itself. The quantity idx_ap indicates the index of |a + 1
i

)

and idx_am that of |a− 1
i

) where the meaning of i will become clear later on.

The expressions for indices generally involve binomial expressions, and hence facto-

rial quantities to evaluate. These are computationally expensive operations to undertake

and the quantity of these must be minimised for an efficient implementation. The best

way, if possible, is to calculate integrals in the order in which they will be stored. This

is in fact possible and provides the solution used. It will also provide the explanation of

why there is only one index for plus and minus angular momentum for each electron.

All of the important concepts about the shell routine structure are contained within the

one-electron routine. The two- and three- electron routines are much more lengthy with

much care needed to look after the indexing, but they are still based upon the same con-

cepts as the one-electron routine. However, because there are significant simplifications

for the one-electron case a two-electron routine will be considered where the angular mo-

mentum of |b) is fixed at zero, but still provides a centre and exponent. A pseudo Fortran

code for the two-electron G-type integrals for the case just described is now discussed.

The syntax of the routine is given by

SUBROUTINE G_integral(α, �A,l
a

,iskip_a,

> β, �B,l
b

,iskip_b,

> idx_s,γ,shell)

IMPLICIT DOUBLE PRECISION (a-h,o-z)

DOUBLE PRECISION, INTENT(IN) :: α,β

DOUBLE PRECISION, DIMENSION(3), INTENT(IN) :: �A, �B

INTEGER, INTENT(IN) :: l
a

,l
b

INTEGER, INTENT(IN) :: iskip_a

INTEGER, INTENT(IN) :: iskip_b

INTEGER, INTENT(IN) :: idx_s

DOUBLE PRECISION, INTENT(IN) :: γ

DOUBLE PRECISION, DIMENSION(*), INTENT(OUT) :: shell

where α, �A and l
a

are the exponent, centre and angular momentum of the Gaussian func-

tion and iskip_a is the skip between |a) integrals in the destination vector shell. The

exponent of one of the Gaussian functions comprising the geminal is given by γ and the

location of the (0|0) integral in shell is given by idx_s. Next the indexing for |a) and
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|b) must be defined, along with some constants for convenience.

idx_a=idx_s; idx_ap=idx_a+iskip_a; idx_am=idx_a

AB =

�A− �B

η = αβ + βγ + γα

cab=
βγ

η

camb=
βγ

2η

Finally the actual recurrence relation begins, starting with the special (0|0) case which

is evaluated explicitly and then moving onto the loop structure that builds up the angular

momentum

shell(idx)=exp

Ω

− |AB|2αβγ

η

æµ

π
√

η

∂3

DO ia=0,l
a

shell(idx_ap)=shell(idx_a)*cab*AB1

> +ia*camb*shell(idx_am)

idx_ap=idx_ap+1

shell(idx_ap)=shell(idx_a)*cab*AB2

idx_ap=idx_ap+1

shell(idx_ap)=shell(idx_a)*cab*AB3

idx_ap=idx_ap+1

idx_a =idx_a +1

DO ja=1,ia

shell(idx_ap)=shell(idx_a)*cab*AB2

> +ja*camb*shell(idx_am)

idx_ap=idx_ap+1

shell(idx_ap)=shell(idx_a)*cab*AB3

idx_ap=idx_ap+1

idx_a =idx_a +1

DO ka=1,ja

shell(idx_ap)=shell(idx_a)*cab*AB3

> +ka*camb*shell(idx_am)

idx_ap=idx_ap+1

idx_a =idx_a +1
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idx_am=idx_am+1

ENDDO

ENDDO

ENDDO

RETURN; END SUBROUTINE G_integral

The indexing is built up and never has to be explicitly calculated from Cartesian compo-

nent numbers. The value idx is actually disguised within idx_ap as it contains idx_s

and idx_b=0. In this case it is simply easier to add in these quantities first rather than

add then at every stage. There is no index for incrementing |b) as in this case angular

momentum is being built in |a). In this special case there is no index for decrementing

|b) as this would be meaningless as it would correspond to negative angular momentum.

A naive loop structure for angular momentum would involve three loops, where only

in the inner loop i, j and k are defined. The alternative used here takes into account that if

all of the angular momentum is already known to be contained within a single component,

for instance i, then the values of j and k are already defined as zero. Because they are

defined as zero this leads to simplifications in the expressions containing j and k in the

outer loop. With every integral already constructed one has a choice to build integrals

with angular momentum increments in the x, y and z direction. However, it is possible to

construct certain integrals from a choice of base integrals. By making sure the maximum

number of integrals are calculated from each element in the lowest loop the next loop

needs to increment in one less direction, thus introducing further simplification. Thus the

outer loop increases angular momentum in x, y and z direction, the next loop the y and z

direction and in the final loop the z direction only.

The next step is to extend the routine to a general two-electron integral. This is rela-

tively straightforward, although the routine is quite lengthy. The routine described previ-

ously builds a row of |a). Thus to build a complete shell using the same efficient manner

one must construct the same loop structure looping over the angular momentum of |b).

The difference is that instead of producing a single element every time idx_bp is incre-

mented, a complete row of |a) is produced. An outline of the situation is

idx_bp=idx_s

shell(idx_bp)=row_1 ! (∗|s) case

idx_bp=idx_bp+iskip_b
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DO ib=0,l
b

shell(idx_bp)=row_incrementing_x ! (∗|b + 1

x

)

idx_bp=idx_bp+iskip_b

shell(idx_bp)=row_incrementing_y ! (∗|b + 1

y

)

idx_bp=idx_bp+iskip_b

shell(idx_bp)=row_incrementing_z ! (∗|b + 1

z

)

idx_bp=idx_bp+iskip_b

idx_b =idx_b +iskip_b

DO jb=1,ib

shell(idx_bp)=row_incrementing_y ! (∗|b + 1

y

)

idx_bp=idx_bp+iskip_b

shell(idx_bp)=row_incrementing_z ! (∗|b + 1

z

)

idx_bp=idx_bp+iskip_b

idx_b =idx_b +iskip_b

DO kb=1,jb

shell(idx_bp)=row_incrementing_z ! (∗|b + 1

z

)

idx_bp=idx_bp+iskip_b

idx_b =idx_b +iskip_b

idx_bm=idx_bm+iskip_b

ENDDO

ENDDO

ENDDO

Thus there are three do loops for the angular momentum of |b) where the loop structure

over |a) is inserted six times. For three-electron integrals all of the above is inserted six

times into a loop structure over the angular momentum of |c). In a naive implementation

there would then be an additional loop for integrals such as F-type, for each Gaussian

function of the geminal. These would then be summed together. As seen in the previous

chapter there is an way of significantly reducing the work in the form of the transfer

equation.
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4.2.1 The transfer equation

The transfer equation is simply another recurrence relation. In that respect it is imple-

mented in much the same fashion as the recurrence relations detailed in the previous

section. The saving is that it does not involve the Gaussian geminal exponents and so

all of the summations can be done prior to applying the transfer equation. This typically

means building up angular momentum in one direction, summing over exponents and then

applying the transfer equation in the other direction.

There is a distinct difference from other recurrence relations described previously in

that one must take care of angular momentum of both higher and lower indices in the x,

y and z direction of the centre from which the angular momentum is being transferred.

This entails keeping track of an extra set of indices, and incrementing appropriately.

The centre to which the angular momentum is being transferred as usual only requires

a single index for the plus and a single index for the minus angular momentum.

The pseudo code for a transfer equation, where angular momentum in |a) is being

transferred from |b), is shown below. Because of simplifications the s and p angular

momentum cases are dealt with specifically, and for d and higher angular momentum the

general formula is used.

SUBROUTINE basis_shell_trans(α,l
a

,β,l
b

,vec,shell)

IMPLICIT DOUBLE PRECISION (a-h,o-z)

DOUBLE PRECISION, INTENT(IN) :: α,β

INTEGER, INTENT(IN) :: l
a

,l
b

DOUBLE PRECISION, DIMENSION(*), INTENT(IN) :: vec

DOUBLE PRECISION, DIMENSION(*), INTENT(OUT) :: shell

l
tot

= l
a

+ l
b

get integer vector iq(incc) size l
tot

+ 1 and zero

DO i= 1, l
tot

+ 1 ! calculate some indexing and put in iq(incc)

iq(incc+i)=i*(i+1)*(i+2)/6

ENDDO

ntot=iq(incc+l
tot

+ 1)

naS=iq(incc+l
a

+1)

get block of memory q, size naS*ntot , start point idxS and zero the contents

copy first row of matrix, vec into q(idxS)
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IF(l
a

.GT.0) THEN ! case for building (p|∗)
ia0c=idxS

iapc=idxS+1

DO i=l
tot

− 1,0,-1

ib0=naS*iq(incc+i)

ibmx=ib0-i*(i+1)*naS/2

ibpx=ib0+(i+1)*(i+2)*naS/2

ibpy=ibpx+naS

ibpz=ibpy+naS

q(iapc+ib0)=−β

α
×q(ia0c+ibpx)+i× 1

2α
×q(ia0c+ibmx)

iap=iapc+1

q(iap+ib0)=−β

α
×q(ia0c+ibpy)

iap=iap+1

q(iap+ib0)=−β

α
×q(ia0c+ibpz)

iap=iap+1

ia0=ia0c+1

ib0=ib0+naS

ibmx=ibmx+naS

ibpx=ibpx+naS

DO j=1,i

ibmy=ibmx-j*naS

ibpy=ibpx+(j+1)*naS

ibpz=ibpy+naS

q(iapc+ib0)=−β

α
×q(ia0c+ibpx)+(i-j)× 1

2α
×q(ia0c+ibmx)

iap=iapc+1

q(iap+ib0)=−β

α
×q(ia0c+ibpy)+j× 1

2α
×q(ia0c+ibmy)

iap=iap+1

q(iap+ib0)=−β

α
×q(ia0c+ibpz)

iap=iap+1

ia0=ia0c+1

ib0=ib0+naS

ibmx=ibmx+naS



CHAPTER 4. IMPLEMENTATION 99

ibpx=ibpx+naS

ibmy=ibmy+naS

ibpy=ibpy+naS

DO k=1,j

ibmz=ibmy-naS

ibpz=ibpy+naS

q(iapc+ib0)=−β

α
×q(ia0c+ibpx)+(i-j)× 1

2α
×q(ia0c+ibmx)

iap=iapc+1

q(iap+ib0)=−β

α
×q(ia0c+ibpy)+(j-k)× 1

2α
×q(ia0c+ibmy)

iap=iap+1

q(iap+ib0)=−β

α
×q(ia0c+ibpz)+k× 1

2α
×q(ia0c+ibmz)

iap=iap+1

ia0=ia0c+1

ib0=ib0+naS

ibmx=ibmx+naS

ibpx=ibpx+naS

ibmy=ibmy+naS

ibpy=ibpy+naS

ENDDO

ENDDO

ENDDO

DO ia=1,l
a

-1 ! case for building (d...|∗)
iamc=idxS+iq(incc+ia-1)

ia0c=idxS+iq(incc+ia)

iapc=idxS+iq(incc+ia+1)

DO i=l
tot

− 1-ia,0,-1

ib0=naS*iq(incc+i)

ibmx=ib0-i*(i+1)*naS/2

ibpx=ib0+(i+1)*(i+2)*naS/2

ibpy=ibpx+naS

ibpz=ibpy+naS

iam=iamc
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q(iapc+ib0)=−β

α
×q(ia0c+ibpx)+i× 1

2α
×q(ia0c+ibmx)

> +ia× 1

2α
×q(iam+ib0)

iap=iapc+1

q(iap+ib0)=−β

α
×q(ia0c+ibpy)

iap=iap+1

q(iap+ib0)=−β

α
×q(ia0c+ibpz)

iap=iap+1

ia0=ia0c+1

DO iya=1,ia

q(iap+ib0)=−β

α
×q(ia0+ibpy)+iya× 1

2α
×q(iam+ib0)

iap=iap+1

q(iap+ib0)=−β

α
×q(ia0+ibpz)

iap=iap+1

ia0=ia0+1

DO iza=1,iya

q(iap+ib0)=−β

α
×q(ia0+ibpz)+iza× 1

2α
×q(iam+ib0)

iap=iap+1

ia0=ia0+1

iam=iam+1

ENDDO

ENDDO

ib0=ib0+naS

ibmx=ibmx+naS

ibpx=ibpx+naS

DO j=1,i

ibmy=ibmx-j*naS

ibpy=ibpx+(j+1)*naS

ibpz=ibpy+naS

iam=iamc

q(iapc+ib0)=−β

α
×q(ia0c+ibpx)+(i-j)× 1

2α
×q(ia0c+ibmx)

> +ia× 1

2α
×q(iam+ib0)

iap=iapc+1
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q(iap+ib0)=−β

α
×q(ia0c+ibpy)+j× 1

2α
×q(ia0c+ibmy)

iap=iap+1

q(iap+ib0)=−β

α
×q(ia0c+ibpz)

iap=iap+1

ia0=ia0c+1

DO iya=1,ia

q(iap+ib0)=−β

α
×q(ia0+ibpy)+iya× 1

2α
×q(iam+ib0)

> +j× 1

2α
×q(ia0+ibmy)

iap=iap+1

q(iap+ib0)=−β

α
×q(ia0+ibpz)

iap=iap+1

ia0=ia0+1

DO iza=1,iya

q(iap+ib0)=−β

α
×q(ia0+ibpz)+iza× 1

2α
×q(iam+ib0)

iap=iap+1

ia0=ia0+1

iam=iam+1

ENDDO

ENDDO

ib0=ib0+naS

ibmx=ibmx+naS

ibpx=ibpx+naS

ibmy=ibmy+naS

ibpy=ibpy+naS

DO k=1,j

ibmz=ibmy-naS

ibpz=ibpy+naS

iam=iamc

q(iapc+ib0)=−β

α
×q(ia0c+ibpx)+(i-j)× 1

2α
×q(ia0c+ibmx)

> +ia× 1

2α
×q(iam+ib0)

iap=iapc+1

q(iap+ib0)=−β

α
×q(ia0c+ibpy)+(j-k)× 1

2α
×q(ia0c+ibmy)
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iap=iap+1

q(iap+ib0)=−β

α
×q(ia0c+ibpz)+k× 1

2α
×q(ia0c+ibmz)

iap=iap+1

ia0=ia0c+1

DO iya=1,ia

q(iap+ib0)=−β

α
×q(ia0+ibpy)+iya× 1

2α
×q(iam+ib0)

> +(j-k)× 1

2α
×q(ia0+ibmy)

iap=iap+1

q(iap+ib0)=−β

α
×q(ia0+ibpz)+k× 1

2α
×q(ia0+ibmz)

iap=iap+1

ia0=ia0+1

DO iza=1,iya

q(iap+ib0)=−β

α
×q(ia0+ibpz)+iza× 1

2α
×q(iam+ib0)

> +k× 1

2α
×q(ia0+ibmz)

iap=iap+1

ia0=ia0+1

iam=iam+1

ENDDO

ENDDO

ib0=ib0+naS

ibmx=ibmx+naS

ibpx=ibpx+naS

ibmy=ibmy+naS

ibpy=ibpy+naS

ENDDO

ENDDO

ENDDO

ENDDO

ENDIF

Copy the integral into shell and cleanup memory

RETURN; END SUBROUTINE basis_shell_trans

From inspection it is clear that indexing is the key to the transfer equation. The number of
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operations involving the integrals is significantly less than those involving the indexing.

In previous recurrence relations the indices have always been incremented as the integrals

are created. For the transfer equation it is optimal to compute some of the indexing prior

to the recurrence relation to reduce the number of operations.

4.3 Testing the integrals

There are several tests to check that the integral shell routines implemented are correct,

some of which have already been mentioned in the previous chapter. Tests for the various

integrals are briefly summarised here. It goes without saying that all of the integrals are,

now, correct and these tests have played a significant part in ensuring this to be the case.

In addition to the tests described for each integral the recurrence relations were pro-

grammed into the mathematics computer package Mathematica for comparison [75]. Also

for some selected cases the exact integrals were calculated to check the integrals were cor-

rect and that the recurrence relation was performing to a high degree of accuracy.

4.3.1 Integral type G

The G-type integrals form the base of many of the other recurrence relations so it is critical

that they perform correctly. There are two tests that are specific to G-type integrals. Firstly

in the limit γ →∞ the G-type integrals become overlap integrals

lim

γ→∞

≥γ

π

¥3/2

(a|e−γr

2
12|b) = �a|b�. (4.20)

Thus, by increasing the exponent γ and scaling appropriately, the integrals should con-

verge to the value of the overlap integrals. The second test is to apply the opposite limit

to γ, that is to say γ → 0. Applying this limit gives the following

lim

γ→0
(a|e−γr

2
12|b) =

∑

Z

d�r a(�r)

∏ ∑

Z

d�r b(�r)

∏

(4.21)

which is the product of two one-electron integrals.

4.3.2 Integral type GJ

The test for the GJ class of integrals is to apply the limit γ → 0. Applying this limit yields

lim

γ→0
(a|e−γr

2
12r−1

12 |b) = (a|r−1
12 |b) (4.22)
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which is the expression for the J integrals. Therefore the GJ integrals must agree exactly

with the J integrals when the Gaussian exponent γ is set to zero.

4.3.3 Integral type F, FJ, FF and FTF

The F, FJ are simply the sum of their G and GJ counterparts respectively. In that respect

there is little that can go wrong, however the F integrals can now be directly compared

with R integrals when the fitting criterion of the Gaussian geminal function is set to r12.

This means that the G integrals are effectively being tested in the whole range 0 to ∞
rather than just the limits as described previously.

In the case of the FJ integrals fitting the Gaussian geminal function to r12 should make

the FJ integrals converge to

(a|f12r
−1
12 |b) ≈ (a|r12r

−1
12 |b) =

∑

Z

d�r a(�r)

∏ ∑

Z

d�r b(�r)

∏

(4.23)

as the fitting to r12 improves with increased number of Gaussians comprising the geminal

function.

The FTF integrals are constructed from sums of G-type integrals. Once the G-type

integral implementation is confirmed as correct all that must be done is to test the inte-

grals are put together with the right factors and with the correct angular momentum. The

integrals should converge to the analogous r12 form when f12 is fitted to r12.

4.3.4 Integral type G-G and J-G

Tests for these integrals are analogous to those for the G type integrals. For the G-G

integrals in the limit ν →∞ they reduce to

lim

ν→∞

≥ν

π

¥3/2

(a|e−µr

2
12|b|e−νr

2
12|c) = (a|e−µr

2
12|bc). (4.24)

Choosing BC = 0 and c = 0 reduces the problem to a two-electron G type integral

which can then be tested as described previously. The same can be done to reduce the J-G

integrals to two-electron J integrals.

4.4 Intelligent integral generation

Owing to the large number of integral types required for the new methods of this work

a more efficient manner for producing them was required. After implementing most of
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index theory meaning

o i, j, k, . . . occupied in AO basis

v a, b, c, . . . unoccupied in AO basis

a p, q, r, . . . complete AO basis, {o,v}
r p�, q�, r�, . . . RI auxiliary basis set

d A,B, C, . . . DF auxiliary basis set

Table 4.1: List of allowed indices for the automatic integral generator

the integrals classes for the MP2-F12/2*A’ method manually, it became clear that much

of the work in ensuring that they were constructed correctly lay with performing the DF

transformations correctly and summing together integrals. It would be most convenient

to be able to automate this process. The scheme produced allows one to call a single

routine with a string argument containing Dirac or Coulomb style notation, for example

’<oo|J|oo>’ or ’(oo|J|d)’. The routine then breaks down the integral into three-

index parts, if appropriate, and calculates them all. It then automatically assembles the

three-index integrals via transformations into the target integral. The allowed indices

are shown in table 4.1. The allowed operators, for example J, F etc. are essentially

those shown in table 3.1 in the previous chapter. The three index-integrals can also be

processed using this routine. For example, the integral �ijm|r12r
−1
23 |mno� using the RI

approximation can be written as �ij|r12|mp���mp�|r−2
12 |on� which translates to an input of

’<oo|R|or|J|oo>’ using the integrals program.

Using the new program the only work that must be done to implement a new class of

integral is to write a new shell routine, the kernel of the integral wrapper routine.

Kinetic energy integrals, and for that matter exchange integrals, are generally calcu-

lated one operator, eg. ˆt1, at a time. The integrals for electron one and two are then

summed together. In some cases where the operators are acting upon the same type of

function it is possible to obtain integrals for the other electron by symmetry.

The routine for handling the input of the integrals could easily be extended further,

and eventually expanded to take full working equations. The current routine has for this

work been invaluable and has also been used in the recent work of others.
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Results

The past two chapters are in the strictest sense also results of this PhD, as they contain the

details and implementation of the new class of MP2-F12 theories. In this chapter no new

theory is derived and no new methods are implemented; instead the new programs are

fully investigated and comparisons made with other, similar theories. Much of the work

that will be presented in this chapter has been been the subject of a recent publication

[76]. All of the numbers presented, unless otherwise specified, are calculated using the

programs of the MOLPRO [58] quantum chemistry package.

The notation VNZ will be used as shorthand for cc-pVNZ, the correlation-consistent

basis sets of Dunning [13–18]. The notation VNZ/MP2fit will be used as shorthand for

the fitting sets of Weigend et al. [77] which will be employed for the DF.

5.1 The test set of molecules and reactions

Throughout this chapter a test set of molecules will be referred to and used in calculations.

These 20 molecules are listed in table B.2 with HF energies and table B.3 with their MP2

correlation energies. Their geometries have been taken from the book by Helgaker et

al. [7]. The molecules contain a variety of chemical bonds including hydrogen to first-

row atom bonds and single, double and triple bonds between two first row elements. The

molecule list does not include any open-shell molecules as versions of the programs are

not implemented for such cases. It also does not include heavier elements and transition-

metal compounds where the electrons are placed in a significantly different environment,

although they could be treated by the methods provided they were closed shell systems.

106
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All of the molecules contain both dynamic and static correlation. The quantity of static

correlation varies significantly, with O3 having a much larger amount of static correlation

than any of the other molecules. The MP2 methods provide a poor description of the

dynamic correlation; generally a multi-reference method is required to recover static cor-

relation. Thus when comparing to accurate results, for cases when results for molecules

such as O3 are not as one would otherwise anticipate static correlation may well be the

explanation.

A test set of reactions using the test set of molecules just described is also defined and

these are listed in table B.4 with HF energies and table B.5 with MP2 energies.

To present some of the data more concisely a probability density function (PDF) will

be used. A PDF involves the mean error ¯δ and standard deviation σ of a set of data. Using
¯δ and σ the PDF is constructed as

PDF(

¯δ, σ) =

1

σ
√

2π
exp

Ω

− |δ − ¯δ|2

2σ2

æ

(5.1)

where for completeness

¯δ =

1

n

n

X

i=1

δ
i

and σ =

v

u

u

t

1

n− 1

n

X

i=1

(δ
i

− ¯δ)2. (5.2)

The above definition of a PDF includes the normalisation constant, 1/σ
√

2π which means

that all of the functions presented will integrate to 1.

5.2 Density Fitting

The DF approximation is used to increase the speed of the integral evaluation. Calcu-

lations on the test set of molecules with increasing DF basis size as well as the corre-

sponding calculations with exact integrals are given in tables B.6 and B.7. The PDFs for

the energies using a DF basis set for the integrals compared to the energies using exact

integrals are shown in figure 5.1 and figure 5.2. In both sets of figures as the DF basis set

is increased the plots become narrower showing a decrease in the error of the fitting. The

calculations converge quite quickly with respect to the size of the DF basis. In fact one

observes from the numerical tables of data that a DF basis of only one cardinal number

higher than the AO basis set is needed for accurate calculations. In practice one should

use as large DF basis as possible so that errors from the DF can be disregarded when
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!0.1 0.1 0.2

VDZ

!0.1 0.1 0.2

VTZ

!0.1 0.1 0.2

VQZ

!0.1 0.1 0.2

V5Z

Figure 5.1: DF PDFs for MP2-R12/2*A’ non-invariant energies compared to energies not

using the DF approximation for the test set of molecules. In all cases the same horizon-

tal and vertical scales are used with the units of the horizontal length scale millihartree.

Calculations use a VDZ AO basis set, an uncontracted VDZ RI basis set and VNZ/MP2fit

DF basis set, with N={D,T,Q,5}.
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!0.05 0.05 0.1

VTZ

!0.05 0.05 0.1

VQZ

!0.05 0.05 0.1

V5Z

Figure 5.2: DF PDFs for MP2-R12/2*A’ non-invariant energies compared to energies not

using the DF approximation for the test set of molecules. In all cases the same horizontal

and vertical scales are used with the units of the horizontal length scale millihartree. Cal-

culations use a VTZ AO basis set, an uncontracted VTZ RI basis set and VNZ/MP2fit DF

basis set, with N={T,Q,5}.
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considering the overall error in the calculation. The use of DF, for instance, reduces the

scaling of the integrals by an order of magnitude, which far outweighs the additional cost

of computing integrals in a large DF basis set.

5.3 F12 fitted linearly

When f12 is least-squares fitted to r12, the F12 program should give agreement with the

R12 program as the number of Gaussian geminal functions becomes sufficient for accu-

rate fitting. For the purposes of comparing the two programs small basis sets are employed

as only agreement is needed to verify the program. The results for increasing the number

of Gaussian functions comprising the geminal for the MP2-F12/2*A’ method for the neon

atom are shown in figure 5.3. The VDZ basis set is used as an AO basis set, uncontracted
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Figure 5.3: Convergence of the MP2-F12 energy to the MP2-R12 energy with respect to

the number of Gaussian functions when F12 is fitted to R12 for the neon atom. Details of

the calculations can be found in the text.

VDZ is used for the RI basis and V5Z/MP2fit is used for the DF basis set. The Gaussian

geminal is centred at 3 and has ratio 3. The value of ω, the exponent needed for the weight

function in the least squares fitting is 0.2. From the figure one can see that as the number

of Gaussian geminal functions is increased the F12 energy converges smoothly towards

the R12 value.

MP2-F12/2*A’ calculations have been performed on the test set of molecules using

geminals comprising six, nine and twelve Gaussian functions. The error between the
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invariant energies of the MP2-F12/2*A’ method fitted linearly compared to the corre-

sponding MP2-R12/2*A’ values are summarised as PDFs in figure 5.4, with the data in

table B.8. The AO basis used is VDZ, the RI basis is uncontracted VDZ and the DF basis

!0.3 !0.2 !0.1 0.1

6 Gaussian functions

!0.3 !0.2 !0.1 0.1

9 Gaussian functions

!0.3 !0.2 !0.1 0.1

12 Gaussian functions

Figure 5.4: PDFs for MP2-F12/2*A’ invariant energies fitted linearly compared to MP2-

R12/2*A’ energies. In all cases the same horizontal and vertical scales are used with the

units of the horizontal length scale hartree. Details of the calculations can be found in the

text.

is V5Z/MP2fit. The geminal function is constructed as an even tempered basis centred at

3 and ratio 3. The weight function exponent required for the least squares fitting takes the

values ω = 0.2.

From the PDFs one can see that by using a geminal function comprising of 12 Gaus-

sian functions it is possible to get almost exact agreement with R12 without optimising

the geminal for the given set of problems. Almost all of the error for the 12 geminal cal-

culations can be attributed to the HOF and F2 molecules. With optimisation it is possible

to reduce the quantity of Gaussian functions comprising the geminal to give energies of

increased accuracy. The above results confirm that the F12 program agrees with the R12
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and is therefore correctly implemented.

5.4 Errors in the methods

In the theory chapter several MP2-R12 and -F12 methods were derived, some of which

were subsequently implemented. The most efficient of the methods is the MP2-R12/2*A’

method which has many approximations allowing a fast evaluation. Using this method to

perform a calculation on neon using a VTZ basis set for both the AO and RI basis sets and

the V5Z/MP2fit for the DF basis gives a correlation energy of −299 millihartree. This

energy is significantly lower than the correlation energy of −264 millihartree obtained

when one performs a standard MP2 calculation using a VTZ basis set. However the R12

energy is still some way off the basis set limit of−320 millihartree, in fact one third of the

remaining correlation energy is unrecovered. This is still a significant improvement on the

standard MP2 energy but it is a little depressing that the improvement is not closer to the

basis set limit. The obvious question to ask is where the error in the calculation is coming

from, assuming that the basis set is large enough to provide a good enough description.

As mentioned previously there are a number of approximations associated with evaluation

of matrix elements in the various R12 methods. As well as these approximations there are

two other sources of error to give three in total:

1. The RI approximation for many-electron integrals,

2. Approximations in evaluating matrix elements,

3. The form of the ansatz for the first-order wavefunction.

The first and second of these sources is obvious: approximations by their very nature

contain errors. However, the third source is something that requires careful consideration:

is r12 necessarily the best correlation factor one could use?

In this chapter all of the errors described above will be analysed to decide upon their

importance towards the overall error in a calculation. Results that refer to the aim of using

a VTZ basis set to perform accurate quantum chemical calculations are presented and will

be fully discussed in the conclusions chapter.
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method GBC EBC [

ˆK1, f12] = 0

1A’ X X X
2*A’ X X X
2A’ X × X
2B X × ×

Table 5.1: Approximations used in the MP2-R12 and -F12 methods

5.5 The RI approximation

The work contained in this PhD has focused on developing RI/DF MP2-R12 and -F12

methods. Using these methods one can perform calculations on the test set of molecules

using different auxiliary RI basis sets. Calculations using VDZ, VTZ and VQZ AO basis

sets on the test set of molecules with uncontracted VTZ, VQZ and V5Z RI basis sets and

V5Z/MP2fit DF basis for the MP2-R12/2*A’ method are shown in tables B.9 and B.10.

The differences between correlation energies for the two largest RI basis sets is on the

order of a few millihartree. Whilst this error is significant it is small by comparison to

the total error in the correlation energy. It is worth noting that the RI basis sets used,

uncontracted VTZ, VQZ and V5Z, were not specifically designed for being used in this

manner. If an optimised basis set were designed it is reasonable to expect the errors

to decrease to an even smaller portion of the total. More accurate RIs such as the RI-

DF of Ten-no and Manby [53] and the complementary auxiliary basis set approach of

Valeev [51] also exist.

The results of these calculations show that the RI approximation does introduce an er-

ror. This error is small by comparison to the total error and can be systematically reduced

by increasing the size of the auxiliary RI basis set.

5.6 Approximations in evaluating matrix elements

In the theory chapter several varieties of R12 and F12 methods were presented, some

of which were subsequently implemented. These methods use various approximations

and a summary is shown in table 5.1. In the previous section is was established that the

majority of the error in R12 theory is not due to the RI approximation - here the other

approximations are analysed.
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5.6.1 Neglect of exchange commutators

The exchange commutators, [

ˆK1, f12] = 0, are not negligible. Since a program that

does not neglect exchange commutators was not implemented the analysis uses the data

presented in the paper by Klopper and Samson [50]. The mean difference between the

MP2-R12/2A’ and MP2-R12/2B methods is 5.5 millihartree in a VTZ basis set and 2.4

millihartree in a VQZ basis set. Whilst this error is a concern if one wishes to perform

accurate calculations, it is not the principal source of error. Recall the error in the neon

calculation was in the order of 30 millihartree which is significantly larger than the errors

attributed above to the neglect of exchange commutators.

5.6.2 GBC and EBC

The other approximations in these theories are the GBC and EBC. The MP2-R12/2*A’

program employs both the GBC and EBC, whereas the MP2-R12/2A’ only employs the

GBC. However, none of the programs developed or implemented in this work eradicates

the use of the GBC. Valeev has produced a program which does not use either the GBC or

EBC [51]. Using data from Valeev’s program one can see the error introduced by using the

GBC or the GBC and EBC approximations. Contributions using a VDZ, VTZ and VQZ

AO basis set for calculations on the test set of molecules are displayed in figures 5.5, 5.6

and 5.7 respectively. One can see that the error resulting from introducing the EBC is

significant. For a VDZ basis set it is unacceptable, whereas for a VTZ and VQZ basis it

is still not accurate enough for chemical accuracy. However, the magnitude of the error

introduced by the EBC in a VTZ basis set still does not account for the bulk of the missing

correlation energy.

The GBC has a smaller impact, and in a VTZ basis set the errors are all less than a

millihartree, which is acceptable.

From the above results one can conclude that the EBC should be avoided if possible.

The errors associated with the EBC do not account for the bulk of the missing correlation

energy but do not allow calculations at the level of chemical accuracy to be performed.

The GBC also introduces an error into calculations. This error is however small enough to

allow chemical accuracy level calculations to be conducted in a basis of VTZ or greater.
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Figure 5.5: Bar chart showing the absolute errors in correlation energies of the test set of

molecules in millihartree for the MP2-R12 method in a VDZ AO basis set. GBC errors

are shown in black and GBC+EBC errors in grey.
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Figure 5.6: Bar chart showing the absolute errors in correlation energies of the test set of

molecules in millihartree for the MP2-R12 method in a VTZ AO basis set. GBC errors

are shown in black and GBC+EBC errors in grey.
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Figure 5.7: Bar chart showing the absolute errors in correlation energies of the test set of

molecules in millihartree for the MP2-R12 method in a VQZ AO basis set. GBC errors

are shown in black and GBC+EBC errors in grey.
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5.7 The form of the correlation factor

5.7.1 A single Gaussian vs. R12

The MP2-F12 programs described previously use a linear combination of Gaussian func-

tions which are then fit using a least squares fit to a function of choice. If only one Gaus-

sian function is provided for the fitting then clearly no matter what the fitting criterion the

resulting function will still have a Gaussian shape. This provides an interesting starting

position with which to compare with the R12 methods also implemented. Clearly a single

Gaussian has no resemblance to R12 and one would therefore expect it to perform poorly

by comparison. Plots of correlation energies for the neon atom in different AO basis sets

for MP2, MP2-R12 and MP2-F12 are shown in figure 5.8. Clearly the value of the Gaus-
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2 4 6 8 10!320

!300

!280

!260
MP2

MP2!R12

MP2!F12

2 4 6 8 10!320

!310

!300

!290
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Figure 5.8: Plots of correlation energy vs Gaussian exponent for the neon atom using the

MP2, MP2-R12 and MP2-F12 methods. Starting from the top left and working clockwise

the AO basis sets are VDZ, VTZ and VQZ. The F12 method uses the 2*A’ ansatz with

uncontracted V5Z RI basis and the V5Z/MP2fit DF basis set.
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sian function has no effect on the value of the MP2 and MP2-R12 energies and hence

they remain invariant on changing this value. As one would expect the MP2-R12 energies

are lower than the MP2 values owing to the explicit correlation by including r12 in the

wavefunction. The extrapolated MP2 V[5,6]Z energy is shown just above the x-axis. It

is clear from the graphs that the MP2-F12 ansatz provides significantly lower correlation

energies than the corresponding R12 ansatz. This seems odd, especially since r12 has

always been thought to be the correlation factor that one should be trying to include in

the wavefunction. Indeed if one takes the minimum of the F12 curve this approximately

corresponds to the correlation energy of the R12 method in the next basis set up, i.e. using

a single optimised Gaussian is almost equivalent to the corresponding R12 calculation in

the next basis set. Clearly a result of this significance requires further investigation.

The first cautionary note when considering the above result is that the optimum value

of the Gaussian exponent ω varied between basis sets. This is a major problem as for a

method to be size-consistent this must not be the case. In fact to make the method size-

consistent requires imposing the restriction that the value of the Gaussian exponent must

remain fixed for all calculations. First it is wise to consider why the optimum value of ω

might vary with basis set.

As the size of the basis set increases it is better able to describe electron correlation.

The remaining error results from the parts still not correctly described and one can see

that a Gaussian function containing an increasing exponent will be needed as the basis

set increases in size. Another way of putting this is that the explicitly correlated part of

the wavefunction is describing areas closer to r12 = 0 as the basis set increases. This

makes sense if one inspects the plot of the wavefunction in figure 1.3 as it shows the way

in which the MP2 methods converge from the top of the correlation hole, thus functions

of increasing exponents are needed the more accurate the calculation.

The optimum value of ω is now investigated across the test set of molecules and across

the VDZ, VTZ and VQZ basis sets. The results of these calculations are given in ta-

ble B.11 and summarised in figure 5.9. The optimum values are not similar to that of

neon. This is not necessarily that surprising. Neon is a noble gas and as such exists in

single atomic form. Molecules on the other hand have bonds where electrons are placed

in a very different environment that is not present in atoms. Despite being able to reason

the high exponent for neon it does not solve the problem that for the method to be size
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Figure 5.9: Optimum value of ω for the test set of molecules in VDZ, VTZ and VQZ

basis sets.
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consistent the value of ω must be the same. The calculations are recomputed for the test

set of molecules for each basis set using the average optimum Gaussian exponent at the

bottom of table B.11 to give correlation energies in table B.12. Comparing correlation en-

ergies to the MP2 correlation energies in the V[5,6]Z basis set and doing the same for the

corresponding R12 cases gives PDFs shown in figure 5.10. The PDFs show that using a

single Gaussian correlation factor is roughly equivalent to performing the R12 calculation

in the next highest basis set.

If one had to fix the value of ω for all calculation the optimal value for a VTZ basis

should probably be used. The reason for choosing VTZ is that this is the size of basis one

would like to be able to perform accurate quantum chemical calculations. A VDZ basis is

not complete enough and as such the Gaussian function is likely to be trying to account for

basis set incompleteness as well as correlation. One can see that these recomputed values

still offer significant improvement over the R12 method even when using the average

exponent.

An interesting aside was to perform calculations to find the optimal ω for the elemental

hydrides across the first three periods. Results of the optimal exponent for MP2-F12/2*A’

calculations where the geminal comprises of a single Gaussian function only are shown

in figure 5.11. The geometries for the molecules not in the molecular test set are given in

table B.1 along with their optimal exponents. The AO basis set used is VDZ, the RI basis

is uncontracted V5Z and the DF basis is V5Z/MP2fit.

There does appear to be periodicity, most notably the almost uniform increase in op-

timal exponent across the second period. Across the second period there is increasing

charge which can be seen by the bond lengths decreasing, putting the electrons closer and

closer together. The optimal function will have steeper gradients the closer the electrons

are together, hence the increase in optimal Gaussian exponent. Beyond the second period

the periodicity starts to break down. This is most likely due to the increasing number of

environments in which the electrons are in. For instance there are core electrons, valence

bonding electrons and non-bonding electrons, all of which are interacting with each other

at very different inter-electronic distances. The optimal exponent is an average of all of

these situations and is the most likely cause of the breakdown of periodicity in the third

period.
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Figure 5.10: PDFs for invariant negative correlation energies MP2-F12/2*A’ using a sin-

gle Gaussian geminal vs MP2-R12/2*A’ both compared to MP2 correlation energies in a

V[5,6]Z basis set. In all cases the same horizontal and vertical scales are used with the

units of the horizontal length scale hartree.
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Figure 5.11: Optimum value of ω for the elemental hydrides across the zeroth, first and

second periods. Details of the calculations are given in the text.
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5.7.2 Other forms for the correlation factor

Having seen the amazing success of using a single Gaussian function as the correlation

factor in the previous section a wider range of functions are investigated in this section.

Since f12 is constructed from a linear combination of Gaussians one can choose any fitting

criterion, and hence try almost any function of choice. Initially a series of calculations

were performed on helium using Mathematica [75] and the Hamiltonian taken from [78].

These gave an indication of what function types would be worth further investigation and

application to the test set of molecules.

So far a linear correlation factor and a Gaussian geminal comprising a single Gaus-

sian function have been investigated. These correlation factors will be compared to the

following other functions:

• Slater Function, exp{−γr12}

• Gaussian Jastrow,

• Slater Jastrow.

The Gaussian and Slater Jastrow geminal functions are obtained by solving the equation

1

2

∇2f(r12) =

g(r12)

r12
, (5.3)

where g(r12) is either a Gaussian or Slater function. These functions are based upon the

work of Ten-no [37].

Calculations using the above fitting criteria are shown in table B.13.

The Slater function has exponent 1 which is fixed for the size consistency reasons

discussed in the previous section. One could imagine optimising the value of the Slater

exponent in the same manner as the single Gaussian function. Initial work on this has

shown that a value close to unity gives good results for a variety of molecules. For the

purposes of size extensivity the value will be fixed at unity for all of the calculations.

From the above data it appears that there is not too much to choose between the differ-

ent functions. The Slater function appears to give the best match. Strikingly though, all

of the correlation factors perform significantly better than r12. The error is of the correct

magnitude to account for the 30 millihartree error in neon. One can therefore conclude

that the use of a Slater function in place of r12 is the way forward in explicitly correlated

theories [76, 79, 80].
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Conclusions

The expressions for several new explicitly correlated methods have been derived. Recur-

rence relations for all of the integral classes novel in this work have also been worked

out.

Computer implementations of the methods and the integrals they require have been

produced and tested thoroughly. The results of these programs have subsequently been

published [72].

In the final version of the programs the two-electron integrals are evaluated using the

DF approximation and the three-electron integrals are reduced to a sum of products of

two-electron integrals by use of the RI approximation.

6.1 Summary of results

One of the original aims of this work was to test the accuracy of the RI approximation,

thought by many in the field to be the main source of error in these methods. A good

method to do this is to use the DF approximation as a replacement, since the errors as-

sociated with the DF approximation are well understood. The three-electron integrals

containing the operator r12 would not easily factorise under the DF approximation. The

way around this was to use a Gaussian geminal operator as a replacement and fit the gem-

inal to the shape of r12. The error in the fitting can be reduced very easily by increasing

the number of Gaussians contained in the geminal function [64].

Several three-electron integral classes were implemented by using the DF approxi-

mation with Gaussian geminal correlation factor in place of r12. With the integral value

125
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converged with respect to the geminal fitting basis the values were in very good agree-

ment with integrals calculated using the RI approximation. This could lead to one of two

conclusions, either the RI approximation is a good approximation or both the RI and DF

approximations are bad approximations. With DF errors well understood in seemed most

likely that the former is the case. Confirmation of this was obtained by calculating a class

of integrals very accurately by quadrature [54]. Thus, one of several key conclusions from

this work is that the RI approximation is in fact a good approximation and can be used in

these methods without fear of introducing severe errors. Of course, the RI approximation

by its nature is only approximate and there will be an associated error when using it, but

the results show this error to be at least an order of magnitude lower than the total errors

introduced in the methods.

The discovery that the RI approximation is a good approximation means that there

must be a different reason why R12 methods do not give good results. Within the new

methods developed, approximations such as the GBC and EBC are made. The other

possibility is that the ansatz of a linear correlation factor, r12 is simply not the optimum

correlation factor.

The GBC and EBC approximations were examined and shown to have errors of a

similar magnitude to those induced by the RI approximation. The EBC contributes con-

sistently higher errors than the GBC which is in line with expectations since the EBC is

a less good approximation that the GBC. They are however small errors compared with

the total deviation of the MP2-R12 energies from the MP2 basis set limit. For accurate

calculations one should avoid using the EBC if possible.

The remaining possibility for the source of the large error in the calculated energies

of the new methods is the form of the correlation factor itself. Originally the Gaussian

geminal correlation factor was brought in to solve technical problems associated with

calculating three-electron integrals by DF. However, the nice side effect of such an im-

plementation is that by simply changing the fitting criterion of the Gaussian geminal one

arrives at a method with an entirely new correlation factor. One should of course be care-

ful how the function is fitted and over what range; it is highly likely that one does not

require an accurate fit for large values of r12 but rather close to r12 = 0 and the surround-

ing region.

The programs were run with a variety of correlation factors and the results compared
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to the results from corresponding calculations using a linear r12 correlation factor. It was

discovered that an immensely striking improvement could be obtained by using a Gaus-

sian geminal comprising of a sole Gaussian function as a correlation factor. A method

with a single Gaussian function as the correlation factor will not be significantly more ex-

pensive than a method involving linear r12, indeed only in a few cases where r12 cancels

with r−1
12 is extra work involved. The use of f12 means that for large molecules screening

would be much more effective. This is because f12 vanishes in the long range meaning

that the integrals decay much more rapidly than for r12. In r12 theory non-contributing

integrals often have large values which are then subtracted from other large values to give

zero.

When developing new methods one is always considering the improvement in accu-

racy vs the extra cost of computation. At this stage a significant improvement is made at

almost no extra computational cost.

Further investigation showed that a variety of other functions can be used that give

even better results, most notably a Slater function as fitting target for the Gaussian geminal

gives excellent results. Of course there is extra cost involved using a Slater function since

the Gaussian geminal must typically comprise of nine Gaussian functions. However, the

computational savings of using the transfer equation in evaluating the integrals means

that this cost is minimised. The level of improvement is certainly enough to warrant

using a Slater over a single Gaussian function. Work in this area has also been done by

Ten-no [79] for the Slater function. A more extensive investigation has recently been

conducted by Tew and Klopper [80] involving a variety of correlation factors. From their

work they also conclude that the Slater function appears to be the optimum correlation

factor.

Initial examination of the reaction energy results were not positive. However given the

great success of recovering correlation energy of molecules it became clear that something

else must be responsible for the less accurate reaction energies. After investigation it was

found that the lack of convergence of the HF energy in a VTZ basis set was responsible for

the inaccuracy of the reaction energies. Using an AVTZ basis set significantly improves

the convergence of the HF energy and the improvement was enough to give good reaction

energy results. Therefore, one must always ensure that the HF energy is converged to a

high enough degree in order to give accurate reaction energies [72].
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One of the conclusions that has been obtained from conducting this work relates to

the manner in which one should approach writing computer implementations of such

methods. The methods all contain many integral classes over different basis sets. From

the experience of writing the programs for this work it seems wise to write code that can

automatically deal with as many of the cases as possible. Ideally one should only need to

write kernels for each operator and input details for each of the indices. For disk based

versions the program needs to store records of which integrals it has already constructed

in order to avoid repeating work.

6.2 Future work

One of the obvious areas in which to extend these methods is to apply the local approxi-

mations to the new methods. Using the infrastructure developed within this work this has

now been successfully implemented and details of the work are found in [81].

The intelligent integrals program could be further improved to make new method

implementations even easier. By writing an improved string parser one could envisage

inputting a string containing the working equations of the method and the program sim-

ply evaluating the energy. The disk based integrals could also be improved. At present

the program calculates objects such as <oo|J|oo> and <ao|J|oo> as entirely inde-

pendent entities. One can clearly see that the the index o is a subset of a (because the

occupied MOs are a subset of the MOs). Thus the largest case should be evaluated first

and all remaining integrals can be extracted from the super-matrix. There may well be

some inefficiencies associated with such a method due to a non-contiguous read from the

disk but this should be offset by the need to calculate integrals from scratch.

The F12 methods bring real improvements to the convergence of expectation values

for molecular systems for the MP2 level of theory so a natural progression would to apply

the method to higher levels of theory. Explicitly correlated CC theories and programs

already exist using a r12 correlation factor, for instance the CC-R12 method [41, 42].

These methods could be adapted to use an f12 correlation factor and would hopefully

yield the same sorts of improvements as were found for the explicitly correlated MP2

methods. The CCSD-F12 method should be investigated first in order to see that the same

sorts of benefits seen in MP2 theory can also be obtained in CC theory. Utilising this
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method one can construct the CCSD(T)-F12 energy by virtue of

ECCSD(T)-F12 = ECCSD-F12 + ECCSD(T) − ECCSD (6.1)

This method is desirable since the level of theory allows very accurate expectation values

and the f12 correlation factor would hopefully yield fast convergence of the values with

respect to basis set.

An area that could simply yield improved results is spin scaling of the singlet and

triplet contributions to the energies using an empirical factor, as can be used in traditional

MP2 theory [82]. The same level of improvement for the F12 methods could further

reduce the size of basis set required for chemically accurate calculations.

In a similar vein to above, one could consider having two geminals for the F12 meth-

ods, one for the single and one for the triple pair integrals. Going a step further one could

consider optimising the geminal function for each of the electron pairs. There are sev-

eral methods one could write down to do this, but one must be careful not to break the

size-extensivity of the method. One such proposal would be the ansatz

|u
ij

� = tij
ab

|ab�+ tij
klµ

ˆQ12e
−µr

2
12|kl�. (6.2)
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Appendix A

List of Abbreviations

AO atomic orbital

BO Born-Oppenheimer

BSSE basis set superposition error

cc-pCVXZ correlation consistent polarised core VXZ

cc-pVXZ correlation consistent polarised VXZ

CC coupled cluster

CCSD CC singles and doubles

CI configuration interaction

CID CI doubles

CIS CI singles

CISD CI singles and doubles

CP counterpoise

CPU central processing unit

DF density fitting

DFT density functional theory

DRK Dupuis Rys King

EBC extended Brillouin condition

FCI full CI

GBC generalised Brillouin condition

GPT Gaussian product theorem
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GTO Gaussian type orbital

HF Hartree Fock

LCAO linear combination of AO

MD McMurchie Davidson

MO molecular orbital

MP Møller-Plesset

MP2 second-order MP

OS Obara Saika

PDF probability density function

PT perturbation theory

PH Pople Henre

RHF restricted HF

RI resolution of identity

SCF self consistent field

SD Slater determinant

STO Slater type orbital

UHF unrestricted HF

VXZ valence X-tuple zeta



Appendix B

Tables of data

molecule E-H H-E-H ω

He 2.71571052

LiH 1.619 0.42749123

BeH2 1.339 180.00 0.68883003

BH3 1.198 120.00 0.83360047

Ne 2.49667350

NaH 1.918 0.39708817

MgH2 1.711 180.00 0.57737970

AlH3 1.585 120.00 1.06288979

SiH4 1.486 109.47 0.97340256

PH3 1.418 95.22 1.14299178

H2S 1.316 180.00 0.70390366

HCl 1.277 1.03948679

Ar 1.06245281

Table B.1: Geometries of some elemental hydrides. Bond lengths denoted by E-H are

given in Angstrom and bond angles deonted by H-E-H are given in degrees. The ω column

indicates the optimal Gaussian exponent for performing MP2-F12/2*A’ calculations in a

VDZ AO basis, uncontracted V5Z RI basis and V5Z/MP2fit DF basis with a geminal

comprising of a single Gaussian function only.
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Table B.2: HF energies in hartree for the test set of molecules
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Table B.3: MP2 valence negative correlation energies in millihartree for the test set of

molecules
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Table B.4: HF energies for the reaction test set in millihartree
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Table B.5: MP2 energies for the reaction test set in millihartree. Extrapolated energy is

added onto the V6Z HF energy.
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molecule exact VDZ VTZ VQZ V5Z

H2 30.603 78 30.449 35 30.588 98 30.606 79 30.603 71

CH2 144.370 80 144.389 78 144.373 26 144.371 16 144.370 24

CH4 206.421 97 206.440 10 206.427 91 206.421 80 206.421 92

NH3 250.435 99 250.461 98 250.444 93 250.434 88 250.435 20

H2O 286.339 29 286.357 88 286.355 20 286.335 91 286.338 69

C2H2 332.501 91 332.567 89 332.504 01 332.505 78 332.501 80

C2H4 351.789 00 351.796 96 351.800 66 351.788 57 351.788 50

HNC 357.883 08 357.964 32 357.890 78 357.883 74 357.882 97

HCN 370.771 03 370.864 13 370.774 51 370.774 14 370.770 75

HF 309.626 16 309.628 86 309.651 09 309.618 93 309.624 78

N2 403.868 02 403.981 10 403.849 52 403.870 48 403.865 96

N2H2 434.834 47 434.868 92 434.838 12 434.833 13 434.833 36

CO 384.698 49 384.787 29 384.688 45 384.691 63 384.698 15

CH2O 422.079 18 422.129 75 422.090 33 422.073 17 422.078 55

HNO 473.554 90 473.561 92 473.555 38 473.550 91 473.553 19

H2O2 562.353 58 562.506 64 562.397 31 562.350 05 562.352 78

HOF 591.655 07 591.866 35 591.703 38 591.636 76 591.650 93

CO2 629.878 58 630.057 03 629.880 67 629.864 28 629.878 19

F2 627.273 90 627.537 94 627.295 32 627.185 74 627.263 73

O3 853.032 40 853.198 49 853.052 39 852.991 95 853.025 00
¯δ 0.072 25 0.009 53 −0.009 09 −0.001 66

σ 0.092 48 0.016 70 0.021 17 0.002 65

Table B.6: DF-MP2-R12/2*A’ non-invariant valence negative correlation energies in mil-

lihartree with VDZ AO and RI basis sets. The exact column of data does not use the DF

approximation and the subscequent columns use the DF basis shown. Mean and standard

deviation in millihartree.
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molecule exact VTZ VQZ V5Z

H2 32.873 47 32.858 16 32.871 36 32.874 40

CH2 148.115 93 148.121 67 148.112 45 148.115 77

CH4 210.601 92 210.624 54 210.598 05 210.602 01

NH3 252.575 10 252.607 70 252.572 61 252.574 32

H2O 285.227 59 285.254 10 285.228 81 285.227 67

C2H2 329.395 85 329.429 07 329.397 75 329.395 68

C2H4 355.724 28 355.742 13 355.717 39 355.723 91

HNC 355.462 27 355.512 56 355.464 70 355.462 33

HCN 368.512 50 368.566 40 368.517 85 368.512 27

HF 301.111 75 301.129 55 301.114 94 301.112 56

N2 399.790 72 399.850 81 399.776 81 399.790 26

N2H2 436.086 47 436.131 30 436.083 92 436.085 65

CO 383.033 11 383.076 77 383.035 74 383.033 68

CH2O 424.468 20 424.511 57 424.465 44 424.468 24

HNO 468.916 01 468.951 44 468.916 98 468.915 76

H2O2 537.172 43 537.218 37 537.173 39 537.172 67

HOF 552.682 78 552.732 85 552.685 21 552.684 01

CO2 642.989 11 643.066 16 642.990 46 642.989 94

F2 574.120 59 574.167 43 574.118 56 574.122 29

O3 830.553 50 830.614 45 830.554 52 830.553 84
¯δ 0.037 67 −0.000 83 0.000 18

σ 0.021 10 0.004 29 0.000 66

Table B.7: DF-MP2-R12/2*A’ non-invariant valence negative correlation energies in mil-

lihartree with VTZ AO and RI basis sets. The exact column of data does not use the DF

approximation and the subscequent columns use the DF basis shown. Mean and standard

deviation in millihartree.
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molecule R12 6 9 12

H2 30.977 27 27.053 43 27.831 05 30.962 74

CH2 147.927 98 119.674 14 125.893 26 147.890 98

CH4 211.956 57 171.614 03 180.470 08 211.937 13

NH3 254.609 83 193.123 46 223.230 92 254.544 12

H2O 291.737 41 204.365 36 262.128 21 291.677 74

C2H2 341.266 58 278.812 15 291.178 75 341.650 78

C2H4 365.394 06 295.512 40 310.915 13 365.775 62

HNC 365.824 19 286.940 69 321.906 34 365.914 20

HCN 379.154 69 303.680 93 334.051 23 379.284 65

HF 320.052 86 203.274 53 288.238 89 320.058 40

N2 415.696 64 323.676 15 370.115 67 415.551 24

N2H2 451.597 83 345.324 48 394.093 22 451.685 48

CO 397.239 90 296.801 99 356.165 56 397.180 81

CH2O 442.137 00 327.782 04 389.871 17 442.272 79

HNO 495.164 46 359.998 09 434.899 77 495.117 87

H2O2 619.092 42 393.335 26 507.509 77 618.307 81

HOF 670.493 45 394.018 38 542.282 04 666.438 21

CO2 681.468 07 495.428 38 611.342 16 681.422 88

F2 751.046 15 401.637 33 587.140 04 741.823 81

O3 929.134 27 645.592 78 792.484 11 929.223 67
¯δ −0.124 72 −0.060 51 −0.000 66

σ 0.094 23 0.042 91 0.002 17

Table B.8: DF-MP2-R12/2*A’ and DF-MP2-F12/2*A’ negative correlation energies for

the test set of molecules in -millihartree with six, nine and twelve Gaussian functions

comprising the geminal function of the F12 method. The geminal is comprised of an even

tempered basis with centre 3 and ratio 3. The weight function has an exponent with value

ω = 0.2. The AO basis used is VDZ, the RI basis is uncontracted VDZ and the DF basis

V5Z/MP2fit. Mean and standard deviation in hartree.
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molecule VDZ VTZ VQZ V5Z

H2 30.977 27 30.602 63 30.741 54 30.809 83

CH2 147.927 98 138.084 94 138.219 03 139.044 97

CH4 211.956 58 199.090 62 199.645 28 200.515 07

NH3 254.609 81 234.590 19 233.554 75 235.540 26

H2O 291.737 40 261.640 92 259.026 89 262.007 37

C2H2 341.266 33 311.100 52 310.479 89 312.046 34

C2H4 365.394 04 336.834 84 336.496 13 338.647 73

HNC 365.824 19 334.107 41 333.482 70 335.485 58

HCN 379.154 66 345.407 46 346.479 95 348.481 08

HF 320.052 86 275.723 93 270.973 04 273.947 83

N2 415.696 55 371.687 44 373.992 95 374.776 80

N2H2 451.597 83 406.567 92 406.477 59 409.570 27

CO 397.239 89 358.153 25 358.663 79 360.278 91

CH2O 442.136 97 397.284 15 397.495 59 400.087 25

HNO 495.164 50 436.653 74 438.694 52 438.399 99

H2O2 619.092 44 499.635 71 493.929 53 498.115 98

HOF 670.493 45 514.024 10 506.376 07 509.100 23

CO2 681.468 05 607.219 78 609.917 74 613.203 65

F2 751.046 15 534.461 48 523.984 91 524.610 01

O3 929.134 32 789.091 29 779.267 03 780.910 23
¯δ 0.011 74 −0.047 27 −0.048 97 −0.047 08

σ 0.039 34 0.022 19 0.024 55 0.024 17

Table B.9: MP2-R12/2*A’ invariant negative correlation energies in millihartree for the

test set of molecules. The AO basis VDZ, the RI basis is the uncontracted form of the

basis given as the column heading. The DF basis is V5Z/MP2fit in all cases. The mean

and standard deviation are as compared to the MP2 correlation energies in a V[5,6]Z basis

set and are given in hartree.
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molecule VTZ VQZ

VTZ VQZ V5Z VQZ V5Z

H2 32.863 70 32.837 60 32.860 32 33.744 54 33.746 44

CH2 149.149 05 148.219 78 148.128 12 153.334 43 153.223 41

CH4 211.892 58 211.033 45 211.342 59 216.449 63 216.510 52

NH3 254.462 40 252.549 70 252.310 45 260.519 57 260.011 55

H2O 287.341 42 283.956 97 282.911 56 294.876 12 293.972 01

C2H2 332.866 59 330.606 46 330.323 96 340.436 89 340.087 97

C2H4 360.418 73 357.889 55 357.935 72 367.920 80 367.548 04

HNC 359.739 31 356.645 16 356.667 86 368.057 70 367.730 82

HCN 372.430 52 369.323 89 369.520 62 381.058 61 380.662 62

HF 303.294 09 298.319 44 296.526 40 312.626 96 311.066 50

N2 404.643 63 400.350 48 400.139 28 414.301 62 413.833 26

N2H2 443.600 58 438.537 13 438.017 62 453.155 11 452.229 70

CO 388.519 79 383.818 24 384.190 24 397.334 30 396.812 85

CH2O 431.392 27 426.166 90 426.356 53 441.143 92 440.384 79

HNO 477.117 97 470.294 79 469.412 30 488.462 30 486.843 35

H2O2 549.804 94 538.774 97 537.372 91 559.787 58 556.986 92

HOF 565.083 92 552.901 59 550.057 20 577.452 93 574.297 17

CO2 659.673 53 651.213 71 652.256 68 675.025 14 673.713 04

F2 599.504 02 572.246 36 568.787 70 599.307 31 595.779 26

O3 853.490 60 835.297 15 833.001 61 869.624 48 862.712 40
¯δ −0.014 50 −0.020 81 −0.021 46 −0.006 13 −0.007 46

σ 0.006 06 0.010 94 0.011 72 0.002 86 0.004 30

Table B.10: MP2-R12/2*A’ invariant negative correlation energies in millihartree for the

test set of molecules. The AO basis is given on the top row, the RI basis is the uncontracted

form of the basis given on the second row. The DF basis is V5Z/MP2fit in all cases. The

mean and standard deviation are as compared to the MP2 correlation energies in a V[5,6]Z

basis set and are given in hartree.
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molecule VDZ VTZ VQZ

H2 1.21171869 3.28980389 5.34170438

CH2 0.99694996 2.34151354 3.42422357

CH4 1.07761525 2.36317313 4.06326754

NH3 1.29640917 2.68057844 4.58380468

H2O 1.59339757 3.17982296 5.38751937

C2H2 0.99674949 1.99511333 3.41684339

C2H4 1.04096563 2.16156653 3.70987696

HNC 1.19284888 2.27339692 3.83445323

HCN 1.14880566 2.23474714 3.76078652

HF 1.98695282 3.97197779 6.58184161

N2 1.30772572 2.51708344 4.12217187

N2H2 1.27562791 2.52313874 4.21529166

CO 1.41869983 2.68123508 4.42110400

CH2O 1.38936964 2.75080974 4.60935513

HNO 1.45130765 4.29940487 6.90055728

H2O2 1.55731510 3.09529580 5.16495861

HOF 1.76745368 3.53994850 5.83631770

CO2 1.50935219 2.88918842 4.77358694

F2 1.96738597 3.96629394 6.45077054

O3 1.56645308 3.06718722 5.03006988
¯δ 1.38765519 2.89106397 4.78142524

Table B.11: Optimum value of ω for the test set of molecules. The AO basis used is given

as the column heading, the RI basis is uncontracted V5Z and the DF basis is V5Z/MP2fit.

The geminal is comprised of a single Gaussian function, exponent ω. Omega is obtained

by minimisation with respect to the energy using the Powell method [83].
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molecule VDZ VTZ VQZ

H2 33.974 63 33.748 63 33.952 88

CH2 152.300 42 152.676 04 154.177 32

CH4 215.942 39 215.995 36 217.466 00

NH3 255.426 24 258.570 01 261.510 32

H2O 286.205 17 291.988 63 296.281 97

C2H2 339.091 07 339.490 74 342.004 10

C2H4 366.928 30 367.074 38 369.724 59

HNC 365.678 89 366.864 25 370.005 86

HCN 379.071 15 379.858 88 382.878 77

HF 299.865 58 308.104 45 314.142 27

N2 412.943 50 413.126 55 416.738 71

N2H2 449.032 51 450.596 58 454.994 48

CO 393.822 48 395.584 57 399.491 88

CH2O 436.034 04 438.802 64 443.304 40

HNO 482.399 95 485.219 08 490.696 47

H2O2 545.810 47 554.401 29 561.805 03

HOF 559.138 39 570.185 94 579.212 66

CO2 667.291 31 671.399 93 678.430 10

F2 578.437 82 591.160 85 601.679 08

O3 856.179 95 860.165 52 870.316 38
¯δ −0.012 58 −0.009 11 −0.004 42

σ 0.008 82 0.005 39 0.002 51

Table B.12: Invariant negative correlation energies calculated using the MP2-F12/2*A’

with averaged ω found in table B.11, denoted by ¯δ. The AO basis used is given as the

column heading, the RI basis is uncontracted V5Z and the DF basis is V5Z/MP2fit. The

geminal is comprised of a single Gaussian function, exponent ω. The mean and standard

deviation are as compared to the MP2 correlation energies in a V[5,6]Z basis set and are

given in hartree.
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molecule Slater Gaussian Jastrow Slater Jastrow

H2 34.200 33 34.175 50 34.085 56

CH2 155.610 85 155.177 28 154.685 17

CH4 218.945 89 218.516 51 217.903 82

NH3 263.553 53 261.619 99 260.888 48

H2O 298.972 34 295.550 64 294.745 89

C2H2 345.002 82 344.715 83 343.742 81

C2H4 372.614 73 372.132 87 371.050 32

HNC 373.263 73 371.857 97 370.622 48

HCN 386.169 55 384.879 43 383.707 42

HF 317.906 82 313.183 25 312.547 20

N2 420.204 08 417.531 00 416.206 06

N2H2 458.836 74 456.146 95 454.759 83

CO 403.185 65 400.649 44 399.310 67

CH2O 447.279 96 444.544 72 443.236 36

HNO 495.164 57 491.253 87 489.812 66

H2O2 567.301 77 561.615 69 560.029 53

HOF 585.748 19 578.736 27 577.324 14

CO2 684.772 36 680.106 59 678.025 87

F2 609.141 57 600.814 63 599.561 08

O3 878.226 85 870.513 07 868.231 78

Table B.13: Invariant MP2-F12/2*A’ negative correlation energies in millihartree for the

test set of molecules. The AO basis set is VTZ, The RI basis set is uncontracted V5Z and

the DF basis set is V5Z/MP2fit. In all cases the Gaussian geminal is constructed from an

even tempered basis set comprising of 9 Gaussian functions centred at 8 with ratio 3. The

value of ω in all cases is 1


