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Density fitting in second-order linear- r 12 Møller–Plesset perturbation
theory

Frederick R. Manby
School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom

~Received 29 April 2003; accepted 3 June 2003!

Density fitting is used to approximate all of the 4-index 2-electron integrals in the explicitly
correlated MP2-R12 theory of Kutzelnigg and Klopper. The resulting method—DF-MP2-R12—
requires only 2- and 3-index integrals over various 2-electron operators, and is extremely efficient.
The errors arising from the fitting process can be made small by using robust fitting formulas
throughout, such that the error in each fitted integral is quadratic in the error of the fitted orbital
product densities. Sample calculations on glycine reveal that for large basis sets DF-MP2-R12 is
faster than a standard MP2 calculation and takes only a small fraction of the time for the Hartree–
Fock calculation. ©2003 American Institute of Physics.@DOI: 10.1063/1.1594713#
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I. INTRODUCTION

One of the major barriers to accurate electronic struct
calculations on systems of chemical interest is theO( l 23)
convergence of orbital-based CI expansions with maxim
orbital angular momentuml in the atomic orbital~AO! basis.
This slow convergence can be attributed to the difficulty
describing the 2-electron cusp1 in terms of sums of product
of 1-electron functions.2–4 It was understood many decad
ago that highly accurate correlation energies could be
tained by incorporating into the wave function terms depe
ing explicitly on the interelectronic distances.5,6

Such explicitly correlated methods are capable of de
ering highly accurate energies and properties for light ato
and small molecules, but are fraught with difficulties f
larger systems. These difficulties arise from the need to c
pute integrals over 3- and 4-electron operators, which are
only individually complicated to evaluate, but are extreme
numerous. In a calculation withm basis functions there ar
O(m6) 3-electron integrals, and for the kind of molecules
which such methods are presently applicable, there is
hope of reaching the asymptotic region where integ
screening and local methods might reduce this toO(m3) or
less.

All advances concerning the application of explicit
correlated wave functions to larger molecules have there
concentrated on avoiding or simplifying the many-electr
integrals. For instance, the 4-electron integrals in explic
correlated MP2 theory can be avoided by the use of
weak-orthogonality functional.7 The transcorrelated
approach8–11uses a non-Hermitian, transformed Hamiltoni
which has eigenfunctions lacking the usual correlation cu
Orbital-based CI expansions therefore converge m
quicker in the transcorrelated method, and only 3-elect
integrals ever arise. There has been a recent revival of in
est in this type of theory.12–15

The early studies by Hylleraas on the helium atom5,6 ~see
4600021-9606/2003/119(9)/4607/7/$20.00
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Ref. 16 for a modern perspective and Ref. 17 for Engl
translations! revealed that inclusion of the linear termr 12

lead to a great increase in accuracy in the treatment of
relation. This observation is of course closely related to
linear form of the correlation cusp at the point
coalescence.1 There are two problems with linearr 12 terms
in a molecular context: first, the integrals are extrem
difficult;18 and second, integrals overr 12 become ever-large
as the charge distributions describing the two electrons
further apart. The contribution to the correlation energy fro
such distant charge distributions is small, because, in ins
tors at least, correlation effects die away likeR26. Nonethe-
less these spuriously large integrals may present nume
and computational problems.

A popular alternative to linearr 12 is an expansion in
Gaussian geminals of the form exp(2gr12

2 ).19–22These func-
tions are not capable of delivering the exact cusp shape a
point of coalescence, but the volume element 4p r 12

2 makes
the contribution to the correlation energy from shortr 12 very
small. Numerical experiments have shown thatr 12 can be
fitted accurately in the relevant range with even modest
of 6–15 Gaussian geminals.22 The two advantages of Gaus
ian geminals are that they are short-rangedr 12 and that they
lead to much simpler integrals which can be treated in ess
tially the same way as standard Coulomb integrals.23,24

Notwithstanding the progress in these directions ther
still really only one explicitly correlated approach which h
escaped the restriction to tiny molecules. The R12 ansat
Kutzelnigg and Klopper offers enormous savings in the wo
involved in linear-r 12 theories by using resolutions of th
identity ~RIs! to reduce all 3- and 4-electron integrals
sums of products of various 2-electron integrals.25,26Thus for
example the integralŝpqrur 12r 23

21ustu& are simplified by in-
serting an RI in the coordinates of the electron that coup
the two 2-electron operators,

^pqrur 12r 23
21ustu&'^pqur 12usx&^xrur 12

21utu&. ~1!
7 © 2003 American Institute of Physics
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4608 J. Chem. Phys., Vol. 119, No. 9, 1 September 2003 Frederick R. Manby
Here and throughout the paper, summation over repe
dummy indices is implied. In a similar way all many
electron integrals can be approximated as sums of prod
of 2-electron integrals.

In the simplest such theory, denoted MP2-R12,25–28 the
usual first-order expansion in doubly excited determinan

u1&5tab
i j uF i j

ab& ~2!

is augmented with double excitations into explicitly corr
lated 2-electron terms of the form,

uui j &5Q̂12r 12u i j &. ~3!

HereQ̂12 is the strong orthogonality projector

Q̂125@12 P̂~1!#@12 P̂~2!#, ~4!

where

P̂~m!5u i ~m!&^ i ~m!u ~5!

with the summation restricted to occupied orbitals. One p
ceeds by minimizing the Hylleraas functional@see Eq.~7a!
of Ref. 6 and the text that precedes it#

^1uH02E0u1&12^1uH12E1u0&>E2 ~6!

to obtain the MP2 energy. Extensive details are given e
where and will not be repeated here.26,29

The minimization of the Hylleraas functional and th
evaluation of the MP2-R12 energy involves the norm
2-electron repulsion integrals,

~pqurs!5E dr1E dr2cp* ~r1!cq~r1!r 12
21c r* ~r2!cs~r2!,

~7!

and the new 2-electron integrals,

~pqur 12urs!5E dr1E dr2cp* ~r1!cq~r1!

3r 12c r* ~r2!cs~r2! ~8!

and

~pqu@ t̂1 ,r 12#urs!5E dr1E dr2cp* ~r1!cq~r1!

3@ t̂1 ,r 12#c r* ~r2!cs~r2!, ~9!

where t̂1521/2¹1
2. No 3- or 4-electron integrals are re

quired. The cost of the method largely resides in the eva
tion and transformation of these three classes of 2-elec
integrals, and MP2-R12 should cost only around 4–5
much as conventional MP2.30

Modern applications of MP2 to larger systems, howev
are only possible because the ‘‘conventional’’ approach
seldom used. There are many ingenious formulations of M
theory that are efficient enough to allow calculations on la
systems and/or with large basis sets. The local methods
troduced by Pulay and Saebø31–34 capitalize on the short
range nature of the correlation~which decays in insulators
like R26) and programs can be written for which all r
sources~CPU time, disk, memory! have asymptotic linea
scaling with respect to system size.35,36 The Laplace trans-
Downloaded 09 Apr 2013 to 150.203.35.130. This article is copyrighted as indicated in the abstract.
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form approach of Almlo¨f37–39 allows the MP2 energy to be
evaluated in the AO basis, and here again it is possible
take advantage of the short-ranged behavior of correla
effects.40

Alternatively dual basis sets can be used41 in which a
larger basis set is used to span the virtual space than
occupied; this has the added advantage of reducing the
needed for the SCF calculation, a bottleneck in large-sc
MP2 calculations. Yet another approach is to eliminate
need for 4-index integrals by using density fitting. This a
proach does not reduce the asymptotic scaling of MP2 the
with respect to system size, but does substantially reduce
prefactor and reduces the scaling with respect to the num
of basis functions per atom42,43 from quartic to cubic. Unfor-
tunately such methods have tended to be denoted by
prefix RI-; here, to avoid confusion with the RIs that for
the basis of MP2-R12 theory, such methods are describe
‘‘density fitted’’ so that DF-MP2 refers to the fitted MP
theory. Combined methods such as DF-LMP2~Ref. 44! and
DF-LCCSD ~Ref. 45! appear to have great potential in th
effort to perform calculations with realistically large bas
sets on extended molecules.

II. THEORY

A. Density fitting

Density fitting has a long and varied history inab initio
correlation methods, and was probably first used by B
and Shavitt in a calculation of the potential energy surface
H3.46 They avoided the 3-center Coulomb integrals in th
Slater basis set by least-squares fitting 2-center product
Slater functions in a small auxiliary basis. A similar idea w
used to avoid such integrals in DFT,47 but in theab initio
context the next important paper is by Whitten48 in which
two crucial conclusions are drawn. The integral (pqurs) is
approximated by fittingupq) and urs) in an auxiliary basis
set,

upq)'upq̃)5Cpq
A uA) ~10!

and computing the approximate integral (pq̃urs̃).
The first important conclusion of Whitten is that the c

efficients that best describeupq) for the purpose of approxi-
mating (pqurs) are independent ofurs). If this were not the
case, the number of equations to solve would be prohibit
The second important conclusion is that the coefficie
should be obtained not by least squares but by minimizin

Dpq5~pq2pq̃upq2pq̃!, ~11!

the Coulomb energy of the fitting residualupq2pq̃). This
observation was made, apparently independently, by Dun
et al. who used the Coulomb criterion to fit the whole ele
tronic density in DFT;49 these authors also point out th
minimizing the error in Eq.~11! minimizes the least-square
error in the electric fields because

~pq2pq̃upq2pq̃!5
1

4p E dr uEpq~r !2Epq̃~r !u2, ~12!

where Epq and Epq̃ are the electric fields arising from th
exact and fitted orbital product densities.
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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So, the procedure is to minimizeDpq to obtain the coef-
ficients that appear in the expansion of Eq.~10! by setting
]Dpq /]Cpq

A 50. This yields the linear equations

JABCpq
B 2Jpq

A 50, ~13!

whereJAB[(AuB) andJpq
A [(Aupq). The approximate ma

trix element can then be computed by

~pqurs!'~pq̃urs̃!5Cpq
A JABCrs

B 5Jpq
A @J21#ABJrs

B . ~14!

Writing J̄rs
A 5@J21#ABJrs

B [Cpq
A we arrive at the condense

expression

~pq̃urs̃!5Jpq
A J̄rs

A ~15!

for the approximate integral.
The significance of the approximation in Eq.~15! is ex-

posed when one considers the error

~pqurs!2~pq̃urs̃!5~pq2pq̃urs2rs̃!1~pq̃urs2rs̃!

1~pq2pq̃urs̃! ~16!

between the exact and the fitted integral. The last two te
of Eq. ~16! can be seen@through Eq.~13!# to be zero and so

~pqurs!2~pq̃urs̃!5~pq2pq̃urs2rs̃! ~17!

and the error in the fitted integral is quadratic in the errors
the fitted densities. This analysis is due to Dunlap and fitt
expressions of this kind are calledrobust; see Refs. 50 and
51 for recent accounts of robust fitting in DFT and oth
contexts, respectively.

For evaluating standard 2-electron integrals one can
nore the issue of robustness because the simple approx
tion (pq̃urs̃) happens to be robust; but in MP2-R12 there
other 2-electron integrals, and care has to be taken to
explicitly robust formulas. Such formulas play an importa
role in the current work, and may well be useful elsewhe
so they are described below.

Suppose we wish to approximate integrals over
2-electron operatorv̂12 using a fitting criterionŵ12. Then we
obtain the coefficients by minimizing

Dpq
w 5~pq2pq̃uŵ12upq2pq̃!. ~18!

However the error in the simple, approximate integ
(pq̃uv̂12urs̃)

~pquv̂12urs!2~pq̃uv̂12urs̃!

5~pq2pq̃uv̂12urs2rs̃!1~pq̃uv̂12urs2rs̃!

1~pq2pq̃uv̂12urs̃! ~19!

contains terms linear in the error in the fitted densit
which—unlike those in Eq.~16!—do not vanish. The form of
Eq. ~19! suggests the alternative approximation,

~pquv̂12urs!robust5~pq̃uv̂12urs!1~pquv̂12urs̃!

2~pq̃uv̂12urs̃! ~20!

which does satisfy the requirement that (pquv̂12urs)
2(pquv̂12urs)robust is quadratic in the fitting error.51

The need for robust formulas for ther 12 integrals could
in principle be lifted by choosingŵ125r 12. This is inconve-
nient, though, because the integral operator with kernelr 12 is
Downloaded 09 Apr 2013 to 150.203.35.130. This article is copyrighted as indicated in the abstract.
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indefinite, and although a fitting scheme can be made w
this criterion,52 charge constraints have to imposed. Co
straining the linear equations leads to terms in (pqur 12urs)
2(pq̃ur 12urs̃) linear in the fitting error, and robust formula
are therefore necessary anyway. Since the work can be
duced by using the Coulomb (ŵ125r 12

21) criterion through-
out, ther 12 criterion will not be considered further here.

B. MP2-R12 viewed in terms of orbital fitting

It is interesting from the point of view the current wor
to note that the RI of R12 theories can also be cast in te
of a fitting procedure. To see this it is convenient to use
generalized Mulliken notation for the 3-electron integral w
will consider so that

^prtur 12r 23
21uqsu&[~pqur 12ursur 23

21utu!. ~21!

The integral (pqur 12ursur 23
21utu) can be viewed as an overla

integral between a pair of one electron functions,

fpq
r ~r2!5E dr1@cpcq#~r1!c r~r2!r 12 ~22!

and

c tu
s ~r2!5E dr3@c tcu#~r3!cs~r2!r 23

21, ~23!

where real orbitals have been assumed. Overlap integrals
tween one of these objects and an orbital are the 2-elec
integrals,

^fpq
r uy&5~pqur 12ury ! ~24!

and

^yuc tu
s &5~ysutu! ~25!

and the overlap of these two objects together is
3-electron integral,

^fpq
r uc tu

s &5~pqur 12ursur 23
21utu!. ~26!

The RI procedure for this integral turns out to be equival
to fitting ufpq

r & and uc tu
s & in a basis—in the original

Kutzelnigg and Klopper formulation in the MO basis25,26but
more recently using a different fitting basis.29 To see the
equivalence, we denote the fitted objectsuf̃pq

r & anduc̃ tu
s & and

introduce a measure of the fitting error,

Df5^fpq
r 2f̃pq

r ufpq
r 2f̃pq

r & ~27!

with a similar expression forc tu
s . Representing the fitted

object in an orthonormal basis

ufpq
r &'uf̃pq

r &5Cpq
r ;yuy& ~28!

and minimizingDf with respect to theCpq
r ;y we obtain

Cpq
r ;y5~pqur 12ury !. ~29!

The coefficients foruc̃ tu
s & can be found in a similar way, an

one has

uc̃ tu
s &5~ tuusx!ux&. ~30!

Taking Eq.~26! and using the approximations above we c
compute
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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~pqur 12ursur 23
21utu!'^f̃pq

r uc̃ tu
s &5~pqur 12ury !~ysutu!

~31!

which, after translation to Dirac notation, can be seen to
equivalent to the RI expression in Eq.~1!. It is perhaps in-
teresting to note that the fit implicit in MP2-R12 theory
robust because

~pqur 12ursur 23
21utu!2~pqur 12ury !~ysutu!

5^fpq
r 2f̃pq

r uc tu
s 2c̃ tu

s &. ~32!

C. Density fitting in MP-R12 theory

As we have discussed one needs in MP2-R12 the
standard 2-electron integrals and also integrals of the f
(pqur 12urs) and (pqu@ t̂1 ,r 12#urs). Using the robust formula
of Eq. ~20! we are ready to treat the first of these,

~pqur 12urs!'~pqur 12urs!robust

5~pq̃ur 12urs!1~pqur 12urs̃!2~pq̃ur 12urs̃!.

~33!

Inserting the expansion@Eq. ~10!# and the definition of the
coefficients@Eq. ~13!# we obtain

~pqur 12urs!robust5 J̄pq
A Rrs

A 1Rpq
A J̄rs

A 2 J̄pq
A RABJ̄rs

B , ~34!

whereRAB[(Aur 12uB) andRpq
A [(pqur 12uA).

Fitting the commutator integrals (pqu@ t̂1 ,r 12#urs) is a
little more complicated. The presence of the kinetic ene
operator eliminates the possibility of fittingupq) directly be-
cause thet̂1 acts onuq& and not onupq) as a whole. One can
still fit urs) to obtain the nonrobust approximation

~pqu@ t̂1 ,r 12#urs!'~pqu@ t̂1 ,r 12#urs̃!5Xpq
A J̄rs

A , ~35!

whereXpq
A [(pqu@ t̂1 ,r 12#uA) but this leads to serious error

in the final energies.
A robust formula can be derived by rearranging the t

get integral,

~pqu@ t̂1 ,r 12#urs!5~$ t̂1p%q2p$ t̂1q%ur 12urs!

5~@pq#ur 12urs!, ~36!

where the last equality defines the notationu@pq#). Since
u@pq#) is essentially just an orbital product density it can
fitted, although the adequacy of available fitting basis s
remains to be seen. Using Eqs.~20! and ~36!, the robust
fitting formula

~pqu@ t̂1 ,r 12#urs!robust5~@pq̃#ur 12urs!1~@pq#ur 12urs̃!

2~@pq̃#ur 12urs̃! ~37!

can be derived. Expanding each term we obtain

~pqu@ t̂1 ,r 12#urs!robust5Ȳpq
A Rrs

A 1Xpq
A J̄rs

A 2Ȳpq
A RABJ̄rs

B ,
~38!

whereȲpq
A [@J21#ABYpq

B andYpq
A [(pqu@ t̂1 ,r 12

21#uA).
The DF-MP2-R12 method can be summarized as M

R12 theory with the three classes of 2-electron integrals
proximated according to Eqs.~15!, ~34!, and~38!.
Downloaded 09 Apr 2013 to 150.203.35.130. This article is copyrighted as indicated in the abstract.
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D. Implementation of integrals

DF-MP2-R12 requires no 4-index integrals, but requir
four kinds of 3-index integrals (abuA), (abur 12uA),
(abu@ t̂1 ,r 12#uA), and (abu@ t̂1 ,r 12

21#uA), and two types of
2-index integrals (AuB) and (Aur 12uB).

The 2-index integral evaluation is based on the recurs
approach of Obara and Saika~OS!,53 and we use~almost!
their notation. The basic objects are unnormalized Carte
Gaussians

ua)[g~r ;a,A,a!5xA
axyA

ayzA
aze2ar A

2
~39!

with exponenta, centerA, and angular momentum vectora.
Here xA5x2Ax , with similar expressions foryA and zA ,
and r A5ur2Au. We also use the notation1x5(1,0,0), etc.

The recurrence relation for the 2-index Coulomb in
grals is simple specialization of the 4-index formula of O

~a11i ub!(m)5PAi~aub!(m11)1
ai

2a F ~a21i ub!(m)

2
j

a
~a21i ub!(m11)G1

bi

2z
~aub21i !

(m11),

~40!

where z5a1b, P5(aA1bB)/z, PAi5Pi2Ai , and j
5ab/z. The required integrals are obtained as (aub)
5(aub)(0). The recurrence starts from thes-only integrals
(0Au0B)(m) which are a special case of Eqs.~44!–~47! in OS.

The 2-indexr 12 integrals are obtained as a specializati
of Eq. ~17! of Ref. 54,

~a11i ur 12ub!5
ai

2a
~a21i ur 12ub!1

1

2j
~a11i ub!

1
AB i

2a
~aub!2

1

4ab
@ai~a21i ub!

1bi~aub21i !#; ~41!

this recurrence and that of Eq.~40! are executed simulta
neously.

All four classes of 3-index integrals are obtained by
summing the (aub) and (aur 12ub) with precomputed coeffi-
cients that describe a product of two Cartesian Gaussian
a sum of Cartesian Gaussians. Thus,

uab)5Tp
abup) ~42!

and so, for example,

~abuc!5Tp
ab~puc!. ~43!

The implicit summation in Eq.~43! runs over all components
p with 0<upu<uau1ubu.

The commutator integrals are treated in a similar m
ner. Following the analysis of Klopper and Ro¨hse30 we have

~abu@ t̂1 ,r 12#uc!5
a2b

a1b
~abuc!1“P•“R~abur 12uc!, ~44!

whereR5A2B. It is possible to precompute the coefficien
Qp

ab which define the gradient orbital product“P•“Ruab),
then
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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“P•“R~abuc!5Qp
ab~puc!, ~45!

where the summation runs over components up to the t
angular momentum plus one: 0<upu<uau1ubu11.

For the second class of commutator integrals we can
the identities

@ t̂1 ,r 12
21#52pd~r 12!2~“1r 12

21!•“1 ~46!

and (abud(r 12)uc)5^abc& to obtain

~abu@ t̂1 ,r 12
21#uc!52p

a2b

a1b
^abc&1“P•“R~abuc!, ~47!

where^abc& are 3-index overlap integrals.

E. Implementation of DF-MP2-R12

DF-MP2-R12 has been implemented in the quant
chemistry packageMOLPRO.55 The 3-index integrals de
scribed in the preceding section are computed, transfor
on-the-fly and stored in core. Although this presents a bot
neck for large cases, the method can readily be applie
interesting problems using a standard PC. An integral di
version is currently in preparation. Only closed-shell D
MP2-R12/A has been implemented26 but the generalization
to DF-MP2-R12/B requires no new 2-electron integrals. T
most time consuming step is the assembly of the 4-in
integrals, but these are implemented asN(N11)/2 multipli-
cations ofM3m matrices forN occupied MOs,m AOs, and
M auxiliary functions. These matrix multiplications ca
therefore be parallelized using existing parallel routines.

III. EXAMPLES

We first examine the accuracy of the approximations
DF-MP2-R12 for the water molecule. The errors arisi
from fitting the three types of integrals are analyzed in Ta

TABLE I. MP2 and MP2-R12/A correlation energies~in hartree! for water
in various basis sets. Fitting errors relative to unfitted methods are give
microhartree:dJ is the error when only Coulomb integrals are fitted;dJR is
the error with Coulomb andr 12 integrals fitted; anddDF is the error in the
fully fitted method. Basis sets are labeled VnZ meaning cc-pVnZ for the AO
basis; VnZ in the auxiliary basis column refers to the cc-pVnZ/MP2-fit
basis set optimized for the corresponding AO set.

Basis MP2 MP2-R12

AO Aux Energy dDF Energy dJ dJR dDF

VDZ VDZ 20.219 749 287 20.300 108 25 51 81
VTZ 238 8 29 18
VQZ 221 210 25 22

VTZ VTZ 20.266 692 257 20.291 200 23 51 86
VQZ 218 7 25 2
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I for uncontracted cc-pVDZ and cc-pVTZ basis sets,56 using
the fitting sets of Weigendet al.57 The deviation between
MP2-R12 and DF-MP2-R12 is of the same order of mag
tude as that between MP2 and DF-MP2, but typically of t
opposite sign. Furthermore, the errors in DF-MP2-R12 a
ing from the fitting of Coulomb,r 12 and commutator inte-
grals tend to cancel, and particularly with larger fitting ba
sets, this leads to extremely small fitting errors of just a f
microhartree. It is worth noting that this cancellation shou
not be relied upon to apply to different geometries, syste
or levels of correlation treatment, but in any case the err
arising from the fitting of each class of integrals remain a
ceptably small.

To assess the accuracy of the fitting process in m
detail, calculations were performed on a test set of twe
small systems (BH3, CH4, NH3, H2O, HF, Ne, SiH4 , PH3,
H2S, HCl, Ar, F2 , N2 , HCN, CO, H2CO, H2O2, N2H4 ,
C2H2 , and C2H4) using the uncontracted cc-pVDZ basis a
fitting basis sets optimized for DF-MP2, cc-pVnZ/MP2-fit
with n5D,T,Q.57 For each set of calculations the mean e
ror d̄ and standard deviations were computed, and the nor
mal distribution functions,

r~d!5
1

sA2p
e2ud2 d̄u2/(2s) ~48!

plotted. In Fig. 1 the normal distributions of fitting errors
DF-MP2-R12 are compared with those in DF-MP2, and a
with the errors that arise in DF-MP2-R12 if the nonrobu
formula for the fitted commutator integrals is used@Eq. ~35!#.
It should be noted that a spuriously large error was noted
the calculation on Ne using the cc-pVQZ/MP2-fit basis, a
this error is the main contributor to the surprisingly lar
standard deviation of the errors in this case. This is proba
due to a defect in thes-type functions of that fitting basis
since replacing them with the uncontracteds-type orbitals of
the aug-cc-pV5Z basis reduces the error in DF-MP2-R12
a factor of over 20.

It is clear that the robust expression for the commuta
integrals in Eq.~38! performs much better than the standa
expression, despite the need to fit the derivative AO produ
@pq#. It can be seen from Fig. 1 that the fitting errors o
can expect in DF-MP2-R12 are similar in magnitude to tho
in DF-MP2. These errors will of course be reduced wh
fitting basis sets are optimized specifically for use
DF-MP2-R12. It would be convenient if there were som
correlation between the fitting error in DF-MP2 and that
DF-MP2-R12, however no such correlation is found.

To assess the performance of the method for a slig
larger system, calculations were performed on the glyc

in
-

;

sis
ts,
-

FIG. 1. Normal distribution functions for the errors be
tween MP2 and DF-MP2~solid line! and between MP2-
R12 and DF-MP2-R12~dashed line for robust method
dotted line with nonrobust commutator integrals!. All
calculations used the uncontracted cc-pVDZ AO ba
and three increasingly large DF-MP2 fitting basis se
optimized for cc-pV$D,T,Q%Z. In each case the horizon
tal axis is an error in millihartree.
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TABLE II. MP2, DF-MP2, and DF-MP2-R12 valence correlation energies in hartree for the glycine mole
in three correlation consistent basis sets, both contracted and uncontracted. In each case the ap
cc-pVnZ/MP2-fit fitting basis was used.

Basis

Contracted Uncontracted

2E2
MP2

2E2
DF-MP2 2E2

DF-MP2-R12 2E2
MP2 2E2

DF-MP2 2E2
DF-MP2-R12

VDZ 0.8019 0.8019 1.0511 0.8602 0.8601 1.1194
VTZ 1.0068 1.0067 1.0678 1.0217 1.0215 1.0991
VQZ 1.0806 1.0805 1.1079 1.0845 1.0844 1.1214
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molecule using contracted and uncontracted correlation c
sistent basis sets up to quadruple zeta. MP2, DF-MP2,
DF-MP2-R12 correlation energies are shown in Table II. P
ticularly noteworthy is the speed of these calculations:
uncontracted cc-pVQZ calculation has 500 AOs and 935
ting functions and the DF-MP2-R12 calculation takes arou
30 min on a single 2 GHz Intel Xeon PC. This compar
with almost 4 h for the HF calculation and 45 min for th
conventional MP2; all calculations were performed dire
and without symmetry.

IV. CONCLUSIONS

It has been shown that all of the 4-index integrals
quired in the explicitly correlated MP2-R12 theory can
treated by robust density fitting. The resulting DF-MP2-R
method is already significantly quicker than conventio
MP2 calculations, but comparisons with an existing DF-M
code44 suggest that there is substantial room for impro
ment. Nevertheless, the CPU times are not currently a bo
neck~DF-MP2-R12 calculation is invariably quicker than th
preceding HF calculation!. The current in-core implementa
tion of DF-MP2-R12 is bound by the cubically scalin
memory requirements, however a direct algorithm, wh
circumvents this bottleneck, is currently being develop
For extremely large problems the assembly step will beco
dominant, however it has recently been demonstrated tha
assembly step in DF-MP2 is rendered completely neglig
in a local formalism.44 The local DF-LMP2-R12 method is
an interesting possibility for the future, and will probab
require the use of a damped correlation factor as descr
by Samsonet al.58

There is much to be gained by considering a RI basis
distinct from the AO basis. This has been explored
Klopper and Samson29 and will soon be implemented in th
DF-MP2-R12 method. Then the 3-index integrals have
most one index from the large RI basis set, and consider
savings will be possible. It is also possible to consider al
native and novel combinations of density fitting and RIs
explicitly correlated theories, and it turns out that improv
ments on the convergence properties of MP2-R12
possible.59

Finally it is of course tempting to ask whether, in a de
sity fitted explicit correlation code, RIs are needed at
Work is in progress towards a Gaussian geminals prog
that uses density fitting to simplify the 3-electron integra
and developments in this direction will be reported el
where.
 150.203.35.130. This article is copyrighted as indicated in the abstract.
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