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In currently most popular explicitly correlated electronic structure theories, the dependence of the
wave function on the interelectronic distance rij is built via the correlation factor f (rij). While the
short-distance behavior of this factor is well understood, little is known about the form of f (rij) at
large rij. In this work, we investigate the optimal form of f (r12) on the example of the helium atom
and helium-like ions and several well-motivated models of the wave function. Using the Rayleigh-
Ritz variational principle, we derive a differential equation for f (r12) and solve it using numerical
propagation or analytic asymptotic expansion techniques. We found that for every model under con-
sideration, f (r12) behaves at large rij as r

ρ

12 eBr12 and obtained simple analytic expressions for the
system dependent values of ρ and B. For the ground state of the helium-like ions, the value of B
is positive, so that f (r12) diverges as r12 tends to infinity. The numerical propagation confirms this
result. When the Hartree-Fock orbitals, multiplied by the correlation factor, are expanded in terms
of Slater functions rne−βr, n = 0,. . . ,N, the numerical propagation reveals a minimum in f (r12) with
depth increasing with N. For the lowest triplet state, B is negative. Employing our analytical findings,
we propose a new “range-separated” form of the correlation factor with the short- and long-range
r12 regimes approximated by appropriate asymptotic formulas connected by a switching function.
Exemplary calculations show that this new form of f (r12) performs somewhat better than the cor-
relation factors used thus far in the standard R12 or F12 theories. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4822045]

I. INTRODUCTION

It is well known that the slow convergence of the stan-
dard, orbital based methods of the electronic structure theory
is due to the difficulties to model the exact wave function in
the regions of the configurations space where electrons are
close to each other.1, 2 It was shown by Kato3 and later elab-
orated by Pack and Byers Brown,4 and Hoffman-Ostenhofs
and co-workers5, 6 that in the vicinity of points where the po-
sitions of two electrons coincide, the wave function behaves
linearly in the interelectronic distance r12. Such a behavior, re-
ferred often to as the cusp condition, cannot be modeled by a
finite expansion in terms of orbital products.7 The solution to
this problem is to include the interelectronic distance depen-
dence directly into the wave function. This is the main idea of
the so-called explicitly correlated methods of the electronic
structure theory.1, 2, 8 It should be noted, however, that the ex-
plicit dependence on r12 is advantageous even if the cusp con-
dition is not fulfilled exactly as in the Gaussian geminal7, 9

or the ECG10, 11 (explicitly correlated Gaussian) approaches.
This is due to the fact that the correlation hole, i.e., the de-
crease of the wave function amplitude when the electrons
approach each other, is much easier to model with basis
functions depending explicitly on r12 than with the orbital
products.7

The simplest way to make the wave function r12 de-
pendent is to multiply some or all orbital products in its

a)E-mail: lesiuk@tiger.chem.uw.edu.pl

conventional configuration-interaction-type expansion by a
correlation factor f (r12). In this way, all r12 dependence is
contracted in one function of single variable. The idea of
the correlation factor is very old one. It can be traced back
to the late 1920s work of Slater12 and of Hylleraas,13, 14

who showed great effectiveness of including the linear r12

term in the helium wave function. More than two decades
later Jastrow15 proposed to use the correlation factor to con-
struct a compact form of correlated wave function for an N-
particle quantum system. The wave function form proposed
by Jastrow became popular in the electronic structure the-
ory as the guide function in diffusion-equation Monte Carlo
calculations.16, 17

The concept of the correlation factor is now most widely
used in the context of many-body perturbation theory18

(MBPT) and coupled cluster19 (CC) approach. It was first
observed by Byron and Joachain,20 and later by Pan and
King,21, 22 Szalewicz and co-workers,23–27 and Adamowicz
and Sadlej28–30 that the pair functions appearing in the energy
expressions of the MBPT or CC theory can be very efficiently
approximated when expanded in terms of explicitly correlated
basis functions. In the investigations of Refs. 21–30, the de-
pendence on the r12 coordinate was introduced through the
Gaussian factors, exp (−γir

2
12), with different γ i for different

basis functions (Gaussian geminals). Thus, the pair functions
were not represented with a single, universal correlation fac-
tor. Massive optimizations of thousands of nonlinear parame-
ters defining the Gaussian geminals (γ i and orbital exponents)
made these calculations very time consuming, limiting

0021-9606/2013/139(13)/134102/16/$30.00 © 2013 AIP Publishing LLC139, 134102-1
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applications of this approach to very small systems such as
Be, Li−, LiH, He2, Ne, or H2O.31–35

An important advance in the field of explicitly corre-
lated MBPT/CC theory came with the seminal 1985 work
of Kutzelnigg36 and the subsequent development of the so-
called R12 method by Kutzelnigg, Klopper, and Noga.37–41

In this work, a simple linear correlation factor f (r12) = r12

was used to multiply products of occupied Hartree-Fock (HF)
orbitals φi, i = 1, . . . n. The resulting set of explicitly cor-
related basis functions f (r12)φiφj, supplemented by products
of all virtual orbitals, was then used to expand the pair func-
tions of the MBPT/CC theory. The necessity to calculate
three and four-electron integrals, resulting from the Coulomb
and exchange operators and the strong orthogonality projec-
tors, was eliminated by suitable resolution of identity (RI) in-
sertions. Kutzelnigg and Klopper introduced also some use-
ful approximations37, 38 to the expression for the commutator
of the Fock operator with f (r12) which significantly simpli-
fied calculations. The practical implementation of the origi-
nal R12 scheme was, however, not free from problems. Most
importantly, in order to make the RI approximation accurate
enough the one-electron basis set used in calculations had
to be very large. This constraint was alleviated by Klopper
and Samson42 who introduced auxiliary basis sets for the RI
approximation which are saturated independently from the
size of the basis set that is used in the preceding Hartree-
Fock calculations. During the past two decades, the R12 tech-
nology was progressively refined by the use of many tricks
such as the density fitting,43 numerical quadratures,44 im-
provements in the RI approximations,45, 46 or efficient paral-
lel implementations.47, 48 A generalization to multi-reference
configuration interaction problems (MRCI-R12) has been de-
veloped by Gdanitz.49, 50 One should also mention the work
of Taylor and co-workers51–53 who expanded the linear cor-
relation factor r12 as a combination of the Gaussian func-
tions, and evaluated the necessary many-electron integrals
analytically.

Despite this progress, the results of R12 calculations
using small basis sets were not fully satisfying. In particular,
it was shown that the results of R12 calculations with
a correlation-consistent polarized valence double-zeta
(cc-pVDZ) basis set were of similar quality as ordinary or-
bital based calculations with a triple-zeta cc-pVTZ basis set.42

This is a rather small gain when compared to the accuracy
improvement in calculations with the quintuple-zeta basis sets
when the R12 method gives almost saturated results. In 2005,
May and co-workers54 reported a careful analysis of the errors
in R12 theory at the second-order Møller-Plesset (MP2-R12)
level. They concluded that the most significant source of
these errors are defects inherent in the R12 ansatz and it is
essential that r12 is replaced by a more accurate correlation
factor f (r12). Actually, a generalization of the R12 theory,
referred to as the F12 theory, allowing an arbitrary, nonlinear
correlation factor f (r12) was formulated by May and Manby55

already in 2004. In the same year, Ten-no56 proposed the
use of the exponential correlation factor [1 − exp (−γ r12)]/γ
(Slater-type geminal) and showed that it leads to much better
results than the linear one. This launched rapid development
of the F12 methods, which are now almost exclusively based

on the application of the exponential correlation factor.2, 8

This correlation factor turned out to be effective not only in
the conventional single-reference MBPT/CC theory but was
also successfully applied to improve the basis set conver-
gence of multireference methods: MRCI,57, 58 multireference
perturbation theory,59–61 multireference CC approach,62 and
even the multiconfiguration SCF procedure.63

It is clear that the shape of the correlation factor is im-
portant for the high quality of the results. One may, thus, ask
what is the optimal form of f (r12) that is correct not only in
the vicinity of the electrons coalescence points, but also at
arbitrary distance between electrons. This question has been
considered by Tew and Klopper64 who have investigated the
shape of the correlation factor for the helium atom and for
helium-like ions and compared it with several simple analytic
forms. These authors expanded f (r12) as a polynomial in r12

and determined its coefficients by minimizing the distance (in
the Hilbert space) between the exact wave function and its ap-
proximate form constructed using f (r12). They found that the
exponential correlation factor proposed by Ten-no56 is close
to optimal.

It should be pointed out that the method used by Tew and
Klopper64 is not accurate at larger values of r12 and does not
give any information about the asymptotic behavior of f (r12)
at large r12. This is a consequence of the assumed polynomial
form for f (r12), which prejudges the asymptotic behavior of
f (r12) and makes the obtained approximation to the optimal
f (r12) less reliable at larger r12. Moreover, the optimum f (r12)
as defined by Tew and Klopper does not guarantee the mini-
mum energy with respect to a variation of a fully flexible form
of the correlation factor.

In the present communication, we propose an alternative
method to determine the optimal form of f (r12), which is free
from the above drawbacks. We do not expand f (r12) in a basis
set but derive a differential equation for f (r12), resulting from
the unconstrained minimization of the Rayleigh-Ritz energy
functional. This differential equation can be solved by a nu-
merical propagation or using analytic, asymptotic expansion
techniques. In this way, the problems with the stability of the
optimal f (r12) at large r12, experienced by Tew and Klopper,64

are avoided and we obtain a reliable information on the large
r12 behavior of f (r12). This information, combined with the
well known information about the short-range behavior of
f (r12), gives us a possibility to propose a new form of the
correlation factor which is correct at small and large values
of r12. One may hope that the correlation factor more ade-
quate at large r12 will make up for the lack of flexibility of the
orbital basis to describe the long-range correlation and will
reduce the basis-set requirements of F12 calculations.

The paper is organized as follows. In Secs. II A and II B,
we analyze the simplest models of the correlated wave func-
tions for the ground and the lowest triplet state of the helium
atom and helium-like ions. In both cases, we establish dif-
ferential equations for the correlation factor f (r12) and solve
them exactly in the large-r12 domain. In Sec. II C, we inves-
tigate another model for the singlet ground state when the 1s
Slater orbital is replaced by a single Gaussian function. In
Sec. II D, we move on to the case of a self-consistent-field
(SCF) determinant multiplied by the correlation factor. In this
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case, we were not able to derive an explicit differential equa-
tion but we present equations sufficient to determine the lead-
ing term of the asymptotic expansion for f (r12). In Sec. II E,
we report changes that occur when a set of excited state deter-
minants is added to the approximate wave functions consid-
ered previously. In Sec. III, we propose a new analytical form
of the correlation factor and give results of simple numerical
calculations, followed by a short discussion. The paper ends
with conclusions in Sec. III C.

In our work, we use several special functions. The defini-
tion of these functions is the same as in Ref. 65. Atomic units
are used throughout the paper.

II. THEORY

A. Correlated Slater orbitals: Singlet state

We first consider a very simple model, a particular case
of the Slater-Jastrow wave function15, 17 for helium-like ions:

� = �0(r1, r2)f (r12), (1)

where r1 and r2 are the electron-nucleus distances, r12 is the
interelectronic distance, �0(r1, r2) = e−αr1 e−αr2 , and f (r12) is
the correlation factor. The orbital exponent α is left unfixed
— it can be later optimized without or with the correlation
factor. We determine f (r12) by unconstrained minimization of
the Rayleigh-Ritz energy functional,

E[f ] = 〈�0f |Ĥ |�0f 〉
〈�0f |�0f 〉 . (2)

The requirement that the functional derivative of E[f] is zero,

δE

δf (r12)
= 0, (3)

or equivalently that

∂E[f + μδf ]

∂μ

∣∣∣
μ=0

= 0, (4)

for every variation δf of f, leads to a differential equation for
f (r12). This equation has a unique solution (up to a phase) if
we assume that f is regular at r12 = 0 and that � = �0f is
square integrable.

To evaluate the functional derivative of Eq. (3), it is con-
venient to integrate over Euler angles first and perform the
integral over r12 at the end. This can be done by means of the
formula,∫ ∫

F(r1, r2, r12)dr1dr2

= 8π2
∫ ∞

0

∫ ∞

0

∫ r1+r

|r1−r|
r1r2r F(r1, r2, r) dr2 dr1 dr, (5)

where F(r1, r2, r12) is any function for which the integral on
the left exists. For states of Se symmetry and wave functions
expressed through interparticle distances r1, r2, and r12 ≡ r,
the Hamiltonian can be taken in the form

Ĥ =−1

2
(1+P12)

[
∂2

∂r2
1

+ 2

r1

∂

∂r1
+ r2 + r2

1 − r2
2

rr1

∂2

∂r1∂r
+ 2Z

r1

]

− ∂2

∂r2
− 2

r

∂

∂r
+ 1

r
, (6)

where P12 denotes permutation of the indices 1 and 2, and Z
is the nuclear charge. In Eq. (6) and in the following text, we
denote r12 by r to make equations more transparent and more
compact. Recently, Pestka66 presented generalizations of this
Hamiltonian valid for two-electron states of arbitrary angular
momentum. His results can be used to extend our approach to
states of higher angular momenta.

Evaluating the lhs of Eq. (4) with the help of Eq. (5) and
assuming that it vanishes for every variation δf, one obtains
the following equation for f,∫ ∞

0

∫ r1+r

|r1−r|
r1r2e

−α(r1+r2)(Ĥ − E)e−α(r1+r2)f (r)dr2dr1 = 0.

(7)

To obtain the explicit form of this equation, we have to per-
form integration over the variables r1 and r2. Using Eq. (6)
and the integral formulas from Appendix A, one finds

[−3+3(4αZ−2α−3α2+E)r+2α(12αZ−2α−9α2+3E)r2

+ 4α2(α2+E)r3]f (r)+[6 + 12αr+4α2r2−8α3r3]f ′(r)

+ r[3 + 6αr + 4α2r2]f ′′(r) = 0. (8)

Equation (8) is a second-order linear differential equation for
f (r). To the best of our knowledge, its solution cannot be ex-
pressed as a combination of the known elementary and/or spe-
cial functions. Since r = 0 is a regular singular point,67 at least
one solution can be found by using the following substitution:

f (r) =
∞∑

k=0

ckr
k+ρ. (9)

Inserting Eq. (9) into the differential equation, collecting
terms with the same power of r, and requiring the correspond-
ing coefficients to vanish identically, one obtains the indicial
equation:

3ρ(ρ + 1)c0 = 0, (10)

that is used to determine the value of ρ. Since f (r) must be
finite at r = 0, we reject ρ = −1 and pick up ρ = 0. Setting
ρ = 0, one obtains the first three coefficients:

c1 = 1

2
c0,

c2 = 1

12

(
6α2 − 8αZ − 2E + 1

)
c0,

c3 = 1

144

(
32α2 − 32αZ − 8E + 1

)
c0,

(11)

and the recursion relation for the remaining ones

4

3
cnα

2(E+1)+αcn+1

[
−4

3
α−α2

(
26

3
+ 8

3
n

)
+2E+8αZ

]
+ cn+2

[
−2α + 1

3
α2(2n + 1)(2n + 7) + E + 4αZ

]
+ cn+3[−1 + 2α(n + 3)(n + 4)] + cn+4(n+4)(n+5)=0.

(12)

The value of c0 is arbitrary and can be fixed by imposing a
normalization condition for the wave function. For the sake
of convenience, we put c0 = 1. The first equality in the

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.56.64.29 On: Sat, 20 Feb 2016

03:58:28



134102-4 Lesiuk, Jeziorski, and Moszynski J. Chem. Phys. 139, 134102 (2013)

system (11) is the cusp condition. It turns out that the cor-
relation factor obtained from the differential equation (8) au-
tomatically satisfies the electronic cusp, independently of the
values of α and Z, so that for small r the correlation factor
behaves as f (r) ∼ 1 + 1

2 r . This result is not surprising. The
wave function � depends on r through f (r) only, so that the
factor f (r) alone is responsible for the cancellation of the 1/r
singularity between the potential and kinetic energy terms.

To obtain the asymptotic form of the solution of the dif-
ferential equation (8), we keep only the terms proportional to
the highest (the third) power of r. The resulting equation

4α2f ′′(r) − 8α3f ′(r) + 4α2
(
α2 + E

)
f (r) = 0 (13)

has two linearly independent solutions e(α−√−E)r and
e(α+√−E)r . The acceptable solution is the one with the
exponent equal to α − √−E. This suggests the following
substitution:

f (r) = eBrg(r), (14)

where B = α − √−E. The differential equation for g(r), ob-
tained from Eqs. (8) and (14), is

g′′(r)[3r+6αr2+4α2r3]+g′(r)[6 + (18α−6
√−E)r

+(16α2 − 12α
√−E)r2 − 8α2

√−E r3]

+ g(r)[−3+6α−6
√−E+(6α2 − 18α

√−E

+12αZ−6α)r+(24α2Z−8α3−16α2
√−E−4α2)r2]=0.

(15)

We shall present a general method of deriving the
first term in the asymptotic expansion of f (r) by using the
information about the asymptotic behavior of the confluent
hypergeometric functions. When the differential equation is
given explicitly, as in the present section, and we know the
leading term of the asymptotic expansion of f (r), it becomes
easy to derive the complete asymptotic series. Method based
on the hypergeometric functions is even more useful in fur-
ther sections, where the complete form of the corresponding
differential equation cannot be simply obtained so we confine
ourselves merely to the derivation of the leading term in
the asymptotic expansion. For mathematical details of the
asymptotic expansion around an irregular singular point and
the dominant balance method we refer to the book of Bender
and Orszag.68

We start by neglecting in Eq. (15) the terms proportional
to r0 and r1. After simple rearrangements, one arrives at the
following differential equation:

(2αr + 3)h′′(r) + 2[4α − (2αr + 3)
√−E ]h′(r)

− 2α (1 + 2α + 4
√−E − 6Z)h(r) = 0. (16)

The next step is a simple linear change of variable
s = √−E (3 + 2αr) /α. The differential equation in the new
variable s reads

s h′′(s) + (4 − s)h′(s) + ρh(s) = 0, (17)

where

ρ = −1 + 2α − 6Z + 4
√−E

2
√−E

. (18)

Equation (17) is a special case of the confluent hypergeomet-
ric equation and has two linearly independent solutions ex-
pressed usually in terms of Kummer’s function65 M(−ρ, 4, s)
[denoted also by 1F1] and Tricomi’s function65 U(−ρ, 4, s).
The leading terms of the large-s (s > 0) asymptotic expan-
sions of these functions are65

M(a, b, s) = �(b)

�(a)
essa−b

[
1 + O

(
1

s

)]
, (19)

U (a, b, s) = s−a

[
1 + O

(
1

s

)]
. (20)

We pick up the normalizable solution U(−ρ, 4, s) and by re-
turning to the initial variable r,

U (−ρ, 4, s) =
[√−E

α
(3 + 2αr)

]ρ [
1 + O

(
1

r

)]

∼ rρ

[
1 + O

(
1

r

)]
, (21)

where the multiplicative constant was neglected since it is ir-
relevant in the present context. By combining this result with
Eq. (14), one finds that for large r,

f (r) = rρe(α−√−E)r

[
1 + O

(
1

r

)]
. (22)

Once the leading term of the asymptotic expansion is known,
it becomes quite straightforward to obtain the complete
asymptotic series. By inserting the following ansatz:

f (r) = rρ e(α−√−E)r
∞∑

k=0

dk

rk
, (23)

into the differential equation (8) and collecting the same pow-
ers of r−1, one finds that the indicial equation is automatically
satisfied by the choice of ρ given by Eq. (18). The recurrence
relation determining the dk coefficients is given by

dn[3n(n − 1) − (6n − 3)ρ + 3ρ2]

+ dn+1[−3 − 12nαρ + 6α(n2 + ρ2) + 6(n − ρ)
√−E]

+ dn+2[6(2αZ − 1) + 2α2(2n2 + 2n − 1)

−α2(8n + 4)ρ + 4α2ρ2 + 6α(2n − 1)
√−E]

+ dn+3[4α2(6Z − 2α − 1)+8α2(n+1−ρ)
√−E]=0,

(24)

with d0 arbitrary. Equation (24) is also valid for n = −1 and
n = −2 provided that we assume that dn = 0 for n < 0.
The asymptotic series for the second (unphysical) solution of
Eq. (8), behaving at large r as r−ρ−4 e(α+√−E)r [1 + O(1/r)],
can be obtained in the same way.

Summarizing, we found that the correlation factor in
Eq. (1) possesses large-r asymptotic expansion given by
Eq. (23) with all parameters known analytically as functions
of α, Z, and

√−E. To determine numerical values of B and ρ,
we performed variational calculations on the series of helium-
like ions using the trial wave function of the form of Eq. (1),
with f (r) represented as a 15th order polynomial in r. In this
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TABLE I. The values of the parameters B and ρ determining the asymptotic
behavior of f (r), Eq. (23). Two approaches were used to fix the exponent
α: optimization of the energy obtained with the correlated wave function of
Eq. (1) and the “bare-nucleus” value α = Z.

Z α E B ρ

Energy optimized α

1 0.84267 − 0.509378 0.128966 0.322138
2 1.84833 − 2.891254 0.147959 0.147577
3 2.85039 − 7.268487 0.154375 0.095543
4 3.85144 − 13.64459 0.157585 0.070615
5 4.85208 − 22.02025 0.159510 0.055997
6 5.85251 − 32.39568 0.160792 0.046391
7 6.85282 − 44.77099 0.161707 0.039598
8 7.85305 − 59.14622 0.162393 0.034540

α = Z

1 1.00000 − 0.498452 0.293989 0.124612
2 2.00000 − 2.879363 0.303131 0.062623
3 3.00000 − 7.256353 0.306238 0.041754
4 4.00000 − 13.63235 0.307799 0.031309
5 5.00000 − 22.00795 0.308737 0.025041
6 6.00000 − 32.38335 0.309363 0.020864
7 7.00000 − 44.75863 0.309811 0.017880
8 8.00000 − 59.13384 0.310147 0.015643

way, we obtained sufficiently accurate values of E and, con-
sequently, of B = α − √−E and of ρ [employing Eq. (18)].
For the value of the screening parameter α, we adopted (i) an
optimal value for the wave function of Eq. (1), or (ii) the value
α = Z corresponding to the solution for the “bare-nucleus”
Hamiltonian. Table I summarizes the results. We see that, in-
dependently of the choice of α, the parameters B and ρ are
positive, albeit small. Therefore, somewhat surprisingly, the
correlation factor at large r neither decreases to zero as pre-
dicted by Bohm and Pines69 for the homogeneous electron
gas, nor tends to a constant value as in the standard versions
of F12 theory.2, 8 In fact, it tends to infinity even faster than
the linear correlation factor of the R12 theory of Kutzelnigg
and Klopper.36, 37

It has to be mentioned that throughout the paper, E is
treated as a constant. However, E is a functional of f evaluated
with the optimal form of f, and thus a function α. Nonethe-
less, this dependence is rather weak when one is limited to a
reasonable vicinity of the optimal value of α.

The differential equation (8) also gives an opportunity to
obtain the correlation factor with a controlled accuracy for an
arbitrary value of r. It is clear that the expansion of f (r) in the
powers of r and the variational minimization gives an access
to the short-range part of f (r) but cannot describe its long-
range part with a satisfactory accuracy. On the other
hand, the numerical propagation of the differential
equation (8) can be performed very accurately up to
very large distances r. Also the energy E can be determined
very accurately in this way by adjusting it such that the
solution diverging as r−ρ−4 e(α+√−E) does not show up at
large r. We used a high-order Runge-Kutta propagation with
a variable step size and checked carefully the convergence
of the solution. Figure 1 shows the result of the propaga-
tion of the differential equation (8) for the helium atom
(α = 1.84833). This numerical propagation result is com-

pared with the variational solution expanded in powers
of r up to r15. The agreement is very good up to about
r = 8 (the curves in Fig. 1 are indistinguishable at r < 6). At
larger distances, the variational solution becomes completely
unrealistic and becomes negative at r > 14.

At large r, the propagation curve agrees very well with
the first term of Eq. (23). It is remarkable that the leading term
of this asymptotic expansion gives reasonable approximation
to f (r) even for r as small 0.5, where the remaining error is
slightly less than 7%. We also found that adding two more
terms from expansion (23) significantly improves the approx-
imation around r = 1, reducing the error from about 4% to less
than 0.8%. Moreover, the reliability of this three-term asymp-
totic expansion extends to r = 0.2, where the remaining error
is about 5% (the approximation by the leading term only gives
15% error at this distance). These results confirm the validity
of the differential equation (8) as well as of the asymptotic
form of f (r) given by Eq. (23).

B. Correlated Slater orbitals: Triplet state

In this section, we consider a slightly more complicated
model, namely, the simplest wave function for the lowest
triplet state of a helium-like ion,

�(r1, r2, r) = (
e−αr1−βr2 − e−βr1−αr2

)
f (r). (25)

The implicit differential equation for f (r) takes the form
analogous to Eq. (7),∫ ∞

0

∫ r1+r

|r1−r|
r1r2 e−αr1−βr2 (Ĥ − E)(e−αr1−βr2 − e−βr1−αr2 )

× f (r) dr2dr1 = 0. (26)

The explicit form of this equation, obtained easily using
the integral formulas of Appendix A, splits naturally into
three components proportional to the exponential factors
e−2αr, e−2βr, and e−2(α + βr)r, respectively. Since the differen-
tial equation (26) is symmetric with respect to the exchange
α ↔ β, we can assume that α < β. With this assumption, the
component proportional to the factor e−2αr dominates at large
r. Neglecting the two (exponentially) small components, one
obtains the following equation for f (r):

f (r){4αβ + 2r [ (β − αZ − βZ)(α2 − β2)

−αβ(α2 + β2) − 2αβE ] + r2(β2 − α2)

× [α(3β2 − α2) + 2αE + 2Z(α2 − β2)]}
+ f ′(r)4α[−β + (α2 + β2)r + β(β2 − α2)r2]

+ f ′′(r)2α[−2βr − (β2 − α2)r2 ] = 0. (27)

Neglecting for the moment terms proportional to r0 and r1, we
obtain the equation

f (r)[−α(3β2 − α2) − 2αE + 2Z(β2 − α2)]

+ 4αβf ′(r) − 2αf ′′(r) = 0, (28)

which has two linearly independent solutions in the form eBr

but the only physically acceptable solution is the one with the
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FIG. 1. The correlation factor f (r) calculated for the helium atom using the wave function of Eq. (1) and α = 1.84833. Red solid line is the result of numerical
propagation of Eq. (8). Black dash-dotted line is the variational solution with f (r) expanded as a polynomial of order 15. Green dashed line is the first term of
the asymptotic expansion of f (r). Blue dotted line is used for the short-range factor 1 + 1

2 r .

exponent B = α − γ , where

γ =
√

(α2 − β2)

(
2Z − β

2β

)
− E. (29)

Knowing the value of B, we can follow the hypergeometric
function approach presented in Sec. II A and find that the
leading term of the asymptotic expansion for f (r) is rρeBr with
B = α − γ and

ρ = α + β

2βγ
Z − 1

2γ
− 1. (30)

Now keeping all terms in Eq. (27) and using the ansatz (23),
one obtains the following recursion relation determining the
complete asymptotic expansion for f (r):

dn+3(α2 − β2)[2Z(α2 − β2)

− 2β(E + B2 − 2αB) + β2(β2 − 3α2)]

+ dn+2[2(α2 − β2)(α − β)(2Bρ + Z − 4nβB − 4βB)

− 4αβ(E + B2 − 2αB)]

+ dn+1[8αβρ(α − B) + (4nB + 2B − 2βρ)ρ(α2 − β2)

+ 4(2n + 1)αβB − 2n(n + 1)β(α2 − β2)

− 8(n + 1)α2β + 4αβ] − 4αβ(n − ρ)2dn = 0, (31)

where the value of d0 is arbitrary.
To confirm the validity of formulas derived in this sec-

tion, we performed variational calculations using the wave
function of Eq. (25) and f (r) expanded in powers of r up to
r15. We used the optimized parameters α = 0.321454 and
β = 1.968451 which give the energy of 23S state −2.170104.
This value compares reasonably with the exact energy of this
state equal to −2.175229. With the adopted values of α and β,
the values of B and ρ, calculated according to Eqs. (29) and
(30) are −0.151753 and 0.40172, respectively. Therefore, in
the case of the triplet state 23S, the correlation factor in the
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FIG. 2. The correlation factor f (r) calculated for the helium atom using the
wave function of Eq. (25) with α = 0.321454 and β = 1.968451. The expla-
nation of lines is the same as in Fig. 1, except that the short-range correlation
factor, marked by the blue dotted line, is now 1 + 1

4 r .

wave function (25) vanishes exponentially at large distances
r. This can be understood by invoking the argument that in the
23S state the electrons occupy two different shells, so that cor-
relation between them is asymptotically weaker. Moreover,
the Fermi part of the correlation is already included in the
zero-order wave function. In Fig. 2, we present a comparison
of the correlation factors obtained from the numerical propa-
gation and variational calculation with the leading term of the
asymptotic expansion. The agreement between the variational
result and the numerical propagation is not as good as in
Sec. II A. This is due to the slow convergence of the varia-
tional result when increasing the number of powers of r in-
cluded in the expansion of f (r). Indeed, even with the 15th
power included, the ratio of first two coefficients in the expan-
sion of f (r) is equal to 0.367, while it should be 0.25 (the cusp
condition for triplet states). We were not able to include more
powers of r in the variational calculations since the overlap
matrix becomes ill conditioned, and even in the octuple arith-
metic precision the results obtained by symmetric orthogo-
nalization were not reliable. The reason for this slow con-
vergence is that for r = 0, the wave function (25) vanishes.
Therefore, the energy values are not sensitive to the quality of
the trial wave function in the regions close to the coalescence
points of the electrons. Again we find it remarkable that the
first term in the asymptotic expansion represents f (r) reason-
ably well in a wide range of distances, although the agreement
at intermediate r is not as good as for the singlet state.

C. Correlated Gaussian orbital: Singlet state

Since the vast majority of calculations in quantum chem-
istry are performed employing the basis of Gaussian orbitals,
one may ask how the results of Secs. II A and II B are mod-
ified when the orbital basis changes from Slater to Gaussian
functions. To investigate this problem, we use the Gaussian
analogue of the model from Sec. II A. Namely, we consider
the following approximation to the wave function:

�(r1, r2, r) = e−αr2
1 e−αr2

2 f (r). (32)

It is perfectly clear that the above wave function is a very
crude approximation to the exact one. One can expect, how-
ever, that this model captures the essential features of more
accurate approximations when the atomic orbitals are ex-
panded as linear combinations of Gaussian functions. The re-
sults obtained for such model extensions can easily be de-
duced from the equations presented here.

To derive a differential equation for f (r), we start from a
suitable modification (the replacement of r1 + r2 by r2

1 + r2
2 )

of Eq. (7). After changing the variables to ξ = (r1 + r2)/r,
η = (r1 − r2)/r and using well-known Gaussian integrals, we
find that f (r) satisfies the equation

[16 Erf
(√

αr
) − 2 + (2E − 9α)r + 2α2r3]f (r)

+ (4 − 4αr2)f ′(r) + 2rf ′′(r) = 0, (33)

where Erf(x) is the error function. Since we are interested in
the large-r behavior of f (r), we can invoke the asymptotic
form of the error function, Erf(x) = 1 − e−x2

/(x
√

π ) + . . .,
and replace Eq. (33) by a simpler one

[14 + (2E − 9α)r + 2α2r3]f (r)

+ (4 − 4αr2)f ′(r) + 2rf ′′(r) = 0. (34)

This equation can be solved exactly in terms of Kummer
and Tricomi functions. To obtain its solutions, we make the
substitution

f (r) = e
α
2 r2−γ rk(r), (35)

where the parameter γ is yet undetermined. By inserting the
above from of f (r) into Eq. (34), one arrives at the following
differential equation for k(r):

[r(−3α + 2E + 2γ 2) + 14 − 4γ ]k(r)

+ 4(1 − γ r)k′(r) + 2rk′′(r) = 0. (36)

The value of γ can be now fixed by requiring that the coeffi-
cient proportional to rk(r) vanishes identically. Choosing

γ =
√

3

2
α − E, (37)

Eq. (36) then takes the form:

rk′′(r) + 2 (1 − γ r) k′(r) + (7 − 2γ ) k(r) = 0. (38)

Finally, by change of variable x = 2γ r, we transform Eq. (38)
into the standard from of the Kummer equation65

xk′′(x) + (2 − x)k′(x) −
(

1 − 7

2γ

)
k(x) = 0. (39)

The two linearly independent solutions of Eq. (39) are
the Kummer and Tricomi functions, M(1 − 7

2γ
, 2, x) and

U (1 − 7
2γ

, 2, x), respectively. For the same reason as in
Sec. II A, we pick up the Tricomi function. Thus, the exact
solution of Eq. (34) reads

f (r) = e
α
2 r2−γ r U

(
1 − 7

2γ
, 2, 2γ r

)
. (40)

The asymptotic expansion of the Tricomi function is well-
known [cf. Eq. (20)], so the leading term in the large-r
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expansion of f (r) is

f (r) ∼ r
7

2γ
−1

e
α
2 r2−γ r . (41)

Since α is positive, f (r) diverges to infinity large r.
We performed numerical calculations for the helium

atom to verify our findings. We found variationally that
the optimized parameter α for the wave function (32)
is equal to 0.859802. The corresponding energy value is
E = −2.339039. . . . The values of the parameters in Eq. (41)
that define the asymptotic expansion are

γ = 1.90493, (42)

7

2γ
− 1 = 0.837342. (43)

Figure 3 shows the result of the propagation of the differential
equation (33) compared with the leading term of the asymp-
totic expansion of f (r). We see a very good agreement be-
tween these two curves at large interelectronic distances. For
comparison, we also plot the correlation factor obtained from
variational calculations when f (r) is expanded in powers of r.
We conclude that the numerical results presented in Figure 3
confirm the analytical results derived in this section.
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FIG. 3. The correlation factor f (r) calculated for the helium atom by using
the Gaussian wave function of Eq. (32) and α = 0.8598. Red solid line is the
result of numerical solution of the differential equation (33). Black doted-
dashed line is the variational solution with f (r) expanded in the powers of
r. Green dashed line is the leading term of the asymptotic expansion of f (r)
calculated for the relevant values of parameters. Blue dotted line (1 + 1

2 r)
is plotted for the comparison purposes. Two different plot ranges are given
separately to improve the readability.

D. Correlated SCF orbitals: Singlet state

We now consider a more complicated model wave func-
tion — an SCF determinant multiplied by the correlation fac-
tor f (r). For simplicity, we will consider only the ground state
of the helium like ions. However, the method developed here
can be extended with minor modifications to other states of
a two-electron atomic system. We found it too tedious to de-
rive recurrence relations for the coefficients appearing in the
asymptotic expansion for f (r). However, we obtained a rela-
tively compact expression for the first term in this expansion
and developed a method to obtain in principle as many other
terms as desired. The results of this section can be expressed
using the following theorem.

Theorem. If the wave function for a helium-like ion with
charge Z has the form

�(r1, r2, r) = φ(r1)φ(r2)f (r), (44)

where

φ(r) = e−αr

N∑
k=0

ckr
k, (45)

then the optimal correlation factor f (r) behaves at large r as
rρeBr, with

B = α − √−E (46)

and

ρ = 2N (4Z − α − 1) + 6Z − 2α − 1

2(2N + 1)
√−E

− 2N − 2, (47)

where E is the variational energy obtained with the wave func-
tion �(r1, r2, r).

Note that we do not assume here that the coefficients ck

are obtained from the solution of the matrix SCF equations.
The theorem applies to an arbitrary product of one-electron
functions of the form of (45). In fact, the coefficients ck do
not even appear explicitly in the equations for the parameters
B and ρ.

We begin the proof by writing down the analogue of
Eq. (7). It reads

N∑
k,l,m,n=0

ckclcmcn

∫ ∞

0

∫ r1+r

|r1−r|
rk+1

1 rl+1
2 e−α(r1+r2)

× (Ĥ − E)rn
1 rm

2 e−α(r1+r2)f (r)dr2dr1 = 0. (48)

Similarly as in the derivations in Secs. II A and II B, we shall
identify the coefficients that multiply the two highest powers
of r in the differential equation defining f (r). Using Eq. (6)
and Eq. (A8), we find that these two highest powers of r are
r4N+3 and r4N+2. This kind of terms can be produced only
by five components of the sum in Eq. (48). The component
k = l = m = n = N produces terms of the order 4N + 3 and
4N + 2, while the four components for which k + l + m + n
= 4N − 1 produce terms of the order 4N + 2. As a result, we
need to analyze only the following two integrals:

M1 =
∫ ∞

0

∫ r1+r

|r1−r|
rN+1

1 rN+1
2 e−α(r1+r2)

× (Ĥ − E)rN
1 rN

2 e−α(r1+r2)f (r)dr2dr1, (49)
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M2 =
∫ ∞

0

∫ r1+r

|r1−r|
rN

1 rN+1
2 e−α(r1+r2)

× (Ĥ − E)rN
1 rN

2 e−α(r1+r2)f (r)dr2dr1, (50)

which correspond to the k = l = m = n = N and l = m = n
= N, k = N − 1 case, respectively. The remaining three com-
binations of indexes lead to the same matrix element as the
one given above due to the indistinguishability of electrons
and the hermiticity of the Hamiltonian.

The integrals (49) and (50) can be expressed through the
integrals Imn(2α, 2α) ≡ Imn of Appendix A. Making use of the
asymptotic relation (A8), one easily finds that

M1 = −f ′′(r)I2N+1,2N+1 − r−1f ′(r)

× [−αI2N+2,2N+1 − αr2I2N,2N+1 + αI2N,2N+3]

− f (r)(α2 + E)I2N+1,2N+1 + R4N+2, (51)

where R4N+2 collects terms involving r4N+2 and lower powers
of r. More explicitly,

M1 = −e−2αr

2α
r4N+3[f ′′(r)C2N+1,2N+1 + αf ′(r)

× (C2N,2N+3 − C2N+2,2N+1 − C2N,2N+1)

+ (α2 + E)C2N+1,2N+1f (r) + O(r−1), ], (52)

where Cnm are the coefficients appearing in Eq. (A8) and
given by Eq. (A12). Noting that

C2N+2,2N+1 + C2N,2N+1 − C2N,2N+3 = 2C2N+1,2N+1 (53)

end equating the coefficient at r4N+3 to zero, we obtain the
equation

0 = f ′′(r) − 2αf ′(r) + f (r)(α2 + E), (54)

which is a strict analogue of Eq. (13). Its solutions are
e(α+√−E)r and e(α−√−E)r , the latter one being the only accept-
able choice.

To obtain the pre-exponential factor, we follow the
method used in Sec. II A and make the substitution
f (r) = eBrg(r), where B = α − √−E. To derive a useful
equation for g(r), we need a more accurate representation of
the the lhs of Eq. (48) than that given by Eq. (52). The re-
quired equation, including the next lower power of r, has been
derived in Appendix B. It has the form

r[f (r)(α2 + E) − 2αf ′(r) + f ′′(r)](2N + 1)

+ f (r)

{
(4N + 3)

[
2Z − α

2
(2N + 3)

+ E

2α
(2N + 1) + 4bN (α2 + E)

]}
+ f ′(r)[(2N + 1) − 8αbN (4N + 3)]

+ f ′′(r)(4N + 3)

[
2N + 1

2α
+ 4bN

]
= 0, (55)

where bN = cN − 1/cN. After the substitution f (r) = eBrg(r), we
obtain the following differential equation for g(r):

− 2α[1 + 4
√−E + 2α(N + 1)

+ 4N (2N + 3)
√−E − 2Z(4N + 3)]g(r)

− 2[(4N + 3)
√−E(2N + 1 + 8αbN )

− 2α(2N + 1)(2N + 2 − √−E r)]g′(r)

+ [8αbN (4N+3)+(2N+1)(4N+3+2αr)]g′′(r) = 0.

(56)

If we now introduce a new variable x = 2
√−E(r + a), where

a = (4N + 3) (2N + 1 + 8αbN )

2α(2N + 1)
, (57)

then Eq. (56) reduces to the standard Kummer’s differential
equation

xg′′(x) + (4N + 4 − x)g′(x) + ρg(x) = 0, (58)

with ρ given now by Eq. (47). Note that when N = 0,
Eq. (58) reduces to Eq. (17) with ρ given by Eq. (18). Us-
ing the asymptotic representation of the Tricomi function,
Eq. (20), we find that g(r) ∼ rρ and f (r) ∼ rρeBr at large r,
where B and ρ are given by Eqs. (46) and (47). The complete
large-r asymptotic expansion of f (r) can be obtained by in-
serting the ansatz of Eq. (23), with B and ρ given by Eqs. (46)
and (47), into the differential equation for f (r) and deriving
recurrence relation for the coefficients dn. Because of its great
complexity, we did not attempt to carry out this procedure ex-
cept for N = 1 and N = 2. This completes the proof of the
theorem formulated at the beginning of this section.

We find it remarkable that the value of B does not de-
pend explicitly on N. One might expect that an increase
of N changes the orbital part of the wave function signifi-
cantly at large r and, in turn, changes the rate of the asymp-
totic growth of f (r). This intuition seems to be invalid and
B is found to be a universal parameter, dependent on the
orbital part of the wave function through the values of α

and E only. There is of course an implicit dependence on
N through the value of E. This dependence is found to be
very weak since the energy saturates very quickly with in-
creasing N. For example, for the helium atom with the op-
timized parameter α = 1.84833 our best theoretical value
of B, based on the energy extrapolation toward the com-
plete basis (i.e., infinite N) is 0.148505, while the values ob-
tained with N = 2, 3, and 4 are 0.148463, 0.148521, and
0.148504, respectively. Even the value corresponding to
N = 0 (0.147961) compares well with the estimated limit.
Similar conclusions can be drawn from the calculations on
the helium-like ions. Therefore, the parameter B seems to be
universal and weakly dependent on the quality of the “orbital”
part of the wave function.

The dependence of ρ on N appears to be rather strong.
At large N, this parameter decreases linearly with N with the
slope of −2:

ρ = −2N − 2 + 4Z − 1 − α

2
√−E

+ O
(

1

N

)
. (59)

This result is independent of the values of E, α, and Z.
Figure 4 presents the shape of ρ(N) calculated for the helium
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FIG. 4. Plot of ρ(N) parameter calculated for the helium atom [black curve,
Eq. (18)] compared to its large-N asymptote [red line, Eq. (59)]. The corre-
sponding curves for the other helium-like ions were not included since they
are barely distinguishable with the adopted scale of the plot.

atom with an optimized parameter α. One can see that the
convergence toward the linear asymptote is fast, so that even
for N being as small as 3.0 the error resulting from the use of
Eq. (59) is of the order of 1%. Therefore, for longer expan-
sions of φ(r), the approximation (59) is sufficiently accurate
for all practical purposes.

To verify our findings numerically, we derived explicit
differential equation for f (r) in the case of N = 2, i.e., a
three-term SCF orbital used with in Eq. (45). With the op-
timized parameter α = 1.920904 and N = 2, we obtained the
SCF energy equal to −2.86159 which compares well with the
Hartree-Fock limit70 of −2.86168. Figure 5 presents results of
the numerical propagation of the differential equation for f (r)
in the described case. For comparison, we plot the results of
the variational calculations with f (r) expanded in a basis set of
the powers of r. Excellent agreement between those curves is
found for small r albeit for a medium range the variational re-
sult becomes unstable and progressively less accurate. A new

0 5 10 15 20 25
r120

1

2

3

4

5
f r12

FIG. 5. The correlation factor f (r) calculated for the helium atom by using
the wave function (44) (N = 2) and α = 1.920904. Red solid line is the re-
sult of the numerical propagation of the corresponding differential equation.
Black dotted line is the variational solution with f (r) expanded in the powers
of r. Green dashed line is the leading term of the asymptotic expansion of f (r)
calculated for the relevant values of the parameters [see Eqs. (46) and (47)].
Blue dotted line (1 + 1

2 r) is plotted for the comparison purposes.

feature of the correlation factor in the present example is that
it is no longer monotonic over the whole domain, as found in
the previous models. Instead, it possesses a single maximum
for a small r value and then a shallow minimum somewhere at
the medium large. The leading term of the asymptotic expan-
sion of f (r) is rρeBr with B = 0.220361 and ρ = −4.38436,
calculated according to Eqs. (46) and (47). Satisfactory agree-
ment between this term and the propagation curve is found for
larger values of r.

E. The Kutzelnigg ansatz

In this section, we extend our approach by considering
the following ansatz:

�(r1, r2, r) = �0(r1, r2)f (r) + χ (r1, r2, r), (60)

where �0(r1, r2) is a reference function (either a product of
simple exponential functions or SCF orbitals) and the com-
plementary function χ (r1, r2, r) is an ordinary expansion in a
set of orbital products. This form of the wave function with
f (r) chosen as 1 + 1

2 r was used by Kutzelnigg in his work on
the R12 theory.36 To simplify derivations, we assume that the
complementary wave function χ (r1, r2, r) is restricted to the
following form:

χ (r1, r2, r) = e−α(r1+r2)
M∑
kl

dkl r
k
1 rl

2. (61)

The basis set used in expansion (61) is incomplete due to lack
of angular functions. Including them (via even powers of r) is
straightforward and we shall show later that it will not affect
the asymptotic behavior of f (r). To avoid technical complica-
tions, we make the choice �0(r1, r2) = e−α(r1+r2). The main
result of this section can be formulated as follows.

Theorem. If the wave function for the helium like ions
has the form

�(r1, r2, r) = e−α(r1+r2)f (r) + e−α(r1+r2)
M∑
kl

dkl r
k
1 rl

2, (62)

then the optimal correlation factor f (r) behaves at large r as
rρeBr, where ρ and B are given by Eqs. (18) and (46), i.e., are
the same as in the case of the wave function of Eq. (1).

To prove this theorem, we have to analyze a differential
equation for f (r). Such an equation is obtained by inserting
Eq. (60) into the Rayleigh-Ritz functional, evaluating its func-
tional derivative with respect to f (r), and equating this deriva-
tive to zero. The resulting equation reads∫ ∞

0

∫ r1+r

|r1−r|
r1r2 e−α(r1+r2)(Ĥ − E)e−α(r1+r2)f (r)dr2dr1

= −
∫ ∞

0

∫ r1+r

|r1−r|
r1r2 e−α(r1+r2)(Ĥ − E)χ (r1, r2)dr2dr1.

(63)

We assume here that the linear coefficients dkl on the rhs are
fixed and have already been optimized by solving appropriate
algebraic equations involving the optimal f (r).
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The homogeneous, left-hand side of the above equation
is the same as in Eq. (7), except for an additional factor of
−e−2αr/(48α3). The inhomogeneity on the rhs, which we will
further denote by G(r), can be easily expressed through the
combinations of auxiliary integrals Imn(2α, 2α) ≡ Imn evalu-
ated in Appendix A. The result reads

G(r) =
M∑
kl

dkl

[(
α2 + E − 1

r

)
Ik+1,l+1

−α(k + 1)Ik,l+1 − α(l + 1)Ik+1,l

+ 1

2
k(k + 1)Ik−1,l+1 + 1

2
l(l + 1)Ik+1,l−1

+Z(Ik,l+1 + Ik+1,l)

]
. (64)

According to Eq. (A8) from Appendix A each of the integrals
Imn appearing in the equation above is a finite order polyno-
mial in r multiplied by the exponential function e−2αr. There-
fore, the inhomogeneity G(r) is also a polynomial [of the (2M
+ 3)th order] times e−2αr. Substituting this form of G(r) into
Eq. (63), using Eq. (7) to represent the homogeneous part of
Eq. (63), and canceling the exponential factors, we find the
following differential equation for f (r):

[−3 + 3(4αZ − 2α − 3α2 + E)r

+ 2α(12αZ − 2α − 9α2 + 3E)r2 + 4α2(α2 + E)r3]f (r)

+ [6 + 12αr + 4α2r2 − 8α3r3]f ′(r)

+ r[3 + 6αr + 4α2r2]f ′′(r) = −48α3
2M+3∑
k=0

gk rk, (65)

where the coefficients gk can be easily expressed through dkl

and the Cmn coefficients of Appendix A.
It is known that the general solution of an inhomogeneous

differential equation is given by a linear combination of the
solutions of the homogeneous problem plus any particular so-
lution. To find this particular solution, denoted by fS(r), we try
a finite order polynomial as an educated guess,

fS(r) =
2M+3∑
k=0

hk rk. (66)

Equations determining the coefficients hk are found by insert-
ing the above ansatz into the differential equation (65) and
gathering the factors multiplying the same powers of r. The
first three of these equations are

−h0 + 2h1 + 16α3g0 = 0,

3h0(−2α − 3α2 + E + 4αZ)

+h1(4α − 1) + 6h2 + 16α3g1 = 0, (67)

αh0(−4α − 18α2 + 6E + 24αZ)

+h1(−6α − 5α2 + 3E + 12αZ)

+ 3h2(12α − 1) + 36h3 + 48α3g2 = 0,

and the general form is

4α2(α2+E)hn−2α[2α + (13+4n)α2−3E − 12αZ]hn+1

+ [−6α + α2(2n + 1)(2n + 7) + 3E + 12αZ]hn+2

+ [−3 + 6α(n + 4)(n + 3)]hn+3

+ 3(n + 4)(n + 5)hn+4 + 48α3gn = 0. (68)

The number of equations is the same as the number of coeffi-
cients and the determinant of the system of equations does not
vanish. Having found the special solution fS(r), we can write
the general solution of Eq. (65),

f (r) = c1f1(r) + c2f2(r) + fS(r), (69)

where f1(r) and f2(r) are the solutions of the homoge-
neous problem behaving asymptotically as, e(α−√−E)r rρ

and e(α+√−E)r rρ ′
, respectively, see the discussion around

Eqs. (19)–(24) in Sec. II A.
We can fix the value of c2 as equal to zero, otherwise

the wave function would not be normalizable. Thus, the long-
range behavior of f (r) in the present case reads:

f (r) ∼ c1e
(α−√−E)r rρ + fS(r), (70)

where c1 can be fixed by normalization. Since the particu-
lar solution is characterized by a polynomial growth and the
chosen solution of the homogeneous problem grows exponen-
tially, the leading term of the asymptotic expansion remains
exponential. In other words, for a sufficiently large r the be-
havior of f (r) is always dominated by the exponential growth
of the solution to the homogeneous problem. This formally
completes the proof of the theorem stated at the beginning of
this section.

It is easy to extend the above theorem by including higher
angular momentum functions in the one-electron basis set.
One can show that this is equivalent to taking the following
form of the complementary wave function

χ (r1, r2, r)= e−α(r1+r2)
∑
kl

d
(0)
kl rk

1 rl
2+r2e−α(r1+r2)

∑
kl

d
(1)
kl rk

1 rl
2

+ r4e−α(r1+r2)
∑
kl

d
(2)
kl rk

1 rl
2 + . . . (71)

This extension does not change the main feature of the dif-
ferential equation that was used in the proof. Namely, the
solution of the homogeneous problem remains unchanged
and the inhomogeneity is still a finite-order polynomial in
r. Therefore, a special solution has the polynomial character
and does not contribute to the leading term in the long-range
asymptotics.

We also considered another variant of the Kutzelnigg
ansatz,

�(r1, r2, r) = e−α(r1+r2)f (r) + e−β(r1+r2)
M∑
kl

dkl r
k
1 rl

2, (72)

which differs from the wave function (62) by the choice of
different exponent in the complementary part χ (r1, r2, r) of
the wave function. This additional flexibility is not very effec-
tive in the calculations on the helium atom. We checked that
the optimal value of β is very close to the adopted value of α
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and the energy gain is insignificant. However, when passing to
many-electron systems and using the expansion of pair func-
tions similar to Eq. (72), the splitting of α and β corresponds
to the use of more diffuse (or more tight) basis set functions
in �(r1, r2, r) than in �0(r1, r2). This is an important case
and therefore the model (72) is worth considering. As before,
the extension of (72) by including higher angular momentum
functions is simple, so we proceed only with s-type functions
in the basis.

By repeating the derivation in the previous model,
Eqs. (63)–(65), we find that the differential equation for f (r)
is the same as Eq. (65), except that the inhomogeneity in
Eq. (65) is now given by the function

G̃(r) = −48α3 e−2(β−α)r
2M+3∑
t=0

g̃k rk, (73)

where g̃k are defined in the same way as the gk coefficients
in Eq. (65). The solution of the homogeneous problem is the
same as in Sec. II A. We also found that with appropriate
choice of h̃k , the function

f̃S(r) = e−2(β−α)r
2M+3∑
k=0

h̃k rk (74)

is a particular solution of the full equation containing the in-
homogeneity G̃(r). We can thus use the same arguments as
previously and infer that

f (r) ∼ c1e
(α−√−E)r rρ + e−2(β−α)r

2M+3∑
k=0

h̃k rk, (75)

asymptotically for large r. The dominant term of this formula
depends on the relation between α and β. In particular, the
large-r the asymptotics of f (r) is given by

f (r) ∼ rρ e(α−√−E)r for β > βc, (76)

f (r) ∼ r2M+3 e2(α−β)r for β < βc, (77)

where βc is the critical value of β equal to

βc = 1

2
(α + √−E). (78)

Thus, independent of the choice of β, we find an exponential
growth of f (r) at large r.

III. DISCUSSION AND CONCLUSIONS

A. The “range-separated” model of the correlation
factor

The analytic results presented in Sec. II can be put into
practical use only if a simple analytical form of the correla-
tion factor can be found that mimics, to a good approximation,
the exact behavior of f (r) both at small and at large interelec-
tronic distances r. This goal is far from being straightforward.
This is mainly due to considerable change in the shape of the
correlation factor when the function �0 is modified. For the
simplest possible �0 taken as the product of 1s orbitals, the
correlation factor is a monotonically growing function, while

for �0 taken as an SCF determinant, f (r) exhibits a maxi-
mum and minimum before the onset of the monotonic expo-
nential growth. Knowing the behavior of the correlation factor
at small and large r, we can propose a “range-separated” form
with a Gaussian switching

f (r) =
(

1 + 1

2
r

)
e−μr2 + c rρ eBr Sn(μr2), (79)

where

Sn(x) = 1 − e−x

n∑
l=0

xl

l!
(80)

serves as the “switching function” that interpolates smoothly
between the two regimes and the switching is controlled by
adjustable parameters c and μ. To eliminate the singularity
appearing when ρ < 0, we take as n the smallest integer satis-
fying 2n + ρ ≥ 0. For positive ρ, we set n = 0. This form of
f (r) is slightly reminiscent of the error-function based range-
separation of the Coulomb interaction in the density func-
tional theory.71 We can increase somewhat the flexibility of
this representation by using the Ten-no’s factor at short range,

f (r) = 1 + 2γ − e−γ r

2γ
e−μr2 + c rρ eBr Sn(μr2). (81)

We found that, the analytical form (81) is very flexible. By
means of the optimization of the adjustable parameters, we
are able to obtain a very good analytic fit for each correlation
factor discussed in the paper.

When the correlation factor of the form (81) is used in
the calculations, new classes of two-electron integrals arise
that were not considered in the literature so far. In these inte-
grals, the factors rρ , e−ar, and e−ar2

are present collectively.
For the atomic calculations, we managed to express these in-
tegrals in terms of the incomplete Gamma and error functions,
both in the Slater and Gaussian one-electron basis, and imple-
ment them efficiently. These integrals become substantially
more difficult when one passes to the many-center molecular
systems. The work on evaluating them is in progress in our
laboratory.

B. Results of exemplary calculations

To check the effectiveness of the “range-separated” rep-
resentation of Eqs. (79) and (81), we performed variational
calculations with the wave function of the form of Eqs. (1)
and (62). The values of the parameters B and ρ were fixed ac-
cording to Eqs. (46) and (18). The exponent α was set equal to
1.84833. The parameters γ , μ, and c were obtained by a least
square fit to the exact correlation factor in Eq. (1), obtained
from the numerical solution of Eq. (8). We found that for the
helium atom γ = 0.209587, μ = 0.448695, and c = 1.170940
are optimal when Eq. (81) is used, while for Eq. (79) the val-
ues μ = 0.861347 and c = 1.169033 are appropriate.

The results are summarized in Table II. An inspection of
this table shows that accounting for the correct large-r be-
havior of f (r) via simple formulas of Eqs. (79) and (81) im-
proves significantly the energies obtained with the standard
R12 or F12 correlation factors. As expected, the improvement
is smaller when the exponential factor with optimized γ is
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TABLE II. Ground-state energies of the helium atom obtained with approx-
imate wave functions of Eqs. (1) and (62). Results obtained with the linear,
1 + r/2, and exponential, (1 + 2γ − e−γ r)/(2γ ), correlation factors are de-
noted by R12 and F12, respectively. The parameter γ = 0.2 is close to opti-
mal. Equations (79) and (81) are evaluated with n = 0. The orbital exponent
α was always set equal to 1.84833.

Wave function Wave of function
f (r) of Eq. (1) Eq. (62)

R12 − 2.887447 − 2.903014
F12 (γ = 0.5) − 2.886746 − 2.902976
F12 (γ = 1.0) − 2.874472 − 2.900928
F12 (γ = 0.2) − 2.890349 − 2.903277
Eq. (79) − 2.890886 − 2.903266
Eq. (81) − 2.891048 − 2.903325
Limit − 2.891254a − 2.903512b

aObtained by numerical integration of differential equation.
bObtained by expanding f (r) in powers of r (saturated results, all digits shown are
correct).

used. Note, however, that the optimal value of γ , equal to 0.2,
is in this case much smaller than the value recommended in
standard F12 calculations.75

It can be seen that with the correlation factor of the form
(81) used in the wave function of Eq. (1), we recover about
70% of the correlation energy, so that the expansion in a set of
excited state determinants is required only for the remaining
30%. Standard R12 approximation is worse in this respect,
recovering about 60% of the correlation energy.

When the wave function of the form of Eq. (62) is used
in the calculations, the obtained energy differences are much
smaller but one can see that including the correct asymptotics
of f (r) always improves the results. It should be pointed out
that in this case the parameters of the correlation factors of
Eqs. (79) and (81) were optimized for the wave function of
Eq. (1). Nevertheless, the difference between the energy ob-
tained with the approximate correlation factor of Eq. (81) and
the fully optimal one, equal to 0.18 milihartree, is smaller than
the corresponding difference remaining when using the wave
function of Eq. (1). It may also be noted that the energy ob-
tained with the optimal wave function of Eq. (62), i.e., with
orbitals of s-type symmetry only, is slightly better than the en-
ergy from the full CI calculations in the saturated spdf basis
set.72–74 With the linear correlation factor the spd limit would
be reached with this wave function.

We also performed calculations with Ten-no’s exponen-
tial correlation factor and several values of γ which are
usually recommended in the literature with γ = 1.0 being
the most common choice.75, 76 Other values, γ = 0.5 and
γ = 1.5 were also employed.77–79 The results are shown in
Table II. On can see that all these choices of γ give re-
sults worse than the “range-separated” correlation factor of
Eq. (81). However, when the exponential correlation factor
with optimal γ is used in the wave function of Eq. (62),
the energy is slightly better than the one obtained with
the asymptotically corrected linear correlation factor of
Eq. (79). This is the manifestation of the superiority of the
Ten-no’s factor over the linear one at intermediate interelec-
tronic distances.

C. Summary and conclusions

In this work, we have considered the problem of an opti-
mal form of the correlation factor f (r) for explicitly correlated
wave functions, specifically, its asymptotic behavior at large
interelectronic distances r. We employed the helium atom and
helium-like ions as model systems and studied several ap-
proximate forms of the wave function. For the simplest case
of the wave function of the form e−α(r1+r2)f (r), the optimal
correlation factor is an exponentially growing function with
no extremal points at short range. On the other hand, for the
case of an SCF determinant multiplied by the correlation fac-
tor, f (r) possesses a single maximum in a small r regime and a
minimum at medium r distances. However, in both cases, the
asymptotic form of the correlation factor is rρeBr, with
B > 0, so that at large interelectronic distances f (r) diverges
exponentially. While the presence of a maximum in the corre-
lation factor for the SCF case has been observed in the study
of Tew and Klopper,64 neither the presence of the minimum
nor the large-r divergence of f (r) have been noticed.

We presented a method to derive a well-defined differ-
ential equation for f (r) that can be solved analytically in the
large-r regime or alternatively integrated numerically with
arbitrary precision using well-developed propagation tech-
niques. The exact analytic information about its solution gives
us an opportunity to design new functional form for the corre-
lation factor. We proposed a “range-separated” model where
the short- and long-range regimes are approximated by differ-
ent formulas and sewed together by using a switching func-
tion. Simple exemplary calculations with the new form of the
correlation factor show that it performs significantly better
than the correlation factors used in R12 or F12 methods.

The method proposed in this paper can be a subject to
several extensions. First of all, it can be applied to a two-
center system to reveal the possible dependence of the cor-
relation factor on the internuclear distance. The second ex-
tension goes toward the three-electron atomic systems, such
as the lithium atom. This extension may shed some light on
the problem of “explicit correlation of triples” considered re-
cently in the literature80, 81

To apply the proposed form of the correlation factor in
calculations for molecular systems, difficulties concerning the
evaluation of the new integrals and application of the RI ap-
proximations must be addressed. The work in this direction
is in progress in our laboratory. We hope that the proposed
models of f (r) will find applications in explicitly correlated
atomic and molecular calculations and will help to increase
the accuracy of these calculations.
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APPENDIX A: EVALUATION OF AUXILIARY
INTEGRALS

In this Appendix, we give expressions for the integrals,

Imn(α, β, r) =
∫ ∞

0

∫ r1+r

|r1−r|
e−αr1−βr2rm

1 rn
2 dr2dr1, (A1)

which appear in the derivation of differential equations for
f (r). We will assume that m and n are non-negative integers
and that α + β > 0. The closed form expressions for the inte-
grals (A1) can be obtained most easily by the change of vari-
ables ξ = (r1 + r2)/r, η = (r1 − r2)/r and the appropriate
change of integration range to ξ ∈ [1, +∞] and η ∈ [−1, +1].
The absolute value of the Jacobian is |J| = r2/2. The integral
(A1) can now be written as

Imn(α, β, r)=
m∑

l=0

n∑
k=0

(
m

l

)(
n

k

)
(−1)n−kJk+l,m+n−l−k(α,β,r),

(A2)

where

Jkl(α, β, r) = 2
( r

2

)k+l+2
Ak(p) Bl(q), (A3)

Ak(p) and Bk(q) being the well-known integrals,

Ak(p) =
∫ ∞

1
ξke−pξdξ = k!

pk+1
e−p

k∑
j=0

pj

j !
, (A4)

Bl(q) =
∫ 1

−1
ηle−qηdη

= l!

ql+1

⎡⎣eq

l∑
j=0

(−1)j qj

j !
− e−q

l∑
j=0

qj

j !

⎤⎦ (A5)

computed at p = r(α + β)/2 and q = r(α − β)/2. When
α = β, i.e., q = 0, then

Bl(0) = 1

l + 1
[1 + (−1)l]. (A6)

In Sec. II D, we need information about the large r be-
havior of the integrals Imn(α, α, r). Using Eq. (A3), we find

Jkl(α, α, r) = e−αr

α

( r

2

)k+l+1 1 + (−1)l

1 + l

×
[

1 + k

αr
+ O

(
1

r2

)]
. (A7)

Inserting this result into Eq. (A2) and rearranging summation
order, we arrive at

Imn(α, α, r) = e−αr

α
rm+n+1

[
Cmn + Dmn

2αr
+ O

(
1

r2

)]
,

(A8)

where

Cmn = 1

2m+n+1

m∑
l=0

n∑
k=0

(
m

l

)(
n

k

)
(−1)k + (−1)l

k + l + 1
, (A9)

and

Dmn = 1

2m+n

m∑
l=0

n∑
k=0

(
m

l

)(
n

k

)
(−1)k + (−1)l

k + l + 1
(m−l+n − k).

(A10)

Using the formula82

n∑
k=0

(
n

k

)
(−1)k

k + l + 1
= n! l!

(n + l + 1)!
, (A11)

the summations in Eq. (A9) can be carried out and one obtains
a simple expression for Cmn,

Cmn = n! m!

(n + m + 1)!
. (A12)

The corresponding expression for Dmn can be obtained from
that for Cmn. After a few simple manipulations, one finds that

Dmn = 2(m + n + 1)Cmn − δm0 − δn0, (A13)

where δij is the Kronecker symbol.

APPENDIX B: PROOF OF EQ. (55)

To derive Eq. (55), we have to extract terms proportional
to r4N+2 that appear in the integrals M1 and M2. To do so,
we need an explicit expression for the remainder R4N+2 in
Eq. (55). Representing M1 in terms of the Imn integrals and
invoking the asymptotic relation (A8), one obtains

R4N+2 = f (r)[2α(N + 1)I2N,2N+1

− 2ZI2N,2N+1 + r−1I2N+1,2N+1]

+ r−1f ′(r)[(N+2)I2N+1,2N+1 + Nr2I2N−1,2N+1

−NI2N−1,2N+3] + R4N+1. (B1)

We expand now the Imn integrals in Eqs. (55) and (B1) with
the help of Eq. (A8) and after some rearrangements and sim-
plifications, we arrive the following formula for M1:

M1 = r4N+2 e−2αr

2α
[r �4N+3 + �4N+2 + O(r−1)], (B2)

where

�4N+3 = −[f (r)(α2 + E) − 2αf ′(r) + f ′′(r)]C2N+1,2N+1,

(B3)

cf. Eqs. (52) and (53), and

�4N+2 = f (r)

[
− 1

2
(α + E

2α
)D2N+1,2N+1

+ 2(αN + α − Z)C2N,2N+1 + C2N+1,2N+1

]
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− f ′(r)

[
(N + 2)C2N+1,2N+1

− 1

4
D2N+2,2N+1 + NC2N−1,2N+1

−NC2N−1,2N+3 − 1

4
D2N,2N+1 + 1

4
D2N,2N+3

]
− 1

4α
D2N+1,2N+1f

′′(r). (B4)

The expression for �4N+2 can be simplified using Eq. (A13)
and the following two identities holding for every N ≥ 0:

2(N + 1)C2N,2N+1 − 1

2
(4N + 3)C2N+1,2N+1

= 1

2
(2N + 3)C2N,2N+1, (B5)

NC2N−1,2N+1 − NC2N−1,2N+3 − (2N + 1)C2N,2N+1

+ (2N + 2)C2N,2N+3 = 0. (B6)

The result of these simplifications is

�4N+2 = f (r)

[
α

2
(2N + 3)C2N,2N+1 − 2ZC2N,2N+1

+C2N+1,2N+1 − E

2α
(4N + 3)C2N+1,2N+1

]
−f ′(r)C2N+1,2N+1 − 4N + 3

2α
C2N+1,2N+1f

′′(r).

(B7)

We still need to determine the last required ingredient —
the terms proportional to r4N+2 that are in contained M2. Ex-
pressing M2 in terms of Imn integrals, we find

M2 = −f (r)(α2 + E)I2N+1,2N + 1

2
α r−1

× f ′(r)[I2N+2,2N + r2I2N,2N + r2I2N+1,2N−1

+ I2N+1,2N+1 − I2N,2N+2 − I2N+3,2N−1]

− I2N+1,2Nf ′′(r) + R4N+1. (B8)

Expansion of every Imn integral according to Eq. (A8) gives

M2 = r4N+2 e−2αr

2α
[ �4N+2 + O(r−1) ], (B9)

where

�4N+3 = −C2N+1,2N [(α2 + E)f (r) − 2αf ′(r) + f ′′(r)].
(B10)

To derive Eq. (B10), we used the following relation holding
for every N ≥ 0:

C2N,2N + C2N+1,2N−1 + C2N+1,2N+1 − C2N+3,2N−1

= 4C2N+1,2N . (B11)

We now have all elements needed to construct the two
leading terms of the rhs of Eq. (48). Using Eqs. (B2) and (B9),

one finds that the rhs of Eq. (48) can be written as

c3
N r4N+2 e−2αr

2α
[cN (r �4N+3 + �4N+2)

+ 4cN−1 �4N+2 + O(r−1)], (B12)

where �4N+3, �4N+2 and �4N+2 are given by Eqs. (B3), (B7),
and (B10), respectively, and cN and cN−1 are defined through
Eq. (45). The factor of 4 in front of cN − 1 is a result of the
symmetry discussed in Eqs. (49) and (50). By neglecting the
terms of the order lower than r4N+2 and equating the remain-
ing ones to zero, we obtain the required differential equation
for the function that determines the large-r asymptotic behav-
ior of f (r),

r �4N+3 + �4N+2 + 4bN �4N+2 = 0, (B13)

where bN = cN − 1/cN. Inserting into Eq. (B13) the explicit
expressions for �4N+3, �4N+2, and �4N+2, given by Eqs. (B3),
(B7), and (B10), dividing by C2N+1, 2N+1 and using the trivial
identity,

C2N,2N+1

C2N+1,2N+1
= 4N + 3

2N + 1
, (B14)

one arrives at Eq. (55).
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