
 
 

 
 

 
 

 

 
 

 
 

Downloaded 29 Jan 2013 to 150.203.35.130. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/485603956/x01/AIP/Hiden_JCPCovAd_1640x440Banner_02_26_2013/1640x440_-_23874-BANNER-AD-1640-x-440px_-_USA.jpg/7744715775302b784f4d774142526b39?x
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.459921?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v94/i3?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


Wave functions with terms linear in the interelectronic coordinates to take 
care of the correlation cusp. I. General theory' 

Werner Kutzelnigg and Wim Klopper 
Lehrstuh/fur Theoretische Chemie. Ruhr-Universitat Bochum. Bochum, 
Federal Republic o/Germany 

(Received 17 July 1990; accepted 9 October 1990) 

" The matrix elements :Q."eeded in a CI-SD, CEPA, MP2, or MP3 calculation with linear 
r)2-dependent terms for closed-shell,states are derived, both exactly and in a consistent 
approximate way. The standard approximation B guarantees that in the atomic case the error 
due to truncation of the basis at some angular momentum quantum number L goes as _ L - 7 , 

at variance with L 3l.n conventiomtl calculations (without'12 terms). Another standard 
approximation A has errors - L - 5, but is simpler and-for moderate basis sets-somewhat 
better balanced. The explicit expressions perturbation theory of second and 
third order with linear '12 terms (MP2-R12 and MP3-R12, respectively) are. explicitly given in 
the two standard approximations. 

I. INTRODUCTION 
The slow convergence of the traditional configuration 

interaction (CI) expansion is duel - 3 to the inability of this 
expansion to describe the correlation CUSp4 

lim ( a'l') = 1'l'(r1z = 0), 
r'2-0 ar!2 au '. _ 

(1.1 ) 

which itself is a direct consequence of the singularity of the 
Coulomb repulsion. It implies that the exact wave function is 
linear in r l2 for small r 12•5 

For two-electron atoms the CI expansion can be done in 
two steps. In step lone expands the wave function into par-
tial wave contributions, which is particularly simple for an S 
state 

'l'(r l ,f2 ) = L tP/(rl,rz)P/( cos 3 12 ), 
I 

( 1.2) 

and then one further expands each partial wave amplitude as 

tP/(rl,rz) = L ( 1.3) 
P.q . 

Both expansions (1.2) and (1.3) are slowly convergent. 
Schwartz5 has shown long ago that the second-order contri-
butions (in terms of a liZ expansion) E J2) to the partial 
wave increments of the energy ElZ

) of the He ground state go 
as 
E = - (45/256) (l + p - 4 + 0 {(l + D - 6}, (1.4) 
and Lakin6 has pointed out that the partial wave increments 
E/ (nonexpanded in liZ) are 0 [(l +!) -4] as well. This 
means that the error of a CI expansion truncated at some 
maximum IvalueLgoes as (L + 1) -3, which is pretty slow. 

The convergence of the expansion (1.3) has not yet 
found a mathematical analysis, but numerical experience 
clearly indicates3 that this expansion converges more and 
more slowly for increasing 1 due to the increasingly singular 
nature of the partial wave contribution r: /r: + 1 to '12 1. This 
means that evaluating the E/ numerically with the expansion 
( 1.3) for sufficiently high l in order to be in the asymptotic 

region for the partial wave expansion is not a safe procedure. 
In fact fast convergence for a single partial wave is only pos-
sible if one expresses tP/ as a function of, > and r < .7.8 

The convergenc.e of the partial wave expansion (l.k) is 
speeded up considerably if one allows explicitly for terms 
linear inrl2, i.e., if one replaces (1:2) by3 

x = I.x/(rl"2)P/(COs 3d, 
/ 

( 1.5) 

( 1.6) 

where ,p is some single-particle model reference function, 
e.g., the eigenfunction of the bare nuclear Hamiltonian 
(without electron interaction) or a Hartree-Fock-type wave 
function. The second-order perturbation energy E( 2 ) now 
consists of a termA (2) that can be evaluated in closed form, 
and partial wave increments Jj;?) that go as (l + !) - 8 rather 
than (l + P - 4.3 This can be understood in the following 
way. Insert the ansatz (1.5) into the inhomogeneous differ-
ential equation which determines the first-order wave func-
tion tP(1) (with the bare nuclear Hamiltonian as Ho). 

One gets 
(Ho-Eo)X(1) = - (Uu -E1),p, (1.7) 

i.e., X(i) satisfies the same equation as tP(l) , just with the 
interaction potential g IZ = '12 1 replaced by the "residual in-
teraction-operator" Ul2 : 

( 1.8) 

The operator U l2 is much less singular at '12 = 0 than isgl2• 

In the special case of the ground state of He-like ions one 
finds3 

U "'_Zrl+r2 . 2 3 12", 
IZ'f' - --- sm - 'f" 

'12 2 
( 1.9) 
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which vanishes for rl 2 ..... 0. 
A similar speed-up of the convergence has also been 

found in CI calculations of two-electron atoms.3 The next 
step was a generalization of this method to atoms or mole-
cules with more than two electrons. Some preliminary appli-
cations on second-order level9- 11 were very 
encouraging. This is confirmed by the numerical results in 
the forthcoming papers of this series. 12,13 

In this paper the theoretical background for many-elec-
tron closed shell calculations with linear r 12 terms will be 
given, i.e., we derive all matrix elements needed in 
Plesset theory to second or third order, in configuration in- . 
teraction with singly and doubly substituted configurations 
(CI-SD) and the corresponding (size-extensive) coupled-
electron pair (CEP A) calculations. 

On this level in addition to two-electron integrals (tradi-
tional ones and new ones), three-electron integrals like 
(g12 = rl2 I) 

('P( 1,2,3) I r1zg 131'P( 1,2,3) ), 
('P( 1,2,3) I rlzgI3r231'P( 1,2,3) ), 

and four-electron integrals like 
('P(1,2,3,4) Irlzg23r34Icp(1,2,3,4» 

( 1.10) 
( 1.11) 

(1.12) 
arise. Closed formulas for these integrals are available for 
atomic calculations in . terms of Slater-type orbitals 
(STOs),14 but these formulas are complicated and their 
evaluation is time consuming. Pot molecules in terms of 
Gaussians, formulas have been derived ls,16 that involve a 
one-dimensional numerical integration for integrals of type 
(1.10) and (1.12) and a two-dimensional numerical integra-
tion for type ( 1.11 ). Again the evaluation is time consuming. 

However, even if fast procedures for the evaluation of 
these integrals were available, one would have to face the 
problem of the large number of these integrals; while that of 
two-electron integrals is _N4, there are -N 6 three-electron 
and _N 8 four-electron integrals. The storing and manipu-
lating of these integrals could be handled only for extremely 
small basis sets. 

We have therefore decided to avoid three and four elec-
tron integrals entirely, and how we did so is a key feature of 
the present method. We have even managed to avoid two-
electron integrals of the type 

(1.13 ) 

which are time consuming in the molecular case because 
they require a one-dimensional numerical integration. IS 

In a complete basis it is always possible to express three-
electron integrals of the types needed here, in terms of two-
electron integrals, e.g., 

('PI (l)CP2 (2 )'P3 (3) I r l zg13 I'P1 (1 )'P2 (2 )CP3 (3) > 

= L ('PI(1)CP2(2)CP3(3)l r d'Pp(l)CPq(2)'Pr(3» 
p.q,r 
x (cp p ( 1 ) cP q (2) 'P r ( 3 ) Ig 131 cP I ( 1 ) 'P2 (2) 'P3 ( 3 ) ) 

= L ('PI (1 )'P2(2) Ir121'Pp (1 )'Pq (2) )8r3 
p.q,r 

x ('Pp (1 )'Pr (3) Ig13[¢1 (1 )'P3(3) )8q2 

= L ('Pl(1)Cp2(2)lr12 I'Pp(l)'P2(2» 
p 

(1.14 ) 
If one makes such a "completeness insertion" in terms of a 
given and hence incomplete basis, one introduces errors. 
However, the errors are--depending on the type of the inte-

. gral---of very different magnitude. as can be seen from the 
study of these integrals in the atomic case in terms of a par-
tial wave expansion: Some integrals have a finite partial wave 
expansion. Take, e.g., the integral (1.14) and assume that 
CPI' CPv and 'P3 are all s functions, then only s-type 'P func-

• • P 
bons contrIbute to the sum on the right-hand side and it is 
sufficient to have a complete s basis in order to get the exact 
result. It is relatively realistic to require that a basis is chosen 
such that its s part is sufficiently close to complete. The four-
electron integral (1.12) also has a finite partial wave expan-
sion and is easily evaluated by means of a completeness 
insertion. 

The partial wave expansion of the integral (1.11) does 
not break off. However, as is shown in the appendix A, its 
partial wave increments go as (l + D -8,- i.e., the error in 
truncating the basis atsome L goes as (L + 1) -7. Com-
pared to the truncation error of traditional CI, which is of 
O( [L + 1] - 3), the truncation error introduced by evaluat-
ing (1,11) via a completeness insertion is rather small. 

This paper is organized as follows. In Sec. II the basic 
notations are introduced.-We use a Pock-space fotmalism 
and a tensor notation of matrix elements introduced pre-
viously.17-19 Section III contains the matrix elements needed 
for a closed-shell CI-SD, CEPA, MP2, or MP3 calculation. 
However, these expressions contain sums over complete sets 
that cannot be used directly. In Sec. IV both the exact evalu-
ation of these sums and a hierarchy of approximations are 
discussed. The so-called "standard approximation" is pre-
sented and justified. The matrix elements in the standard 
approximation are given in Sec. V, where two variants A and 
B are also presented which differ only for one matrix ele-
ment. Approximation B is usually superior, but more com-
plicated than approximation A. Section VI deals with the 
elimination of spin while in Secs. VII and VIII the respective 
expressions for second- and third-order theo-
ry are given. 

II. NOTATIONS 
We choose the following convention for labels of spin-

orbitals or the corresponding creation, annihilation, or exci-
tation operators 
ij,k,... occupied in the reference Slater determinant cP 
a,h,c,... unoccupied, but contained in the given basis 
p,q,r,... arbitrary, but contained in the given basis 
a,/3,r,... unoccupied, belonging to a complete set 
K,A./-l, ... _ arbitrary, forming a complete basis. 

The basis functions are assumed to be orthonormal, 
with (p,q,r, ... ) a subset of (K,A,/-l, ... ) and (a,b,c, ... ) a subset 
of (a,/3,r, ... ). 
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The tensor notation for matrix elements and for excita-
tion operators, introduced previouslyl7,18 is used 

= (qIXlp), (2.1a) 

(7fr (1) tfs (2) I Y(1,2)I7fp (1)7fq (2» = 
(2.1b) 

aP =aPa =ata q q p q' 

= aPaqasar = a!a:asan 

(2.2a) 
(2.2b) 

where X is a one-electron operator, Ya two-electron opera-
tor, aP = a! is a creation and ap an annihilation operator for 
the spinorbital 7fp. Antisymmetrized matrix elements are 
written as 

(2.3) 
"Excited" configurations-with respect to a closed-shell ref-
erence Slater determinant ¢;-are designated as 

.I.a a.!,. .!,ab ab.!, 
'l'i=ai'l" 'l'ij = aij 'I' 

with the adjoints 
(2.4 ) 

(¢;/)* = = (¢;'!/) * = = (2.5) 

We define (implying the Einstein summation convention 
over the indices a,/3independently) 

(2.6a) 
The matrix elements of r l2 are written as 

= (7fa (l)7f{l (2) Ird7fi(l)7fj(2». (2.6b) 
The function ¢; if takes care of the necessary term linear in r 12' 

We construct a function that is equivalent to ¢;ij' but orthog-
onal to all excited configurations expressible in the given 
basis 

¢ij = - rtba,!/}¢; = !NijR gpaqP¢;, (2.7) 

where Nij is a normalization factor, to be determined later, 
and with 

R ij -a{l-

° 
for aE!:(a,b) or /3E!:(a,b) 

for aE(a,b) and /3E(a,b/ 
-ij ij j/ R a{J = R rz{J - R ex{J' 

(2.8a) 

(2.8b) 

In a CI -type approach it is recommended to use an orthonor-
mal basis of n-electron functions. In Mqlller-Plesset pertur-
bation theory one prefers an unnormalized counterpart of 
¢ij, namely 

" -ij a{J ¢;ij = !R a{Jaij ¢;. (2.9) 

We shall need operators in normal order in the particle-hole 
sense and designate them by a tilde like For the 
operators a'!/, af/, ag{1 it makes no difference whether 
or not one puts the tilde. 

The Hamiltonian in the particle-hole picture is (with 
the Einstein summation convention implied) 18,19 

(2.1Oa) 

(2.1Oc) 

(2.1Od) 

We assume that the Hartree-Fock energy Eo has been made 
stationary, which implies the usual Brillouin condition 

(2.11) 
We shall also refer to a "generalized Brillouin condition" 

=If=O (2.12a) 
and an "extended Brillouin condition" 

f"p =0. (2.12b) 
For the justification and the possible use of these conditions 
see Sec. V. 

III. PRELIMINARY EXPRESSIONS FOR THE MATRIX 
ELEMENTS 

The functions ¢;'¢;'/'¢;'//'¢ij form an orthonormal set pro-
vided that 

2-a{1Dij (¢; I¢;ij =!N ijR ij R a{J 

= 1, (3.1) 
which determines N if' As it stands, Eq. (3.1) cannot be used 
since it involves a formal summation over the complete set 
{a} of virtual orbitals. We shall show in Sec. IV how to 
evaluate, expressions of this type either exactly or in a consis-
tent approximate way. 

The matrix elements of the one-particle part H(I) of the 
Hamiltonian (2.10) in particle-hole formalism are 

(¢;IH(\)I¢;'!) =I't = 0, 

(¢IH(l)I¢;'!/) = 0, 
(¢IH(l)I¢ij) = 0, 

= 
= 0, 
= 0, 

, - - (071j + oJ/: 
- (0° Ob' - 0° Ob) J cd dc' 

(3.2a) 
(3.2b) 
(3.2c) 
(3.2d) 
(3.2e) 
(3.20 

(3.ig) 

- N·· --
<.!,k/IH(I)I.!, .. Ffi+Rij Fa) . 'l'ed '1'1} 2 I j J I e(3J d ruY e , 

(3.2h) 

- (OYj + OjJr- of I! - oVJ) 
X R tx(3Rij } 

kl a{J' ( 3.2i) 

Use has been made in (3.2a) and C3.2e) of the Brillouin 
theorem (2.11). The corresponding expressions for the ma-
trix elements of the two-electron part H(2) are 
<¢IH (2) I¢r> = 0, 
(¢;IH (2) I¢;ijb) = gijb, 

(3.3a) 

(3.3b) 
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- N" d:' (¢IH(2)I¢ij) = -tg'ijIJR (3.3c) 

(3.3d) 

= 8'!F:} + 8$: - - (3.3e) 

( ;J.kIH(21 1)..') = Nij {8T;;;atfJi ij + 8'=gr;tfJi ij _ 2-;;ktfJi ij } 'I'c 'I'i] 4 djcj a/3 j IC a/3 lSi] c/3' 

(3.3f) 

= - for iJi=k,/, (3.3g) 

= gt'R = 0; for iJi=k,l, (3.3h) 

( )..kI IH(2)1).. .. ) = NklNij . for iJ'-I-kl (3.3i) 'I' 'I'lj 8 ij' kl a/3, r " 

£a -;;lb £b-al fi I -I- • - UdlScj - ucgjd; or ri, (3.3j) 

( _"il IH(2)1)..' ) = Nij {_ g-a'R ij _ g-1f3R ij }. 'I'cd '/'.ij 2 CJ ad Jd c/3' for I i=j, 

(3.3k) 

( )..ilIH (21/)..' ) = NilNij {' R r&=gf!R ij _ 2R ylY;;a!R ij }. 'I' 'I'ij 8 Ii ij yli illS YJ ali , 

for I i=j, (3.31) 

£b (-aj -;;of) , - Uc gjd + lSid , (3.3m) 

( J.ij IH(211).. .. ) = Nij {g-atfJiij _,)(£YlX!+£YlXf)Rij 'I'cd 'I'IJ 4 cd a/3 lScJ lSci ad 

2( ;;;/3 -f/3)-R ij } - lSjd + gid c/3' (3.3n) 

( ],ijIH(21 1], .. ) = {r>i!.R r;tfJi ij _ 2R r.'5(£YlXi + g-al) 'I' 'I'IJ 8 lSiJ ij a/3 IJ lSYi yl 

(3.30) 

IV. EXACT EVALUATION OF THE MATRIX ELEMENTS 
AND A HIERARCHY OF APPROXIMATIONS 

The matrix elements derived in Sec. III contain expres-
sions like [e.g., in Eqs. (3.1), (3.2i), and (3.3c) 1 

A a/3B ij A abB ij ij a/3 - ij ab' (4.1 ) 
where (a,{3, ... ) is a complete set of virtual spinorbitals, 
(a,b, ... ) the corresponding set in the given basis. One can 
either try to evaluate these expressions exactly or to approxi-
mate them. The approximations discussed here consist in 
introducing completeness insertions, e.g., in replacing a sum 
over a complete basis by a sum over the given basis, e.g., in 
assuming 

(4.2) 
(K is an arbitrary element of a complete basis, p of the given 
basis). This type of approximation has at least one merit, 
namely that it becomes exact in the limit of a complete basis. 
The crucial point, on which the justification of completeness 

insertions rests, is how fast the introduced error goes to zero 
when one extends the basis. 

A brute force approach, which may be called the zeroth 
approximation, consists in inserting completeness relations 
in terms of the given basis in all matrix elements of Sec. III. 
This would imply that expressions like Eq. (4.1) are set 
equal to zero. In this approximation ¢ if as defined by Eq. 
(2.6) is a linear combination of the ¢':/. and ¢ij given by Eq. 
(2.7) vanishes. All the matrix elements involving ¢i/ vanish 
as well and the normalization integral Nij becomes unde-
fined. This "zeroth apprbximation" is hence nothing but tra-
ditional CI without any terms linear in r12• 

Before we study better approximations let us consider 
the exact evaluation of Eq. (4.1). We note that (see Fig. 1) 

A a/3B If - A KAB ij . A KmB /j A nAB ij + B nmA i] kl a/3 - kl KA. - kl Km - kl nA kl nm • 
( 4.3a) 

A abB i] - A pqB /j A pmB /j - A nYB /j + B nmA /j kl ab - kl pq - kl pm k nq kl nm' 
(4.3b) 

+A pmBij A nAB If +A nqB/j kl .pm - kl nA kl ,nq' 
( 4.3c) 

The first term on the right-hand side of Eq. (4.3c) is easily 
evaluated (since K and A. refer to a complete basis) 

A = (AJ1)gl = (k(1 )/(2) IA(1,2)B(1,2) li(1)j (2). 
(4.4) 

The second, fourth, and sixth terms on the right-hand side of 
Eq. (4.3c) are trivial, since they only involve functions of the 
"given" basis. In the third and fifth terms on the right-hand 
side of Eq. (4.3c) sums over the complete basis sets {K} or 
{A.} and the finite set {k} or {l} as well are implied. To get 
closed expressions we write 

1< 
/ __ -----,p::--"-JA ---------.., 

m m 

b b 

n a 
IX 

FIG. 1. Illustration of the spaces spanned by basis functions with different 
labels: K,A.: arbitrary elements of a complete basis,p,q: arbitrary elements of 
the given basis, n,m: functions occupied in the reference Slater determinant 
fjJ, a,b: elements of the given basis orthogonal to (m,n), a,j3: elements ofthe 
complete basis orthogonal to (m,n). 
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A 1,!,B = (k(1 )1(2) IA (1,2) !K(1 )m(2» 

X(K(3)m(4)IB(3,4)li(3)j (4» (4.5) 

and take Eq. (4.5) as a sum (over K and m) of (factorizing) 
four-electron integrals. Noting the completeness relation 

(4.6) 

we can rewrite Eq. (4.5) as a three-electron integral. (After 
replacing r3 by r, we rename r4 as r3.) 

= (k(1 )1(2)m(3) IA(1,2)B(1,3) liCl )m(2)j (3». 
(4.7) 

(One must still sum over m, i.e., over all occupied spinorbi-
tals. ) 

We proceed similarly with sums over products of three 
two-electron matrix elements. The first of these [arising, 
e.g., in Eq. (3.30)] is that in which a fourfold sum over 
complete sets is implied: 

A af3Br8Cii =AKA-B/L"Cii _AmA.B/L"cii _AKIIB/LVCii _AKA-BmvCii _AKA-B/LII Cil +AmnB/LvCii +AKA-BmnCiJ kl afj yo kl KA- /LV kl inA /Lv kl Kn /LV kl KA- m" kl KA-!Ln kl mn!Lv kl KA- mn 
'+AmABnvCii +AmA.B!LnCij -+AKnBmvCij +AKnB,LmCij _AmnBovCii 

kl mA. nv kl rnA. ILn kl Kn mv kl KII!Lm kl mn ov 

(p-following m,n,o- designates here an occupied rather 
than an arbitrary spin orbital). 

The first term on the right-hand side of Eq. (4.8) is a 
two-electron matrix element 

A = (ABC)%I' (4.9a) 
The sixth and seventh terms on the right-hand side of Eq. 
(4.8) are also very simple: 

A mItB!L" Cil = A mil (BC)il kl mn fLY kl mil· (4.9b) 
The twelfth to fifteenth terms reduce to three-electron inte-
grals like Eq. (4.7), the sixteenth term finally is a product of 
three two-electron integrals. There remain three types of ex-
pressions, the second to fifth terms, the eighth and eleventh 
terms, and finally the ninth term. Take the second term [we 
simplify the notation of Eq. (4.5)] 
A 'k/B'::A. = (kllAdmA ) (mA IB341,uv) (,uVIC56Iij) 

= (klmIA12B32Cdmji). (4.9c) 
It becomes a three-electron integral like Eq. (4.7). For the 
eighth term we get 
A 'k/B = (kIIAdmA) (mAIB34Inv) (nvIC56Iij) 

= (klmnIAI2BnC42Imjni), (4.9d) 
i.e., a four-electron integral. 

The ninth term is 
A CZn = (kIIAd mA ) (mAIB341,un) (,un I C561ij) 

= (klmnIA12B32C34Imnij), (4.ge) 
again a four-electron integral, but of a different type. 

Two other sums over produCts of three two-electron ma-
trix elements different from Eq. (4.8) are those with a triple 
sum over a complete set. The first of these is 
A 

=A -A -A 
- A ':,1 + A + A C%o 

+AKIIBmOC iJ _AnPBmoC'J (4.10a) kl mn KO kl mp no 

and the second 
A a[3Bm{j Cil 

kl [3m 0:8 

(4.8) 

- A 11B T:'C%n +A + A 

+ A K"Bmo Cll _ A nPB "'0 C1j 
kl nm KO kl pm no' (4. lOb) 

The first expression on the right-hand side in (4.1 Oa) can be 
rewritten as 

A 11B = (kIIAdKA) (mAIB34Imv) (KvICS6 1ij) 
= (klmIA 12B32Cdijm). (4.lla) 

i.e., it is essentially of the type (4.9c). 
The third term ofEq. (4. lOa) is of the type (4.9d). The 

fifth to seventh terms are of type ( 4. 7), while the second and 
fourth terms on the right-hand side ofEq. (4. lOa) are of the 
type 

A ':,1 = (kIIAdKA) (mAIB34Imn) (KnIC56 Iij) 

= (klmnIA12B32C'4Iinmj), (4.11b) 
very much like Eqs. (4.9d) or (4.ge). 

For the first expression on the right-hand side of Eq. 
(4.lOb) we get 
A 1}B = (kIIAdKA ) (AmIB34Imv)(KvICs6 Iij) 

= (klmIA 12B23C13 limj). (4.11c) 

The other terms in Eq. ( 4. lOb ) are of types already 
discussed. 

If one wants to evaluate all the matrix elements of Sec. 
III rigorously, one has to include three- and four-electron 
integrals, which is rather tedious and time consuming, both 
as far as the evaluation of each individual integral and their 
number is concerned. One would be limited to very small 
atoms or molecules and to very modest basis sizes. 

In order to derive approximations that consist of com-
pleteness insertions in terms of the given basis, one must 
carefully analyze the errors that one makes in doing so. A 
good measure of this error is the convergence of the partial 
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wave expansion for atoms. The details are given in Appendix 
A. 

We remember that our matrix elements do not consist of 
single expressions like the left-hand side of Eq. (4.3a) but 
rather of differences like on the left-hand side of Eq. (4.3c) 
of expressions involving sums over complete basis sets and 
the same expressions summed over the given basis set. 

Let the given basis saturated up to a given I value and 
let it not contain functions with higher I values. Further, let 
A12 = rl:b B\2 = g'2 = lIr\2' Then the truncation error of 
Eq. (4.1) is 0(1- 3). If we separate this error according to 
Eq. (4.3c) into two contributions we get 

.XA ij ..JJq ij _ 1 ..JJq ij - 0(1 - 3) 
'ijgKA -'ijgpq - -'ygpq - , ( 4.12a) 

while 

- rtrtlcm + r'!jgZm - r'l/i!.A + r'l/i!.q = 0, (4.12b) 
provided that I is larger than a required minimum value. The 
reason for this is that the partial wave expansion ofEq. (4.7) 
breaks off after some finite I. 

In what we call the standard approximation we shall 
hence neglect differences like Eq. (4.12b), and rather take 
care that the largest I of the basis is large enough and that up 
to this 1 the basis can be regarded as saturated. 

It turns out that the integrals Eqs. (4.7), (4.9d), (4.ge), 
and (4.11b) have finite I expansions while thel expansions of 
Eqs. (4.4), (4.9a,b,c), and (4.11a,c) are infinite. The partial 
wave increments of Eq. (4.4) go as _1- 4 for A = r'2' 
B = g12' and as _1- 6 for A = B = r l2 (see Appendix A), 
but this does not matter since Eq. (4.4) is easily evaluated in 
closed form. The same holds for the integrals Eqs. (4.9a,b) 
or even (4.9c), which is also easily evaluated in closed form, 
e.g., 

(klm/r,zg32rdmji) = (klmlrdmji) 

= 8'('(k1 Ird mj). (4.13 ) 

Equation (4.11a) can be reduced to the case (4.7) that has a 
finite I expansion. The only integral that has a nonterminat-
ing I expansion and is hard to calculate is Eq. (4.11c). Fortu-
nately this integral has, as, shown in the Appendix A (for 
A = C = rw B = g12) partial wave increments that go as 
[-8. This is why in the standard approximation these inte-
grals will be evaluated via completeness insertions, which 
means that one need not evaluate them at all. 

It has so turned out that in the standard approximation 
only two-electron integrals are needed. In this approxima-
tion the truncation error which was - (L + 1) - 3 in the 
standard CI is reduced to - (L + n- 7 , at least to second-
and third-order of MP-perturbation theory. 

It is consistent with the standard approximation to as-
sume that the generalized and the extended Brillouin 
rems (2;12) hold, which simplifies the matrix elements of 
H 0) considerably. Of course Eq. (2.12a) is satisfied if <pis 
the exact Hartree-Fock wave function, i.e.; that reached in a 
basis set limit. We must hence require that the basis is close 
to saturated on Hartree-Fock level. Equation (2.12b) holds 
for atoms if the basis is saturated up to a given I value and 
truncated after this l. This is more or less what we need in the 
standard approximation anyway. 

A drawback of the standard approximation is, of course, 
that it is not strictly variational, i.e., it does not furnish rigor-
ous upper bounds. However, since the convergence to the 
exact energies is much faster than conventionally, one 
should not overestimate the importance of staying in the 
frame of the variation principle. 

If one cares for a strictly variational approach, it is not 
only necessary to evaluate all matrix elements exactly, one 
must also abandon the generalized and the extended Bril-
louin theorems. This implies that one also needs integrals 
like rt/' rZp.' where V represents the nuclear attraction po-
tential. These integrals (which are avoided in the standard 
approximation) require a numerical integration. 15 

V. MATRIX ELEMENTS IN THE STANDARD 
APPROXIMATION 

In the standard approximation the normalization inte-
sa 

gral (3.1) becomes ( = always means: in the s,tandard ap-
proximation) 

where 
(r)Z = (i(l)j (2)lrrzli(l)j (2». (5.2) 

By virtue of the extended Brillouin theorem (2.12b), (3.2h) 
vanishes 

(5.3 ) 

The integral (3.2i) vanishes unless at least two labels agree, 
i.e." 

- - NINfj ( -I.ilIH(I)I-I./,;)'= __ 1_1 {r:l¥! _ ?,lr.:ij }f! 
'f' 'f'" 8, II a{3 t! rab J' 

for I =/=j, (5.4a) 

(J.ijIH(l)/J. .. ) = Ntj c;.Bj{3j ij -fi 'f' 'f'll 4 IJ {j a{3 I I (5.4b) 

(,ftkl IH (1)1,ftij) =0 for k=/=i,j; l=/=i,j. (S.4c) 
The standard approximation of Eq. (S.4a) is obviously 

(,ftilIH (I) l,ftij) :, - {(r)7t - (r)Z 

- r'fllj,q + fj, (S.5) 
while for Eq. (S.4b) some reformulations are necessary. We 
first note that 

[f,r]g{3 = (af3/[f(l) +/(2),rd/ij) 

= f':xlf,{3 + .,-
= (af3/[T(1) + T(2),r12 J/ij) 

- (af31 [K( f) + K(2),r121 lij) 

_ gmp I! _ nJnP Ij 
pm ap 5am pp 

-fY ij +fYIJ ..mJ. ,I ..im ,1 - aryp {J ay - , ai3J m - , a{:J.I m (5.6) 
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with 

<;(..IIIH (l) 1;(... ) ;::, {?{;f3r5?i _ ?hJd?i } -fl 't' 't'iJ 4 IJ J [3 a8 if b ad I J 

InderivingEq. (5.6) use has been made of Eqs. (1.8) and of 
(2.11) and (2.12a)..; 

For [J,r] gba relation analogous to (5.6) is derived, just 
with a,/3,y replaced by a,b,c. We now use Eqs. (2.12b) and 
(5.6) to rewrite Eq. (5.4b) as 

Nt {=[3( [J, ] if ( ,I") if [J,]J1 ( ,I" )jl ) = 8 ' if ,r aj3 + rJ af3 - ,r af3 - rJ a/3 

- ?ljb([J,r]gb + - - - f} -

= Nt {rt ( - + + r ':i[3ff;:n + - + ?'::!J:" + ) 8 .. " 
?:,b( 2-;;ii +TIJ +-p},..tnl"+?p m} 2,..tnP?} +r"!/I"I +"pml"i)} jl Ii - if - lSab Uab r ablSpm abgpm - ISbm ap aW m ,. aW m - i - j' (5.8) 

In the spirit of the standard approximation we get 

(5.9a) 

(S.9b) 

where we have used that 
r I:zg"I2 = 1; r12U12 = -1rI2(V I - V 2)' (5.10a) 
<tf(1,2)lr I2 (V I - V2 )!¢(1,2» 

= - !(tf(1,2) I [VI - V2,f 12 11¢(l,2» = - 3 (S,lQb) 
for arbitrary 1/1. 

We further note that (see Sec. IV and Appendix A) 
={J-;;, pj,..tni =lr.: pj ml 
r/j r af3lSpm - 'ij r abgpm 

sa - 2[ (.2)pJ (r")pj],..tni 7.JJq;;p},..tn1 - r IJ - jf ISpm - ('if r pqlSpm 

while 
- = 0(1-7), 

(S,lla) 

(5.12b) 
I 

such that (S.12b) can be neglected in the standard approxi-
mation. 

The summation of the first expression on the right-hand 
side ofEq, (S.lla) over the complete set {P} can be done in 
closed form 

(r)'ljg';:n = (ijml";2g13l mji) 

= (ijml + ri - 2r 1r2 )g13lmji) 

= (iml";gI2Imi} + (j I"; I j) (il11lg:n!mi) 
(5.13) 

while the analogol.ls summation of the last term in Eq. 
(5.11a) leads to a three-electron integral of type (4.7), 
which has a finite partial wave expansion. We can hence 
evaluate it via replacing p by r, i.e" by summing over the 
given basis. It is probably more consistent to proceed for the 
first term in (5.11a) in the same way, i.e., not to use Eq. 
(5,13), but rather to replacep by rin both terms on the right-
hand side in Eq. (5.11a). 

The final expression for Eq. (S.4b) is then 

(;(../jIH(I)j;(.. ):. Nt {I t?:q /j ?:q-/j + [C ")r} I?:?!] m! [( ")Ir (?)ir I?:qpr] m} 't' 't'/j -- 4 . /j gpq - II Upq r ij - r ji - 2 ij pq grm + r ij - r ji - 2 IJ pq grm 

[( r)mj (")m} rr:?!:!]f! (")!m l?:qpm]lj } j'l fj + /j r jl" - II pq In + if - r ji - 'l ij pq m - I - j' (5.14a) 

For canonical spinorbits (f) = 8jEj) this reduces to 

+ [ (")r} I?:?!] m! if - r }I - 'l ij pq grm 

+ [ ( (')ir l=q;;lr],..tn}} r if - r jf""'" ""11 rpq ISrm . 
(S.14b) 

This expression is perfectly in the spirit of what we have 
called the standard approximation. It has nevertheless 
turned out that an additional simplificati<;m ofEq. (S.14b) is 
possible as a valid approximation, namely to ignore the 
terms involving the commutator [K,r ,21 altogether. In Eq. 
(S.14b) only the part - r12K is considered, because the oth-
er part Kr 12 gives only rise to truncation errors -1- 7 , com-
pared to -1- 5 for the r 12K part. One can argue that the two 
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terms have opposite sign and cancel each other to some ex-
tent, such that in spite of the different I behavior one should 
neglect both parts of [K,rI2 ] rather thanjust one of them. If 
one neglects [K,rl2] entirely, i.e., rather approximates it in 
the given basis, Eq. (S.14a) is replaced by 

_ _ A N 2
ij 

{ 
(¢ijIH(\)I¢ij) =--i; 1 + - f'ijqu%q 

+ [(r),!/ - (r)'? -
,c. + [(r)7/' - (r)jt 

- - - fr (S.14c) 

In practical calculations 13 it has turned out that the approxi-
mation (S.14a) is generally superior to (5.14c). But the re-
sults based on Eq. (5.14c) are usually quite acceptable and 
obtained more easily. Since in all applications published so 
far9- I1 (5.14c) was implied, we shall call this the approxima-
tion A, and reserve the name approximation B for the strict 
standard approximation characterized by Eq. (5.14a). This 
is the only place where approximations A and B differ. 
Whenever we refer to standard, this always applies to both A 
andB. 

The most important contribution to the difference 
between approximations A and B is that with m = i or m = j, 
i.e., 

- (r);/ - (S.14d) 
and the corresponding expression with i andj exchanged. It 
is surprising that such expressions arise, since matrix ele-
ments like usually do not occur. In the matrix element of 
H(1) + H(2) these contributions cancel, as we shall see. 
They must, however, not be ignored if one artificially takes 
the matrix elements of H( I) and H (2) separately as is done in 
M0ller-Plesset perturbation theory (see Secs. VII and 
VIII). 

We come now to the matrix elements of n<2). For Eq. 
(3.3c) we get 

(¢IH (2) I¢ij) :: :(f {g'if"?!t -

= Nij {I - J;"M,.<rp! }. 2 _'Jpq (5.1S) 

The result for Eq. (3.3f) is 

(5.16a) 

sa 
= 0 for k ::fij. (S.16b) 

Equations (3.3i,k) become 

(¢k/ IH(2)I¢ij) :: - 2(r)jkl - ?LrPh}; 

for ij::fk,l, (5.17) 

(S.18) 

The last term in Eq. (3.31) and the middle term in (3.30) 
need special attention. 

sa 
_ -;:yli,.,al-::ij _ -;:yli,.,al-:-jj - r il 15yjrali - 'il15cjrad ril15jy'ali 

(5.19) 

The first two terms on the last right-hand side of (5.19) 
in vol ve a Coulomb integral g;j and are of type ( 4.11 a), their 
truncation error goes as [- 5 , while the last two terms involve 
an exchange integralgf: and are of type (4.11c) with a trun-
cation error _1-7 • We need hence only keep the first two 
terms. We note that [see Eq. (4.7)] 

t;Jr2li = (yj8Igl2r l3l i lj) 
= 
= (y8jlr1zg13 lYl ) 

. noll = I5!lie,,<j 
since g 12 and r 13 commute. Hence 
_-" I .1' _.,1;j'1 = r/ft1.,.,.g'Kj 

= 
= (ilj/ri2 r I3 IlYl), 

sa 
R- yl5,.,aI-R ij - {( .:z)Kj (')Kj _ 1?f,9:! }noll il15rJ ao - f il - r Ii :1 il pq 15Kj 

{( r)Ki (?)Ki 1?f,"7..i },.jl - il - r Ii - 2 il pq oKi' 

(5.20) 

(S.21a) 

(5.22a) 

(¢ilIHl 2 )1¢(f):: -I'fl"r%q] 

- [2(r)11 - 2(r)ii -I'ftf% 
+ [2(r)7! - 2(r)i! - "?!!7/q l::fj, 

(S.23a) 

- - 2(r)j{-

X + i:j] - [2(r)t - 2(r)j: -

X + - 2rz + (S.24a) 
Note that 

g-ij [2(r)i! _ 2(r)ij _ ff,Qri! ] =g-IJ. 8 ij ij }I U pq U' (S.2S) 

For the evaluation of the second and third terms in Eq. 
(5.24a) one can either use Eqs. (5.21a) and (5.13) for the 
contributions involving r, and replace the summation over K 
by a summation over r--or, what is more consistent, replace 
the summation over K everywhere by a summation over r. 

Instead of exchanging the last two factors in Eq. (5.21) 
one could as well have exchanged the first two with the result 
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",illnKl -Jj _ Ii/o).,jr:cp -gijri.l KJl 

= (ijllri; 
sa 

R-ro,..alR- If _ J'{ (.:1.) If _.2 )Ji l=q-;;iJ } il 6rJ as - glf r AI - (, Al - 2'J../'j,q 

JI{ ( _2 ) If ( ?)JI F.Dq-;;iJ } -glf r Ai - rAt - 2rAi'pq , 

<¢ilIH (2)I¢lf) 
:, NilNlf {ni! [2(r)il _ 2(r)il -1f9.f ] 8 oD If JI il M 

- - 2(r)1/ -11.1"rZq ] 

+ gt/[2(r)Xi - 2(,-2)11- . 

(5.21b) 

(5.22b) 

(5.23b) 

If one exchanges I withj in the second and third expressions 
and takes the complex conjugate one sees that the matrix 
defined by Eq. (5.23a) is, in fact, hermitian. 

In an analogous wayan alternative expression to Eq. 
(5.24a) is obtained: 

sa N2 

=gZ +-2{ -216 
8 

- [g# + g1;i] (2(?) ij if - 2(r){j - F';.7tq ] ; 
- [it + g)7] [2(?)YA - 2(r)j/,. -?fJJi,q]}, 

(5.24b) 

which is the hermitian conjugate of (5.24a). 
As we have mentioned after Eq. (5.14) the somewhat 

strange-looking terms with in Eq. (5.24a) or ?:ii' in Eq. 
(5.24b) cancel with corresponding contributions in Eq; 
(5.14a) or (5.14b) if one constructs the matrix element of 
H(!) + H(2) : 

The standard approximation for Eq. (3.3n) is obviously 

- :iLg'JT,/w (5.26) 

It is not compulsory to make the standard approxima-
tion. One can, e.g., renounce on assuming (2.12b). How-
ever, all expressions then get much more lengthy, and it does 
not appear that one gains anything, provided that the basis is 
not too small. 

VI. SPIN FREE FORMULATION 
For a closed-shell reference state ¢I a spinfree formalism 

is recommended. We replace the excitation operators (2.2) 
by their spinfree counterparts: 17 

E p 
- aPa + aPP 

Q - Qa Q/J' ( 6.1a) 

(6.1b) 

where capital letters label spinfree orbitals and in Eq. (6.1) a 
and {3 exceptionally refer to spin. 

The normalized singlet excited configurations in analo-
gy to Eq. (2.4) are 

<1>1 = _1_ E 1¢1, 
ji 

_ +AB-/. 
- E IJ'I" 

;"AB 1 (EAB EBA)-/. 'l'[J=-- [J- [J'I' 
2{3 

1 -AB =-E IJ¢I. 
J3 

(6.2a) 

(6.2b) 

(6.2c) 

[cf. Eq. 2.1) 
+ = ([R,S) + IYI [P,Q] + > 

-
= {(1 + 8pQ ){ 1 + 8RS )} -112( + 

(6.3a) 
= ([R,S] -IYI[P,Q] -) 

= - (6.3b) 
The counterpart of Eq. (2.6) is (we keep greek lower case 
letters for spinfree orbitals of the complete set because greek 
capital letters are not unique. Note that a,{3 now don't mean 
spin functions) . 

+_1 +[J+ap ¢IlJ - - L rapE lJ¢I 
2 a<p 

+ + 
=!(1 + 8ap ) 

-/.- _ 1 "rI..J"E aP-/. 
'l'lJ - Fi k ap lJ'I' 

2,,3 a</J 

__ l' -:-JJ -EafJ-/. 
- -- ra(3 lJ'I'" 

4{3 

( 6.4a) 

(6.4b) 

If no summation sign is given, summation over all labels 
independently is' implied. One can mUltiply Eq. '( 6.4b) by 
(1 + 8a(3)' without changing anything since r;:a = O. The 
corresponding functions orthogonalized to the given basis 
are 

(6.5a) 

J.- _ 1, N-R,[J"EaPA. (65b) 
'l'lJ ,- '4J3 lJ ap lJ'I" . 

with it and Ii defined in analogy toEqs. (2.8) and (6.3). 
The corresponding unnormalized funetions are 
'" + + 
¢Iii =!(1 + 8ap )R (6.5c) 
"'- -lJ-a(3 ¢IIJ =!R apE lJ¢I. (6.5d) 

Note that there is no factor 1I{3 in Eq. (6.5d). 
The spinfree Hamiltonian in particle-hole formalism is 

oftheformEq. (2.lOa) with 

Eo = h + - gfr, 
HCI) =h'5. 

(6.6a) 
(6.6b) 

H(2) = InKA E!'Y (6.6c) io!'y KA' 

Here E are the spinfree excitation operators in normal order 
in the particle-hole sense. 

For the normalization integrals we obtain 
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+ + 
I(N +)2 " R a{3R IJ = 4 IJ L IJ a{3' 

a<{3 

:: !CN jj)2[ - (1 + 8pQ ) ; fj2; i;'Q ], 

(6.7a) 

= {(1 + 8pQ ) (1 + 8Rs )} -'.112{ + 
(6.7b) 

I 

= - o1:ff, 

(1IJ /1-) -1(N-)2R- arfjiIJ 'f'- 'f'IJ -ll IJ [J 0# 

(6.7c) 

(6.7d) 

We get the following nonvanishing matrix elements of the 
one-electron operator H(1) : 

(6.8a) 

={(1 +8AB )(1 +8lJ)(1 +ocD)(l 

+ - ± (fifo; + f;of ±fJo7 ±ff8J)} , 

= NAN /j {(1 + 8KL )(1 + o[J)}-1I2{2[ (1 + 8a(3) (1 + 8a8 )] 1I2(oIf8; ± oJ87)R 
. 8 

(6.8b) 

- (1 + oa(3) (8fF; + 8fff ±8Jff ± 87Ff)R 'ffr.R } . (6.8c) 

The reformulation of these expressions as well as of the anal-
ogous matrix elements of H(Zl follows essentially the same 
lines as in the case of spin-orbitals. The results are somewhat 
lengthy and will not be given here. We shall however give the 
spinfree results for second- and third-order M011er-Plesset 
perturbation theory in the following two sections. 

VII. SECOND-ORDER M0LLER-PLESSET THEORY 
(MP2-R12) 

Starting point is the Hylleraas functional 
F= ('I'(l)IHQ - Eo 1'1'(1) + 2 Re (tfJl V --,- E I I'I'(1» 

(7.1) 

with tfJ the Hartree-Fock function and with the ansatz 

'11(1) = 2: 2: dZbtfJ'f/ + 2: Cil¢ij 
kj a<b kJ 

(7.2) 

for the first-order function 'I' (I) (in spin-orbital formalism). 
In the standard approximation the coupling terms between 
tfJc;/ and ¢if vanish in view ofEq. (S.3), such that 

(7.3a) 

FI = L L 2: L - EoW/f) 
i<j k<..! a<b c<d 

+ 2 Re L L dg6 (tfJlVltfJ;?> 
i<j a<.b 

= L L L d ij'd Zb + - -i<ja<bc<d 
" " "dabdij (8k'fl + "'rk _ "k'fl "'lk) - L L L kl ab I j UP' UJ' - Ui.! j 
i<j k<l a<b 

+ 2 Re L L dZbgc;/, 
i<i a<b 

(7.3b) 

+ 2 Re 2: cil(tfJl VI¢iI)· (7.3c) 
i<i 

One can now minimize FI with respect to the d gb and F2 with 
respect to the cil. If we use canonical spinorbitals 

= the expressions (7.3) are considerably simpli-
fied [see Eq. (S.14b)] 

FI = 2: 2: {dc;/dZb(Ea + Eb - E, - Ej ) + 2 RedZbggb
}, 

kj a<b 
C7.4a) 

(7.4b) 

sa 
Uil =![3 - rf/uZq ], (7.Sa) 

Qil :, H [cr)j - (r);: - F1Ir'1Q 

+ [ ( ")Ir (?)Ir IF:.?r] mj } r if - r jl - 2 ij pq grm , (7.Sb) 

(7.Sc) 

Minimization of Eq. (7.4a) with respect to d '!/ leads to the 
conventional MP2 expressions 

minCF1) = r 2: Igijb12(EI + E] - Ea - E'b) -I 
i<j a<b 

while on minimizing Fz with respect to elf one gets 

(7.6a) 

(7.6b) 
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A 
C/j = - V/j/(U/j- V/j), 

A 

min(F2 ) = - I IV/j12/C U/j - Vij)' 
i<j 

B 
Clj = - Vij/(Ui} + Qij - Vij)' 

a 
min(F2 ) = - I IVijI2/(Uij + Qij - Vij)' 

i<j 

(7.7a) 

(7.7b) 

(7.7c) 

(7.7d) 

Equations (7.7a) and C7.7b) hold in the approximation A, 
(7.7c) and (7.7d) in the approximation B. 

In the spinfree formalism we get C again for canonical 
orbitals) 

F2 = I 12( U i} + Q 11 - V in + 2 Re V /1} 
I<J 

12(U£r +QII - VII) VII} 
I<J 

with the minimum conditions 
+ + 
d 1/ = g1/CCI + CJ - CA, - EB ) -1, 

Cit/ =.J3 'tl/CCI + EJ - EA - EB)-I, 
+ 

min(F1 ) = 2: L (g1/)2(cJ + CJ - CA - EB ) - 1 
I<J A<B 

(7.8b) 

(7.9a) 

(7.9b) 

+3 I I (,k1/)2(EI +cJ- CA -Ca)-I. 
J<J A<B 

(7.9c) 
Equation (7. 9c) is equivalent to (7. 6b ). For F2 one gets 

= - V/j/(U I1 +QI1-VI1), C7.lOa) 
= - V II/ ( U II + Q iJ - V If ), (7 . lOb ) 

min(F2) = - 2: IV 1112/( U 11 + Q 11 - V in 
/<J 

-32: IV II 12/(U II +QD - VII), (7.10c) 
/<J 

sn { + + } V I1 =1 2- +oPQ} , (7.l1a) 

.a 
V U = !{2 - gW/Q}' (7.l1b) 

(7.11c) 

[ 
+ + + 

X(1+0RJ)1/2+ 

x (1 + OPQ )]81:,{..(1 + 0IR) 1/2}(1 + OIJ) - 1/2, 
(7.l1d) 

sa 

U - 1{3 } IJ = - YjJ U PQ ' (7.lle) 
sa 

Q If = i{[ Cr)ff -
+ - ]81,{..} . (7.11f) 

In conventional MP2 the results from the spinorbital for-
malism and the spinfree formalism are identical. In MP2-
R 12 this is not longer the case (except in the limit of a com-
plete basis). The cusp-relation that for high 
enough I cij approaches 1 for a natural parity singlet state, 
but i for a triplet state and j for an unnatural parity singlet 
state. For spinorbital pairs that are mixtures of singlet and 
triplet states a "compromise" cij is obtained that does not 
guarantee an (l + !) - 8 convergence ofthe remaining terms. 
The use of spin-adapted pairs is hence compulsory. 

In conventional MP2 it also does not matter whether 
ones uses canonical or localized orbitals. This is again differ-
ent in MP2-R12. (For details see paper III of this series. 13) 

VIII. THIRD-ORDER M0LLER-PLESSET THEORY 
The third-order energy E(3) of the MP expansion can be 

expressed in terms of the first-order wave function \{I(l) giv-
en by Eq. (7.2). It is convenient to decompose E(3) into 
three parts Ea, Eb • and Ec corresponding to the traditional 
expression, a mixed term and an r l2 term, respectively. 

E(3)=Ea +Eb +Ec' (S.l) 
In the spinorbital formalism we get 

(S.2a) 

Eb = 2 Re L L L 
i<.j k<.l c<d 

(S.2b) 

(S.2e) 

The matrix elements needed in Eqs. (8.2) have been derived 
in Secs. III and V. 

It is recommended to decouple Ea, Eb , and Ec into par-
ticle-particle (pp), particle-hole (ph), and hole-hole (hh) 
contributions, according to whether matrix elements, 

(pp) or g;/ (ph), or finally gtl (hh) are involved. 
Ea= EPj' + + EZh, 
Eb = 
Ee = + + 
EPP =" ij a L £,.,; £- i} cd ah' 

i<ja<bc<d 

Eph = "'" " dij a k.t £... ab5ic kJ' 
iJ,k a,b,c 

sa 
EPP = - IRe " b ':! £.. IJ5cd pq' 

kj 
,a 

E PP = J "(/f,<r;;grs ,ij - 41;' ) I C!J12 c TO£.,; lj pq rs IJ ' 
i<.j 

(8.3a) 
(S.3b) 
(S.3c) 

(S.4a) 

(8.4b) 

(S.4c) 

(S.5) 

(S.6a) 
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sa 
= - k L - - r!lrjq ]tJ 

iJ,1 
+ fjdljB [;g - ti:f]d (1 + 8[J) 

[2( _2)rl 2('_2)rl' =q;rl ]dl} i/ - r i/- r Ii -ri/rpq 5rj CIjC." (8.6b) x(1 +8AB )(1 + 8KJ ) (1 +8cB )}1I2, (8.7b) 
+ + + 

, 

= a L ') - 2(yl)11 - rxrr:;q}. 
;<J til 

(8.6c) 

E hh =" " h dAB g KLd [J a L.. L.. KL [J AB [<:.J K<:.L <:.B 

+" >. "d AB -;;KLd lJ L.. ___ L.. KLl5IJ. AB 
[<JK<LA<B 

(8.7c) 

The corresponding expressions in the spinfree formalism are 
1 + + + 

EIj/= --Re" " dCDgPQ rlJ (1 ,)clJ 2 L.. L.. lJ CD, PQ U PQ + I<.JC<.D .' ' + + + 
Eff',= d ffg1:1J; d ljB + dfM1J;dljB 

CS.7a) 
_ '{3 'Re" " d CD-..PQ-r/ elJ 

2 L.. L.. lJoC/) PQ -
I<JC<D 

(8.8) 

Eph - -.l" {_ d lJ [g+ AK +' 3hAK]d+ CB a - 4 L.. AB C[ l5C[ KJ [,J,K A, ,C 

- lJ AK - K - CB [J AK - K '[+ ] + [+. ] + dAB g c[ - 5g'i.[ d KJ +-J3d;4B g C[ - g'i.[ 

= - ; fE; +.8PQ) + 8RJ )1/2 + [2(?)fl - ; fE; :b(1 + 8pQ } ] 

+ 8R1)1I2}(1 + 8IL )1/2 -! ') {[2(r)fi - - [2(r)fi-
l:tL 

(8.9b) 

(8.9c) 

An analysis ofthe various contributions to E(3) in terms of 
their partial wave -increments in the atomic case leads to the 
following result. 

Eff' as given by Eq. or Eq. (8.8) goes as 
(l + ,p -4, as given by Eg. (S.6a) or Eq. (S.9a) as 
(/+!)-5,l,2°finally [Eqs. (8.6b)-(8.9b)] and 
[Eqs. (8.6c )-( 8.9c)] as (l + V - 6. Obviously E ff' is the 
most important correction to the conventional E (3), followed 
by 

One sees that the contributions to E have a very simi-
lar structure as those neglected in approximation A for E(2) • 

In fact the contribution of E(2) neglected in approximation 
A is 

Compare this with the contributions withj = I to 

- L lelj 12{ - Y'lf"r'j,q 
8 i,J 

+ [2(r)t - rt/,P;q (8.11) 

or rather the corresponding expression symmetrized 
between i and j : 

- -8
1 L ie!1 12{ - rlj"r'j,q] (gg + t/;) 

1<1 
+ - rlj9;q] + g1:;) L (8.12) 

One sees that in E (2) + E (3) the terms containing or 
cancel and those with in Eq. (8.12) combine with corre-
sponding contributions in Eq. (8.10) to terms with 

If one has evaluated E(2 ) by means of approximation A 
one should make an approximation of the same kind for 
E(3) , i.e., one should exclude J = L in Eq. (8.9b). 
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APPENDIX: THE PARTIAL WAVE EXPANSION OF 
TWO-, THREE-, AND FOUR-ELECTRON INTEGRALS IN 
THE ATOMIC CASE 

Let! (r12) be some function of r 12 with the partial wave 
expansion 

!(rI2) = ·f {f;} = i h(r l ,r2 )P[C cos (}-12) (Al) 
1_0 [=0 

and g(rI 2 ) be another function of r l2 with an analogous ex-
pansion. A two-electron integral 
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(A2) 

can then be expanded in partial waves as well. The situation 
is simplest if 91(1,2) only depends on r J and r2 and on no 
angles. We shall here only consider this case. The generaliza-
tion to arbitrary 91(1,2) is straightforward, but somewhat 
tedious. However, the essential results are hardly changed.20 

Under the assumption 91( 1,2) = 91(rl ,r2) only "diag-
onal" terms contribute to Eq. (A2), i.e., 

'00 

A = L AI; AI = (91(1,2)!f;gIP;(cos31 2 )lgJ(1,2». 
1-0 

(A3) 

The angular integration in AI can then be carried out 

AI = St?(l + .!) - J f IgJ(r1,r2) 1:1; (r1,r2)gl (rl>r2) 

(A4) 

We first consider the case 

it =gl = (ri;.I)1 = 1< r:;I-I. (AS) 

The factor 

itglr<r: .... =r:+2r:;21 (A6) 

in Eq. (A4) is then strongly peaked around r < = r> . In 
order to get the leading term in an expansion of powers of 
(l + D - I we can replace gJ(r < ,r> ) by gJ(r > ,r> ) and inte-
grate over r < from 0 to r> . Then only an integral over r> 
remains. \Ve rename the integration variable as r. 

For the case I (r12 ) = r l2 I and g(rI2 ) = r 12, 

1 1/2 1 1< 
gl=(r12)1=2i3 1+1- 2/-1 I.-I' +:> > 

one gets by the same procedure20 

A -16t?(i+!)-J{ ___ 1 __ _ 
1- (2/+3)(21+5) 

- (2/- 1)1(21 + 3) } 

X f \gJ(r,rW,-5 dr + DC[ 1 + n -5) 

= - 12t?(l + 1) - 4 i"" \gJ(r,r) \2,-5 dr 

+oql+!] -6). 

For.f(r12) = g(r I2 ) = r l2 one obtains 

(A7) 

(A8) 

(A9) 

AI =16t?(l+p-l{ I 
(21 + 3)2(21 + 7) 

2 
(21 + S)(21 + 3)(2/- 1) 

+ I } 
(21-1)2(2/- 3) 

xL"" IgJ(r,r) 12r7 dr + 0 [(/ + D -7] 

= 80t?(l +:D- 6 

xi"" IgJ(r,r)1 2r7 dr+0([/+!] -8). (AIO) 

One sees that both the angular and the radial integration lead 
to a factor - (l + 1) - I each. If one replaces r l2 1 by r 12, two 
more factors - (l + 1) - I arise, one that is explicit in Eq. 
(A8), the other because there are two terms with opposite 
sign such that the leading terms in (l + n - I cancel. 

For two-electron integrals with three factors 

(All) 

the partial wave expansion is, a priori, a threefold sum, 
which for 91 = 91(rl ,r2 ) reduces to a double sum. We define 
the partial wave increment BI as 

I-I 

+ L (91 1{f;}g(rI2 ){hk }lgJ) 
k=O 
I-I 

+ L (91 l{fk}g(r I2 ){hJlgJ) (AI2) 
k=O 

in each term in the sum Eq. (AI2) only those partial waves 
of g contribute which are compatible with the triangular in-
equality. For the special casel = h = r12, g = rl-i. I, the sum 
Eq. (AI2) has been evaluated in closed form with the 
resule·20 

BI = _ 192 1T(l+!)-S 
5 

X Loo \gJ(r,r)!2y6 dr + DC[ 1 +!] -6). (A13) 

The dependence on the fifth power of (l +!) - I can be ra-
tionalized if one realizes that each term in the sum Eq. 
(AI2) goes as (l + D -6, while the number of terms is of the 
order I. 

We now come to three-electron integrals, first to those 
with two factors 

D = (gJ(1,2,3) If (r 12)g(r23 ) \gJ(1,2,3». 

If one expands f and g one gets 

D = (gJ( 1,2,3) IIlk (r l ,r2)gl (r2,r3)Pk (cos 3 12) 
k.1 

(AI4) 

XPI ( cos 3 23 ) IgJ(1,2,3». (A15) 

Noting that 
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Pk ( COS iJ12 )P, ( cos iJ23 )' 

(41T)2 2: ym( 1) 
(2k + 1 )(21 + 1) m,m' k 

X YZ'*(2) Yr' (2) Yr'*(3) (A16) 
one sees that integration over d 3r , gives a non vanishing con-
tribution only for a finite number of k values, so does integra-
tion over d 3r3 for a finite number of I values. The expansion 
Eq. (A15) hence breaks off after a finite number of terms. 
For the special case that q;( 1,2,3) is built up from s orbitals 
only, k and I must be equal to 0 and D reduces to a single 
term. Then evaluation of D by means of a completeness in-
sertion only requires 'a basis of sAO's. The highest angular 
momentum necessary for a completeness relation is easily 
found. (See Appendix A of paper II of this series. 12) 

Three-electron integrals with three factors are of the fol-
lowing types: 

E = (q;(1,2,3) if (rdgCr12 )h(rI3 ) 1q;(l,2,3)}, (Al7) 
F = (q;(1,2,3) if (r12)g(r23 )h (r I3 ) 1q;(i,2,3», (A18) 

and we also need to consider four-electron integrals 
G = (q;(1,2,3,4) if 1q;(1,2,3,4) )," 

(A19). 
H =; (q;( 1,2,3,4) if. (r I2 )g(rl3)h(rI4 ) Iq;( 1,2;3,4». 

(A20) 
The four-electron integrals Eqs. (AI9) and (A20) have fi-
nite partial wave expansions like Eq. (AI4); the three=elec-
tron integral (A 17) has a finite expansion as far as the par-
tial wave expansion of h is concerned, with respect to f and g 
the integral (A17) behaves as Eq. (A4), i.e., for f= r'2' 
g = r12 1 the partial wave expansion gbes as (l + 1) - 4 or for 
f = g = r12 as (l + !) - 6. Fortunately this partial wave ex-
pansion need not be made. One simply rewrites 

f(rdg(r 1z ) = k(rI2 ) (A2l) 
[with for the examples just given kern) = 1 ' and 
k(r I2 ) == liz, respectively] and 'can then reduce Eq. '(A17) 
to (A14). Equation (A18) is, in a way, the least pleasant 
integral since it does not break off after a finite number of 
terms. Fortunately its partial-wave expansion is very rapidly 
convergent. The angular factor in the expansion of Eq. 
CAt8) is 

PjC cos iJ1Z)Pk ( cos iJz3 )P, ( cos iJI3 ) 

( 41T)3 

(2j + 1 )(2k + t )(21 + 1) 
. ' 

X 2: YjCl) Yj*(2) YZ" (2) 

X Yt*(3) Yr"*(1) Yr"(3). (A22) 

Consider again the simplest case that q; is built up from s 
AOs only. The integration over the angular variables of the 
first particle yields a nonvanishing result only if j = I, 
m = mil. Similarly one findsj = k, m == m' and finally 

j=k=l, m=m'=m". (A23) 
The integral (A18) hence reduces to a single sum (summa-
tion over m yields a factor 21 + 1) 

. F = (41T)3 f (21 + 1) - 2 f q; 2(rl ,r2,i'3)j; (r),r2) 
'=0 

, dr2 dr3•· (A24) 
Let Us now study the result of the radial integration in Eq. 
(A24). To simplify the argument we first take 
f = g == h =11;1. If we define 

r> = max (r l,r2,r3 ), 

r <' = min (rl,r2,r3), 

r", <ro<r.", 
we see that 

.2'+2; 
rOT", ... 

(A25) 

(A26) 

For large 1 this product strongly peaks at r < = ro = r", ' and 
we can replace q;(rl,r2,r3 ) by q;(r,r,r) where r";' r:> . We can 
then integrate over r < from 0 to ro with the result 

1 
21 + 3 r; , 

then over ro from 0 to r:> with the result 
r", 

(21 + 3)(21 + 5)' 
such that 

(A27) 

(A28) 

F, = +'!) -4 f q;(r,r,r)r dr + O( [I + 1] - 6). 
(A29) 

In Eq. (A29) a factor 6 accounts for the six pbssible 
orderings of r l ,r2,r3 • 

We now come to the integral in which we are actually 
interested, namely Eq. CA18) withf= h = r 12, g= ri;,l. 

For the product fgh we get three different expressions 
depending on whether r l = r::., r) = ro, or r l = r <' 

1 r r l + 2 1 
fgh = (2/+3)2 - (21+3)(2/-1) 

> 

for r, = r>, (A3la) 

1 1 
fgh - --------

- (21+3)2 ?:1+2 (2/+3)(2/-1) 
" 

(A31b) 

1 
(21 + 3)(2/- 1) 

for r l = r",. (A31c) 

We multiply Eqs. (A3l) by r> ?o r< and integrate first over 
r -<. then over ro. The result of the first integration is 

J. Chern. Phys., Vol. 94, No.3, 1 February 1991 

Downloaded 29 Jan 2013 to 150.203.35.130. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



W. Kutzelnigg and W. Klopper: Correlation cusp. I 1999 

1 ro'+ ll 1 
-(-2/-+-3 )-=-2-( 2-1-+-5-) r; - (21 + 3)( 21 - 1) 

[ 
1 rol

+6 1 ro/+6] 
X 21 + 5 - 2 + 21 + 3 r; -2 

1 if/+4 
+ (21- 1)2(21 + 3) il l - 4 

> 

(A32a) 

1 ro/+8 1 ---
(21 + 3)2(2/ + 5) r; (2/ + 3)(21- 1) 

[ 
1 rol+6 1 ?o1+8] 

X 21 + 5 r; -2 + 21 + 3 

1 rf/+6 
+ (2/-1)2(2/+3) '::1-2 

> 
(A32b) 

1 ?o/+8 
(21+3)2(21+7) r; (21 + 3)(21- 1) 

[ 
1 ?o1+6 1 ?o/+8] 

X 21 + 5 r; -2 + 2/ + 5 -;:;r 
1 ?,;I+ 6 + _0 __ _ 

(21-1)2(21+3) r;-2 (A32c) 

while the second integration yields 

{(21 + 3)2(21 5) (21 + 9) (21 + 3) (2[ 1) (21 + 7) 

X [ 21 5 + 21 3 ] 

1 } 9 + (21- 1)2(21 + 3) (21 + 5) r>, 
(A33a) 

{ 
1 1 

(21 + 3 )2(21 + 5)(21 + 9) (21 + 3 )(21- l) 

Exact" 

0 2.847608025 
1 0.035 608715 
2 0.000326493 
3 0.000 020 045 
4 0.000 002 599 
5 0.000000 514 
6 0.000 000 134 
7 0.000 000 042 
8 0.000 000 016 
9 0.000 000 006 

10 0.000 000 003 

2: 2.883 566 593 
f 2.883 566 595 

• Exact partial-wave contributions. 
b From the asymptotic formula (A35). 
C Error of the expansion truncated at l. 
d Asymptotic truncation error from (A36) . 

Asympt.b · 

0.016391492 
0.000275314 
0.000 018655 
0.000002498 
0.000 000 502 
0.000 000 132 
0.000 000 042 
0.000 000 015 
0.000 000 006 
0.000 000 003 

X[ 1 + 1 ] 
(21 + 5)(21 + 7) (21 + 3)(21 + 9) 

+ ", 1 }r9 (A33b) 
__ (2/-1)2(2l+3)(2/+7) >' 

{ 
1 1 

(21 + 3)2(2/ + 7) (21 + 9) (21 + 3) (2/-1) (21 + 5) 

[' 1 1] , 
X --+--' 

21 + 7 21 + 9 ." 

+ l. .lr (A33c) 
(21-1)2(2/+3)(2/+7)J >' 

The final result of the radial integration is hence 

3; (l - 6 j lep(r,r,r) 12r9 dr. (A34) 

Together with the (l + 1) - 2 from the angular integration we 
get a final (l +!) - 8 dependence of the partial wave 
increments. 

FI = 70-rr(l +!) - sjlcp(r,r,r) 12r9 dr + I+!] - 10). 

(A35) 
This corresponds to an asymptotic truncation error AEI of 
the energy for a partial wave expansion truncated at some I 

AEI = lO-rr(l+ 1) -7 j cp 1 (r,r,r) 12r9 dr 

(A3,6) 
The results for the numerical example'for cp a product of 
three equal normalized Is functions with 

I e- 6arr''' dr= 35/(8' 729-rra) (A37) 

are illustrated in Table 1. Both the rapid convergence and the 

'. Asympt. Corr. Trunc. 
Trunc. Errc Trunc.Err" Err· 

0.035 958 570 0.060137174 0.024055 147 
0.000 349 855 0.000468 857 - 0.000 119 002 , 
0.000 023 363 0.000 027441 - 0.000 004 078.'. 
0.000 003 317 0.000 003 663 0.000 000 346 
0.000000719 0.000000768 0.000 000 049 
0.000'000 204 0.000000214 - 0.000 000 010 
0.000 000 070 0.000 000 073 - 0.000 000 003 
0.000 000 028 0.000000029 - 0.000000001 
0.000000012 0.000000013 - 0.000 000 001 
0.000 000 006 0,000 000 006 - 0.000 000 000 
0.000000 003 0.000 000 003 - 0.000 000 000 

• Error of the expression truncated at I, but corrected for the asymptotic part of the remainder. 
rClosed expression derived by R. N. Hill (Ref. 14) and computed with his program. 
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I Exact" 

0 2.994 876 280 
1 0.187819019 
2 0.004 177 684 
3 0.000 478047 
4 0.000 100 080 
5 0.000 029 220 
6 0.000 010 562 
7 0.000 004 434 
8 0.000 002 079 
9 0.000 001062 

10 0.000 000 581 

l: 3.187499048 
f 3.187500000 

• Exact partial-wave contributions. 
b From the asymptotic formula (A41). 
C Error of the expansion truncated at l. 
d Asymptotic truncation error from (A42). 

Asympt.b 

0.067 375 776 
0.003 143484 
0.000 417 487 
0.000 092 422 
0.000 027 725 
0.000010 176 
0.000 004 312 
0.000 002 035 
0.000 001 044 
0.000 000 572 

Asympt. Corr. Trunc. 
Trunc. Err" Trunc. Err" 

0.192 623719 0.153490441 + 0.039 133 278 
0.004 804 700 0.004 796 576 + 0.000008 124 
0.000 627 016 0.000 631 648 - 0.000 004 632 
0.000 148969 0.000 149 893 - 0.000 000 924 
0.000 048 889 0.000 049 117 - 0.000 000 228 
0.000 019 669 0.000019739 - 0.000 000 070 
0.000 009 107 . 0.000 009 132 - 0.000 000 025 
0.000 004 673 0.000 004 684 - 0.000000010 
0.000 002 594 0.000 002 599 - 0.000 000 005 
0.000 001 532 0.000 001 535 - 0.000 000 003 
0.000 000 952 0.000 000 953 - 0.000 000 001 

e Error of the expression truncated at I, but corrected for the asymptotic part of the remainder. 
fFrom Eq. (A37). 

validity of the asymptotic formulas (A35) and (A36) are 
obvious. If one truncates at 1 = 4 and corrects for the trunca-
tion error by means of (A37) one gets the integral accurate 
to eight significant figures, for a truncation at 1 = 2 to six 
significant figures. Without the correction (A37) one loses 
one significant figure. 

Less rapidly convergent is the partial wave expansion of 
the integral E (A17) with/=g = r12, h = l/rl2' 

This integral is relatively easily evaluated in closed form 

N 6 frt2 _l_e- Zaer, drl dr2 dr3 
r\3 16a 

(A38) 
The evaluation of the exact partial wave increments (which 
are given in Table II) is rather tedious and is not outlined 
here. For the asymptotic formula like (A35) we rewrite the 
partial wave increment of the integral. 

-1-f 11»(1,2) 12Icp(3) 12(r121 _1_ dr1 d2 dr3 
21 + I r13 

dr, 
21 + 1 

g(l,2) = 41T11»(1,2) 12f dr3 Icp (r3 ) 12_1_ ri 
r13 

= 41T11»(1,2) 11rl-1 f' dr3 Icp(3) 

+ 1:0 
We then use Eq. (AlO) to get 

(A39a) 

(A39b) 

J dr1 dr2 = 5(1 +!) -s fO g(r,r)r7 dr 

+ 0(1- 6). (A40) 

The final result for a product of three Is Slater functions is 

E = 25·17·337 .(1 + 1)-6 
I 256'729a 

(A41) 

while the truncation error of the energy is given by 

ilE = 5'17·337 (I + 1) - S. 

I 256'729a 
(A42) 

The correction for the asymptotic truncation error by means 
of (A42) is now even more effective than in the case of Table 
Ij one gains two to three significant figures by this correc-
tion. The corrected truncation error appears to go as 
(l + 1) - 9 in Table I and as (l + 1) - 7 in Table II. 

Tables I and II illustrate that it is justified to evaluate 
integrals like that in Table II-which go as (l + - 6-ex:-
actly, but to use truncated partial wave expansions for inte-
grals like that in Table I-which go as (l +!) - 8. To use a 
truncated PWE for both types of integrals would be less 
balanced. 
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