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The [2]R12 method [M. Torheyden and E. F. Valeev, J. Chem. Phys. 131, 171103 (2009)] is an ex-
plicitly correlated perturbative correction that can greatly reduce the basis set error of an arbitrary
electronic structure method for which the two-electron density matrix is available. Here we present
a spin-adapted variant (denoted as SF-[2]R12) that is formulated completely in terms of spin-free
quantities. A spin-free cumulant decomposition and multi-reference generalized Brillouin condi-
tion are used to avoid three-particle reduced density matrix completely. The computational com-
plexity of SF-[2]R12 is proportional to the sixth power of the system size and is comparable to the
cost of the single-reference MP2-R12 method. The SF-[2]R12 method is shown to decrease greatly
the basis set error of multi-configurational wave functions. © 2011 American Institute of Physics.
[doi:10.1063/1.3664729]

I. INTRODUCTION

Explicitly correlated R12 methods (known in their mod-
ern form as F12 methods)1–3 are a promising approach to
reduce the basis set error of quantum many-body electronic-
structure methods. Conventional many-body methods repre-
sent wave functions (or other many-electron objects such as
Green’s function or reduced density matrix) exclusively in
terms of products of one-electron functions; such representa-
tions emulate the analytic structure of the exact wave function
inefficiently and converge to the basis set limit in atoms as (L
+ 1)−3, where L is the maximum angular momentum of the
basis. R12 methods4, 5 augment the conventional wave func-
tions by a few terms characterized by explicit dependence on
the interelectronic distances, rij, thereby accounting for the
proper wave function behavior at short rij,6, 7 and yielding a
much improved (L + 1)−7 basis set convergence rate. Unlike
the more general explicitly correlated wave functions, R12
methods avoid three-body (9-dimensional) and higher-body
integrals by an approximate resolution-of-the-identity; the ef-
fect of the extra explicitly correlated terms on the computa-
tional cost is therefore small. R12 methods, when combined
with high-level correlation models,8–11 can achieve very high
accuracy with a modest basis set. Often using a double-zeta
basis can match the accuracy of a conventional quadruple-zeta
basis.

Following their introduction by Kutzelnigg in 1985,4, 5

the R12 approach was promptly implemented in all major
wave function methods by Klopper, Noga, Kutzelnigg, and
Gdanitz.4, 5, 12–14 Essential improvements of the R12 method-
ology have occurred in the last decade15–22 and established
the modern R12 methods that are characterized by (1) non-
linear dependence on rij, via exponentially decaying corre-
lation factor f(rij) (hence the name “F12 methods”), (2) the
resolution-of-the-identity of three- and four-electron integrals

a)Electronic mail: liguokong@gmail.com.
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in terms of a separate (auxiliary) Gaussian basis set, numeri-
cal quadrature, or both, (3) use of cusp conditions to specify
expansion coefficients of explicitly correlated terms, and (4)
use of specialized F12-specific basis sets.

Up to now, intense efforts have been focused on R12 vari-
ants of single-reference many-body methods, where the wave
function is expanded from one reference (Hartree-Fock) de-
terminant. However, chemistry and physics of some ground
electronic states (for example, in biradicals, stretched bonds,
transition metal compounds) and most excited states contain
multiple configurations of large amplitudes, due to exact or
near-exact degeneracies. For such problems, multi-reference
(MR) methods are often more suitable because their ansätze
explicitly take into account the multi-configurational nature of
the states in the zeroth-order approximation. For the same rea-
sons as the single-reference methods, conventional MR meth-
ods also suffer slow convergence of correlation energy with
respect to the basis set. The R12 idea can also be applied to
these methods to overcome the slow convergence.

The first MR-R12 method developed was R12-MRCI
(and R12-MR-ACPF) of Gdanitz23, 24 using linear r12 cor-
relation factors and based on the old R12 technology; the
mandatory use of large orbital basis sets limited applica-
tions to extreme-accuracy computations of atoms and small
molecules.

Ten-no was first to introduce a generally applicable
MR-R12 method based on the modern R12 technology.
His MRMP2-F12 method25 used the framework of the
second-order multi-reference Møller-Plesset method.26

In contrast to Gdanitz’s work, Ten-no was first to use
internally contracted geminal functions produced by the
action of a geminal generator to a complete active space
self-consistent field (CASSCF) wave function with fixed co-
efficients; internal contraction allows to avoid the numerical
difficulties posed by the non-contracted formulation. For
simplicity, MRMP2-F12 utilized some additional approxi-
mations inspired by the single-reference R12 theory; only a
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CASSCF 2-RDM was required to compute the F12 cor-
rection. For single-determinantal references MRMP2-F12
reduces to the MP2-R12/A* method. In atoms the MRMP2-
F12 converges to the basis set limit as (L + 1)−5.

Later Torheyden and Valeev proposed a generally appli-
cable second-order R12 correction, termed as [2]R12,27 which
is a posteriori correction to an arbitrary electronic struc-
ture method, single- and multi-configurational. Similar to
MRMP2-F12, [2]R12 uses internally contracted geminal func-
tions but obtained from a more extensive ansatz (see below).
A set of systematic approximations was used to avoid the need
for high-rank density matrices; thus only 2-RDM of the ref-
erence wave function was required. For single-determinantal
references [2]R12 reduces to a close analog of the MP2-R12/C
method. In atoms [2]R12 converges to the basis set limit as
(L + 1)−7. As a proof of principle, the initial ap-
plications of [2]R12 in Ref. 27 utilized reference wave
functions that already included some dynamical corre-
lation, such as multi-reference configuration interaction
(MRCI).

Recently, Shiozaki and Werner developed CASPT2-
F12 and MRCI-F12 (and MRACPF-F12) methods;28, 29 these
methods were generalized to multi-state variants in which
multiple reference functions are explicitly correlated, to deal
with conical intersections and avoided crossings.30 The meth-
ods used internally contracted geminal functions. Unlike
MRMP2-F12 and [2]R12, Shiozaki and Werner introduced the
geminal functions a priori, i.e., the conventional correlation
contributions to the wave function were optimized in presence
of geminal functions.

This work focuses on the [2]R12 method, whose appeal
is its relative simplicity and general applicability: it can be
applied to any electronic state for which the 2-RDM is avail-
able. As a proof of concept, the authors correlated the whole
MRCI wave function using the geminal terms. This leads to
relatively high computational cost, since all orbitals in the so-
called orbital basis set (OBS) are treated as occupied orbitals.
A less expensive alternative is to correlate only the domi-
nant contribution of |!MRCI⟩. The simplest choice may be the
CASSCF wave function, i.e., |0⟩ = |!CASSCF⟩. The resulting
cost of the R12 correction is comparable to that of MP2-R12.
In addition, the original [2]R12 (termed hereafter as SO-[2]R12

to distinguish from the spin-free version) is formulated in
spin-orbital basis due to the use of a spin-orbital Fock opera-
tor. In this work, we developed a spin-free [2]R12 method (de-
noted as SF-[2]R12) and documented its performance on sev-
eral prototypical cases. To avoid the need for high-rank RDM,
we propose a different approximation scheme, inspired by the
single-reference R12 methods. We also considered whether it
is possible to decouple the conventional and geminal parts of
the wave function by using solely the CASSCF wave function
for the R12 correction.

II. METHODOLOGY

We construct a perturbative expansion in the same way as
in the SO-[2]R12. Given an abstract single- or multi-reference
zeroth-order wave function |0⟩, the basis error correction

for the energy is computed by evaluating the second-order
Hylleraas functional

H(2) = 2⟨0|Ĥ |ψ (1)⟩ + ⟨ψ (1)|Ĥ (0)|ψ (1)⟩. (1)

The first order wave function |ψ (1)⟩ is written as an internally
contracted R12 geminal function, defined by

|ψ (1)⟩ = #̂(1)|0⟩

= 1
2
tpq
rs

(
rrs
α′β ′E

α′β ′

pq + 2rrs
α′xE

α′x
pq

−2rrs
α′k(&(−1))ij &jk
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i

)
|0⟩. (2)

In this work p/q/r/s/t/u/v/w refer to the orbitals correlated by
the R12 geminals; i/j/k denote occupied orbitals (core or ac-
tive); κ/λ represent the orbitals in the formal complete basis
set (CBS) of infinite dimension; x/y/z stand for the orbitals
in the so-called OBS, i.e., the usual computational basis set;
α′/β ′ denote orbitals in CBS orthogonal to OBS orbitals (in
practice α′/β ′ are approximated by the complementary aux-
iliary basis set (CABS) orbitals constructed using the stan-
dard CABS+ procedure of Valeev16). Summation is implied
in each term over indices that appear twice. E denotes a spin-
free substitution operator,

Eλ
κ =

∑

σ=↑,↓
aλσ

κσ
, Epq

rs =
∑

σ=↑,↓
τ=↑,↓

apσ qτ
rσ sτ

, (3)

and r is the matrix element of the correlation factor

rrs
α′β ′ =

∫ ∫
φα′(r1)φβ ′(r2)f (r12) φr (r1)φs(r2)dr1dr2. (4)

Here & denotes the spin-free RDM: &s
r = ⟨0|Es

r |0⟩,&pq
rs

= ⟨0|Epq
rs |0⟩. Notice that Eq. (2) becomes equivalent to its

spin-orbital counterpart in Ref. 27 by using inverse of the
spin-orbital, rather than the spin-free, 1-RDM.

The difference between ansatz (2) and Ten-no’s ansatz
in MRMP2-F12 is due to the semi-internal excitations, i.e.,
the double excitations in which one of the electrons re-
mains in the occupied space. These terms can be elimi-
nated from our ansatz by restricting the sums over x and
y to include only unoccupied orbitals only (hence eliminat-
ing the last term in Eq. (2) completely). As shown by Ten-
no,25 semi-internal excitations are relatively unimportant for
at least valence CASSCF references as in atoms semi-internal
excitations can only involve unoccupied orbitals of angular
momentum up to 3Locc. Although for p-elements conventional
CASPT2 or MRCI will already describe these effects in a
basis set with at least L = 3 (e.g., cc-pVTZ), for heavy ele-
ments the description of these effects in terms of orbital prod-
ucts could become too burdensome. Furthermore, because our
goal is to design the [2]R12 method to be applicable with
arbitrary reference wave functions, for which semi-internal
excitations can be important, these terms are kept in our
ansatz.

SO-[2]R12 (Ref. 27) employed the spin-dependent Fock
operator as Ĥ (0); therefore H(2) was expressed in terms of
spin-orbital RDMs. To avoid spin-dependence in SF-[2]R12
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we use the spin-averaged Fock operator,

F̂N =
(

hκ
λ + &s

r

(
gκr

λs − 1
2
gκr

sλ

))
Eλ

κ − E0 = F κ
λ Eλ

κ − E0,

(5)

Ĥ (0) = P̂ F̂N P̂ + (1 − P̂ )F̂N (1 − P̂ ), (P̂ = |0⟩⟨0|),

(6)

where h/g are the matrix elements of one- and two-particle
Hamiltonians (without antisymmetrization), and E0 is the ex-
pectation value of the Fock operator with respect to |0⟩:
E0 = F κ

λ &λ
κ . Subscript N denotes the normal-ordering in the

Mukherjee-Kutzelnigg sense.31

With these definitions Eq. (1) involves up to the 4-particle
RDM. To reduce the operation and storage complexities, in
SO-[2]R12 3- and 4-RDMs were avoided via the cumulant
approximation;31, 32 in combination with screening approxi-
mations only 1- and 2-RDM are necessary to evaluate the
SO-[2]R12 correction, with operation count proportional to the
sixth power of the system size. Although the results looked
encouraging, there are doubts about the reliability of cumulant
approximation in the strong-correlation regime.33–35 Here we
explore a slightly different route to reduce the extent to which
the cumulant approximation is employed.

Let us first rewrite the geminal-geminal coupling term in
the Hylleraas functional by extracting a commutator,

H(2) = 2⟨0|Ĥ #̂(1)|0⟩ + ⟨ψ (1)|([F̂N , #̂(1)] + #̂(1)F̂N )|0⟩.

(7)

The appearance of 4-RDM is due to the term ⟨ψ (1)|#̂(1)F̂N |0⟩.
In single-reference R12 methods, this term vanishes if we
invoke the Brillouin condition and assume the generalized
Brillouin condition (GBC).36 In the context of multi-reference
R12 methods, GBC was also used by Ten-no.25 In this spirit,
we propose to neglect completely this term instead of employ-
ing cumulant approximation. That is,

H(2) ≈ 2⟨0|Ĥ #̂(1)|0⟩ + ⟨ψ (1)|[F̂N , #̂(1)]|0⟩. (8)

This is the key difference from the initial formulation of
[2]R12. With this approximation, 4-RDM is eliminated and
only the RDM of rank 3 and lower are needed. To approx-
imate 3-RDM we expand it in cumulant form developed by
Kutzelnigg and co-workers37 and discard the 3-particle cu-
mulant
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, denotes spin-free cumulant and the numbers in paren-
theses denote the numbers of similar expression from per-
mutations. Thereby H(2) can be expressed in terms of only
spin-free 1- and 2-RDMs. Furthermore, within the screening
approximation,27 H(2) becomes

H(2) = V + B0 + X + -, where (10)
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The equation is derived by using the Python program
TEE.PY,38 which can evaluate matrix elements of prod-
ucts of second-quantized operators using generalized Wick
theorem.31, 51–53 The geminal coefficients t

pq
rs are fixed to sat-

isfy the first-order cusp condition (the so-called SP ansatz)19

tpq
rs = 3

8
δp
r δq

s + 1
8
δp
s δq

r . (15)

The most expensive term is t
pq
rs tvw

tu &rs
vwr

µλ
pq f κ

λ rtu
µκ , whose eval-

uation in the framework of approximation C39 scales as C2X3

+ C4X2, with C and X the numbers of R12 correlated orbitals
and CABS orbitals, respectively.

The general SF-[2]R12 framework is applicable to arbi-
trary many-body methods as long as the 1- and 2-RDMs are
available, similarly to SO-[2]R12(e.g., when applied to the
Hartree-Fock wave function the method reduces of a close
analog of the MP2-R12/C method). Our immediate desire is
to use SF-[2]R12 to correct for the basis set incompleteness of
MRCI, MRPT, and emerging MRCC methods. However, such
wave functions expressed in basis sets of double-zeta qual-
ity and larger already include substantial amount of dynami-
cal correlation, hence many orbitals will be weakly occupied.
Geminal correlation of weakly occupied orbital pairs will
therefore be an unnecessary computational burden. There-
fore practical computations with SF-[2]R12 should use only
strongly occupied orbitals in the definition of geminals. For
example, given a MRCI wave function one could compute
natural orbitals and truncate at some occupancy threshold; the
SF-[2]R12 correction would be computed with the 1- and 2-
RDMs transformed to the truncated natural orbital set.

In the current work we pursue a simpler option: namely,
the CASSCF wave function is used directly as the reference.
With this choice the cost of SF-[2]R12 is similar to that of a
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single-reference MP2-R12 method. Therefore, the additional
computation time induced by the SF-[2]R12 correction is fairly
small. When necessary we will denote the choice of the refer-
ence function in parentheses, e.g., SF-[2]R12(CAS).

Recent investigations of single-reference and multi-
reference R12 methods have revealed that the correlation en-
ergy basis error has been efficiently reduced so that the ba-
sis error in the reference energy starts to dominate1, 25, 27, 28, 30

(for MR methods based on CASSCF, we define the correla-
tion energy as the difference between the total energy and
the CASSCF reference energy). Therefore it is imperative
to correct the basis set error of the correlation energy (two-
electron basis set incompleteness) along with that of the ref-
erence energy (one-electron basis set incompleteness). For
that purpose, Kong and Valeev have proposed a perturbative
approach,40 dubbed as [2]S, in which the basis set error of
CASSCF is corrected using (internally contracted) single ex-
citations from the CASSCF reference wave function into the
CABS space (“CABS singles”). Recently, a configuration in-
teraction approach was proposed by Shiozaki and Werner for
the same purpose.30 Since the coupling of the CABS singles
and R12 geminals is expected to be weak, the values of [2]S

and SF-[2]R12 corrections are simply added together.

III. COMPUTATIONAL DETAILS

The Hylleraas functional was evaluated using the stan-
dard R12 technology with an exponential correlation factor,20

f(r12) = −exp ( − γ r12)/γ , fit to 6 Gaussian geminals. In the
benchmark calculations, when the aug-cc-pVXZ basis41 (ab-
breviated as “aXZ”) was employed as OBS, γ = 1.5 was used;
with the cc-pVXZ-F12 basis21 (abbreviated as “XZF”) of
Peterson as OBS, the recommended values for γ were
adopted. The XZF and aXZ orbital basis sets were aug-
mented with the cc-pVXZ-F12/OptRI basis22 and the uncon-
tracted cc-pV6Z basis,42 respectively, to support CABS. The

two-point X−3 extrapolation43 was used to estimate the CBS
limit for correlation energies. For HF, the extrapolation was
based on aQZ and a5Z; for N2, it was based on aTZ and
aQZ. The MRCI (without internal contraction) was based on
CASSCF, with core orbitals frozen in MRCI. All R12 cal-
culations utilized the massively parallel quantum chemistry
(MPQC) program,44 with MRCI and CASSCF wave func-
tions computed with the Psi3 suite.45 All two-electron inte-
grals in the R12 part of the computation were approximated
with robust density fitting.18

IV. RESULTS AND DISCUSSION

As a first test of SF-[2]R12, we computed the potential
energy surfaces of the HF and N2 molecules. These bond
breaking prototypes display transitions between weak corre-
lation and strong correlation regimes. The results are shown in
Figs. 1 and 2; the corresponding non-parallelity errors (NPE)
are tabulated in Table I. NPE is defined as the difference be-
tween the maximum and the minimum errors (with respect to
the CBS limits from extrapolation) in the computed bond dis-
tance ranges (see Table I for further details). As easily seen
from Fig. 1 the significant improvement due to the perturba-
tive correction is evident. We can quantify the accuracy of the
energy relative to the reference estimate with NPE. In aDZ
basis, the inclusion of [2]S and SF-[2]R12 reduces the error
from 10.35 kcal/mol to 0.84 kcal/mol, even slightly better
than that of aQZ. In aTZ basis, the error is further reduced to
0.35 kcal/mol, similar to the a5Z result. As already men-
tioned, once SF-[2]R12 accounts for the basis set error of
correlation energy, the basis error of the CASSCF energy
itself becomes prominent. Addition of the [2]S correction ef-
fectively reduces the latter; the role of the [2]S correction is
particularly important at short bond distances (compare the
two R12-corrected datasets in Fig. 1). For HF, including [2]S

further lowers the NPE by a factor of 5.
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FIG. 1. The basis set error of the valence MRCI energy for HF molecule with respect to its CBS limit (obtained from extrapolation). aXZ stands for the
aug-cc-pVXZ basis. The dashed line marks the equilibrium geometry (R = 0.9168 Å).
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FIG. 2. The basis set error of the valence MRCI energy for N2 molecule with respect to its CBS limit (obtained from extrapolation). aXZ stands for the
aug-cc-pVXZ basis. The dashed line marks the equilibrium geometry (R = 1.09768 Å).

We observed similar improvement for N2. Corrections
SF-[2]R12 and [2]S reduce the NPE of aDZ MRCI to the aQZ
level; for aTZ, the perturbation correction reduces the error to
0.38 kcal/mol, much smaller than that of aQZ. The error for
aDZ, even with SF-[2]R12, is quite large, but it shall not be
attributed to the error in correlation energy. As the inset in
Fig. 2 demonstrates, the large error in the (SF-[2]R12 cor-
rected) total energy comes from the error in the reference en-
ergy, especially in the short distance region, as is clear from
the large difference between the two lower curves. The intro-
duction of [2]S significantly improves both the absolute and
the relative energies. This illustrates the effect of [2]S and the
importance of balanced reduction of the basis set errors of
reference and correlation energies.

Both the current method SF-[2]R12(CAS) and MRMP2-
F12 (Ref. 25) are posteriori corrections. As we noted above,
the two approaches are closely related; however, they in-
volve different sets of approximations. Their performance is
compared in Table II, which shows the excitation energies
(1D-3P) of carbon atom and the atomization energy of CH2

(1A1 state)25 computed with SF-[2]R12(CAS) and MRMP2-
F12. For the C atom excitation energy, the two methods differ
by 0.024 eV in aDZ, but the difference decreases to as small
as 0.001 eV in aQZ. For the atomization energy of CH2, the
results are also very similar; in aQZ, the difference is around
0.7 kJ · mol−1(about 0.007 eV). Considering the rather differ-

ent approximations introduced in each method, the similar-
ity of the results is remarkable. More testing is needed, how-
ever, to make stronger conclusions about the similarities be-
tween our SF-[2]R12(CAS) method and Ten-no’s MRMP-F12
method.

Our last example concerns the basis set error of the adia-
batic excitation energy (Te) from the lowest triplet to the low-
est singlet state of methylene, E(ã 1A1) − E(X̃ 3B1). The re-
sults are tabulated in Table III, in which the MRCI-F12 data
of Shiozaki and Werner are also listed for comparison. On
one hand, even in DZF, SF-[2]R12 reduces the basis error from
0.048 eV to a very small value of 0.003 eV, even better than
the quality in QZF; moreover, the correlation energy contri-
bution to Te quickly converges, once SF-[2]R12 is included.
For example, with SF-[2]R12, the difference between TZF and
QZF is as small as 0.001 eV, in contrast to 0.01 eV without
the correction. Therefore, the convergence (to the SF-[2]R12
basis limit) is greatly accelerated. On the other hand, com-
pared to the CBS limit value, we notice that SF-[2]R12 over-
estimates the CBS limit of the correlation energy; for ex-
ample, in QZF, the SF-[2]R12 corrected Te is −0.075 eV,
0.008 eV lower than the estimated CBS value. Although not
shown here, the overestimation also occurs for each individ-
ual state, not just for the energy differences. It is clear from
the table that even with SF-[2]R12, the rapid initial conver-
gence to the CBS limit becomes slow in the asymptotic limit.

TABLE I. Nonparallelity error (NPE) of valence MRCI energies with respect to their complete basis set limits, based on the data from 0.7 Å to the most
stretched geometry (a bond distance of 7 Å for HF and 10 Å for N2). For HF, it is (8e, 5o); for N2, it is (10e, 8o). “aXZ” refers to the aug-cc-pVXZ basis set.
The unit is kcal/mol.

aDZ aTZ aQZ a5Z aDZ+[2]R12 aTZ+[2]R12 aDZ+[2]S+[2]R12 aTZ+[2]S+[2]R12

HF 10.35 3.79 0.91 0.39 4.76 1.48 0.84 0.35
N2 134.20 27.34 7.06 101.43 11.68 11.10 0.38
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TABLE II. Comparison between [2]R12 and MRMP-F12. “corr” denotes the correlation energy contribution to the properties under investigation. “F12”
denotes the pure F12 contribution of MRMP-F12 (excluding the MRMP2 correlation energy). For all calculations, the 2s and 2p valence orbitals define the
active space. The core orbitals are optimized in state-specific CASSCF computations and then frozen in the MRMP2. The geometry of CH2 (C2v symmetry),
the MRMP2, and MRMP-F12 energies are taken from Ref. 25: RCH = 1.1068 Å, and ̸ HCH = 102.03◦. “aXZ” refers to the aug-cc-pVXZ basis set.

CASSCF MRMP2 corr corr+F12 corr+[2]R12

C atom excitation energy (eV): 1D -3P
aDZ 1.595 1.409 −0.186 −0.290 −0.314
aTZ 1.513 1.262 −0.250 −0.307 −0.310
aQZ 1.513 1.228 −0.284 −0.314 −0.315

CH2 (1A1 state) atomization energy (kJ mol−1)
aD 639.5 681.1 41.6 73.6 73.9
aT 654.9 715.0 60.0 72.2 71.6
aQ 656.3 722.7 66.4 72.1 71.4

In comparison, MRCI-F12 (Ref. 28) converges to the exact
limit more quickly. The major difference of SF-[2]R12(CAS)
from MRCI-F12, in which the conventional correlation is op-
timized in the presence of the explicit correlation, is the de-
coupled treatment of the two components of the correlation
effect. The R12 correction is based purely on CASSCF and
is independent of the correlation model (MRCI, MRPT, etc.).
Essentially, the “interference effect” between the correlation
methods and basis-set hierarchies46, 47 is not taken into ac-
count in SF-[2]R12(CAS).

Here we are specifically interested in the “interference”
terms in the energy that come from the interaction of the
conventional correlation part of the wave function, |!conv⟩,
and the R12 counterpart, |!R12⟩. There are two types of
such interference terms. The first, a more benign one, is
from the coupling through the zeroth-order (Fock) opera-
tor, ⟨!conv|Ĥ (0)|!R12⟩. This coupling term is included in the
Hylleraas functional for the second-order energy and hence
is taken into account in MRMP2-F12; the effect of this cou-
pling is relatively small. The more troublesome is the cou-
pling through the first-order operator, i.e., ⟨!conv|Ĥ (1)|!R12⟩.
This term converges as slowly as the correlation energy it-
self, i.e., as (L + 1)−3. It is not accounted in the second-
order energy expression, and thus requires at least a third-
order treatment. Neither of these terms is accounted in our

SF-[2]R12(CAS) method, but these terms are accounted in the
SF-[2]R12 method based on a correlated reference, such as
MRCI.

To estimate the magnitude of the interference effect we
computed the MP2 and CCSD basis set errors with MP2-R12
and d-CCSD(2)R12 (Ref. 48) for the two states and the results
are contained in Table III (only R12 contributions to Te are
shown). Comparison of the two sets of data spotlights the in-
terference effect: the difference converges quite slowly and
even at QZF, the difference is still as large as 0.019 eV. This
effect should and does extend to MR methods and it accounts
for the major difference between SF-[2]R12 and MRCI-F12.
We emphasize that the issue under discussion is not inherent
in the general theory SF-[2]R12; it emerges only because we
are investigating the particular variant SF-[2]R12(CAS) and
employ the uncorrelated CASSCF reference functions (in the
sense that the dynamical correlation is missing). Work to ac-
count for the interference effect within our scheme is cur-
rently underway. In the end, we stress that even the estimated
MRCI CBS limit still differs from the experimental value by
about 0.04 eV, much larger than the interference effect at TZF
or QZF. Thence judging from the particular case study, even
with CASSCF references, practically SF-[2]R12 is a very rea-
sonable approximation to the more rigorous MRCI-F12, if
other high order effects are not considered.

TABLE III. Comparison between [2]R12 and MRCI-F12 for the singlet-triplet separation of CH2 in eV: 1A1 - 3B1. “corr” denotes the correlation energy
contribution to the properties under investigation. “F12” denotes the pure F12 contribution of MRCI-F12 (excluding the MRCI correlation energy). For all
calculations, the 2s and 2p valence orbitals define the active space. The core orbitals are optimized in state-specific CASSCF computations and then frozen in
the MRCI. The geometries, MRCI/MRCI-F12 (the SFIX version) energies and CBS limits are taken from Ref. 28 (Table IV). “XZF” refers to the cc-pVXZ-F12
basis set. “DMC” stands for diffusion quantum Monte Carlo. MP2-R12 and CCSD(2)R12 refer to purely the R12 contributions (excluding the conventional
contributions).

CASSCF MRCI corr corr+F12 corr+[2]R12 CCSD(2)R12 MP2-R12

DZF 0.457 0.438 −0.019 −0.054 −0.070 −0.034 −0.093
TZF 0.437 0.391 −0.047 −0.065 −0.074 −0.012 −0.046
QZF 0.436 0.379 −0.057 −0.067 −0.075 −0.006 −0.027
CBS 0.435 0.368 −0.067
Expt.a 0.406
DMCb 0.406(4)

aReference 49.
bReference 50.
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V. SUMMARY

Here we presented a spin-free variant of the universal
explicitly correlated correction [2]R12 that was originally
proposed by Torheyden and Valeev in a spin-orbital form.
Evaluation of the 3- and 4-RDM is avoided by adopting the
Brillouin conditions of single-reference R12 methods, and by
cumulant and screening approximations. To account for the
basis set error of the reference wave function, we additively
include the perturbative [2]S correction of Kong and Valeev.
The SF-[2]R12 approach is technically simple: no modification
of the standard wave function is introduced and the effect of
geminal terms is evaluated perturbatively. The performance
of SF-[2]R12 was evaluated on prototypical bond breaking
processes, the C atom excitation energy, the atomization en-
ergy of CH2, and the singlet-triplet separation of methylene.
The R12 correction in our approach robustly reduces the basis
set error and accelerates the convergence to the CBS limit.
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