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Summary. The evaluation of a new form of two-electron integrals is required if 
the interelectronic distance r12 is used as a variable in the n-electron functions of 
electron correlation methods. The McMurchie-Davidson algorithm for the 
generation of molecular integrals over Gaussian-type functions is ideally suited 
to this. The new Gaussian integrals are formed from Hermite integrals over r12 
(rather than 1/ri2) by standard techniques. The Hermite integrals over r12 itself 
are generated by a simple procedure with negligible computational effort. The 
key results are discussed in the context of general recursion formulas. 

Key words: Molecular two-electron in tegrals-  r12 m e t h o d s -  Cartesian Gaus- 
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1 Introduction 

The convergence of CI-type expansions is considerably speeded up by the 
inclusion of linear terms in the interelectronic distance r12 into n-electron wave 
functions. These terms address the correlation cusp problem which is closely 
related to the common one-particle basis set deficiencies in correlation treat- 
ments. 

Our work in this field is based upon ideas of Kutzelnigg [1, 2]. The inclusion 
of only one single rl2 term into the two-electron wave function of He-like atoms 
was investigated in Ref. [1]. The results of the study encouraged a similar 
approach to many-electron systems. 

A computationally practicable method for n-electron systems is, of course, 
imperative. Concern with integral evaluation arises, in particular with regard 
to molecular systems. The straightforward inclusion of  linear r12 terms into 
n-electron functions readily leads to three- and four-electron integrals. 

It is described in Ref. [2] how "difficult integrals" can be avoided by means 
of certain approximations. It is ensured that the approximations become exact in 
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the limit of a complete one-particle basis. On the other hand, the merits of linear 
r12 terms are maintained. The methods hence converge to the same limit as 
traditional CI-type calculations, but more rapidly. We will refer to our ap- 
proaches as "r12 methods" in the following. Examples are the MP2-R12 [3] and 
CID-R12 [4] methods. 

In this paper we describe the computation of all molecular two-electron 
integrals that arise in the r12 methods. The same integrals are required by the 
extended version of the MP2-R12 method which has been proposed very recently 
[5]. 

In earlier work [3, 4], two-electron integrals were calculated from the formu- 
las of Preiskorn and Zurawski [6] for Gaussian lobes (combinations of s-type 
Gaussians mimic p, d , . . .  etc. functions). We here report on the computer 
implementation of the molecular two-electron integrals over Cartesian Gaus- 
sians. This implementation is done in the context of methods which are based on 
the so-called auxiliary functions Fro(W). 

Bearpark et al. [7] have implemented the necessary integrals over Cartesian 
Gaussians as they investigated the MP2-R12 method. They use the Rys quadra- 
ture scheme [8] which is quite different from the present approach. 

The integral formulas presented here can alternatively be deduced from the 
integral formulas of Preiskorn et al. [9] who in addition give formulas for three- 
and four-electron integrals over Cartesian Gaussians. Some remarks on the 
computation of the integrals in the case of one-center integrals over Slater-type 
functions can be found in Ref. [10]. 

The four types of integrals which are subject of this report are shown in Sect. 
2. The computationally most demanding of them is transformed into a convenient 
form in Sect. 2.1. We then describe the expansion of Gaussian charge distributions 
in Sect. 2.2 and how we compute the required integrals over Hermite functions 
in Sect. 2.3. Parts of the work of Helgaker and Taylor [11] and of the work of 
McMurchie and Davidson [12] are briefly reviewed for this purpose. 

In Sect. 3 we discuss our computational strategy in the context of more 
general "recursive computations". Except for the improvements described in Ref. 
[11], the present computer implementation strictly follows the McMurchie- 
Davidson scheme. We show that our results are not restricted to the specific 
scheme of computation, but that they are of broader validity. 

2 Integral formulas 

The r12 methods require the evaluation of four different types of two-electron 
integrals over Cartesian Gaussian functions: 
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Ir,~lcd) 
#,]lcd) 
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= f0a(1)0c(2 )_1  0b(1)0a(2) dr1 d%, 
J r12 

-= I'Oa(1)lpc(Z)qztPb(1)Oa(2 )dt I d%, 

- ;?l]Ob(1)t/'d(2) d"L" 1 aT2, 
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iP = - ½A is the kinetic energy operator, r12 is the interelectronic distance, and 
0a, ~kb, ~9c, and Od are unnormalized primitive Cartesian Gaussians: 

Oa - Ggk(r, a, A) = xiAy~z~ exp( -- ar~). (5) 

This function is centered at A with x~ = x - Ax, etc. The integrals of Eqs. (3) 
and (4) are formally the same integrals, but since the integrals are only calculated 
for index quadruples: 

(a ~< b) ~< (e ~< d), (6) 

i.e. in the usual canonical order, two distinct integrals are needed to form a basis 
for a representation of the permutational symmetry: 

(abl[rl2, T,]lcd) = -(bal[r12, fd led) 
= (ab l[r~2, T,] ldc) = -(bal[r12 , T,] ldc) 
= (call[r,=, ~ ]  lab) = -(cdl[r12, ~z]lba) 
=(de[[r~z, 2~2] lab) = -(dc[[r~z, 272] [ba). (7) 

In previous formulations of the r12 theory [1, 2] we have used the operator: 
1 ~ 1 

- -  ~r12 ] - I - -  ( 8 )  8 1 2 -  2r1~ r12 

However, from a computational point of view the integrals (3) and (4) are more 
convenient to work with than the corresponding integrals over U12. The relations 
in Eq. (7) are advantageous while forming integrals over contracted functions or 
while performing four-index transformations in general. 

We will derive a convenient expression for the integral (3) - or (4) - in Sect. 
2.1. Then we will expand Gaussian charge distributions in Hermite functions in 
Sect. 2.2. There it will become clear that Hermite integrals over the operator r~2 
are the only new auxiliary integrals needed. In Sect. 2.3 these new Hermite 
integrals will be calculated. 

2.1 Gaussian integrals over [r12, 2?1] 

Let us first note that: 

(ab [[F12 , T1] [ Cd) : (ab[ r12 V1 [cd) A¢- ( a b l L  [cd) (9) 
?'12 ?'12 

in conformity with Eq. (8), where again we use the alternative notation: 

Since 

V1 ~,~(1) -- - G4~(1) ,  (1 l) 
where fib denotes differentiation with respect to the coordinates of the center/~ 
of the Gaussian function ~b, we can also write: 

(ab I ~ VllCd) = - • (ab [ ~'-22 [cd) . (12) 
12 YI2 
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In a recent paper Helgaker and Taylor [11] show how the computational effort 
for the calculation of derivatives of Gaussian 
reduced by the following change of variables: 

integrals can be significantly 

and 

G = a  Ce + VR (13) 
P 

Here 

and 

Following this idea we write: 

(ab] q2 ¢11 cd) 
r12 

Noting that: 

¢~ =-b v~ - CR. (14) 
P 

i = S d + ~ L  p=a+b,  (15) 
P P 

/~ : ,4 - /~.  (16) 

= _ b Cp(abl r12 icd) q_ CR(ab i ?12 led) " 
P r12 r12 

Ce (ab [M,2 [cd) = (ab ]{ ¢, M12 } ]cd), 

where MI2 is either r12/r12 or r12 , we use: 

and obtain: 

7t2 2 r12 
¢1 -- and ¢1 r12 = 

r12 r12 r12 

(abl?12 ~,]cd) = _ 2b (ab[1 ]cd) + ¢pCR(ab [q21cd). 
rl2 P r12 

Inserting (20) into (9) yields: 

(a  - b ) ( bl % Icd) + e (ab Ir<cd). (abltrl2' T']lcd)= ~-+b ! rl2 
Equation (18) follows from: 

Ce~a(1)qJb (l) = - if, ~a( i)~b(1) 

and from integration by parts, since (for relevant Mla): 

f f {~---~lOa(1)~c(2)Ml2~b(1)~a(2)}d~,d%=O, etc. 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
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Other examples of how (18) can facilitate the computation of several forms of 
two-electron integrals may be found in Ref. [12]. We conclude this section by 
noting that: 

2 
A 1 r12 - -  (24) 

r12 

leads to 

Ap(ab Irlalcd) = 2 (ab l 1 ]cd). 
r12 

(25) 

2.2 Expansion of  charge distributions 

In Sect. 2.1 we have derived an expression for the Gaussian integral over the 
commutator [rl2, i?~]. Equation (21) shows that this integral is a linear combina- 
tion of integrals o v e r  1/r12 and rl2. The second term on the right-hand side of Eq. 
(21) is an r12 integral over a differentiated Gaussian charge distribution. This is 
quite general and not restricted to our computational scheme. 

We will proceed by expanding Gaussian charge distributions in Hermite 
functions, as described by McMurchie and Davidson [12] (see also a review by 
Saunders [13]). Differentiated charge distributions also can be expanded in 
Hermite functions and thus integrals over the operators lira2 and r12 are the only 
integrals over Hermite functions required by the r12 methods. 

The Cartesian Gaussian function (5) factorizes into: 

G,yx(f, a, .d) = Gi(x, a, Ax)Gi(y,  a, Ay)Gk(z, a, Az) , (26) 

where 

i exp( -ax~) ,  etc. (27) Gi (x, a, Ax) = x A 

and in the following we will consider only one direction, say x. An overlap 
distribution is expanded as: 

Gi(x, a, Ax)Gj(x, b, Bx) =- f2u(x , a, b, Ax, Bx) 
i - + - j  

= ~, E°;°(a, b, Rx)At(x, p, Px). (28) 
t = 0  

The Hermite function A, is defined by: 

A,(x, p, Px) = (a /OPx) ~ exp( - p x  2) (29) 

and the expansion coefficients E~ ;n (now dropping the list of arguments of both 
functions and coefficients) are obtained from the recursion formula (see Ref. 
[11]): 

1 E~ + ~'J;" = - -  E o;n 
10 t - -1  

with starting values: 

E °°'° = Kab and 

b (Rxe~," + nE~'"-') + (t + 1)E,+ 1, (30) - -  _ i j ; n  

P 

2ab Eo0O;° + 1 = _ _ _  
P 

( R x E O O ; .  + n E O 0 , . - l ) .  ( 3 1 )  
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Kab is the pre-exponential factor: 

Kab = exp ( - ab A-B 2 (32) 

(ABx = A x -  Bx). Helgaker and Taylor [11] emphasize that the expansion co- 
efficients depend on Rx only while the Hermite functions depend on Px only. This 
supports the change of variables in Eqs. (13)-(14). Differentiation with respect 
to Px is particularly simple due to the definition (29) of the Hermite functions, 
i.e.: 

OAt = At+ 1. (33) OPx 
Differentiating the expansion coefficients gives: 

~E~;" _ E~,, + 1. (34) 
0R~ 

Thus, the expansion of the differentiated overlap distribution as required by Eq. 
(21) is given by: 

~2~'~i j i+ j  
Z E ;1A,+1 • (35) 

#PxORx ,=o 
Helgaker and Taylor [11] make the important observation that the range of 
summation in expressions of the form (35) is exactly the same as in the case of 
undifferentiated integrals (28). The original scheme implies a range of summation 
from t = 0  to i + j + n  for the nth derivative [12, 13]. The change of variables 
therefore leads to significant computational savings during the process where 
integrals over Cartesian Gaussians are formed from Hermite integrals. 

We see that the range (or degree) of the Hermite functions involved in Eq. 
(35) is different as compared to undifferentiated integrals. However, the transfor- 
mation from the Hermite function basis to the Cartesian Gaussian basis is the 
time-consuming step while the calculation of the Hermite integrals is fast. Note 
that the same Hermite integrals of higher degree are required by the original 
scheme of computation. 

The transformation from Hermite to Cartesian Gaussian integrals is a 
standard technique [12-14] which we will not discuss here. Section 2.3 addresses 
the calculation of integrals over Hermite functions. The evaluation of the 
expansion coefficients ( 3 0 ) -  and thus the differentiation with respect to R~, 
etc. - is of negligible computational cost. 

2.3 Herrnite integrals over r12 

We will now evaluate the integral 

(tuv ,r12,t' u' v') - f i Atuv(~l , p, fi)r12Ac~,~,(r2, 

where 

q, Q) dzl dr2, (36) 

Atu:(/, P, fi) = At(x, p, Px)A:(y, p, Py)A~(z, p, Pz) (37) 
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and where q and Q are defined analogously to p and/~. We write the Hermite 
integrals in the convenient form: 

(tu~ I Z I cu'~, ') = ,~( - 1)"+ u ' +  ~'Rrvv, 
Y12 (38) 

(tuv 1r12 I t ' u ' v ' )  = 2( - 1)c+, '+ ~'Qrvv,  

with 

and 

2 = 2rcs/2(pq) - ~(p + q) - ~/2 (39) 

T = t + t ' ,  U = u + u ' ,  and V = v + v ' .  (40) 

The Hermite integrals depend on the sums t + t '  rather than on the individual 
values of t and t', etc. 

It would be natural to use: 

Xl~2 + y~2 + z~2 
r12 = , (41) 

r12 
x12 = xp  - xQ + P Q x ,  (42) 

xp  = Xl - Px ,  xo_ = x2 - Qx,  (43) 

and similar expressions for the y and z directions [7]. Preiskorn et al. [9] 
introduce an operator R~. which generates linear combinations of integrals 
according to Eqs. (41)-(43). These authors thus obtain Cartesian Gaussian 
integrals over r~2 as linear combinations of Cartesian Gaussian integrals over 
l/r12 [7, 9]. But with the recursion relation for Hermite functions: 

1 
x p A t  = tAt  1 + ~p At  + 1 (44) 

we find a linear combination on the level of Hermite integrals which is too 
complicated for practical purposes: 

Q r v v  = ~ ( R r  + 2,vv + Rr ,  u + z,v + R r v ,  v + 2) 

1 - -  
+ - ( P Q x R r +  1,c~v + P Q y R r ,  u+ 1,v + P Q z R r u ,  v+ 1) 

O~ 

+ ~ Q ~ + - ( r + u + v + - ~ )  R ~ v  

+ 2(PQx rR~_ 1,~v - eQy ~R~,~_ ~,~ + PQ~ vRr~,~_ 1) 

+ T ( T  - 1 ) R r - z ,  uv  + U ( U  - 1)Rr, u - 2 , v  + V ( V  - 1)Rrv, v_ 2. (45) 

Here 

Pq 
- . (46) 

P + q  
Equation (45) involves both a relatively large number of primitive floating point 
operations and Hermite integrals over r12 of high degree, for example Rr+ 2,uv- 
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Moreover, Eqs. (21) and (35) show that the formation of Cartesian Gaussian 
integrals o v e r  [r12 , ]~1] increases the degree of the required r12 integrals once 
more. Thus, when we compare to the evaluation of standard electron repulsion 
integrals, we have to increase the degree of the Hermite integrals Rrc~v by as 
much as three if we wish to use Eq. (45). 

Let us instead consider the first derivative of r~2 integrals with respect to the 
coordinates of ft. By virtue of Eq. (33) we get, e.g. 

8QTc~V 
- -  Q T +  1 ,uv .  (47)  ~P~ 

Alternatively we use Eqs. (18) and (19) and obtain: 

OQwv - XTuv, (48) aPx 
where 

1 Xv~v = ~ ( - 1)(c+ u.+ ~')(tuv ] x~--Z2 1 t 'u'v ' ) .  (49) 
El2 

We rewrite (48) using (42)-(44). We get: 
c~Q ~uv 1 

OPx - 20: RT + 1,UV -~ PQ~RTuv + T R y _  1,uv. (50) 

We combine Eqs. (47) and (50) and obtain: 
1 

QT + ,,vv -- 20: RT+ 1,UV ~- P Q x R r u v  + TRT_  ,,uv. (51) 

The number of operations in (51) is much less than in (45), while the degree of 
R integrals needed for a given Q integral is the same or less. 

Similar formulas can be derived for the y and z directions and we finally get 
the following working equations for the generation of Hermite integrals over r~2: 

1 
Qroo = ~ R~oo + PQ~RT_ ,,oo + (V - 1)RT- 2,oo, 

1 
QTuo = ~ RTuo + PQyRT, u 1,0 ~- (U - -  1)RT, U_ 2,0, (52) 

1 
QTUV = ~ RTuv + PQzRTu, v 1 "~- (V  - -  1 ) R T U ,  V _ 2 ,  

for T, U, V ~> 1. Equation (52) can be used for all QT~-V integrals except Qooo and 
we hence need a special formula for that integral: 

= - + - K O  ~ Rooo + ( P O x R , o o  + PQ, Ro,o + PO~Roo~). (53) Q 000 0: 

Equation (53) is derived as follows: first, it is: 

A e Qooo = 2Rooo, (54) 
as can be seen from Eqs. (24) and (25). Second, explicitly differentiating Qooo 
with respect to Px yields: 

82Qooo 1 
~?p2 = Q2oo = ~0: R2oo + PQ~Rloo + Rooo, (55) 
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which follows from Eq. (52). We thus find: 

1 
2~ (R2o0 + R020 + Roo2) + PQ~Rmo + PQyRolo + PQ~Roo, + R00o = 0. (56) 

Inserting (56) into (45) gives (53). 
We conclude that the working equations (52) and (53) represent efficient 

computational procedures for the generation of Hermite integrals over rl2. 
Except for the Qo0o in tegra l -  which is the r12 integral over four s-type Gaus- 
s i ans -  these Hermite integrals are calculated from the corresponding electron 
repulsion integrals without increase of the degree of the latter. 

3 Computation of integrals 

We will discuss the computation of r~2 method integrals in some detail. The first 
step in the computation is the generation of so-called auxiliary functions (see for 
example Ref. [ 12]): 

fo 1 [ 0 0 0  [00D] (m) ~--_ Rooo m = ( _ 2 a ) m F m ( W )  = ( - - 2 a )  '~ t 2m exp( - Wt 2) dt, ( 5 7 )  

with 

0 ~ < m ~ < L + l  and W = e p Q 2 .  (58) 

L is the sum of the "angular momentum quantum numbers" of the four 
Cartesian Gaussians 0a, 0b, Oc, and Oa. For example, L = 6 for a batch of 
(sp [df) integrals. The integrals (3) and (4) require the range of m in (58), while 
for (1) and (2) the range 0 ~ m  ~ L would suffice. 

The computational steps are best pictured in a compact notation: square 
brackets are used for integrals over primitive Gaussians and round ones for 
integrals over contracted functions. Explicit reference t ox ,  v, o r  z isreplaced by 
2. Since there are six centers involved in our formulas (P, A, B, Q, C, and D) we 
reserve six positions in our notation. Closely following the notation of  Obara 
and Saika [15], Gaussians are represented by integer vectors, for example pab. 
Their components denote the order N). of the Hermite polynomial in 2 or 
the power N~ of the Cartesian coordinate 2. We use lx = (6x~, by,o, cSz).) with 
Kronecker's deltas. 

We proceed with the second step. The recursion formulas of McMurchie and 
Davidson are executed (i.e. the relations (4.6)-(4.8) in Ref. [12]): 

[(P + 1~)00 1 000](m) = PQ~[pO0]O00] (m+ 1) + N~(p)E(p - 1~)00 [ 000](m+ 1). (59) 

The Rrvv integrals are obtained as soon as m = 0: 

 ,oo I ooo] _ [too [ ooo1 = RT v, 
where 

(60) 

p = ( T , U , V )  with O<~T+U+V<~L+I .  (61) 

At this point we start computing the r12 integrals over Hermite functions using 
(52) and (53). We will distinguish them from 1/q2 integrals by two vertical lines: 
[ . ' -  H.-.]. The integral Qooo -= [000 II 000] is always required. It is best computed 
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directly from the Fro(W) integrals: 

[000 II 000] -= _1 ko(W) + ~QQ2{Fo(W) - FI(W)}. (62) c~ 
This result is obtained by explicitly summing the x, y, z terms in (53). Other r~2 
Hermite integrals are generated by: 

1 
[(p + 1~)00 II ooo] = ~ t~  + 1~)oo ] ooo] 

+ PQ~[p000 ] 000] + N4(p)[(p - 1)~)00 1 000]. (63) 
Equations (62) and (63) represent the computer code which must be added to a 
computer program that starts from Hermite integrals and which has code for both 
integrals and their derivatives. They have been added to the HERMIT program 
[14, 16]. The concluding steps, i.e. the transformation to Cartesian Gaussians, are 
done with standard computer code. 

So far we have merely rewritten well-known formulas on one hand and the 
working equations (52)-(53) on the other. But the choice of notation enables us 
to put the results of Sect. 2 in a broader perspective. 

Obara and Saika [15] proposed a recursive computation of Gaussian integrals 
in 1986. A series of investigations have followed since then [17-19], some of them 
quite recently [20-25]. We conclude from the results of Lindh et al. [20] that the 
following computational strategy leads to an efficient generation of electron 
repulsion integrals: the first step is (57). The second is analogous to (59): 

[0(a + !i)0 [000] ~m) = PAz[OaOlOOO](m) + ~p eQ4[OaO] 000] (m+ 1) + N4(a) 
• 2 p  

x ( [O(a - lz)O [ OOO](m) + ~--p [O(a - l~)O ] OOO](m+ ~). (64) 

The third step moves powers of 2 from center A to C: 

[0a0 ]0(c + 14)0] = ( Q-C~ + p-q ffAa ) [0a0  ]0c0] + N~(a)2q [0(a - 14)0 ]0c0] 

~ - ~  [0a0 ] 0(c - 1~)0] - p- [0(a + 1).)0 1 0c0]. (65) + zq q 
Lindh et al. [20] and Hamilton and Schaefer [21] independently found (65). 
Head-Gordon and Pople [17] recognized that the distribution of "angular 
momentum" from A to B (and from C to /)) can be carried out after the 
contraction step. Hence, the final steps are represented by: 

( Oa(b + 1~) 10cd) = (0(a + l~.)b ] Oed) + AB4( Oab ] Ocd). (66) 
And similar for c and d. Note the round brackets in (66). The equations (57), 
(64), (65), and (66) constitute, say, the pure Cartesian scheme of computation. 

Because of the translational invariance of the integrals: 

( ~3 + ~  [p001q00]=0, (67) 

the Hermite equivalent to (65) is: 
[pOOl( q + 14)001 = --[(p + 1~)00 I q00 ]. (68) 
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Observe at this point that Hamilton and Schaefer [21] obtained (65) from: 

- ~  + ~ + - ~  + ~-~ [Oab ] Ocd] = O. (69) 

It is obvious that (59) and (68) are computationally simpler than the correspond- 
ing steps (64) and (65). However, the final computational steps must move 
"angular momentum" from fi to ~ and g and from Q to C and D. This is done 
by means of a matrix transformation in the original scheme of McMurchie and 
Davidson [12] (and in our current computer implementation) using a transforma- 
tion matrix of the form (30). Gill, Head-Gordon, and Pople [18, 19] have 
investigated an alternative scheme using the recursion relation (44) for Hermite 
functions: 

1 
[p(a + l).)b ] qcd] = ~pp [(p + l~)ab [ qcd] 

+ Nx(p)[(p - lx)ab ] qcd] + PAx[pab I qcd]. (70) 

Same for b, same for q to c and d. We may say that the steps (57), (59), (68 as 
a formal zero-cost step), and (70) represent the path via Hermite functions. 

We do not intend to evaluate possible computational strategies. But in view 
of the recent progress in the field of molecular two-electron integral generation 
it is felt that the integral formulas of Sect. 2 should be viewed in the context of 
these new ways of computing integrals over Cartesian Gaussians. We therefore 
show that the key idea of Sect. 2 is quite general. 

Obviously, the working formula (62) does not change if implemented in a pure 
Cartesian environment. It remains to reformulate (63). It follows from (18), (19), 
and an adequate form of (42) that: 

+ ~ [0a0 1[ 0003 = [0(a + 1~)01 000] - [0a0 [ 01x0] + ACx[OaO[O00]. 
(71) 

We differentiate the left-hand side of (71) and we then push all powers of 
coordinates back to center A with the help of (65). We obtain: 

[0(a + l )0 II ooo] =   [0a0 II 000] + [0(a -- lx)0 II 000l 

, (1 
+ [0(a + 1 )010001 - QAx + P--Ax [0a0 I 000] 

_ Nx(a_~) [0(a - lx)0 [ 000]. (72) 4pq 
We find both r12 and l/q2 integrals on the right-hand side of (72). That is not 
the case in (63). But the result is very similar to (63) in that it allows the computation 
of r12 integrals of the type [0a0 n 000] from the corresponding ones over 1/r12 of 
same or lower degree. Equation (62) is needed as a starting value of (72). 

The compact notation reveals the idea behind our computation of q2 integrals: 
obtain q2 integrals from integrals over lira2 at the stage of the computation where 
all "angular momentum" is at one center. This may be either P, the position of 
the Hermite function, or A, the location of the Cartesian Gaussian. Finish the 
calculation with computer code for standard integrals. Note that (65) and (66) hold 
for both lira2 and q2 integrals. 
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The computational cost for the generation of r~2 integrals is not substantial 
at the point where they are generated. The cost is comparable to the generation 
of the "one-center" 1/r12 integrals (59) or (64). 

The change of variables (13)-(14) is also advantageous if we do not use 
Hermite functions as intermediates: 

OR--~ [Oab II Ocd] = 2aPA;.[Oab II 0caq 

_ b_ N ~ ( a ) [ O ( a  - l~)b II Ocd] + a_ N ; . ( b ) [ O a ( b  - 1;~) II 0cd]. (73) 
P p 

We observe that differentiation with respect to R~ does not increase "angular 
momentum quantum numbers". Therefore, evaluating the [r~2, 2?1] integrals from 
(21) requires a start from Fro(W) with 0 ~< m ~< L + 1. We conclude that comput- 
ing (21) rather than (in the notation of Sect. 2): 

(ablr,2, T, II cd) = - I (A,  - aa)(ab]r12 ]ca) (74) 
is economical. The computation of the integrals (3) and (4) is slightly more 
expensive than the generation of (1) because of the first derivatives involved. In 
practice we observe that the CPU-time needed for the computation of either 
integral (3) or (4) is roughly twice the time needed for the 1/r~2 integral. The 
integral (2) requires the same time as (1). 

Our integral formulas of Sect. 2 are tailored towards Hermite functions. In this 
section we have shown that they are readily translated into analogous expressions 
for use in pure Cartesian surroundings. 

4 Conclusion 

The r12 methods require new molecular two-electron integrals over Cartesian 
Gaussian functions. These integrals can readily and efficiently be obtained through 
minor modifications of computer programs currently in use. The requirement is 
that the program must be able to generate an electron repulsion integral and its 
first derivatives. 

This becomes evident when we summarize the proposed scheme of computa- 
tion: first, compute (ss ]r121ss) integrals from Eq. (62). Then generate integrals of 
the type (xs [rlz[SS ) f rom the corresponding integrals over 1/r12. Here x denotes 
either a Cartesian Gaussian higher than s or a higher order Hermite function. 
Equation (63) or (72) must be implemented for this purpose and existing 
computer code can be used from here on. Code for derivatives is required by the 
integral [rl2 , ~1] which is a differentiated r12 integral. 

The computation of (xslr~alss)-type integrals is inexpensive in terms of 
CPU-time and requires only modest computer memory. 

We have discussed so-called auxiliary function based algorithms. Methods of 
this kind start from a set of functions Fm(W ). Here we make an important 
observation. When certain 1/rla integrals start from functions F m(W ) with 
0 ~< m ~< L, then L is not incremented for the r12 integrals. The [r~2, T1] integrals 
require a set with 0 ~< m ~< L + 1. 

It has proved very valuable to integrate by parts, in other words, to use Eq. 
(18). Equations (18) and ( 1 9 ) -  (24) results from ( 1 9 ) -  link 1/r12 and r12 
integrals. This integration by parts gives more economical links than other 
possible ones in the form of, for example, ? '12 = r~2/r12. 
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Until now, the use of Gaussian lobes has been a restriction on applications 
of  the r12 theory. The ease with which the required two-electron integrals can 
now be generated will allow more and larger applications of r12 methods in the 
future. 
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