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Inclusion of linear r,,-dependent terms into many-electron wavefunctions considerably speeds up the convergence to the limit 
of a complete basis. Here, first results of MP3-R12; CIDR12. and CEPA-R12 calculations are presented. They demonstrate that 
the philosophy that led to the rather successful MPZ-RI 2-scheme is similarly effective in treatments ofelectron correlation beyond 
second-order Msller-Plesset perturbation theory. For the atoms He, Be, Ne, Ar, and the molecules LiH, HF, H20, and N2, corre- 
lation energies are obtained that are supposed to differ by at most a few percent from the basis set limits for the respective 
methods 

1. Introduction 

Any many-electron wavefunction can, in princi- 
ple, be expanded as a linear combination of all Slater 
determinants constructable from a given set of one- 
particle functions (spin-orbitals). The convergence, 
with increasing size of the spin-orbital basis, to the 
exact solution of the Schriidinger equation is, how- 
ever, frustratingly slow. If. for an atom, we succes- 
sively saturate the spin-orbital basis for increasing 
values of the angular quantum number 1, the trun- 
cation error goes as N (LS 1 )-3, if L is the highest 
I contained in the basis [ l-31. This slow conver- 
gence is related to the inability of a finite linear com- 
bination of Slater determinants to describe the cor- 
relation cusp [4] correctly. It has been shown, that 
if linear terms in the interelectronic coordinates r!,, 

which allow one to account for the correlation cusp, 
are included in the wavefunction, the convergence is 
considerably speeded up. In typical cases - at least 
in the framework of second-order perturbation the- 
ory - the truncation error then goes as (L+l)-’ 
[ 5,6] rather than as (L+ 1 )-3, which allows one to 
achieve much higher accuracy than without r,-de- 
pendent terms. For the special case of two-electron 
systems like He or HZ, the power of explicitly r,,-de- 
pendent wavefunctions has been exploited much 
earlier [7-lo], but the generalization to arbitrary 

systems has been inhibited by the occurrence of “dif- 
ficult integrals”. 

After a pilot study on He-like atoms [ 5 1, we have 
developed a method [ 1 l- 15 ] applicable to arbitrary 
closed-shell atoms or molecules in the framework of 
Moller-Plesset perturbation theory (i.e. many-body 
perturbation theory with Hartree-Fock as refer- 
ence) to second order with explicitly linear rlz-de- 
pendent terms (MP2-R12) and applied this method 
to a wealth of atoms [ I3 ] and molecules [ lo- 12,141 
and even to problems of structural chemistry like the 
comparison of competitive structures of carbonium 
ions [15]. 

In order to make our method practicable, some 
tricks are necessary [ 6,11,15 1. The main philosophy 
is that some “difficult integrals” are simplified by 
completeness insertions, in such a way that (a ) these 
simplifications become exact in the limit of a com- 
plete one-electron basis and (b) that the truncation 
errors introduced by these completeness insertions 
decrease as higher powers of L t 1 than the basis in- 
completeness error in conventional MP2 calcula- 
tions. We have, in fact, introduced two variants of 
MPZRI 2, referred to as approximations A and B 
[ 6,151, such that the error in approximation A goes 
as (Lt 1 )-5 and in approximation B as (Lt 1)-7. 

Recently our MPZ-R 12 method in approximation 
A has been studied by Handy and co-workers [ 161 
especially as far as the convergence with increasing 
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basis is concerned. These authors have also de- 

scribed the evaluation of the necessary integrals in 

terms of Cartesian Gaussians. 
We now want to report on preliminary results with 

our method beyond MP2-R12. On one hand, we have 
generalized the Moller-Plesset treatment to include 

the third-order energy (MP3), on the other hand 

(this did not require additional matrix elements), 
we have implemented the configuration-interaction 

method limited to doubly excited configurations, 

CID, with linear r12 terms, i.e. CID-R12 and various 
coupled-electron-pair (CEPA) variants, again with 

linear riZ terms. 

These extensions are straightforward as soon as one 

knows how to evaluate the necessary matrix ele- 

ments [ 61. We shall give a brief outline of CID-R12 
and CEPA(k)-R12 in section 2. We then describe 
applications to the atoms He, Be, Ne, Ar and the 

molecules LiH, HF, HzO, and Nz in section 3. 

For some small systems studied here (He, Be, Ne, 
LiH), results from the Gaussian-geminal method 
[ 17-201 are available and agree rather well with our 

results. In this method, a linear combination of func- 
tions of the type exp( -yrt2) is taken instead of a 

linear r,* term. This allows the closed evaluation of 

all integrals, but requires a somewhat tedious 

optimization of non-linear parameters. 

2. The basic ideas of CID-R12 and CEPA(k)-R12 

As in standard CI calculations, we define some one- 
electron basis and start by performing a single-con- 

figuration SCF calculation in this basis. The SCF 

wavefunction 4 is then taken as reference. Let the 
spin-orbitals v/i, wj, etc. be occupied in $ and let v~, 
vbvb, etc. be unoccupied, such that the vi together with 

the v/a form an orthogonal set. Let Q be the projector 
onto this one-electron basis, 

Q= C Iv/l>tv/ll+ C Ivaa><vlal. (1) I 0 

We then construct two types of “doubly excited” 

configurations, (a) those expressible in the spin-or- 
bital basis, 

@“,=a$bQ=ata~a,a,Q (2) 

and (b) additional double excitations eij that are not 
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expressible in the given basis and which describe the 

cusp behaviour for small r12. The &, can be formally 
written (implying the Einstein summation conven- 

tion [21]) as [6] 

diJ = 4r&a$B, (3) 

rla=(lya(1)1//8(2)lr121~~jl(1)IVj(2))j (4) 

where ry,, y@ are unoccupied spin-orbitals, that (un- 
like the v~, i&lb) together with the VII, vj form a com- 
plete set. In a pictorial description, one can say that 

@,, is obtained from 4 in replacing the spin-orbital 

pair 

]ij1=1/Jz]w~(1)!4(2)-~(1)!%(2)1 (5) 

by 

w,,(l,2)=fr,,[ij]. (6) 

It has turned out to be convenient not to use the @ii 

as such, but to orthogonalize them to the @gb. The 
orthogonalized functions 6,; can formally be written 
as (with N,, a normalization factor) 

~j==N~(r~,a~B-r~ba~b)~. (7) 

They can be obtained from Q in replacing [ij] by 

~~~(l~2)~~l~Q~l)l~l~Q(2)l~~~~ (8) 

The CID-R12 wavefunction is of the form 

y=o+ ,;j&,&+ ;jO;bc%e;b (9) 

and both the ?,, and the c:b are treated as variational 
parameters. 

The necessary matrix elements of the Hamiltonian 

have been derived elsewhere [6] and they will not 

be repeated here. Note that the secular matrix of the 
CID-R12 method contains the conventional CID 

block as the dominant one. 
As in our MP2-R12 calculations, we assume that 

the Hartree-Fock equations are satisfied exactly and 
that a generalized as well as an extended Brillouin- 
theorem hold, i.e. that [6] 

<PilFIVfz>=o, (uliIFIPa)=o, 

(PalFlPa)=O, (10) 

where F is the Fock-operator. We further evaluate 
three- and four-electron integrals formally by means 
of completeness insertions, as mentioned in the in- 
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troduction. While for MPZRl2 calculations [ 13,141, 
both approximations A and B turned out to be ac- 
ceptable, our experience with CI calculations has so 

far been that only the more sophisticated approxi- 

mation B gives good results. All results reported here 
were obtained on this level. 

The final CI equations are effectively solved by 

means of the matrix-oriented direct CI approach, 

where the recent reformulation of Pulay et al. [ 221 
has been implemented. 

CEPA-type methods are formally very similar to 
CID, but they remedy one defect of CID, namely that 

CID is not extensive, i.e. does not scale with the 

number of particles. We have considered the three 
most-used CEPA-variants, namely CEPA( 0) (also 
called L-CPMET or L-CCD), CEPA( I), and 
CEPA (2). For details on their definition, see, e.g. 

refs. [ 23-251. We have also implemented the CPFD- 
method [ 261 with a CEPA( 1) type energy denom- 

inator. As required by a formal analysis [ 27 1, CPFD 

and CEPA( 1 ) are not identical, but numerically al- 

most indistinguishable. The results of CEPA-calcu- 
lations, especially CEPA ( I), are usually quite close 
to those obtained by the coupled-cluster-with-dou- 
bles (CCD) method. For a recent review on the lat- 

ter, see ref. [ 281. 

Table I 
Results of R 12 calculations on closed-shell atoms a), Energies in mhartree 

He Be Nc Ar 

SCF -2861.68 - 14573.02 - 128546.70 -526816.84 
reference SCF ‘) -2861.68 - 14573.02 -128547.10 -526817.51 

MP2 -36.46 -73.40 -350.75 -605.57 
MPZ-R12 - 37.36 -75.86 -384.14 -687.83 
reference MP2 -37.36 d’ - 76.36 k’ -387.8 h’ -706 r) 

MP3 -4.11 - 10.90 -0.01 - 14.69 
MP3-RI2 - 3.63 -9.54 4.39 - 12.19 
reference MP3 - 3.63 ” -8.87 g’ %4-5 i) 

CID -41.53 -88.28 -341.95 -584.44 
CID-RI2 -42.00 -89.52 -369.47 -655.38 

CEPA(0) -41.87 -97.19 -353.70 -626.00 
CEPA(O)-R12 -42.34 -98.49 - 382.45 -705.21 

CEPA(2) -92.14 -352.95 -624.53 
CEPA(2)-R12 -93.47 -381.61 -703.46 

CPFD -91.87 -350.92 -620.15 
CPFD-RI2 -93.17 -379.36 -698.19 

reference CCD -92.96 8’ -381” 
reference E(corr) -42.04 ” -94.31 k) -389 k’ -732 m) 
single excitations ‘) -0.03 -0.7 -1.6 -0.9 

‘) GTO basis sets: [ 16.10.6.3] for He and Be, [ 16.10.7.3] for Ne, and [ 17.13.7.31 for Ar. 
b, Asquoted in ref. [29]. ‘) From CEPA-PNO [ 301 calculations with the same basis set. 
” Malinowski et al. [ 311 have extrapolated a second-order energy of -37.364 ti,,, which compares well with the STO-MP2-R12 result 

of - 37.359 m& [ 131. The Gaussian-geminal method yields - 37.372 m& [ 171. 
‘I Extrapolated value of ref. [ 321. The Gaussian-geminal result is - 3.62 m& [ 181. f, Pekeris’ result [ 331, 
*) From a recent paper of Salomonson and dster [ 341, where earlier calculations with STOs and Gaussian-geminals are compared and 

the full CI limit is discussed. An extrapolation from the STO-MP2-RI2 method givesE”‘= -76.32 m&, [ 131. 
‘) Recommended value of ref. [ 131. 
‘) Three values are available for comparison: 3.5 m& from a numerical approach [ 35],4.4 m& from STO-MP3 calculations [ 361 I and 

4.63 m& from the Gaussian-geminal method [ 191. 
-) See refs. [35] and [ 191. ‘) Asestimated by Leeet al. [37]. Otherspredict -385&S [38] and -390 [39] in&,. 
*) From ref. [40]. m) Ref. [39]. Seealsoref. [40]. 
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The basis sets in our calculations were of GTO- 

type, with p, d, f functions constructed from Gaus- 
sian lobes. They are indicated in the respective ta- 

bles. [ 16.10.6.31, e.g. means a basis of 16s, lop, 6d, 
and 3f AOs. They are usually taken uncontracted. The 
basis sets used here are in most cases identical to ba- 
sis sets described in detail in refs. [ 13,141. 

3. Discussion of the results 

In table I, results for He, Be, Ne, and Ar are shown. 

The entire correlation energy (including inner shells) 

is always taken care of. The MP2-R 12 values are es- 

sentially those of ref. [ 13 ] and they need not be fur- 
ther discussed. Note that we have only considered 

results from approximation B and that the ST0 re- 
sults (with larger basis sets) are usually superior to 
the GTO results (but that GTOs can be used for 
molecules as well). The error of the MPZ-R 12 values 

with respect to the estimated basis set limit is of the 

order of 1% or less (except for Ar, where it is almost 
3%; here a somewhat larger basis ought to be used). 

For the third-order energy MP3, there are no re- 
liable basis set limits available. Estimates are very 
difficult since rather large positive and negative 

terms, which cancel in part, contribute to the MP3- 

energy. The change from MP3 to MP3-R 12 is there- 

fore more spectacular than the corresponding change 
on MP2 level. A more detailed discussion of the third- 
order energies, including also ST0 results, will be 
given elsewhere. 

Among the CEPA-variants usually CEPA( 1) - 
which is in this context, i.e. without single excita- 
tions, practically equivalent to CPFD - is regarded 

as best, i.e. closest to full CI. Our CPFD results are 

supposed to be close to the basis set limit of CCD, 
and this is confirmed by the values which are avail- 
able. The difference from the exact correlation ener- 

gies must be attributed mainly to the contributions 
of single and triple excitations, which have so far been 

neglected in our calculations. 
In table 2, we compare the contributions of the 

various pairs to the CID correlation energy of Ne with 
and without r12 terms, and a recent conventional cal- 

culation with a large ST0 basis set [ 411. The agree- 
ment between CID-R 12 and the results of ref. [ 4 I ] 
(IRR in table 2) is surprisingly good. 
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Table 2 
Comparison of CID and CID-RI 2 pair energies (in millihartree ) 
of the Ne atom with pair energies from a recent calculation ‘) by 
Iwariski, Rutkowska and Rutkowski (RR ) [ 4 1 I 

CID b, CID-R12 b, IRR”’ 

lsZ i’s) -38.88 - 40.94 -40.74 

ls2s (‘S) - 3.84 -4.01 - 3.97 

(‘S) - 1.55 -1.59 - 1.58 

2s2 (‘S) -10.92 -11.90 - 11.85 

ls2p (‘P) - 1.43 -8.10 - 8.22 

(‘P) -13.55 -13.73 - 13.76 

2s2p (‘P) -52.40 -60.84 -61.04 

(‘P) -22.30 -23.26 -23.66 d’ 

2~’ (‘D) -74.39 -84.89 - 84.25 

(‘S) -41.09 -43.29 -43.09 

?P) -75.58 -76.93 -77.57 

total -341.95 -369.47 -369.36 
E( vo)+iv’)) c, -338.8 -366.6 -368.4 e’ 

a) The method used may be regarded as a symmetry-adapted vep 
sion of Siegbahn’s pair-contracted CI [42]. An ST0 basis set 
with I< 9 was used. 

b, GTO basis set: [ 16.10.7.31. 
c) Minimum of the expectation value of a two-term function. 
d, In table 1 of ref. [ 411, a pair energy of -23.66 m& is re- 

ported. This value is clearly not the product of the numbers 
0.874 and - 26.6 1 also printed in table 1 as it should be and is 
not consistent with the total correlation energy. We therefore 
assume a misprint and suppose the correct pair energy to be 
-23.26 tn& 

c) See also ref. [ 43 1, where the accuracy of first-order wavefunc- 
tions for ten-electron atomic systems is discussed. 

The results for the molecules LiH, HF, HIO, and 

N2 are displayed in table 3. The general pattern is 
similar to that in table 1. Again, there are only few 

reliable reference values available. As before, the dif- 
ference between our CEPA ( 1 )-R I2 correlation ener- 

gies and the estimated exact correlation energies 

comes mainly from the neglect of singly and triply 

substituted configurations. Note that in N2, only the 
valence-shell correlation energy was considered. 

In table 4, we finally report on an application of 
our method to the evaluation of spectroscopic con- 
stants, namely in the case of N2. For this example, 
the changes due to inclusion of linear r,2 terms are 
small. The equilibrium distance is consistently re- 
duced by 0.003 A, while the harmonic frequency is 
increased by z 15 cm- ‘. Compared with experi- 
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Table 3 

Results of RI2 calculations on closed-shell molecules a). Energies in mhartree 

5 April 1991 

LiH HF Hz0 N2 =’ 

SCF -7987.30 - 100070.22 -76065.75 - 108991.33 

reference SCF ‘) -7987.35 - 100070.81 

MP2 -69.43 -346.14 -323.98 - 377.73 
MPZ-R12 - 72. I6 -318.78 - 356.74 -409.28 
reference MP2 -72.78 *) -367.9 b’ 

-70.88 b’ 

MP3 -8.85 1.64 -3.38 11.01 
MP3-R12 -7.65 4.61 0.10 8.84 
reference MP3 -6.89 =’ 2.05 b1 

-8.35 b, 

CID -79.66 - 332.98 -313.78 -343.92 
CID-RI2 -81.31 - 360.58 - 340.71 -373.51 

CEPA(0) -82.28 - 349.44 - 333.66 -382.65 
CEPA(O)-R12 - 83.99 - 378.78 - 362.59 -418.08 

CEPA(2) -81.03 -348.31 - 332.27 -379.81 
CEPA(2)-R12 - 82.73 - 377.54 -361.07 -414.80 

CPFD - 80.96 -345.41 - 328.69 -372.28 
CPFD-RI 2 - 82.64 -374.31 -357.14 -406.06 

reference CCD - 82.7 ” 

-81.5” 
reference E(corr) - 83.2 r) -38lQ 
single excitations ‘) -0.25 -2.5 -2.2 

a) GTObasissetsandgeometries: LiH: [14.7.4.1/11.7.4.1] forLiand [ 12.6.3.1/9.6.3.1] forH,R,=3.015ao;HF: [ 15.10.5.21 forFand 

[ 10.4.1/7.4.1] for H, R,= 1.7328 u,,; HZO: [ 12.7.4.1/9.7.4.1] for0 and [10.4.1/7.4.1] for H, R.= 1.80885 a0 and o=lO4.52”; Nz: 

[14.10.4.1],R.=2.07a0, 

‘) Results from the semi-numerical McCullough method, See ref. [44] and references therein. 

‘) As in table 1. d, Obtained with the Gaussian-geminal method [ 201. 

e, From the Gaussian-geminal method [ IS]. The corresponding second-order energy from this calculation is - 72.18 n&. 

f, See ref. [ 441. g) Valence-shell correlation only. 

ment, all CEPA variants predict a too-short r, and 
too-large CO,. Curiously enough, CEPA(0) without 
r,* terms is closest to experiment. For this example, 
the inclusion of single and triple substitutions is ob- 
viously more important than the correct description 
of the short-range correlation. 

4. Conclusions 

basis, is not limited to Mraller-Plesset perturbation 
theory, but generally applicable on any level of many- 
electron theory. 

It appears now possible to get about 99% of the 
basis set limit in MP2, or CID, or CEPA type cal- 
culations. The next step must be to combine a full 
coupled-cluster approach including single and, hope- 
fully, triple substitutions with the linear r12 method 
to obtain results close to the exact correlation 
energies. 

This paper clearly shows that the concept of de- 
scribing the correlation cusp by means of linear ri2 
terms in the wavefunction to speed up the conver- 
gence of a many-electron wavefunction in an orbital 

459 



Volume 178, number 5,6 CHEMICAL PHYSICS LETTERS 5 April 1991 

Table 4 

Equilibrium distance r,, harmonic vibration frequency w,, anhannonicity c&.x, and minimum energy E,,,,, for N2 in different 

approximations ‘) 

r,(A) w, (cm-‘) w&, (cm-‘) E,,,,, (hartree) 

SCF 1.066 2730 10 - 108.9889 

MP2 1.113 2194 19 - 109.3648 
MP2-R12 1.109 2211 19 - 109.3825 

MP3 1.089 2531 10 - 109.3564 
MP3-R12 1.086 2546 10 - 109.3751 

CID 1.086 2528 12 - 109.3329 
CID-R12 1.083 2545 12 - 109.3489 

CEPA(0) 1.099 2383 15 - 109.3719 
CEPA(O)-RI2 1.096 2397 15 -109.3911 

CEPA(2) 1.097 2404 14 - 109.3690 
CEPA(2)-R12 1.094 2419 I4 - 109.3880 

CPFD 1.094 2440 13 - 109.3614 
CPFD-RI2 1.091 2456 13 - 109.3797 

other theory b, 1.100 2353 
experiment ‘) 1.0977 2358.6 14.3 

*) GTO basis set: [ 10.6.2.1/6.4.2.1], taken from ref. [ 451. Ten electrons are correlated in all approximations. 

‘) From the work of AlmlGf et al. [46]. The computed spectroscopic constants were obtained from a CAS( 6act) /MR-CI t Q calculation 

witha [18.13.6.5.4.3/6.5.4.3.2.1]GTObasisset. 

‘) Ref. [47]. 
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