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3640, D-76021 Karlsruhe, Germany
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In the framework of second-order Møller–Plesset linear-r 12 ~MP2-R12! perturbation theory, a
method is developed and implemented that uses an auxiliary basis set for the
resolution-of-the-identity~RI! approximation for the three- and four-electron integrals. In contrast to
previous work, the two-electron integrals that must be evaluated never involve more thanone
auxiliary basis function. The new method therefore scales linearly with the number of auxiliary basis
functions and is much more efficient than the previous one, which scaled quadratically. A general
formulation of MP2-R12 theory is presented for various ansa¨tze, approximations, and orbitals
~canonical or localized!. The new method is assessed by computations of the valence-shell
second-order Møller–Plesset correlation energy of a few small closed-shell systems. The
preliminary calculations indicate that the difference between the new and previous methods is about
one order of magnitude smaller than the errors that occur due to basis-set truncations and RI
approximations and under the assumptions of generalized and extended Brillouin
conditions. © 2004 American Institute of Physics.@DOI: 10.1063/1.1742904#

I. INTRODUCTION

The second-order Møller–Plesset linear-r 12 ~MP2-R12!
method was introduced in 1987.1 It was derived in the frame-
work of closed-shell second-order Møller–Plesset perturba-
tion theory by expanding the first-order pair function
ui j

(1)(1,2) in a basis of~a! orbital productsuab& and~b! func-
tions that depend linearly on the interelectronic coordinate
r 125ur12r2u,

ui j
(1)~1,2!5tab

i j uab&1ci j ~12Ô1!~12Ô2!r 12u i j &. ~1!

Here, Ô1 is the projector onto the space spanned by the
occupied spin orbitals$wk(1)%k51

n . upq& is a short-hand no-
tation for the two-electron determinant

upq&5uwpwqu5
1

&
$wp~1!wq~2!2wq~1!wp~2!%, ~2!

and throughout this paper, we assume implicit summation
over repeated indices. Occupied spin orbitals are indicated
by the indicesi , j ,k, . . . , empty~virtual! ones bya,b,c, . . . ,
and arbitrary ones byp,q,r , . . . .

In 1991, the method was also implemented by Bearpark
et al. in terms of Eq.~1!,2 but in the same year, the method
was extended by the present author to the form3

ui j
(1)~1,2!5tab

i j uab&1ckl
i j ~12Ô1!~12Ô2!r 12ukl&. ~3!

The MP2-R12 method based on Eq.~3! is invariant to uni-
tary transformations among the occupied spin orbitals,
whereas the original method based on Eq.~1! was not. An
integral-semidirect computer code, theSORE program

~second-order R12 energy!,4 was developed in 1991 on the
basis of Eq.~3!, invoking an approximation to the many-
electron integrals called standard approximation A~MP2-
R12/A method!. This program was recently parallelized and
extended to include the standard approximation B as well
~MP2-R12/B method!.5

Since 2000, a similar MP2-R12 program has been devel-
oped by Valeev and Schaefer,6–8 and impressive results have
been obtained with their code.9–11

Furthermore, the MP2-R12/A and MP2-R12/B energies
are computed as intermediate results by the coupled-cluster
linear-r 12 methods, not only for closed-shell systems but also
for unrestricted Hartree–Fock and restricted open-shell
Hartree–Fock references.12–16

Recent work has been concerned with the evaluation of
the many-electron integrals, partly eliminating or modifying
the standard approximations of R12 theory. Windet al. have
computed the main three-electron integrals exactly for
atoms,17 and Manby18 and Ten-no and Manby19 have inves-
tigated alternative insertions of the~approximate! resolution
of the identity~RI! as well as further approximations to re-
duce the complexity of the two-electron integrals of R12
theory to the computation of three-center integrals.

So far, the various implementations of MP2-R12 theory
have all used the main basis of atomic orbitals for the RI
approximations of that theory. Only very recently, we have
proposed to use another, auxiliary basis set for that
purpose.20

The present paper is concerned with the utilization of an

auxiliary basis$xm8(1)%m851
n8 , which defines a set of ortho-

normal spin orbitalswp8 . Here and throughout the paper,
primed indices refer to orbitals of the auxiliary basis. It be-a!Electronic mail: klopper@chem-bio.uni-karlsruhe.de
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comes clear in Ref. 20 that the MP2-R12/A method requires
two-electron integrals of the type (mnukl8), where only one
function (l8) belongs to the auxiliary basis. In contrast to
this single auxiliary function, the MP2-R12/B method re-
quires two-electron integrals of the types (mnuk8l8) and
(mn8ukl8) with two functions of the auxiliary basis.

However, we shall show in the present work that it is
possible to design an MP2-R12/B method that requires noth-
ing more complicated than two-electron integrals that in-
volve only oneauxiliary basis function. As the auxiliary ba-
sis is usually large, this leads to substantial savings of both
computation time and data storage. The new approach is de-
noted the ‘‘hybrid MP2-R12/B’’ method, as it employs the
new approach~with an auxiliary basis! for the terms of the
MP2-R12/A method but the old approach~without an auxil-
iary basis! for the extra, post-MP2-R12/A terms that occur in
the MP2-R12/B method.

The present paper is organized as follows: The theory is
presented in Sec. II, computational details are given in Sec.
III, and numerical results are presented and discussed in Sec.
IV. The conclusions of the present work are summarized in
Sec. V.

II. THEORY

In this section, we present the MP2-R12 method in a
spin-orbital formalism, using the notations of Refs. 15 and
20. The theory is like usual second-order Møller–Plesset per-
turbation theory, with the exception that it uses pair functions
of the form

ui j
(1)~1,2!5tab

i j uab&1ckl
i j ŵ12ukl&, ~4!

with ŵ125Q̂12r 12. The projectorQ̂12 is defined in the fol-
lowing.

When an auxiliary basis is used, two different ansa¨tze ~1
and2! can be made~Sec. II A!, and the MP2-R12 energy and
amplitude equations are given in a general and compact form
~Sec. II B!. The standard approximations A, A8, and B differ
by the neglect of certain terms. These approximations and
also the approach2* are explained in Sec. II C. The post-
MP2-R12/A terms can be computed efficiently by virtue of
intermediate orbitals, and the new hybrid approach consists
of expanding these intermediate orbitals not always in the
auxiliary basis but partly also in the main orbital basis~Sec.
II D !. Section II ends with remarks on the computation of the
matricesP andL ~Sec. II E!.

A. Ansä tze 1 and 2

The projection operatorQ̂12 is defined differently for the
ansätze1 and2. With ansatz1, it contains the projection onto
the full spin-orbital basis, whereas with ansatze2, it contains
the projection onto the space of occupied spin orbitals.
Hence,

ansatze1: Q̂125~12 P̂1!~12 P̂2!, ~5!

ansatze2: Q̂125~12Ô1!~12Ô2!, ~6!

where P̂15uwp(1)&^wp(1)u and Ô15uw i(1)&^w i(1)u and
similarly for P̂2 andÔ2 . Without using an auxiliary basis for

the RI approximation, the two ansa¨tze 1 and 2 lead to the
same working equations and to the same numerical results.
Distinct results only occur with an auxiliary basis or when
the many-electron integrals are computed exactly.17

B. MP2-R12 equations

In order to arrive at compact equations, we collect the
amplitudestab

i j and ckl
i j into the matricesT and C, respec-

tively, and define further the following matrices:

V̄mn
kl 5^mnug12ŵ12ukl&, ~7!

X̄mn
kl 5^mnuŵ12

† r 12ukl&, ~8!

F̄mn
kl 5^mnuŵ12

† ~ f̂ 11 f̂ 2!ŵ12ukl&, ~9!

Ēmn
ab 5^mnuŵ12

† ~ f̂ 11 f̂ 2!uab&, ~10!

W̄mn
ab 5^mnuŵ12

† uab&, ~11!

Ḡmn
ab 5^mnug12uab&. ~12!

In the above-presented equations,f̂ 1 and f̂ 2 are the Fock
operators acting on the coordinates of electrons 1 and 2,
respectively, andg125r 12

21 is the electron repulsion operator.
The MP2-R12 correlation energy can now be expressed as

EMP2-R12
(2) 5

1

4
Tr~GT1VC!, ~13!

and the MP2-R12 amplitude equations can be written in
terms of two coupled equations,

$fv ,T%2$T,fo%1ETC2WT$C,fo%1GT50, ~14!

FC2X$C,fo%1ET2W$T,fo%1VT50. ~15!

Terms of the type$A,fo% or $fv ,A% refer to 1-index transfor-
mations of the 4-index intermediateA with the occupied–
occupied (fo) or virtual–virtual (fv) blocks of the Fock ma-
trix

f5F fo 0

0 fv
G . ~16!

Specifically,

$C,fo%kl
i j 5ckl

o j f o
i 1ckl

io f o
j , ~17!

$fo ,C%kl
i j 5 f k

ocol
i j 1 f l

ocko
i j , ~18!

$T,fo%ab
i j 5tab

o j f o
i 1tab

io f o
j , ~19!

$fv ,T%ab
i j 5 f a

ctcb
i j 1 f b

ctac
i j , ~20!

$fo ,W%kl
ab5 f k

oW̄ol
ab1 f l

oW̄ko
ab , ~21!

$W,fv%kl
ab5W̄kl

cbf a
c1W̄kl

acf b
c . ~22!

Equations~13!–~15! are valid for both canonical and local-
ized molecular orbitals, as the Fock matrix Eq.~16! is only
required to be block-diagonal.
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C. Standard approximations A, A 8, and B

The key idea of the standard approximations of linear-
r 12 theory is to rewrite the integrals that involve products of
r 12 with Fock operators. For example, consider the matrix
elementsĒmn

ab of Eq. ~10!. These can be rewritten as

Ēmn
ab 5^mnu@ŵ12

† , f̂ 11 f̂ 2#uab&1^mnu~ f̂ 11 f̂ 2!ŵ12
† uab&

5^mnu@r 12Q̂12, f̂ 11 f̂ 2#uab&

1^mnu~ f̂ 11 f̂ 2!r 12Q̂12uab&. ~23!

Under the assumption that@Q̂12, f̂ 11 f̂ 2#50, we obtain

Ēmn
ab 5^mnu@r 12, f̂ 11 f̂ 2#Q̂12uab&1^mnu~ f̂ 11 f̂ 2!r 12Q̂12uab&

5Ūmn
ab 1K̄mn

ab 2L̄mn
ab 1 f k

oW̄ol
ab1 f l

oW̄ko
ab , ~24!

with

Ūmn
ab 5^mnu@r 12, t̂11 t̂2#Q̂12uab&, ~25!

K̄mn
ab 5^mnu~ k̂11 k̂2!r 12Q̂12uab&, ~26!

L̄mn
ab 5^mnur 12~ k̂11 k̂2!Q̂12uab&. ~27!

The only parts of the Fock operatorf̂ m that do not commute
with r 12 are the kinetic energy operatort̂m and the exchange
operatork̂m (m51,2). To arrive at Eq.~24!, we assume for
ansatz1 that the space of all spin orbitals is closed under the
Fock operator~extended Brillouin condition! and for ansatz
2 that the space of occupied spin orbitals is closed under the
Fock operator~generalized Brillouin condition!.20

Analogous to

E5U1K2L1$fo ,W%, ~28!

we obtain

F5B1Q2P1 1
2 $fo ,X%1 1

2 $X,fo%, ~29!

with

B̄mn
kl 5

1

2
^mnuŵ12

† @ t̂11 t̂2 ,r 12#1@r 12, t̂11 t̂2#ŵ12ukl&,

~30!

P̄mn
kl 5

1

2
^mnuŵ12

† ~ k̂11 k̂2!r 121r 12~ k̂11 k̂2!ŵ12ukl&, ~31!

Q̄mn
kl 5

1

2
^mnuŵ12

† r 12~ k̂11 k̂2!1~ k̂11 k̂2!r 12ŵ12ukl&.

~32!

In ansatz1, the projectorQ̂12 is the projector onto the
full orbital basis. Hence,Q̂12uab&50 and thereforeE50.
Moreover, not onlyE50, but alsoW5U5K5L50 in an-
satz1. In ansatz2, however,E is nonzero and must be evalu-
ated.

In Refs. 17 and 20, we have introduced the approach2* ,
whereET in Eq. ~14! is not computed according to Eq.~28!
but rather from the equationE5$W,fv%. It is important to
note that the latter equation is used to simplify Eq.~14! but
not Eq. ~15!. This 2* approach may seem artificial or arbi-

trary, but the reason to restrict the simplification to Eq.~14!
is that, by doing so, the results from the2* approach become
identical to those of the original MP2-R12 methods when the
auxiliary basis set is chosen to be identical with the main
orbital basis.20 In the present paper, results are presented not
only for the1 and2 approaches but also for the2* approach.
To summarize, the matrixET in Eq. ~14! is computed as
follows in the various approaches:

Ansatz 1: ET50T, ~33!

Ansatz 2: ET5UT1KT2LT1$WT,fo%, ~34!

Ansatz 2* : ET5$fv ,WT%. ~35!

Up to this point, the formulation of MP2-R12 theory has
been completely general. The various approximations A, A8,
and B of linearr 12 theory are obtained when certain terms
are neglected.21 These approximations are defined by rewrit-
ing Eq. ~15! as follows:15,20,21

MP2-R12/A: BC1UT1VT50, ~36!

MP2-R12/A8: BC1 1
2 $fo ,X%C1 1

2 $X,fo%C2X$C,fo%

1UT1$fo ,W%T2W$T,fo%1VT50.
~37!

MP2-R12/B: ~B1Q2P!C1 1
2 $fo ,X%C

1 1
2 $X,fo%C2X$C,fo%1~U1K2L !T

1$fo ,W%T2W$T,fo%1VT50. ~38!

Without auxiliary basis, approximation B is only;25%
more time-consuming than approximation A. If an auxiliary
basis is used, however, approximation B becomes much
more expensive than A because it requires two-electron inte-
grals with two indices belonging to the auxiliary basis. Only
one index belongs to the auxiliary basis in approximation A.
Approximation B is more reliable than approximation A, in
particular when an auxiliary basis is used. It then contains all
terms, in contrast to A, where some terms are omitted. Both
approximations are useful because it has turned out that the
results of approximation A usually converge from below to
the basis-set limit while the results of B have thus far always
converged from above. Therefore, approximations A and B
appear to provide upper and lower bounds to the basis-set
limit MP2 correlation energy.

D. Intermediate orbitals

The evaluation of the matrix elements of the preceeding
sections involves three- and four-electron integrals, which
are approximated by inserting the resolution of the identity in
an auxiliary basis~RI approximation!. We shall not give de-
tails here~cf. Ref. 20! but instead focus on the computation
of the matrices that occur in the MP2-R12/B model.

The computation of the matricesQ andK is straightfor-
ward when we introduce theintermediateorbitals20

10892 J. Chem. Phys., Vol. 120, No. 23, 15 June 2004 Wim Klopper
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wm* 5(
p8

wp8Km
p8 , ~39!

Km
p85(

i
^wm~1!w i~2!ug12uw i~1!wp8~2!&, ~40!

in terms of which we obtain

Q̄mn
kl 5

1

2
~X̄mn

k* l1X̄mn
kl* 1X̄m* n

kl
1X̄mn*

kl
! ~41!

and

K̄mn
ab 5W̄m* n

ab
1W̄mn*

ab . ~42!

Although straightforward, we note that the computation of
the matrixQ requires the evaluation of two-electron integrals
with up to two auxiliary basis functions. Consider, for ex-
ample,

X̄mn
k* l5^mnuŵ12

† r 12uk* l &5^mnur 12
2 uk* l &2 r̂ mn

mq8r mq8
k* l

2 r̂ mn
p8nr p8n

k* l
1 r̂ mn

mnr mn
k* l , ~43!

wherem,n[p,q for ansatz1 andm,n[ i , j for ansatz2. The

integralsr mq8
k* l andr p8n

k* l involve two auxiliary basis functions,
since the intermediate orbitalwk* is expanded in the auxil-
iary basis according to Eq.~39!.

This observation has motivated us to investigate a new
scheme, which we denote the ‘‘hybrid’’ scheme. In this hy-
brid scheme, the intermediate orbitals forK are expanded in
the auxiliary basis$wp8% as before, but the intermediate or-
bitals for Q are expanded in the orbital basis$wp%. Hence,
we construct a second set of intermediate orbitals,

wm°5(
p

wpKm
p , ~44!

Km
p 5(

i
^wm~1!w i~2!ug12uw i~1!wp~2!&, ~45!

and computeQ from

Q̄mn
kl 5

1

2
~X̄mn

k° l1X̄mn
kl°1X̄m°n

kl 1X̄mn°
kl !, ~46!

rather than from the intermediate orbitalswm* . It is impor-
tant to note that the matrixK remains unchanged in the new
hybrid scheme.

E. The matrices P and L

We have so far only considered the matricesQ and K ,
not P andL . Concerning the hybrid approach, nothing needs
to be done aboutL , since it is either zero~ansatz1! or it
involves integrals with only one auxiliary function at the
most, as desired~ansatz2!,

L̄mn
ab 5 r̄ mn

p8bKp8
a

1 r̄ mn
aq8Kq8

b for ansatz2. ~47!

The matrixP was originally given by15,20

P̄mn
kl 5

1

2
~ r̄ mn

p8q8Kp8
r 8 r̄ r 8q8

kl
2 r̄ mn

mq8Km
r 8r̄ r 8q8

kl
2 r̄ mn

p8nKp8
r 8 r̄ r 8n

kl

1 r̄ mn
mnKm

r 8r̄ r 8n
kl

1 r̄ mn
p8q8Kq8

r 8 r̄ p8r 8
kl

2 r̄ mn
mq8Kq8

r 8 r̄ mr 8
kl

2 r̄ mn
p8nKn

r 8r̄ p8r 8
kl

1 r̄ mn
mnKn

r 8r̄ mr 8
kl

1 r̄ mn
r 8q8Kr 8

p8r̄ p8q8
kl

2 r̄ mn
r 8q8Kr 8

m r̄ mq8
kl

2 r̄ mn
r 8nKr 8

p8r̄ p8n
kl

1 r̄ mn
r 8nKr 8

m r̄ mn
kl

1 r̄ mn
p8r 8Kr 8

q8r̄ p8q8
kl

2 r̄ mn
mr 8Kr 8

q8r̄ mq8
kl

2 r̄ mn
p8r 8Kr 8

n r̄ p8n
kl

1 r̄ mn
mr 8Kr 8

n r̄ mn
kl !, ~48!

wherem,n[p,q for ansatz1 andm,n[ i , j for ansatz2. The
energy contributions originating fromP have been extremely
small in all of the previous calculations, and when we re-
place some of the primed indices~which refer to auxiliary
orbitals! by the standard orbital indices in the spirit of the
new hybrid scheme, the matrixP vanishes completely.
Hence, in this scheme, the computation ofP is omitted.

III. COMPUTATIONAL DETAILS

The geometries of the seven molecules are identical to
those used in previous work.20 The Cartesian coordinates are
given in Table I to enable a complete reproduction of the
numerical results, if desired. All calculations were performed
in the augmented correlation-consistent polarized valence
X-tuple zeta basis sets (aug-cc-pVXZ) of Kendall, Dunning,
and Harrison,22,23with X52, 3, 4, 5. Only the valence orbit-
als were correlated~frozen-core approximation!, and the aux-
iliary basis set of Ref. 20 (19s14p8d6 f 4g3h2i for C, N, O,
F, and Ne, and 9s6p4d3 f 2g for H! was used for the RI
approximation of MP2-R12 theory. The sextuple-zeta basis
with X56 was not considered as orbital basis, since this
basis is virtually as large as the auxiliary basis set, yielding
like results for the full and hybrid MP2-R12/B methods. The
new hybrid MP2-R12/B scheme has been implemented into
the DALTON program, which was used for all of the calcula-
tions of the present work.24

TABLE I. Nuclear Cartesian coordinates ina0 .

Molecule Atom x y z

CH2 (1A1) C 0.000 000 0 0.000 000 0 20.189 234 3
H 1.625 683 1 0.000 000 0 1.126 590 4
H 21.625 683 1 0.000 000 0 1.126 590 4

H2O O 0.000 000 0 0.000 000 0 20.124 309 0
H 1.427 450 2 0.000 000 0 0.986 437 0
H 21.427 450 2 0.000 000 0 0.986 437 0

NH3 N 0.000 000 0 0.000 000 0 0.000 000 0
H 1.766 326 0 0.000 000 0 0.728 948 1
H 20.883 163 0 1.529 683 2 0.728 948 1
H 20.883 163 0 21.529 683 2 0.728 948 1

HF F 0.000 000 0 0.000 000 0 0.000 000 0
H 0.000 000 0 0.000 000 0 1.730 552 9

N2 N 0.000 000 0 0.000 000 0 1.037 572 1
N 0.000 000 0 0.000 000 0 21.037 572 1

CO C 0.000 000 0 0.000 000 0 1.218 843 3
O 0.000 000 0 0.000 000 0 20.914 423 4

F2 F 0.000 000 0 0.000 000 0 1.333 518 7
F 0.000 000 0 0.000 000 0 21.333 518 7
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IV. RESULTS AND DISCUSSION

We have computed the valence-shell Møller–Plesset
second-order correlation energies of the Ne atom and the
molecules CH2 ~in its 1A1 state!, H2O, NH3, HF, N2 , CO,
and F2 in the fixed geometries of Table I. These are the same
systems as studied in Ref. 20. The results are collected in
Table II, which shows the energies obtained from the ap-
proaches1, 2, and2* in the standard approximation B. The
energies obtained from the approach of Ref. 20~under the
header ‘‘Full’’! are compared with the energies from the new
hybrid scheme~under the header ‘‘Hybrid’’!. The estimated
basis-set limits are those of Ref. 20.

Table II shows that, except maybe in the aug-cc-pVDZ
basis, the differences between the full and hybrid approaches
are indeed very small. Most important, these differences are
much smaller than the errors due to other approximations,
assumptions, or truncations. This is documented in Table III
and Fig. 1, which show the differences between the full
MP2-R12/B results and the estimated basis-set limit (D limit),
the differences between the full MP2-R12/B results and the
corresponding MP2-R12/A calculations (DA-B), and the dif-
ferences between the full MP2-R12/B and hybrid MP2-
R12/B results (DHybrid) for the approaches1, 2, 2* and for

the basis sets aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ,
and aug-cc-pV5Z.

Table II and Fig. I show thatDhybrid is at least one order
of magnitude smaller thanD limit , and also much smaller~al-
most an order of magnitude! than the difference between the
standard approximations A and B. Hence, it appears perfectly
reasonable to apply the new hybrid approach.

TABLE II. Valence-shell Møller–Plesset second-order correlation energies (2E(2) in mEh) as obtained from
the MP2-R12/B method using various approximations.

System Limit Basis

1B 2B 2B*

Hybrid Full Hybrid Full Hybrid Full

CH2(1A1) 155.9 aug-cc-pVDZ 131.99 132.61 139.02 141.03 138.44 140.28
aug-cc-pVTZ 148.25 148.43 150.67 151.01 150.44 150.67
aug-cc-pVTZ 148.42 148.40 150.70 150.99 150.44 150.62
aug-cc-pV5Z 154.86 154.93 155.26 155.30 155.10 155.13

H2O 300.5 aug-cc-pVDZ 249.45 251.04 266.11 269.05 265.88 268.60
aug-cc-pVTZ 282.21 282.54 289.69 290.36 289.61 290.11
aug-cc-pVQZ 292.89 293.16 296.53 296.89 296.41 296.64
aug-cc-pV5Z 297.80 297.92 299.05 299.14 298.82 298.88

NH3 264.5 aug-cc-pVDZ 224.62 225.75 237.15 239.87 236.88 239.37
aug-cc-pVTZ 251.63 251.66 256.49 256.88 256.43 256.68
aug-cc-pVQZ 259.55 259.63 261.90 262.06 261.82 261.88
aug-cc-pV5Z 262.83 262.89 263.58 263.59 263.40 263.41

HF 319.7 aug-cc-pVDZ 258.64 260.61 278.95 282.06 278.95 281.93
aug-cc-pVTZ 296.44 296.96 306.51 307.39 306.48 307.14
aug-cc-pVQZ 309.39 309.77 314.51 315.01 314.33 314.67
aug-cc-pV5Z 316.09 316.17 317.92 317.98 317.63 317.66

N2 421.0 aug-cc-pVDZ 353.46 355.28 374.67 379.44 371.85 375.98
aug-cc-pVTZ 396.84 397.11 405.22 406.22 404.64 405.30
aug-cc-pVQZ 410.31 410.72 415.03 415.60 414.64 415.04
aug-cc-pV5Z 417.08 417.29 418.86 419.01 418.43 418.54

CO 403.9 aug-cc-pVDZ 337.81 339.63 358.97 363.50 356.45 360.30
aug-cc-pVTZ 379.27 379.46 388.11 389.09 387.68 388.39
aug-cc-pVQZ 393.03 393.53 397.93 398.52 397.63 398.04
aug-cc-pV5Z 400.00 400.12 401.80 401.89 401.39 401.45

Ne 320.1 aug-cc-pVDZ 250.40 252.63 273.51 276.65 274.31 277.56
aug-cc-pVTZ 292.43 292.94 304.80 305.76 304.58 305.32
aug-cc-pVQZ 306.97 307.29 313.60 314.16 313.35 313.72
aug-cc-pV5Z 315.43 315.52 317.93 318.00 317.54 317.57

F2 611.7 aug-cc-pVDZ 493.49 497.19 533.41 539.93 532.72 538.88
aug-cc-pVTZ 567.09 567.97 585.94 587.74 585.69 586.97
aug-cc-pVQZ 590.86 591.47 600.84 601.79 600.24 600.89
aug-cc-pV5Z 604.49 604.44 608.10 608.09 607.46 607.38

TABLE III. Mean absolute deviations~in mEh) of the full R12/B results
with respect to the basis set limit (D limit), with respect to the R12/A approxi-
mation (DA–B), and with respect to the hybrid approach (Dhybrid).

Error Ansatz X52 X53 X54 X55

D limit 1 60.32 22.54 9.83 3.50
2 38.22 12.85 4.88 1.79
2* 39.30 13.34 5.30 2.16

DA–B 1 6.83 1.76 1.03 0.39
2 11.38 3.14 1.38 0.50
2* 10.54 2.99 1.31 0.46

Dhybrid 1 1.86 0.35 0.33 0.10
2 3.72 0.88 0.47 0.06
2* 3.43 0.63 0.31 0.05
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V. CONCLUSIONS

For the standard approximation B of linear-r 12 theory,
we have proposed and investigated a new hybrid scheme,
which can be applied when an auxiliary basis is used for the
RI approximation. It has appeared possible to use the~large!
auxiliary basis for the RI approximation in all of the integrals
that contribute to the MP2-R12/A model and to use the
~small! orbital basis for the RI approximation in all of the
integrals that occur beyond the MP2-R12/A model, that is,
for MP2-R12/B. A comparison between valence-shell
second-order correlation energies of some small systems in-
dicates that the difference between the full and hybrid MP2-
R12/B results is negligible, being an order of magnitude
smaller than the errors due to other approximations. By vir-
tue of the new hybrid scheme, the MP2-R12/A and MP2-
R12/B methods never require the computation of two-
electron integrals with more than one function from the

auxiliary basis. Hence, computation times and data storage
requirements grow only linearly with the size of the auxiliary
basis, which translates into substantial savings in comparison
with the full MP2-R12/B approach of Ref. 20.
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FIG. 1. Three types of mean absolute deviations~D in mEh) are displayed as
function of the aug-cc-pVXZ basis withX52,3,4,5. These deviations are,
respectively, the difference between the full R12/B results and the estimated
basis-set limit (D limit ,* !, the difference between the approximations A and B
(DA-B , 3!, and the difference between the full and hybrid R12/B results
(Dhybrid , 1!. The mean absolute deviations for eight molecular systems are
shown for the ansa¨tze 1, 2, and2* by three like symbols perX andD. To
guide the eye, straight lines fitted to the average of the2 and2* results are
also given. See also Table III.
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