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The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to
provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set,
without relying on an expansion about a reference state. However, a drawback to the approach is that
being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set
incompleteness error that decays very slowly with the size of the employed single particle basis. The
FCIQMC results obtained in a small basis set can be improved significantly with explicitly corre-
lated techniques. Here, we present a study that assesses and compares two contrasting “universal”
explicitly correlated approaches that fit into the FCIQMC framework: the [2]R12 method of Kong
and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcor-
relation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an
a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian
prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1
standard set. We found that both methods consistently reduce the basis set incompleteness, for
accurate atomization energies in small basis sets, reducing the error from 28 mEh to 3-4 mEh. While
many of the conclusions hold in general for any combination of multireference approaches with these
methodologies, we also consider FCIQMC-specific advantages of each approach. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4959245]

I. INTRODUCTION

The vast majority of the properties of everyday molecular
and solid state systems can be predicted from the solution of
the non-relativistic, time-independent electronic Schrödinger
equation. Static properties, which depend only on the ground
state solution, cover important experimental quantities such
as ionization potentials or atomization energies, required for
heats of formation. However, the complexity of the fully
coupled equations results in its exact solution being out of
reach for all but the smallest systems to date. The Full
Configuration Interaction Quantum Monte Carlo (FCIQMC)
method1 is a diagonalization-free, non-perturbative approach
which projects a stochastic sampling of the wavefunction
towards the exact ground state solution of the Schrödinger
equation within a given orbital basis (OBS). This is achieved
via a stochastic propagation of a population of walkers within
the full space of Slater determinants. The dynamics are
devised such that the long-time average over the discrete
walker population on any determinant approaches that of the
FCI coefficient. For several systems2,3 it has been shown
that the FCIQMC method is capable of providing the exact
FCI energies within systematically improvable errorbars of
O[10−4 − 10−5]Eh, with only a fraction of the computational
costs of an equivalent FCI calculation. Thus this method can
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be applied to tackle difficult systems that require an accurate
and non-perturbative description of the correlation. In the
past, the FCIQMC method has been employed to calculate
the energies of a diverse range of systems, including atoms
and molecules,4–7 the Hubbard model,8 the uniform electron
gas,9 and solid state systems.10 Since its first implementation,
the efficiency and abilities of the FCIQMC method have
been steadily improved. The initiator approximation,3,11,12

real walkers, and semi-stochastic sampling13,14 have decreased
the computational effort of the method considerably, and new
functionalities include the calculation of excited states,15–20 the
calculation of accurate two-particle reduced density matrices
using a replica sampling technique,21,22 and the use of these
density matrices within a complete active space self-consistent
field (CASSCF) approach.23,24

While an FCIQMC calculation is generally far less com-
putationally expensive than a conventional FCI calculation,
FCIQMC calculations are still limited to relatively small
orbital basis sets, because the number of Slater determinants
scales binomially with their size. This results in basis
set incompleteness error (BSIE) in computed energies and
properties, compounded by the fact that this error decreases
slowly with respect to increasing basis set size.25–28 The origin
of this error is the result of the inability of Slater determinants
to model the electron-electron cusps in the wavefunction.29–31

As described by Kato’s cusp condition,32 the cusp regions
are defined where the inter-electronic distance r12 = |r1 − r2|
goes to zero. Away from this point, the wavefunction depends
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linearly on r12. Such behaviour is very difficult to obtain from
a superposition of smooth Slater determinants which are built
from one-electron functions that are centred at the nuclei. Thus
very large basis sets are required to provide the flexibility for
an accurate description of these cusp regions.

An alternative to extrapolating this basis set incomplete-
ness through often expensive calculations in large basis sets is
given by explicitly correlated methods,33–35 which can reduce
the BSIE efficiently with often little additional cost compared
to the original calculation. The general aim of these approaches
is to augment the ansatz for the wavefunction with explicitly
correlated geminals which contain terms that are linear in the
inter-electronic distance r12 at the cusp positions. Solutions
for a large number of technical challenges from the inclusion
of these geminals have been addressed in the literature over
the last few decades.36–45 These most notably include the
avoidance of up to four-electron integrals, which have been
addressed with efficient resolution of the identity techniques,
and an optimized Slater-type geminal form, which provides a
more efficient description of the wider correlation hole about
each cusp position.46–51 This work has led to modern “F12”
methods which are reliable, efficient, and robust.

Whilst earlier efforts focused on the combination of
F12 methodology with single-reference quantum chemical
techniques, there has been increasing emphasis on adapting
the technology for use with multi-reference methods,
including multireference configuration interaction52,53 and
multireference perturbation theories,51,54 within a consistent,
internally contracted framework. This has been an important
advance, since even though multireference methods are
required in the presence of stronger, static correlations in low-
spin open-shell or transition state systems, for example, these
correlations are present in addition to the cusp-dominated
dynamic correlation required for quantitative accuracy. These
already challenging systems therefore also inherit all of the
same slow basis set convergence problems of single reference
systems. This is further exacerbated by the generally far
higher cost with respect to basis set size for these systems,
and therefore their combination with explicitly correlated
techniques is a significant improvement. However, a drawback
of many of the multireference approaches to date is that they
are tailored and embedded within each parent multireference
method, and therefore new equations have to be derived and
code implemented, for each new multireference method.

This issue is rectified by the introduction of two
“universal” explicitly correlated multireference techniques as
the topic of the current study, which can be simply applied
to almost all electronic structure methods. Their combination
with the FCIQMC method provides a powerful approach to
multireference quantum chemistry, and their overall accuracy,
as well as suitability for use with FCIQMC will be assessed.
These approaches are the [2]R12 method of Torheyden, Kong,
and Valeev,55,56 which is briefly described in Section II B,
and the canonically transcorrelated approach of Yanai
et al.,57,58 described in Section II C. These provide contrasting
approaches to the challenge of a universal multireference F12
method, with the former providing an internally contracted,
perturbative coupling of the geminals to a given multireference
wavefunction, while the latter uses an initial guess density in

order to transcorrelate the Hamiltonian, effectively removing
the cusp features from its solution, prior to the multireference
treatment. These approaches differ substantially in the way that
the geminals are coupled to the multireference wavefunction,
and in whether the multireference wavefunction can relax
due to their presence, with the former adhering to a
more traditional “diagonalize-then-perturb” approach, while
the latter is constructed on a “perturb-then-diagonalize”
philosophy. Whilst the infinite basis limit is exact for both
approaches, away from this limit, they are not expected to
behave the same. Previous applications of these approaches to
FCIQMC have been shown to improve the results significantly
via the reduction in BSIE, however these studies were limited
to very few systems and did not allow for a direct comparison
between the two different methods.59,60 In this paper, the two
explicitly correlated FCIQMC approaches are assessed in an
in-depth study using the 55 molecules of the G1 standard
set,61,62 and by using this large sample size it is possible
to draw more general conclusions about the success and
efficiency of both methods.

II. METHODS

A. FCIQMC

In the Full Configuration Interaction Quantum Monte
Carlo (FCIQMC) method, the wave function |Ψ⟩ is expanded
in a basis set of all N-electron Slater determinants {|DI⟩},

|Ψ⟩ =

I

CI |DI⟩. (1)

The coefficients CI are coarse-grained and stochastically
sampled using a population of walkers, where each walker is
defined by its sign, weight, and the Slater determinant it is
associated with. The walkers then evolve according to a set
of coupled differential equations derived from the imaginary
time Schrödinger equation, such that the long-time average of
the signed weight of walkers nI on a Slater determinant DI is
proportional to CI ,

nJ(τ + ∆τ) = nJ(τ) − ∆τ

I

(HJ I − ESδI J) nI(τ), (2)

where HJ I are the matrix elements of the Hamiltonian
operator, ES an energy offset, and ∆τ a small interval in
imaginary time.

Following Equation (2), three consecutive steps are
performed every time step ∆τ.

• Spawning. Each occupied determinant DI spawns
new walkers onto χI randomly chosen connected
determinants DJ,I , with

χI =



⌈|nI |⌉ with probability |nI | − ⌊|nI |⌋
⌊|nI |⌋ otherwise,

(3)

where ⌊x⌋ denotes the largest integer that is not greater
than x, and ⌈x⌉ denotes the smallest integer that is not
smaller than x. The sign of the newly spawned walkers
on a determinant DJ is the same as parent determinant
if HJ, I < 0 and opposite otherwise, and their weight is
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given by

ps(J |I) = δτ |HJ, I |
pgen(J |I) , (4)

where pgen(J |I) denotes the probability of choosing the
determinant DJ. More details on the specifics of this
spawning step can be found in Ref. 22.

• Death/cloning. The weight of walkers nI on each
determinant DI is reduced by a stochastically realized
amount given by

pd = δτ (HI, I − ES) nI . (5)

• Annihilation. At the end of each time step, the list
of newly spawned walkers is merged with the list
of the old walkers (for algorithmic details of how to
implement this efficiently, see Ref. 63). Walkers that are
assigned to the same determinant but have an opposite
sign annihilate each other, so that all walkers on each
occupied determinant have the same sign at the end of
each iteration.

A typical FCIQMC calculation starts with one walker on
the Hartree–Fock (HF) determinant and a fixed energy offset
ES = EHF. Due to the fact that the lowest eigenvalue of the
Hamiltonian must be below EHF, the population of walkers
grows exponentially until a specified number of walkers is
reached. Then ES is varied smoothly, so that the walker
population becomes approximately constant. The ground state
energy can be determined from the long-time average of the
energy offset ES and from the long-time average of the
projected energy

⟨Ep⟩ = EHF +
⟨J,0 H0, j nJ⟩

⟨n0⟩ , (6)

where ⟨. . .⟩ denotes an imaginary-time average, and n0
denotes the weight of walkers on the reference wavefunction.
Often this is taken to be the largest weighted single Slater
determinant, but can also be an arbitrary linear combination of
Slater determinants.14 Once the wavefunction has converged,
and is sampling the desired solution, it is also possible to
accumulate the two-body reduced density matrix, which is
sampled at the same time as the spawning steps above.
As this is a non-linear function of a random variable (the
sampled wavefunction), serious systematic errors can result
in this sampling. This issue is remedied via the introduction
of a second “replica” sampling of the wavefunction, which
samples randomly from the same distribution of the ground
state wavefunction, but is uncorrelated to the first. This allows
for an unbiased sampling of the reduced density matrices from
which many properties of the wavefunction derive. Whilst the
sampling of the density matrices is now unbiased, there are
computational overheads with its computation. The sampling
of the second replica approximately doubles the computational
overhead, both in terms of memory and processor time, while
additional (non-distributed) memory is required to store the
full two-body density matrix (currently in non-sparse form).
More details on the sampling of the density matrices, as well
as more details on the FCIQMC algorithm can be found in
Refs. 1–3, 22, and 63.

B. The [2]R12 approach

The spin-free [2]R12 approach developed by Valeev
and co-workers can be employed a posteriori to reduce
the basis set incompleteness error of an arbitrary multi-
reference calculation.55,56,64 The [2]R12 correction to the
energy is evaluated in an internally contracted, second-order
perturbative fashion via the Hylleraas functional. The first
order wave function is expanded as explicitly correlated
geminal replacements, constrained to be orthogonal, two-
electron excitations to a multi-configurational reference
wave function |0⟩. In contrast to the MRMP2-F12 ansatz
developed by Ten-no,51 the explicitly correlated [2]R12 wave
function also includes semi-internal excitations into geminal
functions, and so the full first-order wavefunction can be
written as

|ψ(1)⟩ = Ω̂(1)|0⟩ (7)

=
1
2

tpqr s
(
rr sα′β′Ê

α′β′
pq + 2rr sα′xÊα′x

pq

) |0⟩
− 1

2
tpqr s
(
2rr sα′k

(
γ(−1)) i

j
Γ
jk
pqÊαl ′

i

)
|0⟩, (8)

where r are the matrix elements of the correlation factor, γ and
Γ are the spin-free one-body and two-body reduced density
matrices (RDMs) of the reference wave function, and Ê are
the spin-free excitation operators. The notation of the orbitals
belonging to the different parts of the orbital space is shown
in Table I, and all equations are written using the Einstein
summation convention, i.e., repeated indices are implicitly
summed.

The geminal coefficients tpqr s are fixed according to the
SP ansatz so that they satisfy the cusp conditions,48

tpqr s =
3
8
δ
p
r δ

q
s +

1
8
δ
q
r δ

p
s . (9)

The second order Hylleraas function yields

H (2) = ⟨Ψ1|

F̂N ,Ω̂

(1) + Ω̂(1)F̂N |0⟩ + 2⟨0|Ĥ (1)
Ω̂

(1)|0⟩, (10)

where F̂N is the normal ordered spin-averaged Fock operator.
The ⟨Ψ1|Ω̂(1)F̂N |0⟩ term contains 4-body RDM terms, but

its calculation can be avoided with the assumption that the
generalized Brillouin condition is valid

H (2) ≈ ⟨Ψ1|

F̂N ,Ω̂

(1) |0⟩ + 2⟨0|Ĥ (1)
Ω̂

(1)|0⟩. (11)

The matrix elements are evaluated using the expanded Wick’s
theorem, and the resulting expressions depend on the 1-body,
2-body, and 3-body reduced density matrices. The 3-body
RDM terms are approximated with 1-body and 2-body

TABLE I. Notation of the orbital space.

Orbital space Notation

Correlated orbitals p,q, r, s, t,u, v, w

Occupied orbitals i, j, k

Orbital basis sets (OBS) x, y, z

Complementary auxiliary basis sets (CABS) α′, β′

Complete virtual space α, β

Formally complete basis set (CBS) κ, λ
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terms by neglecting the irreducible 3-body cumulant in the
generalized normal ordering of Kutzelnigg-Mukherjee.65–67

Additionally, all terms that are quadratic in the 2-body RDM
cumulants are discarded. Also, the screening approximation
is employed and all terms in which a geminal matrix element
and another geminal matrix element or a Coulomb matrix
element that are connected over a 2-body cumulant vanish as
well. The correlation factor,

f12 = −
1
γ

e−γr12, (12)

is fitted using 6 Gaussian functions to simplify the evaluation
of the integrals. Further details on these approximations, along
with the final working equations of the theory can be seen in
Refs. 55 and 56.

In our work, the 2-body RDMs are sampled with the
FCIQMC method along with the correlation energy using the
stand-alone code NECI.68 Whilst we have also implemented
our own program for the [2]R12 corrections,59 in this work
we use the interface to the [2]R12 implementation within
MPQC,69,70 reading in the sampled density matrices and orbital
information using an interface developed by Roskop et al.64

C. Canonical transcorrelation theory

“Transcorrelated” methods, where the Hamiltonian oper-
ator is transformed by a Jastrow-style operator which compen-
sates part of the correlated physics, has a long history in
electronic structure, starting with Hirschfelder in 1963,71 and
extended by Boys and Handy.72–74 These approaches used a
similarity transformation of the Hamiltonian operator which
rendered the resulting operator non-Hermitian, and numeri-
cally problematic. These ideas have been further developed
by other authors to avoid many of the original shortcom-
ings.46,47,75–79 More recently, building on the work of White,80

Chan, Yanai, and coworkers developed a related approach,
but where the operator (trans)correlating the Hamiltonian is
unitary. This yields a now Hermitian effective Hamiltonian,
and is called Canonical Transformation (CT) theory.58,81–88

In the explicitly correlated version of canonical
transformation theory developed by Yanai and Shiozaki,57

the parameters for the unitary transformation operator, e Â

with −Â = Â†, are obtained from the projection of a set of
strongly orthogonal explicitly correlated geminal functions.
These are found as

Â =
1
2

R̄αβ
i j

(
Êαβ
i j − Êi j

αβ

)
, (13)

R̄αβ
i j =

3
8
⟨αβ |Q̂12 f12|i j⟩ + 1

8
⟨αβ |Q̂12 f12| ji⟩, (14)

Q̂12 = (1 − Ô1)(1 − Ô2) − V̂1V̂2, (15)

where the one-electron operators Ô and V̂ project onto
the occupied orbitals and the virtual orbitals of the OBS,
respectively, the SP ansatz has been used to fix the geminal
coefficients, and the same Slater-type geminal form is used as
in Eq. (12). The effective Hamiltonian is derived as

ĤTC = e Â†Ĥe Â (16)

= Ĥ +
�
Ĥ , Â

�
+

1
2!

��
Ĥ , Â

�
, Â

�
+ · · ·, (17)

where ĤTC is Hermitian, and the transcorrelated eigenvalue
problem can be solved with the traditional post-HF methods
that are built on the variational principle.

In order to simplify the calculation, several approxima-
tions are made for the transcorrelated Hamiltonian. Firstly, the
Baker-Campbell-Hausdorff expansion is truncated after the
second order. Secondly, all commutators are approximated
with one- and two-body operators, denoted with [. . .]1,2.
Similar to the decomposition and approximation of the
3-particle density matrix using the Kutzelnigg-Mukherjee
formalism, the higher order excitation operators are replaced
with an approximate decomposition into one- and two-body
terms. In addition, in the second order term, the Hamiltonian
is replaced by the Fock operator F̂,

ĤTC ≈ Ĥ +
�
Ĥ , Â

�
1,2 +

1
2!
��

F̂, Â
�
, Â

�
1,2. (18)

The resulting terms for the matrix elements of the
transcorrelated Hamiltonian are similar to the intermediates
emerging in standard F12 calculations and the many-electron
integrals are solved in a similar manner using standard
approximation C,89 and RI insertions, resulting in an effective
Hamiltonian which is only two-body, and can therefore be
treated by standard electronic structure methods.

The electron density which is used in order to define
the initial geminal functions must be supplied prior to
the calculation of the effective Hamiltonian, technically
resulting in a loss of its state-universal characteristics. In
this work, we use a trial density obtained from a prior
CASSCF calculation, in order to allow the geminals to be
constructed in the presence of any static correlation. The
matrix elements of the transcorrelated Hamiltonian are then
computed with the stand-alone code ORZ, using the F12
integral engine of Shiozaki,90–92 constructing the geminal
functions within the same active space that was chosen for
the CASSCF calculation. Since the resulting transcorrelated
Hamiltonian is Hermitian and of two-particle form, the
FCIQMC method is then employed to find the lowest energy
eigenvalue.

III. RESULTS

In order to assess the quality of the two explicitly corre-
lated FCIQMC approaches, we considered the calculation of
total energies and atomization energies of the 55 molecules
across the G1 standard set.61,62 FCIQMC used in conjunction
with the [2]R12 method is denoted FCIQMC-R12 and
the canonical transcorrelation approach with CT-FCIQMC.
The G1 molecules are relatively small, single-reference
dominated systems that have been extensively studied in the
past.93–98 All geometries were fully optimized with GAMESS
at the MP2/aug-cc-pVQZ level. All other calculations were
performed with frozen cores to reduce the computational
effort.

The FCIQMC calculations were performed with the
initiator approximation,12 the semi-stochastic method,13,14 and
the replica sampling where the RDM is required.21,22 The size
of the deterministic space for the semi-stochastic adaptation
was chosen to be one tenth of the size of the initiator
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space unless this was prohibited by memory limitations
(O[104 − 105] determinants). For the closed shell systems,
time-reversal symmetry was also employed.3 We obtained
the correlation energies and statistical errors from Flyvbjerg-
Petersen blocking analyses of the projected energies.99 For
all cases, the statistical errors were found to be very small
(O[10−5]Eh), and so statistical error bars are generally not
visible in the following figures. The leading error is hence
the initiator error, which can be systematically improved by
increasing the total number of walkers. For the molecules of
the G1 standard set, the total number of walkers was chosen
individually, depending on the convergence of the system,
between 50 × 106 and 1 × 109 walkers. While the chosen
number of walkers was sufficient to ensure that the initiator
error in the energies of the smaller systems is negligible, it
cannot be guaranteed that the energies of the larger molecules
are entirely free from initiator error. Quantifying the remaining
initiator error is difficult, but we estimate it to be O[10−4]Eh for
the total energy of the largest systems. This is certainly small
enough not to affect any resulting conclusions or qualitative
trends in the results. For the explicitly correlated corrections,
we set the parameter γ to 1 a−1

0 , and used the aug-cc-pVDZ-
OPTRI basis sets for the construction of the CABS where
possible.

Along with incompleteness in the description of two-
electron part of the wavefunction, there is also a basis
set incompleteness in the one-electron description of the
wavefunction,35,59,100 which is excluded from the construction
of these universal F12 corrections. While the presence of
strong correlations can change the magnitude of this one-
electron incompleteness, it is generally much smaller than the
two-electron incompleteness, and so we assume here that it
is well represented by the incompleteness in the uncorrelated
Hartree–Fock energy. To estimate the complete basis set (CBS)
limit of this one-electron energy, we extrapolated the HF
energies to the CBS limit with an exponential dependence,101

as

EHF
CBS ≈

EHF
X − bEHF

X−1

1 − b
, (19)

with

b =
EHF
X − EHF

X−1

EHF
X−1 − EHF

X−2

, (20)

where X is the cardinal number of the basis set and calculations
in aug-cc-pVTZ, aug-cc-pVQZ, and aug-cc-pV5Z basis sets
were used. We note that it is possible for other methods to
be used to estimate the one-electron basis set incompleteness
from correlated wavefunctions.102

A. Total energies

The molecules of the G1 standard set have a generally
single-reference character so that CCSD(T) calculations are
capable of achieving high accuracy results. It is likely then that
these results will be a fairer comparison than experimentally
derived results for the total energy, due to uncertainties in
the experimental procedure for this quantity. Hence, the
assumed exact energies in the CBS limit that we used as
a benchmark were obtained from CCSD(T)-F12b calculations
in aug-cc-pV5Z basis sets performed with MOLPRO,100,103,104

which we then further correct for static correlation effects.
The static correlation corrections for the different molecules
were approximated with the individual error of a CCSD(T)
calculation in an aug-cc-pVDZ basis set compared to the near-
exact FCIQMC result in the same basis set. Since the majority
of the static components of correlation can be captured in a
small orbital space (hence the success of the CASSCF-derived
approaches to strongly correlated systems), it is reasonable
to assume that this correction will account for most of the
deficiencies in the CCSD(T) results. As expected, the static
corrections are small for those single-reference systems: The
absolute mean error is 0.1 mEh per correlated electron, and
the maximum absolute total error of 3.0 mEh (0.4 mEh per
correlated electron) was found for the Si2 molecule.

In Fig. 1 we compare the FCIQMC results in aug-cc-
pVDZ basis sets with the results from FCIQMC-R12 and
CT-FCIQMC calculations with added one-electron BSIE
corrections for all 55 molecules of the G1 standard set. It

FIG. 1. Absolute errors of the total en-
ergies per correlated electron for the G1
set of molecules, calculated with the
FCIQMC method, and the FCIQMC-
R12 and CT-FCIQMC methods (with
one-electron BSIE corrections) in
aug-cc-pVDZ basis sets.
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can be seen that both explicitly correlated methods reduce
the absolute error per correlated electron significantly for
all molecules. The effect of the correction is stronger for
the systems that show a larger BSIE, such as SO2 and
F2. Furthermore, for nearly all molecules, the CT-FCIQMC
method achieves slightly lower errors than the FCIQMC-R12
method. On average, the CT method and the [2]R12 method
reduce the absolute error in the total energy per correlated
electron in an aug-cc-pVDZ basis from 10.8 mEh to 1.0 mEh
and 1.8 mEh, respectively.

B. The atomization energies

We also compared the performance of the explicitly
correlated corrections for the atomization energies. As
benchmark results, we use experimental data105–120 corrected
for zero-point vibrations, spin-orbit coupling, core-valence
effects, and scalar relativistic effects.121 In Fig. 2 the absolute
error is shown for the atomization energy of each molecule.
Again, we can see that the corrections for the basis set
incompleteness error improve the FCIQMC results drastically.
For this case of relative energies, the difference between the
CT and the [2]R12 method is small.

To better analyse and compare the distribution of errors
between the different methods, Fig. 3 shows the density of
the errors in the atomization energies achieved with different
methods fitted to a Weibull distribution.122,123 We can clearly
see that the median of the error distribution across the set
is reduced from 28.2 mEh to about 2.9 mEh with the CT
correction and to 4.1 mEh with the [2]R12 correction. Thus, the
FCIQMC-R12 and the FCIQMC-CT methods are capable of
producing relatively accurate atomization energies in aug-cc-
pVDZ basis sets (though not quite chemical accuracy), with
far greater reliability than without the explicit correlation,
indicated by the smaller spread and median in the results. It
is notable that the spread and the median in these errors are
slightly larger for the FCIQMC-R12 method, compared to the
CT method, suggesting a marginally less reliable reduction in
the error with the approach.

FIG. 3. Distribution of the absolute errors in the atomization energies of the
G1 set, fitted to Weibull distributions.

Fig. 3 also shows the atomization error distributions
obtained with CCSD(T) calculations without explicit corre-
lation in increasingly large basis sets. The CCSD(T) results
are mostly very accurate within the given basis set for the
molecules of the G1 standard set, as shown by the similarity of
the CCSD(T) and FCIQMC distributions for the aug-cc-pVDZ
basis. However, as has been noted elsewhere, the explicitly
correlated calculations in aug-cc-pVDZ basis sets achieve a
similar accuracy as CCSD(T) calculations in aug-cc-pVQZ
basis sets, already without including the additional static
correlation component of the electronic structure which is
obtained via the FCIQMC. Thus it can be concluded that the
R12 and the CT method both effectively decrease the BSIE to
a level that is normally achieved with basis sets that are two
cardinal numbers higher.

C. The initiator error

The initiator approximation reduces the computational
effort of an FCIQMC calculation significantly, but introduces

FIG. 2. Absolute errors of the at-
omization energies for the G1 set of
molecules, calculated with the FCIQMC
method, and the FCIQMC-R12 and CT-
FCIQMC methods (with one-electron
BSIE corrections) in aug-cc-pVDZ
basis sets.
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FIG. 4. Decay of the initiator error with respect to the total number of walkers
for the FCIQMC, the FCIQMC-R12, and the CT-FCIQMC approaches for the
N2 molecule in an aug-cc-pVDZ basis.

an initiator error into the sampled energies. This error can
be reduced systematically by increasing the total number of
walkers, and the nature of this convergence is illustrated for
the FCIQMC, FCIQMC-R12, and CT-FCIQMC methods for
the N2 molecule in Fig. 4. It can be seen that the CT-FCIQMC
energy converges noticeably faster than the FCIQMC energy
with respect to the total number of walkers. To reach
convergence within 1 mEh, the CT-FCIQMC calculation
requires less than 105 walkers while the conventional FCIQMC
calculation needs more than 5 × 105 walkers to achieve the
same level of convergence. This indicates that removing the
short-ranged part of the Coulomb hole from the Hamiltonian
improves the convergence of the initiator error, and fewer
walkers and thus less computational effort is required to
determine the ground state energy of the transcorrelated
Hamiltonian accurately. This is despite having the same
number of degrees of freedom and overall Slater determinants
as the other calculations. The [2]R12 correction requires the
reduced density matrix from the FCIQMC calculation and
therefore suffers from the initiator error as well. However, the
error in the [2]R12 correction is small compared to the basis
set correlation energy and decays quickly with respect to the
total number of walkers. However, it also has the opposite
sign from the error in the FCIQMC energy, and thus slightly
reduces the overall initiator error at low walker numbers due
to favourable error cancellation.

IV. CONCLUSIONS

The canonical transcorrelation approach of Yanai and
Shiozaki and the [2]R12 approach of Valeev et al. constitute two
contrasting philosophies in the attempt to create a universal,
explicitly correlated approach to basis set incompleteness in
quantum chemistry. In the former, the dynamic correlation
from the cusps is included first, to produce an effective,
two-body Hamiltonian operator, to which the multireference
strong correlation methods can be applied. This has the
advantage that the multireference wavefunction capturing the
static correlation in the system can relax in the presence of the
geminal amplitudes and dynamic correlation contributions.
Furthermore, we showed that the transcorrelation reduces the

computational effort of the FCIQMC calculation as it improves
the convergence of the initiator error with respect to the total
number of walkers. The CT method is also in principle a
state-universal approach, in that the specifics of the high-
energy geminal contributions to the effective Hamiltonian
should be relatively insensitive to the state or specifics of the
choice of geminal. However, one source of ambiguity in the
construction of ĤTC comes from the choice of the active space
that is required for the CASSCF calculation of the initial
“trial” density, and for the transcorrelation itself.

Contrasting this, the [2]R12 perturbatively couples the
geminals directly to the multireference wavefunction, which
provides geminal relaxation in a state-specific fashion and
without any initial trial wavefunction, but conversely does not
allow for relaxation of the CI amplitudes in the presence of
dynamic correlation component of the electronic structure.
However, these effects are likely to be minor details in the
largely single-reference systems studied here, and it can
be seen that in both methods, the FCIQMC-R12 and CT-
FCIQMC methods both achieve accurate results even in the
small basis sets, with the CT approach slightly outperforming
the [2]R12 method. Computational requirements for the
integration of the [2]R12 methodology with FCIQMC are
larger, due to the necessity of sampling the two-body
density matrix. The sampling at least doubles the memory
and processing cost of the FCIQMC calculation due to the
requirement of two replicas.

However, aside from the cost of the density matrix
sampling, the computational effort of both methods is very
cheap compared to the costs of the FCIQMC calculations,
scaling as O[N6] with the system size. The different
calculations for the molecules of the G1 standard set took
between a few minutes and about two days on a single core
for both of the explicitly correlated treatments. Conclusively,
with little additional computational effort, explicitly correlated
FCIQMC calculations in small basis sets can achieve the same
accuracy that is normally only achieved with considerably
more expensive FCIQMC calculations in larger basis sets.
This broadens the applicability of the FCIQMC method
considerably and allows accurate calculations of larger
systems, where in the future, we will consider problems
with stronger correlation, and applications to excited states
and solid state systems.124–126
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