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Abstract: Sharing low-level functionality between software packages enables more rapid development of new capa-
bilities and reduces the duplication of work among development groups. Using the component approach advocated by
the Common Component Architecture Forum, we have designed a flexible interface for sharing integrals between quan-
tum chemistry codes. Implementation of these interfaces has been undertaken within the Massively Parallel Quantum
Chemistry package, exposing both the IntV3 and Cints/Libint integrals packages to component applications. Benchmark
timings for Hartree-Fock calculations demonstrate that the overhead due to the added interface code varies significantly,
from less than 1% for small molecules with large basis sets to nearly 10% for larger molecules with smaller basis sets.
Correlated calculations and density functional approaches encounter less severe performance overheads of less than 5%.
While these overheads are acceptable, additional performance losses occur when arbitrary implementation details, such
as integral ordering within buffers, must be handled. Integral reordering is observed to add an additional overhead as large
as 12%; hence, a common standard for such implementation details is desired for optimal performance.
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Historically, efforts to combine functionality from quantum chem-
istry software packages have been limited in scope and consisted of
package-specific, one-to-one solutions. Such one-to-one code inte-
gration suffers from poor scaling of programming effort; the effort
to share features from n packages grows as O(n2). Consequently,
the integration of codes from various packages is frequently con-
sidered tedious and not worthwhile, regardless of any advances in
methods and capabilities, which might become available. Consid-
ering the large number of noncommercial packages existing within
the quantum chemistry community, each with unique capabilities
and deficiencies, this situation is unfortunate.

The future high performance computers on which quantum
chemistry packages will run may depend on advanced processor
architectures. Regardless of whether such systems contain copro-
cessors, which augment conventional general purpose processors or
contain entirely unfamiliar processor architectures,1, 2 wide adop-
tion of such technology will be impractical without a community
code base. It is clear that a scalable approach to creating interoper-
able software must be adopted both to enable rapid development of
advanced quantum chemical methods and to ensure such methods
run reliably on the latest hardware.

Component-based software approaches break up complex tasks
into loosely coupled subproblems, encouraging the definition of

standardized interfaces and enabling collaboration between research
groups. The Common Component Architecture (CCA) Forum is a
consortium dedicated to the development and adoption of a compo-
nent architecture for scientific software.3–5 Work within the CCA
includes the development of standards and middleware,6–12 as well
as component toolkits within numerous scientific domains. Devel-
opment groups adopting component technology for scientific codes
span such diverse domains as optimization and linear algebra,
combustion and quantum chemistry, accelerator design, fire and
explosives modeling, and climate simulation.13–17

Previously, several authors participated in work towards a quan-
tum chemistry component toolkit, using development practices
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advocated by the CCA Forum.16–18 Using CCA components to
manage multiple levels of parallelism, significant improvements in
machine utilization were demonstrated.18 Through the development
of an application for molecular structure optimization, it was demon-
strated that domain scientists adopting CCA approaches are able to
integrate software packages from multiple scientific disciplines.16

Molecular structure optimization required the functionality of each
major mathematics and chemistry package to be encapsulated in a
set of components and classes. There was, however, no attempt to
implement low-level interfaces between chemistry packages. Thus,
while interchangeability was shown, substantial progress towards
interoperability was not demonstrated.

Here we make a first step toward deeper component-based inte-
gration of quantum chemistry packages. In this work we develop a
set of standard interfaces and data structures for evaluation of molec-
ular integrals, and we demonstrate a component implementation of
this design. Molecular integral evaluation is a natural low-level capa-
bility to share through components because it is the fundamental
subproblem of all traditional quantum chemistry computations. As
quantum chemical studies grow in sophistication, advanced capabil-
ities, such as explicit electron correlation19–21 and the inclusion of
relativistic effects,22–24 introduce the need for new types of integrals.
The integral facilities available within each individual quantum
chemistry package often lack one or more of these advanced fea-
tures, limiting the range of methods, which can be implemented and
made available to users of the package. Because writing efficient
code for computing a new type of molecular integral requires sig-
nificant development effort, it is natural to share the integral facilities
as components. The obvious benefit of sharing integral capabilities
between various packages is the ability to implement new theoret-
ical methods very rapidly. For instance, in an early application of
the work described here, combining integral capabilities from mul-
tiple packages allowed the latest explicitly correlated methods to
take into account scalar relativistic effects.25 While the scientific
benefits of sharing low-level capabilities such as molecular inte-
grals capabilities are strong, the potential performance impact of
the component interface and data layout can grow beyond accept-
able limits. Thus, this work serves as an important first test of the
performance of CCA approaches when deeply integrated within
performance-critical sections of code. Although we found the per-
formance overhead of CCA approaches for integral evaluation to be
acceptable, optimal performance does require common standards
for data formats.

The Common Component Architecture

Some of the authors have previously described in detail16, 17 the
CCA model in the context of quantum chemistry applications. We
will only briefly summarize it here.

Components26 are similar to objects in that they implement
some functionality and provide an interface for using it. A pro-
grammer composes applications out of objects by writing computer
code, which instantiates objects and combines their functions.
Although such applications can vary some of their functionality
at runtime, via polymorphism, the full functionality of the applica-
tion is typically determined once and for all at compile-time, i.e.,
statically.

In contrast, components conform to a particular environment
specification, which allows composition of applications at runtime,
i.e., dynamically. The runtime environment, which makes such
composition possible is the component framework. The framework
provides a simple (scripting or graphical) interface, which allows
each end user to compose highly customized software from plug-
and-play components. The CCA specification3–5 has been developed
expressly to meet the requirements of high-performance scientific
codes, stressing high performance and respecting parallel execution.

The Babel tool11, 12 is used within the CCA community to com-
pose applications using components written in different languages.
While not required by the CCA specification, all components
described herein use Babel. Babel is a code generator, which
provides implementation stubs and glue code in a collection of lan-
guages, based on interface definitions provided using the Scientific
Interface Definition Language (SIDL). Babel/SIDL implements a
set of fundamental data types, including complex and array types,
and an object-oriented programming model for Fortran 77, Fortran
90, C, C++, Python, and Java. A SIDL interface declares meth-
ods based on these data types, and a SIDL class implements one
or more interfaces. SIDL classes may be implemented in any sup-
ported language and may be used by applications written in any
other supported language.

A CCA component in Babel is a SIDL class that implements the
Component interface defined by the CCA specification and one
or more programmer-defined interfaces. The Component inter-
face simply defines the setServices() method, which is used
by the framework to provide a Services object to the compo-
nent during its instantiation. The Services object handles the
interaction between the framework and the component. Its most
important role is to inform the framework of interface implemen-
tations that the component either provides or uses. The component
exposes a provides port, which specifies an abstract interface and
provides an implementation of the interface, to the framework
using the addProvidesPort() services method. A compo-
nent can also request a uses port (an interface implementation)
from the framework using the registerUsesPort() services
method. Following the user’s directives, the framework builds a
component application by instantiating components and connect-
ing uses ports with provides ports. Ideally, well-written software
can be packaged into a component by adding a thin wrapper layer,
which handles interaction with the framework. Just like the object
model, the component model tends to break down as deeper lev-
els of integration expose implementation details at interfaces and
lead to the propagation of implicit dependencies throughout the
application.

Integral Component Interfaces

Here we overview the component interfaces, which we have
developed. A detailed description of the interfaces is found in
Appendix A.

Figure 1 illustrates the component integral evaluation
architecture. The key abstractions represented by the com-
ponent interfaces are the integral evaluator factory (e.g.
IntegralEvaluatorFactoryInterface implemented
by an integral super factory) and integral evaluator (e.g.
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Figure 1. A schematic representation of the component integral evalu-
ator architecture.

IntegralEvaluatorInterface implemented by each inte-
gral evaluator). Integral evaluators compute molecular integrals.
Currently, we specify integral evaluator interfaces for computing
integrals involving one, two, three, and four Gaussian centers
(IntegralEvaluator1Interface, etc.). Of course, integral
evaluator interfaces can be easily extended to allow more centers
should such integrals prove necessary for explicitly correlated meth-
ods or other advanced techniques. Each integral evaluator provides
a compute() method which, given a shell multiplet, prompts the
computation of the integrals. As this shell driven interface matches
the design of typical quantum packages, it is the most straightfor-
ward approach and requires the least modification of the existing
packages.

In contrast to the use of the integral evaluators, their initializa-
tion can be very complicated, as it depends on the implementation
details of the particular evaluator. The purpose of the integral evalu-
ator factory is to hide the complexity of the initialization of integral
evaluators. To create an integral evaluator, the factory must at a min-
imum receive the molecular basis set data. However, many integral
types require the specification of additional data: derivative informa-
tion, origin of the reference frame for dipole integrals, or exponents
for Gaussian geminals, to name a few. The purpose of an integral
descriptor (IntegralDescriptorInterface) is to encapsu-
late such data. A set of descriptors must be provided to the factory
to produce corresponding integral evaluators.

Using MPQC code as an example, Figure 2 provides a code snip-
pet outlining the procedure client codes must implement to employ
CCA integral evaluators. Figure 2 assumes that the mpqc_basis
and services variables have been properly assigned previously.
An MPQC implementation of MolecularInterface is cre-
ated and initialized with a pointer to the MPQC basis set object.
Next, objects implementing IntegralDescrInterface and
DerivCentersInterface are created (implementations of
these objects are provided within the cca-chem-generic pack-
age).17 Once a factory object is obtained from the framework, a
call to the get_evaluator4()method, supplying the initialized
descriptor and basis set objects, returns an object implement-
ing IntegralEvaluator4Interface. The compute()
method can then be used to evaluate shell quartets of integrals,

which would then be read out of buffer and used for calcula-
tions.

Implementation and Benchmarking

The integral interfaces we have developed have been implemented in
the Massively Parallel Quantum Chemistry (MPQC) package.27–29

This is currently the only implementation of CCA integral evalua-
tors, though NWChem30, 31 and GAMESS32 implementations are in
progress. Even this basic capability enables new functionality with
the MPQC package (the native integral packages can now be mixed,
see ref. 25), but the primary benefit is that now other packages may
take advantage of the native MPQC integral capabilities. The perfor-
mance benchmarks will also be useful for evaluation of our approach
and guidance in further development. Within the native MPQC code
base, two integral packages are supported. The IntV3 package is dis-
tributed with MPQC and performs integral evaluations needed for
energies and gradients of conventional quantum methods. An addi-
tional package, Cints (based on the Libint33, 34 package), performs
integral evaluations required for explicitly correlated methods in
addition to those required for conventional methods. Both MPQC
and Libint are open source, distributed under the GNU General
Public License and Library GNU General Public License.

While the integral evaluation interfaces provide a framework
in which to implement evaluator components, additional specifi-
cations must be imposed on the layout of data, which is passed
through these interfaces. We propose CCA standards for integral
data in Appendix B. The layout of integrals within buffers is of
particular importance. While the Cints buffer layout does con-
form to the proposed CCA standard, the IntV3 buffer layout does
not. Most clients of integrals require a specific buffer layout, and
translation costs are significant. The CCA IntV3 integral evaluator
includes the option to translate integral buffers into the standard
CCA format.

In general, larger amounts of time spent in MPQC’s internal inte-
gral routines offset the overhead associated with the CCA interface
layer, which adds several function calls and language interoper-
ability code to each compute() call. High angular momentum
basis sets require, on average, more work per buffer computa-
tion and therefore have decreased overhead. Gradient computations
require more work per buffer than energy computations and tend
to have reduced overhead. Another noticeable trend is that smaller
molecules tend to have lower overhead because of the effects of
integral screening. The inexpensive bound computations used in
integral screening make up larger proportions of the computation as
molecule size increases and more buffers are screened out. While the
ultimate decision whether or not to screen out a shell multiplet lies
with the integral evaluator client, our interface includes the capa-
bility for evaluators to provide the bounds information on which
this decision is based. Our implementation in MPQC obtains this
bounds information from the evaluators. A particular client may
choose, rather, to use its own routines, eliminating a number of
calls through the Babel interfaces and reducing the interface over-
head somewhat for larger molecules. The test cases in the following
tables are arranged to highlight these trends.

Table 1, panels A–C, reports average wall clock times for a num-
ber of energy and gradient calculations using either the native MPQC
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Figure 2. A C++ code snippet outlining how client code employs integral evaluators. An analagous
procedure is available in each language supported by Babel (C, C++, Fortran 77, Fortran 90, Python,
and Java).

integral interfaces or the CCA component interfaces. Since Cints
derivative integrals have not been exposed within MPQC, these cal-
culations were performed using the IntV3 integrals package. The
IntV3 native buffer layout is used for these calculations, thus yield-
ing a measure of the performance of the CCA integral interfaces
when integral reordering is not required, the highest performance
case. The CCA overheads for Hartree-Fock calculations in optimum,
small molecule, big basis set cases, exemplified by the water calcu-
lations in Table 1 panel A, are under 1% and entirely insignificant.
At the other end of the spectrum for Hartree-Fock methods, larger
molecules with small basis sets can have significant overheads. In
the benchmark suite for this study, the worst CCA overhead observed
for the Hartree-Fock method was the isoprene/6-311++G** energy
calculation, with an overhead of 7.3%. Correlated calculations, such

as the MP2 calculations in Table 1, panel B, generally require greater
computational effort subsequent to atomic orbital integral evaluation
and, thus, experience moderately lower CCA overheads, which are
below 5%. Density functional approaches, as surveyed in Table 1,
panel C, expend significant computational effort in numerical inte-
gration, which is not currently performed through a CCA interface.
Consequently, overheads for the B3LYP calculations in Table 1,
panel C are uniformly low, with the greatest overhead of 3.1%
seen in the water energy calculation. Extension of the evaluator
interfaces to further reduce the CCA overhead is considered in our
conclusions.

Table 2, panels A–C, compares average wall clock times for
test cases using CCA interfaces and IntV3 integrals, compar-
ing the use of the IntV3 native buffer layout with the CCA
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Table 1. Average Wall Times (seconds) for (A) Hartree-Fock Calculations, (B) MP2 Calculations, and
(C) B3LYP Calculations Performed Using Native and CCA Integral Interfaces.

Native buffer layout

Native interface CCA interface
Test case Basis set wall time wall time CCA overhead (%)

(A) Hartree-Fock Calculations
HF energy

Isoprene 6-311++G** 151 162 7.3
cc-pVDZ 33.5 35.8 6.9
cc-pVTZ 906 934 3.1

Phosphoserine cc-pVDZ 254 264 3.9
Aniline cc-pVTZ 917 942 2.7
Water aug-cc-pV5Z 952 955 0.3

HF gradient
Isoprene 6-311++G** 252 269 6.7

cc-pVDZ 92.5 97.4 5.3
cc-pVTZ 1884 1940 3.0

Phosphoserine cc-pVDZ 652 673 3.2
Aniline cc-pVTZ 1795 1836 2.3
Water aug-cc-pV5Z 1759 1768 0.5

(B) MP2 Calculations
MP2 Energy

Isoprene 6-311++G** 117 120 2.6
cc-pVDZ 42.5 43.3 1.9
cc-pVTZ 580 590 1.7

Phosphoserine cc-pVDZ 581 587 1.0
Aniline cc-pVTZ 566 574 1.4
Water aug-cc-pV5Z 259 260 0.4

MP2 Gradient
Isoprene 6-311++G** 689 718 4.2

cc-pVDZ 236 243 3.0
cc-pVTZ 4194 4271 1.8

Phosphoserine cc-pVDZ 2998 3040 1.4
Aniline cc-pVTZ 5287 5370 1.6
Water aug-cc-pV5Z 3845 3814 Negligible

(C) B3LYP Calculations
B3LYP Energy

Isoprene 6-311++G** 495 508 2.6
cc-pVDZ 209 210 0.5
cc-pVTZ 1853 1885 1.7

Phosphoserine 6-311G** 967 986 2.0
Aniline 6-311++G** 488 495 1.4
Water 6-311++G(3df,3pd) 12.8 13.2 3.1

B3LYP Gradient
Isoprene 6-311++G** 1204 1222 1.5

cc-pVDZ 722 726 0.6
cc-pVTZ 4414 4468 1.2

Phosphoserine 6-311G** 2286 2319 1.4
Aniline 6-311++G** 1259 1269 0.8
Water 6-311++G(3df,3pd) 46.6 47.1 1.1

The IntV3 integral package was used with native buffer layouts throughout. Calculations were repeated three times
and averaged.

buffer layout (including buffer translation overhead). This over-
head, which is in addition to the CCA interface overhead, is
substantial, with Hartree-Fock reorder overheads as high as 12.3%
and MP2 reorder overheads as high as 10.4%. As in the CCA

overheads, density functional approaches have moderately lower
overheads for reordering, with a maximum observed overhead of
3.7%. Deeply nested loops, inefficient memory access patterns and
logic to handle contractions, derivatives and differing angular types
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Table 2. Average Wall Times (seconds) for (A) Hartree-Fock Calculations, (B) MP2 Calculations, and
(C) B32YP Calculations Performed Using CCA Integral Interfaces.

CCA interface

Native buffer layout CCA buffer layout
Test case Basis set wall time wall time Reorder overhead (%)

(A) Hartree-Fock Calculations
HF energy

Isoprene 6-311++G** 162 179 10.5
cc-pVDZ 35.8 39.4 10.1
cc-pVTZ 934 995 6.5

Phosphoserine cc-pVDZ 264 280 6.1
Aniline cc-pVTZ 942 991 5.2
Water aug-cc-pV5Z 955 981 2.7

HF gradient
Isoprene 6-311++G** 269 302 12.3

cc-pVDZ 97.4 105.2 8.0
cc-pVTZ 1940 2071 6.8

Phosphoserine cc-pVDZ 673 711 5.6
Aniline cc-pVTZ 1836 1945 5.9
Water aug-cc-pV5Z 1768 1829 3.5

(B) MP2 Calculations
MP2 energy

Isoprene 6-311++G** 120 126 5.0
cc-pVDZ 43.3 44.3 2.3
cc-pVTZ 580 608 4.8

Phosphoserine cc-pVDZ 587 598 1.9
Aniline cc-pVTZ 574 585 1.9
Water aug-cc-pV5Z 260 265 1.9

MP2 gradient
Isoprene 6-311++G** 718 793 10.4

cc-pVDZ 243 257 5.8
cc-pVTZ 4271 4519 5.8

Phosphoserine cc-pVDZ 3040 3105 2.1
Aniline cc-pVTZ 5370 5633 4.9
Water aug-cc-pV5Z 3814 3949 3.5

(C) B3LYP Calculations
B3LYP energy

Isoprene 6-311++G** 508 527 3.7
cc-pVDZ 210 213 1.4
cc-pVTZ 1885 1953 3.6

Phosphoserine 6-311G** 986 1022 3.7
Aniline 6-311++G** 495 510 3.0
Water 6-311++G(3df,3pd) 13.2 13.4 1.5

B3LYP gradient
Isoprene 6-311++G** 1222 1257 2.9

cc-pVDZ 726 734 1.1
cc-pVTZ 4468 4615 3.3

Phosphoserine 6-311G** 2319 2384 2.8
Aniline 6-311++G** 1269 1296 2.1
Water 6-311++G(3df,3pd) 47.1 47.6 1.1

IntV3 integrals are used throughout, comparing native and CCA buffer orderings. Calculations were repeated three times
and averaged.

are unavoidable and result in a substantially expensive reorder
algorithm. Maintaining good performance with low-level inter-
faces requires minimizing such translation costs and, while such
overhead is undoubtedly unavoidable when using legacy codes,

we strongly advocate standards adoption for any new development
efforts.

Since integral packages are now interchangeable through the
CCA interfaces, the source package for each of a calculation’s
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Table 3. Average Wall Times (seconds) for Calculations Performed Using
CCA Integral Interfaces.

Cints Cints/IntV3 IntV3
Test case Basis set wall time wall time overhead (%)

MP2-R12 energy
Isoprene cc-pVDZ 246.2 246.2 0.0
Water aug-cc-pV5Z 1576 1577 0.1

Calculations using Cints integrals throughout and using Cints two-electron
integrals along with IntV3 one-electron integrals are compared. CCA buffer
layouts (identical to Cints buffer layouts) were used throughout. Calculations
were repeated three times and averaged.

integral types can be selected individually. New packages imple-
menting advanced integral types no longer need to duplicate stan-
dard integral capabilities, as these are available from a growing
number of CCA implementations based on mature integral pack-
ages. Table 3 provides timings for two MP2-R12/A’ test cases
demonstrating this flexibility. For the first set of calculations, Cints
integrals were used throughout. For comparison, the second set
of calculations use Cints for two-electron integrals while IntV3 is
used to provide overlap and core Hamiltonian integrals. Though
reordering of the IntV3 buffers was required for the second set
of calculations, very little overhead is observed since the cost of
one-electron integrals is minor. These calculations also highlight
opportunities for “quality of service” improvements, which the CCA
architecture enables. With a large set of interchangeable integral
evaluator implementations, it is possible to include components for
automated selection of the most appropriate implementation for a
given integral type, calculation type, and hardware environment.

Embedded Frameworks

The components previously developed for geometry optimiza-
tion16, 17 encapsulated the high-level functionalities of various
domain-specific packages. There was no existing support for con-
structing and configuring applications based on the disparate pack-
ages, making an entirely component-based architecture composed
and configured via the framework interface a natural choice. While
direct interaction with the framework allows tremendous flexibil-
ity, it is unlikely that end-users will have the skills necessary to
properly configure component applications. The development of
a standard input format that generically supports quantum chem-
istry packages was recognized as both a unique opportunity and
a daunting challenge of this design, and has not, thus far, been
attempted.

Shifting some low-level functionality to components more fully
realizes the potential of component technology to facilitate interop-
erable, rather than just interchangeable, chemistry packages, and
suggests the possibility of applications which only utilize com-
ponents for specific tasks. The CCA specification and Ccaffeine
framework do support embedding of framework functionality in
stand-alone codes, allowing mixed legacy/component application
architectures. Surely, each chemistry package supports configura-
tion of computations, and this configuration capability can be easily
extended to support accessing low-level functionality provided by

components. Embedding component composition and configura-
tion inside legacy codes allows package developers to expose to
end-users only those features useful in a particular context. The
barrier for end-users to adopt component technology is substan-
tially reduced; the stand-alone package is run as before with a small
number of extra parameters introduced to calculation inputs. An
embedded framework environment has been added along with the
integral component client and server code that we have added to
the MPQC package, allowing MPQC chemistry models to access
integrals via components in both exclusively component and mixed
native/component modes. The adoption of integral components by
MPQC users is now trivial.

Conclusions

Through the design and implementation of an extendable interface
for molecular integral evaluation in quantum chemistry, we have
demonstrated the efficacy of exposing low-level software capabil-
ities using component approaches. For integral evaluation, calls
through component interfaces easily number in the millions and
involve several extra function calls and a fair amount of language
interoperability code, yet overheads are reasonable. For calculations
on small molecules using large basis sets, interface overheads below
1% can be expected. For larger molecules and smaller basis sets,
interface overheads are clearly more significant but are acceptable,
with all benchmark values falling within 10%. While overheads in
the 10% range are likely large enough to discourage the use of these
interfaces when high performance native implementations are avail-
able, the ability to share integral types and rapidly implement new
approaches ensures the usefulness of integral components. As has
been demonstrated for mesh interfaces,13 decreasing the granular-
ity of component interactions decreases overheads. Though it would
require a much larger modification of the existing quantum pack-
ages, a vector driven approach, where multiple shell multiplets are
computed for each call through the CCA interface, could substan-
tially reduce the CCA overhead as well as facilitate more effective
use of the single-instruction multiple-data (vector) hardware now
ubiquitous in general purpose CPU’s. Moving forward, we plan to
implement such a vector interface.

When low-level software functionality is shared between pack-
ages, adapting arbitrary implementation details, such as integral
buffer ordering, to a common standard can cause substantial over-
head, which overshadows the costs of an added interface layer. In
the case of integral buffer ordering, our benchmarks show overheads
as high as 12%, in addition to the interface overhead due to the CCA
layer. While such significant overheads will often be unavoidable
when adapting legacy codes for component implementations, the
development and adoption of standards in new work is critical to
reducing such inefficiencies in the long term, allowing for a high per-
formance community code base. We set forth standards for integral
evaluation in Appendix B and encourage their adoption.

As our efforts in developing a chemistry component toolkit have
progressed, it has become evident that the CCA approach is about
much more than components. The true strength of the CCA is as a
comprehensive approach to scientific software engineering. Hold-
ing as much or more importance than component concepts are the
approaches to interface and data standards, language and package
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interoperability, and collaborative, community-based development,
which have naturally evolved along with component standards and
middleware. In our view, the component concept has functioned as a
catalyst, which has focused a large community of computational and
computer scientists on solving the problems of large-scale, collabo-
rative, scientific software development. While improving usability
and maintenance of this increasingly complex chemistry software
project remains a challenge, this work is significant progress in
developing an interoperable code base for quantum chemistry.

Calculation Details

The codes implementing CCA integral interfaces are currently under
development and will be available in forthcoming releases. Source
code for the cca-chem-generic package,17 which provides interface
definitions and some implementations that are generally useful,
was a snapshot of the babel-1-0-branch CVS branch as of
2/21/2007. MPQC27–29 source code was a snapshot of MPQC’s
babel-1-0-branch CVS branch as of 2/15/2007. Babel11, 12

source code was a snapshot of Babel’s 1.1 development Subversion
branch as of 12/21/2006. Source code for the cca-tools package5

was the 0.6.1_rc2 release, with slight modifications to allow build-
ing against Babel 1.1. Ccaffeine,6 one of several frameworks6–10

that comply with the CCA specification, was used. All codes were
built using the gcc 3.4.3 compiler with the default x86_64 proces-
sor target and -O2 optimization. Benchmarks were performed in
single process, single thread mode on Intel Xeon 5160 CPU’s (Core
2 / Woodcrest architecture) clocked at 3.00 GHz, running Red Hat
Enterprise Linux AS release 4.
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Appendix A: Integral Evaluation Interfaces

Interfaces concerned with integral evaluation over Gaussian basis
functions are described in the following sections. Babel’s Scien-
tific Interface Description Language (SIDL)11 is a neutral choice

for this description. The SIDL code for the following interfaces
resides in the Chemistry.QC.GaussianBasis package, a
subsection of the chemistry.sidl file distributed with the
cca-chem-generic software.17

For convenience, an enumeration for function angular types is
provided.

enum AngularType { CARTESIAN, SPHERICAL, MIXED }

Codes which utilize integral evaluator components must
pass Gaussian basis set data to the evaluators. This task
is performed by copying basis set data into class imple-
mentations of the ShellInterface, AtomicInterface,
and MolecularInterface and passing the
MolecularInterface object to the integral evaluators
(a MolecularInterface object is any SIDL class
that implements the MolecularInterface). A
MolecularInterface object, representing a molecular
basis set, contains a set of AtomicInterface objects,
each of which contains a set of ShellInterface
objects. The MolecularInterface object also contains a
MoleculeInterface object, which provides basic molecule
properties, such as the geometry.

ShellInterface

int get_n_contraction()
Get the number of contractions in the shell.

Returns:
number of contractions

int get_n_primitive()
Get the number of primitives in the shell.

Returns:
number of primitives

double get_contraction_coef(in int connum, in int expnum)
Get the coefficient for an unnormalized primitive.

Returns:
contraction coefficient

Parameters:
connum contraction number
expnum primitive number

double get_exponent(in int expnum)
Get the exponent for a primitive.

Returns:
exponent

Parameters:
expnum primitive number

int get_angular_momentum(in int connum)
Get the angular momentum for a single contraction.

Returns:
angular momentum value

Parameters:
connum contraction number
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int get_max_angular_momentum()
Get the max angular momentum, considering all contractions

in the shell.
Returns:

maximum angular momentum value

AngularType get_contraction_angular_type(in int connum)
Get the angular type for a single contraction.

Returns:
angular type

Parameters:
connum contraction number

AngularType get_angular_type()
Get the shell angular type.

Returns:
angular type

void print_shell()
Print the shell data.

AtomicInterface

string get_name()
Get the canonical basis set name.

Returns:
canonical name

int get_n_basis()
Get the number of basis functions.

Returns:
number of functions

int get_n_shell()
Get the number of shells.

Returns:
number of shells

int get_max_angular_momentum()
Get the max angular momentum for any shell on the atom.

Returns:
max angular momentum value

AngularType get_angular_type()
Get the angular type for the atom.

Returns:
angular type

ShellInterface get_shell(in int shellnum)
Get a gaussian shell.

Returns:
object implementing ShellInterface

Parameters:
shellnum shell number

void print_atomic()
Print the atomic basis data.

MolecularInterface

string get_label()
Get the user specified name.

Returns:
name

long get_n_basis()
Get the number of basis functions.

Returns:
number of functions

long get_n_shell()
Get the number of shells.

Returns:
number of shells

int get_max_angular_momentum()
Get the max angular momentum for any contraction in the

basis set.
Returns:

max angular momentum value

AngularType get_angular_type()
Get the angular type.

Returns:
angular type

AtomicInterface get_atomic(in long atomnum)
Get an atomic basis set.

Returns:
object implementing the AtomicInterface

Parameters:
atomnum atom number

MoleculeInterface get_molecule()
Get the molecule.

Returns:
object implementing the MoleculeInterface

void print_molecular()
Print the molecular basis data.

MoleculeInterface

void initialize(in long natom, in string unitname)
Initialize a molecule.

Parameters:
natom number of atoms
unitname units for coordinates

Physics.UnitsInterface get_units()
Returns a units object that corresponds to the units that are used

by get_cart_coor() or set_cart_coor().
Returns:

units object
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long get_n_atom()
Returns the number of atoms.

Returns:
number of atoms

int get_atomic_number(in long atomnum)
Returns the atomic number of an atom.

Returns:
atomic number

Parameters:
atomnum atom index

void set_atomic_number(in long atomnum, in int
atomic_number)

Sets atomic number of an atom.
Parameters:

atomnum atom id
atomic_number atomic number

double get_net_charge()
Returns net charge of the molecule.

Returns:
net charge

void set_net_charge(in double charge)
Sets the net charge of the molecule.

Parameters:
charge molecular charge

double get_charge(in long atomnum)
Returns integer charge at an atom.

Returns:
integer charge at an atom

Parameters:
atomnum atom index

void set_charge(in long atomnum, in double charge)
Sets charge at an atom.

Parameters:
atomnum atom index
charge charge at an atom

array<double,1> get_coor()
Returns the Cartesian coordinate array.

Returns:
Cartesian coordinate array

void set_coor(in array<double,1> x)
Sets the Cartesian coordinates.

Parameters:
x coordinate array

double get_cart_coor(in long atomnum, in int xyz)

Returns:
a Cartesian coordinate

Parameters:
atomnum atom index
xyz give 0 for x, 1 for y, and 2 for z

void set_cart_coor(in long atomnum, in int xyz, in double val)
Sets individual Cartesian coordinate.

Parameters:
atomnum atom index
xyz give 0 for x, 1 for y, and 2 for z
val coordinate value

string get_atomic_label(in long atomnum)
Returns programmer-defined label for an atom.

Returns:
label
programmer-defined label

Parameters:
atomnum atom index

void set_atomic_label(in long atomnum, in string label)
Sets programmer-defined label for an atom.

Parameters:
atomnum atom index
label programmer-defined label

A MoleculeInterface object contains a Physics.
UnitsInterface object which provides units for coordinate
values.

Physics.UnitsInterface

void initialize( in string unitname )
Initializes the units as a string.

Parameters:
unitname "angstroms" or "bohr"

string get_unit_name()
Returns the units as a human readable string.

Returns:
unit name

double convert_to(in string unitname)
Returns conversion factor from self’s units to the given unit name.

Returns:
conversion factor

Parameters:
unitname unit name

double convert_from(in string unitname)
Returns conversion factor to self’s units from the given unit name.

Returns:
conversion factor

Parameters:
unitname unit name
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Many integral types require data in addition to integral buffers
to be shared between servers and clients. A number of data con-
tainer utility interfaces serve this function, and this collection will
grow as client/server components with additional capabilities are
implemented. The first such utility interface we describe is the
DerivCentersInterface, used to specify details for nuclear
derivative calculations. Code utilizing an integral evaluator must
pass a DerivCentersInterface object to the evaluator. For
derivatives with operators which are independent of nuclear coordi-
nates, translational invariance allows derivatives with respect to one
center to be omitted, and details about omitted centers are shared
through this interface. For derivatives of operators which are depen-
dent upon nuclear coordinates, derivatives with respect to every atom
must be taken, and the derivative atom information is shared using
the set_deriv_atom() and get_deriv_atom() methods.
The segment number, defined as the number of basic buffer segments
a buffer is composed of, is also shared through this interface. As an
example of the buffer segment concept, a dipole integral buffer con-
sists of one buffer segment for each of x, y, and z, yielding a segment
number of 3.

DerivCentersInterface

void clear()
Clear the list of centers.

Returns:
list of centers

void add_center(in long center, in long atom)
Add a center for which derivatives will be computed.

Parameters:
center center number (between 0 and 3 inclusive)
atom atom number corresponding to center

void add_omitted(in long center, in long atom)
Add a center for which derivatives will not be computed.

Parameters:
center center number (between 0 and 3 inclusive)
atom atom number corresponding to center

long n()
Returns the number of centers for which derivatives will be

computed.
Returns:

number of centers

long center(in long i)
Returns center number.

Returns:
center number (between 0 and 3 inclusive)

Parameters:
i computed center index (between 0 and n()-1

inclusive)

long atom(in long i)
Returns atom number.

Returns:
atom number

Parameters:
i computed center index (between 0 and n()-1 inclusive)

long omitted_center()
Returns the omitted center number.

Returns:
omitted center number

int has_omitted_center()
Returns 1 if there is an omitted center.

Returns:
1 (true) or 0 (false)

long omitted_atom()
Returns atom that is omitted from the integral buffer.

Returns:
omitted atom number

void set_deriv_atom(in int deriv_atom)
Set the atom a derivative is taken with respect to.

Parameters:
deriv_atom atom number

int get_deriv_atom()
Get the atom a derivative is taken with respect to.

Returns:
atom number

Currently, the only additional data container utility interface is
the DipoleDataInterfacewhich provides origin information
for dipole and quadrupole integrals.

DipoleDataInterface

void set_origin( in array<double> origin )
Set the dipole origin.

Parameters:
origin Cartesian coordinate array

array<double> get_origin()
Get the dipole origin.

Returns:
Cartesian coordinate array

When an integral evaluator is requested, a composite
of IntegralDescrInterface objects for the requested
integral types is passed to the evaluator factory. This
action provides both the list of required integral types and any
additional data required. The object oriented features of
Babel allow a collection of derived integral descriptors to
be upcast to a collection of base descriptors which are
passed through the EvaluatorFactoryInterface. The
evaluator factory then checks descriptor types, performs
any necessary downcasts, and thereby obtains
the auxiliary data. The EvaluatorFactoryInterface is
thus generic and extendable for all possible integral types,
requiring only the implementation of a new derived
integral descriptor for types requiring additional data.
We now describe the IntegralDescrInterface,
CompositeIntegralDescrInterface, and
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IntegralEvaluatorFactoryInterface, along
with an example derived descriptor interface, the
DipoleIntegralDescrInterface.

IntegralDescrInterface

string get_type()
Get integral type.

Returns:
type

int get_n_segment()
Get number of segments.

Returns:
number of segments

void set_deriv_lvl( in int deriv )
Set derivative level.

Parameters:
deriv derivative level

int get_deriv_lvl()
Get derivative level.

Returns:
derivative level

void set_deriv_centers( in DerivCentersInterface dc )
Set derivative centers object.

Parameters:
dc derivative centers object

DerivCentersInterface get_deriv_centers()
Get derivative centers object.

Returns:
derivative centers object

DipoleIntegralDescrInterface

extends IntegralDescrInterface

void set_dipole_data( in DipoleDataInterface dipole_data )
Set the dipole data.

Parameters:
dipole_data dipole data

DipoleDataInterface get_dipole_data()
Get the dipole data.

Returns:
dipole data

CompositeIntegralDescrInterface

void add_descr( in IntegralDescrInterface desc )
Add an integral descriptor.

Parameters:
desc integral descriptor

int get_n_descr()
Get number of descriptors contained.

Returns:
number of descriptors

IntegralDescrInterface get_descr( in int n )
Get an integral descriptor.

Returns:
integral descriptor

Parameters:
n descriptor index

int is_contained( in IntegralDescrInterface desc )
Query if a descriptor with matching type and derivative level

is contained.
Returns:

1 (true) or 0 (false)
Parameters:

desc integral descriptor

void clear()
Clear all descriptors.

IntegralEvaluatorFactoryInterface

string get_name()
Get factory name.

Returns:
name

CompositeIntegralDescrInterface get_descriptor()
Get composite of descriptors for supported integrals.

Returns:
composite integral descriptor

bool is_supported( in IntegralDescrInterface desc )
Query if a type and derivative level is supported.

Returns:
true or false

Parameters:
desc integral descriptor

void set_storage( in long storage )
Set storage that the factory is allowed to utilize.

Parameters:
storage allowed storage in bytes

IntegralEvaluator1Interface
get_evaluator1(

in CompositeIntegralDescrInterface desc,
in MolecularInterface bs1

)
Get a 1-center integral evaluator.

Returns:
1-center evaluator

Parameters:
desc composite integral descriptor
bs1 basis set for center 1
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IntegralEvaluator2Interface
get_evaluator2(

in CompositeIntegralDescrInterface desc,
in MolecularInterface bs1,
in MolecularInterface bs2

)
Get a 2-center integral evaluator.

Returns:
2-center evaluator

Parameters:
desc composite integral descriptor
bs1 basis set for center 1
bs2 basis set for center 2

IntegralEvaluator3Interface
get_evaluator3(

in CompositeIntegralDescrInterface desc,
in MolecularInterface bs1,
in MolecularInterface bs2,
in MolecularInterface bs3

)
Get a 3-center integral evaluator.

Returns:
3-center evaluator

Parameters:
desc composite integral descriptor
bs1 basis set for center 1
bs2 basis set for center 2
bs3 basis set for center 3

IntegralEvaluator4Interface
get_evaluator4(

in CompositeIntegralDescrInterface desc,
in MolecularInterface bs1,
in MolecularInterface bs2,
in MolecularInterface bs3,
in MolecularInterface bs4

)
Get a 4-center integral evaluator.

Returns:
4-center evaluator

Parameters:
desc composite integral descriptor
bs1 basis set for center 1
bs2 basis set for center 2
bs3 basis set for center 3
bs4 basis set for center 4

int finalize()
This should be called when the object is no longer needed.

No other members may be called after finalize.
Returns:

0 on success

The IntegralSuperFactoryInterface provides a
management layer for simplifying the use of multiple integral

evaluator factories (following the Abstract Factory Pattern36). Once
client code provides rules for the routing of integral evalua-
tor requests, the super factory acts as a single evaluator factory
enveloping the capabilities of all connected factories.

IntegralSuperFactoryInterface

extends IntegralEvaluatorFactoryInterface

array<string,1> add_uses_ports(in int n)
Add uses ports to component implementation.

Returns:
array of uses port names

Parameters:
n number of additional uses ports

void remove_port(in int portid)
Remove uses port.

Parameters:
portid port index

array<string,1> get_port_names()
Get uses port names.

Returns:
array of uses port names

array<string,1> get_factory_names()
Get attached evaluator factory names.

Returns:
array of factory names

array<CompositeIntegralDescrInterface,1> get_descriptors()
Get composite of available integral descriptors for each factory.

Returns:
array of composite integral descriptors

void set_default_subfactory(in string fac )
Set the default factory for integral evaluator requests.

Parameters:
fac name of default factory

void
set_subfactory_config(

in array<string,1> types,
in array<string,1> derivs,
in array<string,1> facs

)
Configure which factory handles specific integral type requests.

Parameters:
types array of integral types
derivs array of derivative levels (integer or "n" for
wildcard)
facs array of factory names

The remaining interfaces specify the integral evaluator inter-
faces themselves. A base interface, IntegralEvaluator
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Interface, is extended for one, two, three, and four-center inte-
grals. We describe the two-center interface here; extension to other
numbers of centers is obvious.

IntegralEvaluatorInterface

array<double> get_array(in IntegralDescrInterface desc)
Get sidl array buffer for given type.

Returns:
sidl array

Parameters:
desc integral descriptor

CompositeIntegralDescrInterface get_descriptor()
Get composite of descriptors for integral types supported.

Returns:
composite integral descriptor

int finalize()
This should be called when the object is no longer needed.

No other members may be called after finalize.
Returns:

0 on success

IntegralEvaluator2Interface

void compute(in long shellnum1, in long shellnum2)
Compute all buffers for specified shell multiplet.

Parameters:
shellnum1 shell 1 index
shellnum2 shell 2 index

double compute_bounds(in long shellnum1, in long
shellnum2)

Compute max integral bound.
Returns:

max integral bound for all computed types
Parameters:

shellnum1 shell 1 index
shellnum2 shell 2 index

array<double> compute_bounds_array(in long shellnum1,
in long shellnum2);

Compute integral bounds for each computed type.
Returns:

SIDL array of integral bounds
Parameters:

shellnum1 shell 1 index
shellnum2 shell 2 index

Appendix B: Proposed Integral Standards

While the integral interfaces we have proposed define a set
of function calls which may be used to obtain, initialize, and
utilize molecular integral evaluators, standards must specified for

implementation details, namely buffer layout and normalization
conventions.

Buffer Layout

The most intuitive algorithm for the ordering of Cartesian functions
is proposed. Given angular momentum l, the Cartesian functions
xaybzc are ordered as follows

starting with

a = l
b = c = 0

the next function is given by

if (c < l − a) {
b = b − 1
c = c + 1
}

else {
a = a − 1
c = 0
b = l − a
}

For example, a d shell is ordered

x2, xy, xz, y2, yz, z2

For indexing within a Cartesian shell multiplet buffer, the first
center is treated as the most significant, with each subsequent center
receiving less significance.

For a pp shell doublet the ordering is

(x|x) (x|y) (x|z)
(y|x) (y|y) (y|z)
(z|x) (z|y) (z|z)
For an sppp shell quartet the ordering is

(1x|xx) (1x|xy) (1x|xz)
(1x|yx) (1x|yy) (1x|yz)
(1x|zx) (1x|zy) (1x|zz)
(1y|xx) (1y|xy) (1y|xz)
(1y|yx) (1y|yy) (1y|yz)
(1y|zx) (1y|zy) (1y|zz)
(1z|xx) (1z|xy) (1z|xz)
(1z|yx) (1z|yy) (1z|yz)
(1z|zx) (1z|zy) (1z|zz)

Note that redundant integrals may be included. The ordering within
a pure angular momentum buffer follows the same significance rule,
with functions ordered in decreasing ml (l, l − 1, . . . , −l).

For an n-center multiplet, a first derivative buffer contains a set of
three derivative multiplets ( ∂

∂x , ∂
∂y , ∂

∂z ) for each of up to n−1 unique
centers (at least one center omitted due to translational invariance).
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For an sssp first derivative shell quartet (omitting derivatives with
respect to center four) the ordering is

∂
∂x1

[(11|1x) (11|1y) (11|1z)]
∂

∂y1
[(11|1x) (11|1y) (11|1z)]

∂
∂z1

[(11|1x) (11|1y) (11|1z)]
∂

∂x2
[(11|1x) (11|1y) (11|1z)]

∂
∂y2

[(11|1x) (11|1y) (11|1z)]
∂

∂z2
[(11|1x) (11|1y) (11|1z)]

∂
∂x3

[(11|1x) (11|1y) (11|1z)]
∂

∂y3
[(11|1x) (11|1y) (11|1z)]

∂
∂z3

[(11|1x) (11|1y) (11|1z)]

Similarly, for second derivatives the ordering is

∂2

∂x2
1
[(11|1x) (11|1y) (11|1z)]

∂2

∂x1∂y1
[(11|1x) (11|1y) (11|1z)]

∂2

∂x1∂z1
[(11|1x) (11|1y) (11|1z)]

∂2

∂x1∂x2
[(11|1x) (11|1y) (11|1z)]

∂2

∂x1∂y2
[(11|1x) (11|1y) (11|1z)]

∂2

∂x1∂z2
[(11|1x) (11|1y) (11|1z)]

∂2

∂x1∂x3
[(11|1x) (11|1y) (11|1z)]

∂2

∂x1∂y3
[(11|1x) (11|1y) (11|1z)]

∂2

∂x1∂z3
[(11|1x) (11|1y) (11|1z)]

∂2

∂y2
1
[(11|1x) (11|1y) (11|1z)]

∂2

∂y1∂z1
[(11|1x) (11|1y) (11|1z)]

∂2

∂y1∂x2
[(11|1x) (11|1y) (11|1z)]

∂2

∂y1∂y2
[(11|1x) (11|1y) (11|1z)]

∂2

∂y1∂z2
[(11|1x) (11|1y) (11|1z)]

∂2

∂y1∂x3
[(11|1x) (11|1y) (11|1z)]

∂2

∂y1∂y3
[(11|1x) (11|1y) (11|1z)]

∂2

∂y1∂z3
[(11|1x) (11|1y) (11|1z)]

∂2

∂z2
1
[(11|1x) (11|1y) (11|1z)]

∂2

∂z1∂x2
[(11|1x) (11|1y) (11|1z)]

∂2

∂z1∂y2
[(11|1x) (11|1y) (11|1z)]

∂2

∂z1∂z2
[(11|1x) (11|1y) (11|1z)]

∂2

∂z1∂x3
[(11|1x) (11|1y) (11|1z)]

∂2

∂z1∂y3
[(11|1x) (11|1y) (11|1z)]

∂2

∂z1∂z3
[(11|1x) (11|1y) (11|1z)]

∂2

∂x2
2
[(11|1x) (11|1y) (11|1z)]

∂2

∂x2∂y2
[(11|1x) (11|1y) (11|1z)]

∂2

∂x2∂z2
[(11|1x) (11|1y) (11|1z)]

∂2

∂x2∂x3
[(11|1x) (11|1y) (11|1z)]

∂2

∂x2∂y3
[(11|1x) (11|1y) (11|1z)]

∂2

∂x2∂z3
[(11|1x) (11|1y) (11|1z)]

∂2

∂y2
2
[(11|1x) (11|1y) (11|1z)]

∂2

∂y2∂z2
[(11|1x) (11|1y) (11|1z)]

∂2

∂y2∂x3
[(11|1x) (11|1y) (11|1z)]

∂2

∂y2∂y3
[(11|1x) (11|1y) (11|1z)]

∂2

∂y2∂z3
[(11|1x) (11|1y) (11|1z)]

∂2

∂z2
2
[(11|1x) (11|1y) (11|1z)]

∂2

∂z2∂x3
[(11|1x) (11|1y) (11|1z)]

∂2

∂z2∂y3
[(11|1x) (11|1y) (11|1z)]

∂2

∂z2∂z3
[(11|1x) (11|1y) (11|1z)]

∂2

∂x2
3
[(11|1x) (11|1y) (11|1z)]

∂2

∂x3∂y3
[(11|1x) (11|1y) (11|1z)]

∂2

∂x3∂z3
[(11|1x) (11|1y) (11|1z)]

∂2

∂y2
3
[(11|1x) (11|1y) (11|1z)]

∂2

∂y3∂z3
[(11|1x) (11|1y) (11|1z)]

∂2

∂z2
3
[(11|1x) (11|1y) (11|1z)]

and likewise for higher order derivatives.

Normalization

Gaussian integral packages can have significantly different nor-
malization conventions for the target integrals. The convention
often depends on implementation details, such as the evaluation
method. The normalization convention we adopted is “natural” for
the majority of integral packages aimed at basis sets with segmented
contractions.

Cartesian Gaussian functions in a shell of angular momentum
L have the same normalization factor N . N is determined such that
the Cartesian functions xL , yL , and zL are normalized to unity. The
norm of a Cartesian Gaussian xaybzc is therefore

∥xaybzc∥ = (2a + 2b + 2c − 1)!!
(2a − 1)!!(2b − 1)!!(2c − 1)!!

All spherical harmonic Gaussians are normalized to unity. Trans-
formation from Cartesian to spherical harmonics Gaussians was
described in detail by Schlegel and Frisch.37
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