
Chemical Physics Letters 511 (2011) 418–423
Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier .com/locate /cplet t
Multireference F12 coupled cluster theory: The Brillouin-Wigner approach
with single and double excitations
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a b s t r a c t

This Letter reports development and implementation of the explicitly correlated multireference Brillouin
Wigner (MR BW-CC) coupled cluster method with Slater type geminals. The performance of the new
approach is tested on the H4 model system and the dissociation curve of the fluorine molecule. Like in
single reference methods, results show a dramatically improved convergence of total energies towards
complete basis set limit as compared to a conventional MR BW-CC approach. In comparison with previ-
ously reported calculations with a linear correlation factor, there is a better performance for calculations
in smaller basis sets.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Traditional methods based on the configuration interaction type
expansion of the wave function describe the Coulomb cusp very
poorly. As a result, conventional methods converge as slowly as
/ ðLþ 1Þ�3 with respect to the measure of the basis set saturation.
Here, L is the highest angular momentum function included in the
basis.

To overcome the aforementioned shortcoming, it is highly ben-
eficial to include the inter-electronic interaction explicitly in the
wave function. This is effectively accomplished by the R12 ansatz
suggested by Kutzelnigg a quater of century ago [1]. Due to the im-
proved description of the dynamical electron correlation within
the latter approach, the convergence is accelerated to / ðLþ 1Þ�7.

Let (U) be a reference function based on the one-particle
approximation. The application of the R12 ansatz to the coupled
cluster (CC) theory leads to the wave function in the general form
[2–4]

j Wi ¼ eðT̂þR̂Þ j Ui; ð1Þ

where, beside the global excitation operator T̂ , the operator R̂ is re-
lated to the correlation factor which contains explicitly the inter-
electronic coordinate.
ll rights reserved.
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The original R12 approach used a linear correlation factor r12,
which provides a correct description of the short range interaction
(when r12 ! 0Þ, while the infinite value in the long range limit is
only compensated by the zero value of the wave function expan-
sion in the conventional basis. This is certainly not an ideal
solution for the long range part, and it can cause undesired numer-
ical problems, especially when the conventional one-particle basis
is not enough saturated. Lack of the higher powers of the r12 also
implies that the Coulomb hole is not correctly described in the
broader vicinity of r12 ! 0. This failure can again be corrected via
an expansion in the computational basis, if the latter is saturated
enough. Practical approaches that aim at using less saturated smal-
ler basis sets are focused on an alternative correlation factor. The
Slater-type geminal function (STG) [5] provides a correct asymp-
totical behavior in both the short and long range limits and numer-
ous studies during the last five years have confirmed STG as the
optimal choice. Approaches using this correlation factor either di-
rectly [5–7] or through expansions in a set of GAUSSIAN type gemi-
nals [8–12] nowadays dominate and have adopted a notation
‘F12’ instead of the original ‘R12’.

Despite the success of the explicitly correlated CC methods in
the treatment of the dynamical correlation, an accurate description
the static correlation plays a crucial role in many systems of
chemical interest. Therefore, a multireference generalization of
the CC-R12/F12 method is highly desirable. As in the case of a con-
ventional CC treatment, the latter generalization is by no means
unique. Possible approaches are offered by following the basic
ideas behind the numerous conventional MR CC concepts.

Combination of the linear (r12Þ correlation factor with the MR
configuration interaction (MR-CI) and MR averaged coupled pair
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functional (MR-ACPF) was implemented more than a decade ago
by Gdanitz [13]. His implementation followed the principles of
standard approximation (SA) [14] and was limited to very small
systems using extensive basis sets [15,16]. More practical use of
MR treatment in combination with F12 approach has been re-
ported within the SP ansatz with fixed cusp conditions in the MR
second order perturbation theory [17–19] and very recently also
within the MR CI [20]. Such treatment corresponds to the use of
internally contracted geminal basis.

Genuine multireference coupled cluster approaches can be di-
vided into several groups: the Fock space methods which use a
common cluster excitation operator for all the references [21–
23]; and Hilbert space methods where each reference is related
with a distinct cluster operator [24–32]. The Hilbert space ap-
proaches can be further divided to state universal and state spe-
cific methods, depending on the number of states studied at a
time. In state universal approaches, all states are obtained simul-
taneously, however, these methods were found to suffer from
the so called intruder state problem giving rise to serious con-
vergence problems. In state specific approaches, only one state
is studied at a time and the intruder state problem can thus
be avoided.

Historically the first of these methods, the Brillouin Wigner
(BW) variant [27,28,33–37] is resistant to the intruder state prob-
lem thanks to the denominator shift. At the same time the cluster
equations are relatively simple, closely following the single refer-
ence problem. Major drawback of the BW variant is the lack of
the size-extensivity and hence, for large systems, a need for a pos-
teriori corrections [35,36]. Nonetheless, the method has been suc-
cessfully applied to study of several biatomic to mid-size
molecules, see e.g. [38,39].

Due to the simple structure of the cluster equations and smooth
convergence, the Brillouin-Wigner method is well suited as a start-
ing point for the development of explicitly correlated MR CC ap-
proaches. Recently, we have outlined this way with preliminary
results using the linear r12 correlation factor [40].

In the present Letter, we report an implementation of the mul-
tireference BW-CC-F12 method with STG correlation factor. How-
ever, it should be stressed that this is only the first step, and that
we plan to move to size-extensive methods, for example the
state-specific MR CC method by Mukherjee et al. [30,31] which
presently seems to be the most promising from the Hilbert-space
MR CC methods [41–43].

2. Theory

The theory section is divided into two parts. In the first part, the
basic framework of the MR BW-CC theory is presented. In the sec-
ond part, the explicit form of the cluster equations is derived.

Throughout the text, we use p, q, r as indices corresponding to
general spinorbitals, i; j; k . . . for occupied spinorbitals, a; b; c . . .

for virtual spinorbitals, and a; b; c . . . for spinorbitals from the
complementary space which is the orthogonal complement to
the computational basis set. Einstein summation convention is
used for indices corresponding to spinorbitals.

2.1. MR BW-CC-F12 method

Let a model space be spanned by M reference configurations Ul.
As a general function within the model space, the reference state
can be written as a linear combination of these reference configu-
rations as

j WP
xi ¼

XM

l¼1

Cx
l j Uli; ð2Þ
where the index x denotes the chosen state. P̂ is the projector onto
the model space and Q̂ ¼ 1� P is its orthogonal complement. The
exact wave function can be expressed by the means of the wave
operator X̂x.

j Wxi ¼ X̂x j WP
xi ð3Þ

Here, we assume the wave operator in the form of the augmented
Jeziorski Monkhorst ansatz

X̂x ¼
XM

l¼1

eŜðlÞ j UlihUl j; ð4Þ

where S(l) is a global excitation operator defined with respect to
the l-th reference determinant. For simplicity, we have omitted
the x index for the S(l), as well as the cluster amplitudes. For a
proper description of the Coulomb cusp in the many-electron wave
function, we include into the S(l), apart from the conventional clus-
ter operator T̂ðlÞ, also the F12 part R̂ðlÞ

ŜðlÞ ¼ T̂ðlÞ þ R̂ðlÞ: ð5Þ

Analogously to R̂ in the single reference theory, the operator R̂ðlÞ
for the l-th reference in the most general form reads:

R̂ðlÞ ¼ R̂1ðlÞ þ R̂2ðlÞ

¼ ci
kðlÞ ~Rk

i ðlÞ þ
1
4

cij
klðlÞ ~R

kl
ij ðlÞ; ð6Þ

~Rk
i ðlÞ ¼ �Fkj

ajðlÞ~a
a
i ðlÞ � Fk

aðlÞ~aa
i ðlÞ; ð7Þ

~Rkl
ij ðlÞ ¼

1
2

�Fkl
abðlÞ~a

ab
ij ðlÞ þ �Fkl

abðlÞ~aab
ij ðlÞ: ð8Þ

Here, ci...
k... are parameters to be determined, ~a are normal ordered

replacement operators with respect to the pertinent references,
and the matrix elements

Fkl
abðlÞ ¼ hkl j f12ðr12Þ j abi ð9Þ

correspond to integrals over the correlation factor, f12ðr12Þ.
As shown above, the R̂ðlÞ operator involves occupied orbitals

related to the l-th reference as well as orbitals from the comple-
ment to the computational basis. This complement is the same
for all references Ul, since all the references use a common set of
molecular orbitals.

The exact energy can be obtained as an eigenvalue of the effec-
tive Hamiltonian. The eigenvalue equation can be written in the
matrix representationX

m
Heff

lmCx
m ¼ ExCx

l ; ð10Þ

where the eigenvector coefficients are the same as in Eq. (2).
In the case of a complete model space, cluster amplitudes

corresponding to excitations within the model space are set to
zero, in order to maintain the intermediate normalization. The
remaining cluster amplitudes are obtained by solving cluster
equations

ðEx � Heff
llÞhU

ðlÞ
# j eŜðlÞ j Uli ¼ hUðlÞ# j ½ĤNðlÞeŜðlÞ�C j Uli

þ hUðlÞ# j ½ĤNðlÞeŜðlÞ�DC;L j Uli; ð11Þ

where C indicates the connected part of the expression and DC,L the
disconnected linked part.

The projection manifold hU#j consists of the conventional part
hUl j ~ai...

a... and the F12 specific part hUl j ½ ~Rk...
i... ðlÞ�

y. As in the conven-
tional MR BW-CC approach, after solving Eqs. (11), a posteriori cor-
rection for the size-extensivity error can be applied in a single
iteration [36].

The matrix elements of the effective Hamiltonian, Heff
lm , are given

as
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Heff
lm ¼ hUl j Ĥ j Ulidlm þ hUl j ½bHNðmÞeSðmÞ�C j Umi: ð12Þ

The diagonal elements have the same formal structure as the corre-
lation energy in the single reference coupled cluster theory. The
off-diagonal terms are obtained as the residuals corresponding to
the internal excitation transforming Um to Ul.

2.2. Working equations

In this subsection, explicit formulas for the cluster equations are
presented with a particular emphasis on the new terms in MR BW-
CCSD-F12 which have to be included in addition to terms emerging
either in the conventional MR BW-CCSD or the single reference
CCSD-F12 theory. The equations are presented for a general case.
However, the present implementation was restricted to SA [14],
employing the variant C for evaluation of the matrix elements [44].

In order to do that, we introduce the following partitioning of
the normal ordered Hamiltonian HNðlÞ [45]

ĤNðlÞ ¼ Ĥ � hUl j Ĥ j Uli ¼ Ĥao
N ðlÞ þ Ĥcomp

N ðlÞ ð13Þ

Ĥao
N ðlÞ ¼ f q

p ðlÞ~ap
qðlÞ þ

1
4

�grs
pq

~apq
rs ðlÞ; ð14Þ

Ĥcomp
N ðlÞ ¼ f a

p ðlÞ~ap
aðlÞ þ f p

a ðlÞ~aa
pðlÞ þ f a

b ðlÞ~ab
a

þ 1
2

�grs
aq

~aaq
rs ðlÞ þ �gas

pq
~apq
as ðlÞ þ �gcs

ab
~aab
cs ðlÞ þ �gcd

aq
~aaq
cd ðlÞ

h i
þ �gcs

aq
~aaq
cs ðlÞ þ

1
4

�grs
ab

~aab
rs ðlÞ þ �gcd

pq
~apq
cdðlÞ þ �gcd

ab
~aab
cd

h i
:

ð15Þ

where Ĥao
N ðlÞ is the part of the Hamiltonian describable in the con-

ventional basis, Ĥcomp
N ðlÞ contains the remaining terms involving

indices from the complementary space. f q
p ðlÞ are matrix elements

of the Fock matrices and grs
pq ¼ hpq j 1

r12
j rsi.

In the following text we use

hUa...
i... ðlÞ j eR̂ðlÞ j Uli ¼ 0

) hUa...
i... ðlÞ j eŜðlÞ j Uli ¼ hUa...

i... ðlÞ j eT̂ðlÞ j Uli ð16Þ

hUl j R̂yðlÞeT̂ðlÞ j Uli ¼ 0

) hUl j R̂yðlÞeŜðlÞ j Uli ¼ hUl j R̂yðlÞeR̂ðlÞ j Uli ð17Þ

Projection of Eq. (11) onto the single excitations gives rise to:

ðEx � Heff
llÞhUl j ~ai

aðlÞeT̂ðlÞ j Uli ¼ hUl j ~ai
aðlÞ½Ĥao

N ðlÞeT̂ðlÞ�C j Uli

þ hUl j ~ai
aðlÞ½Ĥ

comp
N leŜðlÞ�C j Uli; ð18Þ

where the term on the l.h.s. of this equation is identical to the l.h.s.
of the singles equation of the conventional MR BW-CCSD method.
The first term on the r.h.s. is also present in the conventional MR
BW-CCSD, whereas the second term has a counterpart in the single
reference CCSD-F12.

Eq. (11) projected onto conventional double excitations
provides:

ðEx � Heff
llÞhUl j ~aij

abðlÞe
T̂ðlÞ j Uli ¼ hUl j ~aij

abðlÞ½Ĥ
ao
N ðlÞeT̂ðlÞ�C j Uli

þ hUl j ~aij
abðlÞ½Ĥ

ao
N ðlÞeT̂ðlÞ�DC;L j Uli

þ hUl j ~aij
abðlÞ½Ĥ

comp
N ðlÞeŜðlÞ�C j Uli

þ hUl j ~aij
abðlÞ½Ĥ

comp
N ðlÞeŜðlÞ�DC;L j Uli: ð19Þ

The term on the l.h.s., as well as the first two terms on the r.h.s.. are
again the same as in the conventional MR BW-CCSD, while the third
term on the r.h.s. is the analogous as the corresponding term in the
single reference CCSD-F12. The last term on the r.h.s. can be factor-
ized as

hUl j ~aij
abðlÞ½Ĥ

comp
N ðlÞeŜðlÞ�DC;L j Uli

¼ �dij
kl

�dcd
abhUl j ~ak

cðlÞ½Ĥ
comp
N ðlÞeŜðlÞ�C j Ulitl

dðlÞ; ð20Þ

where we have introduced

�drs
pt ¼ dr

pd
s
t � ds

pd
r
t : ð21Þ

The term hUl j ~ai
aðlÞ½Ĥ

comp
N ðlÞeŜðlÞ�C j Uli is already known from Eq.

(18).
Projection of Eq. (11) onto the unconventional space created by

R̂1 reduces to

ðEx � Heff
llÞhUl j ½ ~Rk

i ðlÞ�
yeR̂ðlÞ j Uli

¼ hUl j ½ ~Rk
i ðlÞ�

y½Ĥcomp
N ðlÞeŜðlÞ�C j Uli; ð22Þ

where the analog of r.h.s. is present in the single reference theory.
The new l.h.s. term

hUl j ½ ~Rk
i ðlÞ�

yeR̂ðlÞ j Uli ¼ Fa
i ðlÞF

m
a ðlÞck

mðlÞ; ð23Þ

can be expressed by replacing the (complete) complementary basis
by a complementary auxiliary basis set (CABS) [46], as long as the
merger of CABS with the main computational basis is close to the
Hartree–Fock limit basis.

Finally, in the equations obtained by projection of (11) onto the
space created by R̂2,

ðEx � Heff
llÞhUl j ½ ~Rkl

ij ðlÞ�
yeŜðlÞ j Uli

¼ hUl j ½ ~Rkl
ij ðlÞ�

y½Ĥcomp
N ðlÞeŜðlÞ�C j Uli

þ hUl j ½ ~Rkl
ij ðlÞ�

y½ĤNðlÞeŜðlÞ�DC;L j Uli; ð24Þ

the l.h.s. can be evaluated using

hUl j ½ ~Rkl
ij ðlÞ�

yeŜðlÞ j Uli

¼ 1
2

1
2

�Fab
ij ðlÞ�F

mn
ab ðlÞ þ �Fab

ij ðlÞ�F
mn
ab ðlÞ

� �
ckl

mnðlÞ

þ 1
2

Fab
ij ðlÞF

m
a ðlÞF

n
bðlÞck

mðlÞcl
nðlÞ

� Fab
ij ðlÞt

k
aðlÞF

n
bðlÞcl

nðlÞ

¼ 1
2
Xmn

ij ðlÞckl
mnðlÞ þ

1
2
Wmn

ij ðlÞck
mðlÞcl

nðlÞ

� Xan
ij ðlÞtk

aðlÞcl
nðlÞ: ð25Þ

All the matrix elements involving the complementary basis are
calculated following Ref. [44]. The intermediates X and W in Eq.
(25) are evaluated identically to those from Ref. [7], however,
now they must be evaluated for each reference configuration.
The first term on the r.h.s. of Eq. (24) is analogous to the single
reference CCSD-F12. The last r.h.s. term can be more explicitly
rewritten as:

hUl j ½ ~Rkl
ij ðlÞ�

y½ĤNðlÞeŜðlÞ�DC;L j Uli

¼ �dmn
ij

1
2

�Fab
kl ðlÞF

o
aðlÞcm

o ðlÞhUl j ~an
b½Ĥ

comp
N ðlÞeŜðlÞ�C j Uli

�
þ �Fab

kl ðlÞF
o
aðlÞcm

o ðlÞhUl j ~an
b ½ĤNðlÞeŜðlÞ�C j Uli

þ �Fab
kl ðlÞhUl j ~am

a ½Ĥ
comp
N ðlÞeŜðlÞ�C j Ulitn

b

o
: ð26Þ

This term as a whole clearly vanishes within the SA when the one-
particle resolution of identity is approximated by the projector onto
the computational basis, i. e. saturation at one-particle level is



Figure 1. Energy errors (DE) for the MR BW-CCSD, (}) MR BW-CCSD-R12 (+) and
MR BW-CCSD-F12 ð�Þ methods in mEh with respect to the spdf MR BW-CCSD-F12
values as functions of the basis sets and the geometry of the H4 model.
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assumed. If this is not satisfied, the summations over a or b have to
be replaced by summations over CABS. Matrix elements within hi
are analogous to those in Eq. (18).

3. Computational

3.1. H4 model

The MR BW-CCSD-F12 method was tested on the H4 model sys-
tem first suggested by Jankowski and Paldus [47]. Here, four hydro-
gens are placed into the four vertices of the isosceles trapezoid,
with the fixed distance of 2 a.u. between the neighboring atoms.
The geometrical configurations can be characterized by the angle
between the height and side of the trapezoid, varying from 0 for
the square structure to p=2 for the linear geometry. While the lin-
ear structure is well described at single reference level, the (nearly)
square structure has a multireference character due to the (quasi)
degeneracy of the HOMO and LUMO orbitals.

Throughout the calculations, the model space consisting of two
references HOMO2LUMO0 (I) and HOMO0LUMO2 (II) was em-
ployed, as constructed from the Hartree Fock orbitals. The calcula-
tions used four basis sets: the R12 optimized 9s6p4d3f basis [48],
as well as its 9s, 9s6p, and 9s6p4d subsets. These basis sets are sat-
urated enough to be used within the SA [14]. The correlation factor
was taken both as the linear r12 and the Slater type geminal, e�cr12 ,
with a fixed value of c = 1.0.

3.2. Fluorine molecule

Dissociation curve of the fluorine molecule was calculated for a
set of 15 intermolecular distances in the range between 2.0 and
5.6 Bohr. The model space was formed from 3 r2

g and 3 r2
u orbitals

that become degenerate for large interatomic distances. Within
this model space, the references 1r2

g 1r2
u2r2

g 2r2
u1p4

g 1p4
u3r2

g and
1r2

g 1r2
u2r2

g 2r2
u1p4

g 1p4
u3r2

u were used, while the monoexcited refer-
ences were omitted because of symmetry considerations. Calcula-
tions were performed using SA and employing the R12 suited
19s14p8d6f4g3h basis [49] together with its subsets 19s14p8d6f
and 19s14p8d6f4g. The calculations were performed without a
posteriori size-extensivity correction.

4. Results and discussion

4.1. H4 model

The resulting energies of the H4 system are listed in Table 1. In
Figure 1, we present deviations from the reference energy, taken as
Table 1
Geometry and the basis set dependence of the total MR BW-CCSD energies for the H4
model. Energies are in Eh. For geometry and the basis set specification see the text.

h/p 9s 9s6p 9s6p4d 9s6p4d3f

MR BW-CCSD
0.00 �2.060940 �2.093642 �2.099197 �2.099945
0.02 �2.075590 �2.108671 �2.114027 �2.114768
0.10 �2.150466 �2.184585 �2.189177 �2.189832
0.50 �2.223060 �2.253237 �2.256894 �2.257451

MR BW-CCSD-R12
0.00 �2.126476 �2.101485 �2.100409 �2.100515
0.02 �2.144353 �2.116592 �2.115355 �2.115386
0.10 �2.213502 �2.191568 �2.190495 �2.190480
0.50 �2.259192 �2.257913 �2.258016 �2.258039

MR BW-CCSD-F12
0.00 �2.108423 �2.099702 �2.100499 �2.100590
0.02 �2.122113 �2.114649 �2.115338 �2.115417
0.10 �2.192521 �2.189945 �2.190427 �2.190483
0.50 �2.253317 �2.257292 �2.258005 �2.258047
the MR BW-CCSD-F12 results with STG using the 9s6p4d3f basis
set. Conventional MR BW-CC methods yield maximum deviations
from the reference 40, 6.4, 1.4, and 0.7 mEh in s, sp, spd, and spdf
basis sets, respectively. At the R12 level, we observe significant
improvement of the basis set convergence, where the maximum
deviations are �28.9, 1.2, and 0.1 mEh in the s, sp, and spd basis
sets, respectively. The energies calculated in the sp set thus lie be-
tween results of conventional MR BW-CC method in spd and spdf
bases. The performance in the s basis set is relatively poor, due
to unsatisfactory saturation of the basis set that in this case does
not truly meet the conditions for the SA. Nevertheless, with the
STG correlation factor the maximum deviation with s set is reduced
to �8 mEh, while improvement is also noticeable with the sp basis
ð0:9 mEhÞ. Also, unlike with the linear correlation factor, the error
curves are monotonous. With the spd and spdf sets the R12 and
F12 results are practically indistinguishable. These observations
underline our recent finding related to single reference CCSD-
R12/F12 theories [7].

In order to complete the picture on the R12/F12 impact, we
have also investigated the changes of the weights of the two refer-
ence configurations along the curve, as shown in Table 2. These
weights are expected to be almost independent from the dynami-
cal correlation introduced via R12/F12. Yet, little impact is seen. At
the level of MR BW-CCSD, the weights change very little with the
extension of the basis set. When MR BW-CCSD-R12 is compared
with MR BW-CCSD in the multireference region, we see a signifi-
cant change of the weights in 9s basis set. These differences rapidly
decrease with the size of the basis set. In contrast, with the STG
correlation factor, no such trend is observed and the weights lie
close to each other in all the four basis sets, as should be expected.
This is another evidence of the superior performance of MR BW-
CC-F12 approach.



Table 2
Comparison of the reference determinants weights for the H4 model at selected
geometries using conventional and explicitly correlated MR BW-CCSD.

h/p Reference configuration

I II I II I II

conv. R12 F12

9s
0.00 0.5695 0.4304 0.6443 0.3556 0.5655 0.4345
0.02 0.8424 0.1575 0.8841 0.1158 0.8514 0.1486
0.10 0.9859 0.0140 0.9891 0.0108 0.9878 0.0122
0.50 0.9986 0.0013 0.9988 0.0011 0.9988 0.0012
9s6p
0.00 0.5752 0.4247 0.5859 0.4140 0.5764 0.4236
0.02 0.8781 0.1218 0.8836 0.1163 0.8794 0.1206
0.10 0.9918 0.0081 0.9921 0.0078 0.9920 0.0080
0.50 0.9992 0.0007 0.9992 0.0007 0.9992 0.0008
9s6p4d
0.00 0.5766 0.4233 0.5799 0.4200 0.5771 0.4229
0.02 0.8792 0.1207 0.8808 0.1191 0.8797 0.1203
0.10 0.9931 0.0068 0.9931 0.0068 0.9932 0.0068
0.50 0.9996 0.0003 0.9996 0.0003 0.9996 0.0004
9s6p4d3f
0.00 0.5767 0.4232 0.5784 0.4215 0.5770 0.4230
0.02 0.8793 0.1206 0.8802 0.1197 0.8797 0.1203
0.10 0.9932 0.0067 0.9932 0.0067 0.9933 0.0067
0.50 0.9996 0.0003 0.9996 0.0003 0.9996 0.0004

Figure 2. Potential energy curves for F2 molecule.

Table 3
Convergence of the total energies towards the basis set limit for the F2 molecule at
selected interatomic distances (R) using conventional and explicitly correlated MR
BW-CCSD approaches. Energies are in Eh.

R 19s14p8d6f 19s14p8d6f4g 19s14p8d6f4g3h

MR BW-CCSD
2.0 �199.179416 �199.198648 �199.204059
2.6 �199.342271 �199.360243 �199.365217
3.2 �199.318380 �199.335420 �199.340152
3.8 �199.289414 �199.305958 �199.310515
5.2 �199.271889 �199.288157 �199.292634

MR BW-CCSD-F12
2.0 �199.215346 �199.215126 �199.214825
2.6 �199.375208 �199.375361 �199.375367
3.2 �199.349697 �199.350002 �199.349982
3.8 �199.319656 �199.320148 �199.320182
5.2 �199.301628 �199.302200 �199.302241

Table 4
Selected spectroscopic parameters for F2 molecule calculated from conventional and
explicitly correlated MR BW-CCSD energies.

Basis set Re=Å Emin/ Eh we=cm�1 wexe=cm�1

Conventional
19s14p8d6f 1.4001 �199.342761 936.7 11.10
19s14p8d6f4g 1.3963 �199.360837 951.5 11.07
19s14p8d6f4g3h 1.3952 �199.365966 958.2 11.06

F12
19s14p8d6f 1.3949 �199.375676 953.5 10.70
19s14p8d6f4g 1.3950 �199.375903 954.4 10.70
19s14p8d6f4g3h 1.3950 �199.375850 954.0 10.70
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4.2. Fluorine molecule

The calculated dissociation curves are presented in Figure 2 and
for selected geometries also in Table 3. Since our aim in this Letter
is to introduce the explicit correlation into the MR approaches, we
shall focus merely on these effects. Other aspects of the MR BW-CC
approach in comparison to alternative MR CC theories have been
discussed elsewhere [31,42].

As expected, our conventional results show a very strong basis
set dependence of the total energies. Energies calculated in the spdf
basis set are 16–19 mEh above their spdfg counterparts, whereas
the extension of the basis set to spdfg and spdfgh lowers the ener-
gies by additional 4.5–5 mEh.

In contrast, the basis set convergence is dramatically improved
when MR BW-CCSD-F12 method is used. Energies calculated in the
three basis sets fall within an interval of 1 mEh for all points along
the dissociation curve. The difference between the spdf and spdfg
energies range from �450 to 650 lEh, whereas the differences be-
tween spdfg and spdfgh energies are between �30 and 40 lEh.

Improvement in the basis set convergence of the absolute ener-
gies is reflected in Table 4, where we display the calculated equilib-
rium distances, harmonic frequencies and the anharmonicities.
These have been obtained from the Morse potential fitted around
the minimum in the range 2.2–3.4 Bohr. For us, most important
is the fact that introducing F12 with the MR approach did not cause
numerical inballance, and one can really achieve the basis set limit
similarly as with the SR approach. It is irrelevant to compare with
experiment because the MR CCSD is still far from the full CI limit.
For example, mere introduction of triple excitations changes (low-
ers) the harmonic frequencies by about 10% [50].

As far as convergence of cluster equations concerned, no serious
problems were encountered and the MR BW-CC-F12 performance
was on a par with its conventional counterpart. In all cases, no
more than 26 iterations were required to converge the amplitudes
to 10�7.

The a posteriori size-extensivity correction did not yield smooth
enough potential energy curves due to the inherent intruder state
problems, which are particularly strong due to use of highly satu-
rated basis sets. We admit that MR BW-CC results without size-
extensivity correction are of limited relevance; however, the aim
of this study was the verification of the basis set convergence with-
in MR CC framework and the MR BW-CC F12 should serve here as
the first step in the development of MkCC F12.
5. Conclusions

Explicitly correlated MR BW-CCSD-F12 method with the corre-
lation factor based on the Slater type geminals has been developed
and implemented. The performance of the method was tested on
the H4 model and dissociation curve of the fluorine molecule. As
expected for both systems, the absolute energies converge much
faster to the basis set limit values than using the conventional ap-
proach. It was also found that the use of STG’s significantly im-
proves the performance in 9s basis set in H4 system, compared
with calculations with linear correlation factor. Furthermore, the
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MR BW-CC-F12 approach is numerically stable for fluorine at large
intermolecular distance. The most important message is that intro-
ducing the electron correlation explicitly via the F12 approach into
the multireference CC wave function when the F12 treatment is
applied separately to each of the references did not cause numer-
ical inballance and can be effectively used in order to achieve the
basis set limit values.
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