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ABSTRACT: A combination of orbital-optimized methods with explicit
correlation is discussed for the example of the orbital-optimized distinguishable
cluster approach. It is shown that the perturbative approach is applicable even in
strongly correlated situations, and it is important in these cases to use Lagrange
multipliers together with the amplitudes. The partial amplitude relaxation can be
applied to relax the amplitudes and makes absolute energies closer to complete
basis set results.

1. INTRODUCTION

Orbital relaxation in correlated wave functions parametrizes
the response of the mean-field one-particle states to the
perturbations resulting from the fluctuation potential and is an
essential component of accurate wave function methods. The
exponential of the singles excitation operator in coupled-cluster
theory1,2 as a partial orbital relaxation3 has some advantages
compared to orbital optimization techniques, connected to the
fact that the orbitals do not change. In particular, the two-
electron integrals need only be computed once, and it is
straightforward to apply restrictions on the excitation space to
exploit the spatial locality of electron correlation in insulators.
However, there are situations where orbital relaxation is strong
and the partial relaxation of the exponential singles ansatz is
not sufficient. Indeed, Brueckner theory4,5 and, more notably,
fully orbital optimized methods6−11 have seen a renaissance in
recent years. Orbital-optimized methods that optimize a
Lagrangian with respect to orbital rotations are attractive due
to the hermiticity of the working equations,8,10,12 and the
reduction of high-order excitation amplitudes, which simplifies
some of the quasi-multireference problems for single-reference
methods.7

This letter concerns the distinguishable cluster (DC)
approach13−15 which, despite its single-reference formalism
and close resemblance to the coupled-cluster method, provides
promising results for strongly correlated systems. In contrast to
the coupled-cluster singles and doubles (CCSD) method,
DCSD potential energy curves are usually qualitatively correct,
dissociating to a constant. However, numerical problems are
sometimes encountered for DCSD, where the equations
converge to different solutions resulting in unphysical features
in the potential energy surface. The orbital optimization in
orbital-optimized distinguishable cluster doubles (ODCD)
greatly ameliorates these difficulties.14

The purpose of this letter is to communicate the application
of F12 explicitly correlated theory16−18 to orbital-optimized

methods such as ODCD to overcome the slow basis-set
convergence that plagues electron-correlation methods and
approach the basis-set limit of such methods with small orbital
basis sets. While F12 theory is straightforwardly applied to
DCSD theory through its similarity to CCSD theory, and has
been shown to provide the anticipated accelerated basis-set
convergence,19 the application to orbital-optimized theories
requires some attention. The primary obstacle is the expense
associated with recomputing the two-electron integrals
involving the F12 correlation factor and rebuilding the F12
intermediates after every orbital update. As pointed out by one
of us in the context of Brueckner theory,20 a practical route to
combining explicit correlation with orbital-optimized methods
is to use Valeev’s perturbative F12 approach,21,22 where the
F12 contribution enters as a posthoc energy correction and the
integrals and intermediates need only be computed once. We
have recently shown that the loss of accuracy associated with
neglecting the amplitude relaxation due to the coupling
between the F12 doubles amplitudes and the T2 conventional
doubles amplitudes can be eliminated with no significant
additional cost by employing an approximate Lagrangian
estimate for the amplitude relaxation energy.23

In this letter we report first calculations that demonstrate the
utility of the explicitly correlated orbital-optimized distinguish-
able cluster doubles method for both weakly and strongly
correlated molecular systems.

2. THEORY

The working equations for orbital-optimized DCD share a
common structure to orbital-optimized quasi-variational
coupled-cluster,8 density-cumulant,12 and geminal theo-
ries,24,25 and the procedure for applying F12 theory presented
in this section is transferable to all of these approaches. The

Received: October 16, 2018
Published: November 30, 2018

Letter

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2019, 15, 13−17

© 2018 American Chemical Society 13 DOI: 10.1021/acs.jctc.8b01047
J. Chem. Theory Comput. 2019, 15, 13−17

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 T

O
U

L
O

U
SE

 I
II

 -
 P

A
U

L
 S

A
B

A
T

IE
R

 o
n 

M
ar

ch
 2

6,
 2

01
9 

at
 0

9:
27

:4
4 

(U
T

C
).

 
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b01047
http://dx.doi.org/10.1021/acs.jctc.8b01047


parameters of the parent (non-F12) theory are determined by
optimizing a Lagrangian composed of the projective energy
estimator, which depends on the occupied orbitals and
correlation parameters, plus each constraint times an
associated Lagrange multiplier, where the constraints are the
equations for the doubles amplitudes and orbital orthogonality
(if required).

[ ̅ ̅ ] = [ ] + ̅ Ω [ ] + ̅ [ ]L E WT c T c T c T T c c c, , , , ,2 2 2 2 2 2 (1)

Here T2, c, T̅2, and c ̅ denote doubles amplitudes, orbital
coefficients, and their Lagrange multipliers, respectively, Ω2 are
the amplitude equations and W are the orthonormality
constraints. The optimized orbital coefficients are those that
make the Lagrangian stationary with respect to varying the
orbitals. Applying Valeev’s perturbative F12 approach involves
first optimizing the orbitals and amplitudes of the parent
method using eq 1 and then computing the explicitly
correlated energy by evaluating the corresponding F12
Lagrangian without further refinement of the parameters

[ ̅ ] = [ ] + ̅ Ω [ ] + Ω [ ]†L ET T C T C T T C C T C, , , , ,2 2 2 2 2 2 F12 2
(2)

where ΩF12 are the F12 amplitude equations and C are the F12
amplitudes that satisfy the first-order coalescence conditions,
where the optimized reference orbitals define the zeroth-order
wave function. Equation 2 contains Lagrange multipliers,
which for methods with singles-similarity-transformed and
Brueckner orbital relaxations are replaced by contravariant
amplitudes to avoid the computational expense of solving for
the multipliers. However, for orbital-optimized methods, it is
anyway necessary to compute the Lagrange multipliers and
these can be used in the F12 correction.
Various low-cost approximations to the full F12 amplitude

equations have been proposed in the literature. These include
the F12a and F12b approximations,26,27 the (2)F12 approx-
imation,21,22 and the (F12*) and (F12) approximations.28−30

The accuracy and convergence properties of these approx-
imations have recently been studied very carefully and show
that the approximation magnitudes follow the ranking F12a >
F12b ≈ (2)F12 > (F12*) ≈ (F12).31 All of these
approximations can be applied in the context of Valeev’s
perturbative approach, and in this work we use approximations
F12a and F12b for reasons of convenience of implementation
in a development version of the MOLPRO package.32 The
notation ODCDF12b is used to denote that the F12b
approximation is used for a posthoc energy correction.
The posthoc F12 energy correction does not account for the

relaxation of the orbitals or T2 amplitudes induced by coupling
to the F12 amplitudes. We have recently presented a
Lagrangian-based estimate of the relaxation energy,23 which
improves both absolute and relative energies with virtually no
additional cost.

δ δ= [ ̅ ] + Ω [ ] + Ω [ ]E L T T C T T C T T C, , , ,2 2 1 1 2 2 2 2 (3)

Here the orbital relaxation is treated through the exponenti-
ated T1 excitation operators and Ω1 is the F12 contribution to
the DCSD-F12 singles residual. Ω2 is the same as in eq 2. The
δT terms in eq 3 should in fact be δT̅. However, evaluating δT̅
requires one additional evaluation of the Lagrange multiplier
residuals, which is an expense we avoided. Instead, we use the
(contravariant) amplitude update. Since quality of the
correction depends on the accuracy of the update procedure,

and the perturbative update can be rather poor in the strongly
correlated case, it is appropriate to modify the update to
include an imaginary level shift that eliminates potential
singularities in the denominators, a technique also known as
Tikhonov regularization33,34
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with Δi
a and Δij

ab denoting the usual denominators for a
perturbative update,

Δ = ϵ − ϵ Δ = ϵ + ϵ − ϵ − ϵ,i
a

a i ij
ab

a b i j (5)

and a, b, and i, j denoting the virtual and occupied indices,
respectively.
The CABS singles correction in F12 theory is derived as a

perturbative correction for the basis-set incompleteness error
in the HF energy. Here we require a perturbative correction for
the basis-set incompleteness error in the reference energy of
the optimized orbitals. The appropriate CABS singles
correction here is the same as that for Brueckner F12 theory,20

which differs from the standard correction in that the nonzero
fai block of the Fock matrix is set to zero in the equations,
which prevents relaxation toward the canonical HF orbitals.

3. TEST CALCULATIONS
We first examine the performance of the F12 correction for the
dissociation curve of N2, which is a comparably simple case for
the DC methods, where both DCSD and ODCD methods
work equally well and where DCSD-F12 theory is known to
accelerate the basis-set convergence of DCSD theory.19 We
performed ODCDF12b calculations at bond separations
between 1.4 and 6 au using an aug-cc-pVTZ orbital basis set.
The core electrons are frozen in all calculations. The aug-cc-
pVTZ/jkfit basis set was used for the complementary auxiliary
basis (CABS), and the aug-cc-pVTZ/mp2fit basis set was used
for density fitting. A geminal exponent of γ = 1 au

−1 was
employed for the correlation factor. The complete basis set
(CBS) numbers are estimated using Helgakers two point
extrapolation35 using the aug-cc-pVQZ and aug-cc-pV5Z basis
sets for the correlation energy, and the reference energy is that
of the ODCD/aug-cc-pV5Z-optimized orbitals, unless stated
otherwise. We performed calculations with and without the
partial amplitude relaxation correction and tested the impact of
the imaginary shift parameter ω. Calculations without the
correction are denoted by [woc]. We also performed
calculations where the F12 energy contribution is computed
using the contravariant amplitudes rather than using the
Lagrange multipliers to assess the impact of this approx-
imation, denoted by [T2].
In Figure 1 we display the potential energy curves of

ODCDF12b with and without the amplitude relaxation
correction and include the ODCD/CBS and MRCI+Q-F1236

curves for comparison. All methods produce qualitatively
correct curves with no unphysical features. In Figure 2 we
display the differences of ODCDF12b[woc] and ODCDF12b to
the ODCD/CBS energies. The F12 correction performs
slightly better at stretched geometries than at equilibrium.
The relaxation correction provides a small but systematic
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reduction in the basis-set error at all geometries and the
ODCD and ODCDF12b[woc] curves are parallel to each other
even at stretched geometries. We find no evidence of
singularities in the perturbative orbital update, and adding an
imaginary shift ω = 1 in the correction has no impact on the
results.
In Figure 2 we also display the basis-set incompleteness

curves obtained when using the contravariant amplitudes in eq
2 in place of the Lagrange multipliers. Approximating the
multipliers with contravariant amplitudes is valid in the weakly
correlated regime, but introduces substantial errors of nearly 4
kcal/mol at 6 bohr separation and is not recommended in
ODCD-F12 theory.
In Figure 3 we plot the basis-set errors for various basis sets

for conventional and F12 methods as the function of
interatomic distance. To obtain the basis set limit energy, we
compute an aug-cc-pV5Z-aug-cc-pV6Z CBS correlation
energy, which is added to the reference energy from
ODCD/aug-cc-pV6Z-optimized orbitals. As expected,
ODCDF12b converges much more quickly to the basis-set

limit. Interestingly, the slope of the F12 curves is much flatter,
which makes relative basis-set errors along the dissociation
curve much smaller than for non-F12 ODCD, even with very
large basis sets.
The carbon monoxide molecule has been identified

previously14 as one of the problematic cases where the quality
of the orbital relaxation treatment plays a critical role in the
quality of the results. The DCSD potential energy curve in cc-
pVDZ basis is completely wrong for larger interatomic
distances, the BDCD curve has an unphysical bump in the
region of 4 bohr, but the ODCD method using cc-pVDZ basis
set yields a qualitatively correct potential energy curve (see
Figure 1 in ref 14). In the following we investigate the behavior
of ODCDF12b theory for this molecule, using an aug-cc-pVTZ
basis. We experienced severe convergence problems in the
ODCD equations for basis sets larger than aug-cc-pVDZ, and
the method tends to converge to higher lying solutions. In
order to calculate the ODCD potential energy curve, we first
converged the BDCD solutions up to a separation of 6 bohr
and then calculated ODCD curve by starting from the BDCD
6 bohr solution and reducing the interatomic distance. The
ODCDF12b curve is qualitatively correct as can be seen in
Figure 4, and as for the nitrogen molecule, both ODCDF12b

and ODCDF12b[woc] are quite parallel to the CBS curve, with
a nearly constant basis-set error along the dissociation curve.
The small bump seen in the basis-set incompleteness curves
also occurs in the ODCD without F12 and is a vestige of the
problems encountered with DCSD and BDCD at this
interatomic separation. The problems arise because there are
two low-lying solutions that cross, as shown in the Supporting
Information.
The above examples demonstrate that the posthoc F12

correction performs well both at equilibrium and at stretched
geometries. To examine the stability of the F12 correction in
these regimes, we have investigated the γ dependency of the
ODCDF12b energies for N2 and CO at their equilibrium bond
lengths and in the dissociation region. The results are displayed
in Figure 5. We find that the optimal γ of ∼1.7 au

−1 lies at a

Figure 1. Potential energy curve of N2 molecule.

Figure 2. Basis-set incompleteness error (kcal/mol) of ODCDF12b
with and without the relaxation correction and using T2 in place of the
Lagrange multipliers. The curve ODCDF12b, ω = 1 corresponds to a
calculation with the imaginary shift set to one.

Figure 3. Basis-set incompleteness error (kcal/mol) of ODCDF12b,
ODCDF12b[woc], and conventional ODCD using aug-cc-pVTZ, aug-
cc-pVQZ, aug-cc-pV5Z, and aug-cc-pV6Z basis sets.

Figure 4. Potential energy curve of CO molecule (above) and basis-
set incompleteness error (below).
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higher value than in CCSD-F12 theory for these molecules,37

which is ∼1.4 au
−1. The fact that short ranged correlation

factors perform better is presumably because using the
reference orbitals to build geminal basis functions is less
physically meaningful in ODCD theory than in CCSD-F12
theory. In both molecules, there is also a slight shift of the
optimal γ to larger values for stretched geometries. Never-
theless we find that, just as in CCSD-F12 theory, very good
results are obtained for relative energies using the fixed
amplitude approach with a correlation length scale of 1 au

−1,
even for the strongly correlated regime at stretched geometries.
Additionally we have investigated the accuracy of ODCDF12a

reaction energies compared to ODCD/CBS, approximate
CCSDT(Q)/CBS, and zero-point-energy back-corrected ex-
perimental results for a test set from ref 38, which are all well
described by a single-reference determinant. The ODCD/CBS
reaction energies have been obtained from a aug-cc-pVQZ−
aug-cc-pV5Z extrapolation for most of the reactions. For three
reactions involving cyclopropene, cyclobutene, and benzene
the basis-set limit has been estimated from a aug-cc-pVTZ−
aug-cc-pVQZ extrapolation, and for a reaction involving LiH
(for which we do not use frozen-core approximation) we have
used a aug-cc-pwCVQZ−aug-cc-pwCV5Z extrapolation. The
results can be found in Table 1. Concerning the basis-set
incompleteness error, we find that the error from ODCDF12a
with an aug-cc-pVTZ basis is smaller than that of ODCD/aug-
cc-pVQZ. In addition to ODCDF12a, we examined the
performance of a range of F12 approximations: using the T2
amplitudes in place of the Lagrange multipliers; not using the
amplitude relaxation correction; adding a large imaginary shift
to the relaxation amplitude update; using the DCSD singles
residual for the amplitude relaxation and the DCSD CABS
singles correction, denoted [fai]. For these single-reference
systems, all F12 variants perform similarly. The mean absolute
error with respect to back-corrected experimental or near basis
set limit CCSDT(Q) energies is within 1 kcal/mol for
ODCDF12a, and maximum errors are 4 kcal/mol. This is very

impressive accuracy for a doubles theory. Spin-component
scaling,39 applied previously to DCSD,40 can also be used for
ODCD and improves the reaction energies results further.

4. CONCLUSIONS
Orbital-optimized explicitly correlated methods are made
practical by using Valeev’s perturbative posthoc F12 approach.
For strongly correlated electronic structures, the accuracy of
the F12 correction is greatly improved by the availability of the
Lagrange multipliers in ODCD theory, since they are not well
approximated by contravariant amplitudes in this regime. The
orbital-optimized explicitly correlated distinguishable cluster
approach can be used in situations where orbital relaxation is
large and the DCSD-F12 method breaks down. The amplitude
relaxation correction introduced in ref 23 that improves the
posthoc F12 correction can be applied to explicitly correlated
ODCD theory in both weakly and strongly correlated regimes.
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W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M.
E.; Nicklass, A.; O’Neill, D. P.; Palmieri, P.; Peng, D.; Pflüger, K.;
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