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We analyze the performance of 17 different correlation factors in explicitly correlated second-order
many-body perturbation calculations for correlation energies. Highly performing correlation factors are
found to have near-universal shape and size in the short range of electron-electron distance
(0 < r12 < 1:5 a.u.). The long-range behavior (r12 > 1:5 a.u.) is insignificant insofar as the factor becomes
near constant, leaving an orbital expansion to describe decoupled electrons. An analysis based on a low-
rank Taylor expansion of the correlation factor seems limited, except that a negative second derivative
with the value of around �1.3 a.u. correlates with high performance.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The explicitly correlated extension [1–4] of an ab initio electron-
correlation method captures a much greater portion of the exact
correlation energy with the aid of a correlation factor (a function
of the interelectronic distance, r12) than the same correlation
method using an orbital basis set alone. Kutzelnigg [5] introduced
the so-called R12 ansatz of explicitly correlated method, using the
simplest correlation factor that satisfies Kato’s cusp condition [6],
namely, the one that is linear in r12. Klopper and Kutzelnigg [7]
developed the first generally applicable R12 method with
second-order many-body perturbation (MP2) theory using
Gaussian-type orbital (GTO) basis sets. Insofar as the GTO basis
set is large (so as to yield, e.g., 87% of the exact MP2 limit for
Ne), MP2-R12 is shown to recover an even greater portion of the
exact correlation energy (99% for Ne).

One of the present authors [8–10] proposed the use of the
Slater-type geminal (STG), which has the form ð1� e�cr12 Þ=c and
thus satisfies the cusp condition [6] at r12 ¼ 0, but becomes flat
as r12 ! 1. This was shown to systematically and significantly
outperform the linear factor [8–10]. Tew and Klopper [11] consid-
ered the Slater–linear factor, error function factor, error function–
linear factor, and observed their equally good (if not better) perfor-
mance. In analogy with the contracted GTO approximation of a
Slater-type orbital, Valeev [12] explored a correlation factor that
was a linear combination of Gaussian-type geminals (GTG), and
observed the near-optimal performance of a single STG. Indeed, a
STG seems to resemble the cusped hole of a pair function of the
Hylleraas functional (see, e.g., Ref. [13]) so closely that its associ-
ated excitation amplitudes (geminal amplitudes) can be held fixed
at values dictated by the singlet and triplet cusp conditions
[6,14,15], leading to the SP ansatz [9]. Today, a nonlinear correla-
tion factor such as STG has completely replaced the linear factor
in explicitly correlated methods, and those using the former are
distinguished from the R12 methods as the F12 methods.

From these studies, it is evident that the shape of a correlation
factor away from r12 ¼ 0 is equally important for the performance
as the shape at r12 ¼ 0. Exact pointwise satisfaction of the cusp
condition seems immaterial [16], judging from the fact that a
GTG expansion of a STG works well [11,12] despite GTG’s violation
of the cusp condition. Klopper et al. [1] speculated the importance
of a nonzero second derivative of the correlation factor with
respect to r12, which the linear factor lacks. However, the value
of the second derivative (i.e., the second-order cusp condition
[17]) is system- and state-dependent and is not known a priori,
making it hard to judge the correctness of this speculation. Ras-
solov and Chipman [18] derived an equality obeyed by the second
and third derivatives, the significance of which is yet to be
determined.

Monkhorst [19] also analyzed the asymptotic forms of pair
functions under various conditions and argued that two electrons
should ‘decouple’ at large r12. This may explain the excellent per-
formance of STG, which becomes constant at r12 ! 1, and the poor
performance of the linear factor, which grows indefinitely. On the
other hand, the correct long-range asymptote in a homogeneous
electron gas was shown to be a screened Coulomb decay, support-
ing the Yukawa–Coulomb factor [20], whose superior performance
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was numerically demonstrated by Grüneis et al. [21,22]. In quan-
tum Monte Carlo, which has extraordinary flexibility in the choice
of correlation factors, the Jastrow factor [23] is preferred, which
differs from either STG or Yukawa–Coulomb.

In this study, we exploit the same extraordinary flexibility of the
Monte Carlo MP2-F12 (MC-MP2-F12) method [24,25] to numeri-
cally compare the performance of 17 correlation factors for small
molecules. On this basis, we investigate the validity of the afore-
mentioned claims concerning the shape of the correlation factor
in determining the performance of the F12method in the SP ansatz.

2. Computational details

Using the SP ansatz [9] and generalized and extended Brilluoin
conditions [26,27], the F12 correction [5,28] to the MP2 energy
consists of two parts:

EVBX
F12 ¼ 2EV

F12 þ EBX
F12 ð1Þ

with

EV
F12 ¼ 5

8

Xocc:
i;j

V ij
ij �

1
8

Xocc:
i;j

V ij
ji; ð2Þ

EBX
F12 ¼ 7

32

Xocc:
i;j

ðBXÞijij þ
1
32

Xocc:
i;j

ðBXÞijji; ð3Þ

and

Vij
mn ¼ hij j r�1

12
bQ 12f 12 j mni; ð4Þ

ðBXÞijmn ¼ hij j f 12 bQ 12
bF1 þ bF2; f 12

h i
j mni; ð5Þ

where f 12 is the correlation factor, bFn is the Fock operator for elec-

tron n, and bQ 12 is the strong-orthogonality projector [29]:
Table 1
Correlation factors.

Correlation factor Name c/ a.u.a b/ a.u.a

f ð0Þ12 ¼ 0 None . . . . . .

f ð1Þ12 ¼ ð1� e�cr12 Þ=c Slater (STG) 1:2 . . .

f ð2Þ12 ¼ ð1� e�cr
2
12 Þ=ðcr12Þ Cusped Gaussian 1:2 . . .

f ð3Þ12 ¼ cr12=ðcþ r12Þ Rational 1:2 . . .

f ð4Þ12 ¼ lnð1þ cr12Þ=c Logarithm 2:0 . . .

f ð5Þ12 ¼ arctanðcr12Þ=c Arctangent 1:6 . . .

f ð6Þ12 ¼ f ð1Þ12 =2þ f ð3Þ12 =2
Hybrid 1:2 . . .

f ð7Þ12 ¼ r12 Linear . . . . . .

f ð8Þ12 ¼ cr12=ð2cþ 2r12Þ Higher rational 1:6 3:0

þb2r12=f2ðbþ r12Þ2g
f ð9Þ12 ¼ 1� e�cr

2
12 Gaussian (GTG) 0:5 . . .

f ð10Þ12 ¼ ð2e�cr12 � 2Þ=ðc2r12Þ Yukawa–Coulomb 2:0 . . .

f ð11Þ12 ¼ r12e�cr12 Slater–linear 0:5 . . .

f ð12Þ12 ¼ er12=ð1þcr12Þ Jastrow 1:2 . . .

f ð13Þ12 ¼ eU12=ð1þcU12 Þ Higher Jastrow 0:8 0:75

U12 ¼ ð1� e�br12 Þ=b
f ð14Þ12 ¼ � ffiffiffiffi

p
p

erfcðcr12Þ=ð2cÞ Error function 1:2 . . .

f ð15Þ12 ¼ r12 erfcðcr12Þ Error function–linear 0:4 . . .

f ð16Þ12 ¼ tanhðcr12Þ=c Hyperbolic tangent 1:2 . . .

f ð17Þ12 ¼ ð1� e�cr12 Þ=cþ e�br312 Slater–cubic exponential 1:2 0:003

f ð17Þ12 ¼ ð1� e�cr12 Þ=cþ e�br312 Slater–cubic exponential 1:2 0:006

f ð17Þ12 ¼ ð1� e�cr12 Þ=cþ e�br312 Slater–cubic exponential 1:2 0:012

a Near-optimal values of c and b in the case of H2O using the cc-pVDZ basis set.
b The recovery ratio of the MP2 correlation energy in the complete-basis-set (CBS) lim

alone cause an error up to a few tenths of 1%.
bQ 12 ¼ ð1� bO1Þð1� bO2Þ � bV 1
bV 2; ð6Þ

in the standard notation. The VBX expression [Eq. (1)] is variational
with respect to the size and shape of the correlation factor. At its
minimum, EB

F12 þ EX
F12 ¼ �EV

F12 and, therefore,

EVBX
F12 ¼ EV

F12: ð7Þ

The overall size of the correlation factor (the geminal ampli-
tudes) is held fixed in the SP ansatz. However, the shape of the cor-
relation factor can usually be adjusted by varying some
parameters, which are denoted by c and b in this Letter. Eq. (7) is
expected to hold accurately at the minimum of EVBX

F12 with respect
to c and b if and only if the shape of the correlation factor is suffi-
ciently close to that of the cusped hole of a pair function.

The total VBX energy can be divided into a sum over orbital-pair
contributions as follows:

EVBX
F12 ¼

Xocc:
i6j

eij ð8Þ

with

eij ¼ ð2� dijÞ 5
4
Vij

ij �
1
4
Vij

ji þ
7
32

ðBXÞijij þ
1
32

ðBXÞijji
� �

: ð9Þ

In this work, the high-dimensional integrals arising from Eqs.
(2) and (3) were evaluated by the Monte Carlo (MC) method
[24,25]. It has the unique ability to handle virtually any integrand
and thus any correlation factor, which is essential for our purpose.
More specifically, the VBX formalism can treat any correlation fac-
tor that is analytic (having at least first and second derivatives with
respect to r12), whereas the V formalism can use any factor includ-
ing numerically defined ones.

We considered 17 analytic correlation factors in Table 1
including 6 that had been studied in Ref. [25] for H2O and CH4
%CBSb @f 12=@r12j0 @2f 12=@r
2
12j0/ a.u. @3f 12=@r

3
12j0/ a.u.

70:4 0 0 0

96.1 1 �c ¼ �1:2 c2 ¼ 1:4

82.4 1 0 �3c ¼ �3:6

95.9 1 �2=c ¼ �1:7 6=c2 ¼ 4:2

95.3 1 �c ¼ �2:0 2c2 ¼ 8:0

96.0 1 0 �2c2 ¼ �5:1

96.1 1 �1=c� c=2 ¼ �1:4 3=c2 þ c2=2 ¼ 2:8

21:3 1 0 0

96.4 1 �2=b� 1=c ¼ �1:3 9=b2 þ 3=c2 ¼ 2:2

80.9 0 2c ¼ 1:0 0

96.4 1 �2c=3 ¼ �1:3 c2=2 ¼ 2:0

94.2 1 �2c ¼ �1:0 3c2 ¼ 0:8

96.0 1 1� 2c ¼ �1:4 1� 6cþ 6c2 ¼ 2:4

96.2 1 1� b� 2c ¼ �1:4 1� 6cþ 6c2

þb2 þ bð6c� 3Þ ¼ 2:0
92.6 1 0 �2c2 ¼ �2:9

88.2 1 �4c=p ¼ �0:5 0

94.1 1 0 �2c2 ¼ �2:9

94.9 1 �c ¼ �1:2 c2 � 6b ¼ 1:42

93.5 1 �c ¼ �1:2 c2 � 6b ¼ 1:40

91.3 1 �c ¼ �1:2 c2 � 6b ¼ 1:37

it averaged over H2O and CH4 using the cc-pVDZ basis set. Statistical uncertainties
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Fig. 2. Plots of (a) poorly performing correlation factors and (b) highly performing
ones at the values of c and b given in Table 1. The blue-shaded area likely reflects
the universal shape of the cusped holes of pair functions. Some curves are displaced
vertically to cross the origin. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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using the cc-pVDZ basis set. The MC-MP2-F12 calculations used
the implementation reported in Ref. [25] with 8:65� 107 MC
steps (3:74� 106 steps for Fig. 4), 40 redundant walkers for both
one-electron and two-electron walkers [30], and 6 blocking
transformations [31] for statistical uncertainties. In all cases,
the statistical uncertainties were small enough to not alter the
conclusions drawn below (the statistical uncertainty with 99%
confidence for the CBS recovery ratios was 0.1–0.4% with the
maximum being 0.43% for correlation factor 3). The MP2 ener-
gies with the cc-pVDZ basis set and in the complete-basis-set
(CBS) limits (see Ref. [25] for more details) were obtained with

NWCHEM [32]. The core electrons were excluded in correlation
calculations.

3. Results

Table 1 compiles the CBS recovery ratios (averaged over H2O
and CH4) for all 17 correlation factors at values of c and b that
are near optimal (the latter are also listed in the table for H2O).
For correlation factor 17, the results for 3 different values of b
are given. The first, second, and third derivatives of the correlation
factor with respect to r12 at r12 ¼ 0 are also shown. The value of
unity for the first derivative means that the correlation factor sat-
isfies Kato’s cusp condition; only GTG (besides null correlation fac-

tor listed as f ð0Þ12 ) does not satisfy the condition. Correlation factor
17 (STG–cubic exponential) reduces to a single STG as b ! 0. With
decreasing b, the performance (CBS recovery ratio) of this correla-
tion factor increases toward that of STG. This means that the cubic
exponential part of this correlation factor acts to only spoil the
high performance of STG.

Fig. 1 plots the CBS recovery ratios for H2O and CH4 separately
for the correlation factors listed in Table 1. The ratios for CH4 are
higher than those for H2O by a few percents, the cause of which
is unknown. From this figure and Table 1, we divide the correlation
factors into two groups: the highly performing ones that capture
90% or above of the correlation energies in the CBS limit, and the
poorly performing ones that fail to do so. The poorly performing
factors are 2 (cusped Gaussian), 7 (linear), 9 (GTG), and 15 (error
function–linear), while the rest are in the highly performing group.
For this small dataset, the five best performing factors are 8 and 10
(tie by higher rational and Yukawa–Coulomb), 13 (higher Jastrow),
1 and 6 (tie by STG and hybrid) in this order, although the differ-
ences among them are not statistically significant.
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optimal c and b values. Correlation factor 17 used b ¼ 0:003 a.u.
Fig. 2 plots the correlation factors in these two groups as a func-
tion of r12. Note that the values of c used in this plot are near
optimal for H2O (given in Table 1). Common features observed in
the shapes of the highly performing correlation factors will likely
reflect the near-universal shape of the cusped hole in a pair func-
tion, which cannot be described well by an orbital expansion. It
is striking to observe the convergence of the functional forms of
many best-performing correlation factors in the range of
0 < r12 < 1:5 a.u. For instance, with increasing b, correlation factor
17 (STG–cubic exponential) decays more rapidly with r12 and devi-
ates more greatly from STG. As a result, this factor with
b ¼ 0:012 a.u. (the lowest-lying curve) does not differ much in
the functional form from correlation factor 15 (error function–lin-
ear), which is among the poorly performing group. Correspond-
ingly, its CBS recovery ratio is also the lowest among the highly
performing group.

Fig. 3 draws the MP2-F12 energies in the variational VBX and
nonvariational V formalisms as a function of c, complementing a
similar figure for correlation factors 1 through 6 in Ref. [25]. Corre-
lation factor 7 (linear) is excluded because it has no c dependence,
and the plot for correlation factor 13 (higher Jastrow) is also omit-
ted as it is similar to the one for correlation factor 12 (Jastrow). We
observe that with the poorly performing correlation factors 9 and
15, the VBX and V curves do not even cross in the chosen domain
of c. With the best performing correlation factors 10 (Yukawa–
Coulomb) and 12 (Jastrow), in contrast, these two curves cross near
the minima of the VBX curves, satisfying Eq. (7). This, in turn,
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means that only when correlation factors have the right shape does
the SP ansatz work exceedingly well. The appropriateness of the
shape of a correlation factor can, therefore, be detected by the
way these two curves intersect (in addition to the CBS recovery
ratio). The b-dependence in the plot of correlation factor 17
(STG–cubic exponential) is a case in point. With decreasing b, this
correlation factor approaches STG, improving its CBS recovery
ratio. Correspondingly, the intersection of the VBX and V curves
also shifts toward the minimum of the VBX curve, attesting to
the gradual improvement of the functional form.

Fig. 4 shows the breakdown of the F12 correction (using corre-
lation factor 1 or STG) into its orbital-pair contributions [Eqs. (8)
and (9)] as a function of c. It can be seen that all valence-orbital-
pair F12 corrections have a minimum at a similar optimal value
of c around 1.2 a.u.
4. Discussion

4.1. Cusp (r12 ¼ 0)

Prendergast et al. [16] argued that satisfying the cusp condition
pointwise (at r12 ¼ 0) alters the correlation energy only in the lEh-
accuracy range, and is rather insignificant, the assertion also sup-
ported (qualitatively) by Valeev’s work [12]. Our results are not
inconsistent with this conclusion in the sense that there are several
correlation factors (such as 2, 7, and 15) that satisfy the cusp con-
dition but perform extremely poorly in the SP ansatz. There is only
one correlation factor (9 or GTG) in our list that does not satisfy the
cusp condition. It also performs poorly, but this is likely traced to
the wrong short-range shape (see below) rather than to the lack
of cusp. Therefore, our results do not contain discerning
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(let alone quantitative) information about this conclusion, but they
do not contradict it. Taken together with the other observations
(see below) about the correct shape of the correlation factor, our
results seem supportive of the notion that the pointwise (i.e., at
r12 ¼ 0) satisfaction of the cusp condition is not important for ener-
getics, which may be self-evident because of the infinitesimally
small volume element of the cusp. However, the cusp condition
remains crucial as it dictates the correct short-range shape of a cor-
relation factor near (if not at) the cusp (see below).
4.2. Long-range shape (r12 > 1:5 a.u.)

Fig. 2 rather decisively shows that correlation factors that are
equally highly performing can have qualitatively different long-
range behavior at r12 > 1:5 a.u. Some (e.g., correlation factor 4)
continue to increase with r12, while others become constant (e.g.,
correlation factor 1) or turn to decrease (e.g., correlation factor
11), with no drastic effect on the CBS recovery ratios. We, there-
fore, argue that the long-range behavior of a correlation factor is
not too important for the performance of the correlation factor,
insofar as it does not distort its behavior in the short range
(r12 < 1:5 a.u.) or grow indefinitely. This is consistent with Mon-
khorst’s argument [19] that two electrons should decouple its cor-
relation in the long range; a good correlation factor should be
constant or only moderately dependent on r12 in the long range,
so as not to interfere with the ability of an orbital expansion to
accurately describe pair functions there. The linear factor (7) is
the worst performer in the SP ansatz partly because of its inappro-
priately strong coupling at large r12.

The Yukawa–Coulomb factor (10), which is said to have the
physically correct �2=ðc2r12Þ decay in the homogeneous electron
gas, is found to be the best performer, which may be taken to sup-
port the claim of Grüneis et al. [21,22] for molecules as well as for
homogeneous electron gases. However, the higher rational (8),
which is tied for the highest CBS recovery ratio, has the b2=ð2r12Þ
long-range behavior, but with the opposite sign. Furthermore,
the differences in the CBS recovery ratios between these two and
STG (correlation factor 1, which becomes constant at r12 ! 1)
are small and not statistically significant. Therefore, we are
inclined to stand by the conclusion about the relative insignifi-
cance of the long-range behavior at r12 > 1:5 a.u.

The long-range asymptote of a pair function is expected to
depend on the highest occupied orbital energy and thus on the
system [19]. The fact that the F12 method with the same correla-
tion factor (with the same c in the SP ansatz) works well for a
variety of molecules [8–10] also suggests that the long-range part
of pair functions is described well by an orbital expansion; a cor-
relation factor should be near constant there not to spoil this
expansion.
4.3. Short-range shape (0 < r12 < 1:5 a.u.)

The most striking result of this work is the convergence of all
high-performance correlation factors in the short range
(0 < r12 < 1:5 a.u.) as seen in Fig. 2(b). The dense manifold of
curves (indicated by a blue shade) in Fig. 2(b) in this r12 range
should represent the common feature of the cusped hole in a pair
function with the radius of approximately 1.5 a.u., which is not dis-
similar to the ones observed in grid-based MP2 calculations [13].
Pair functions outside this range are more strongly dependent on
system and state, but are reasonably accurately describable by an
orbital expansion. A few curves that are slight outliers of the man-
ifold, such as correlation factors 14 (error function) and 16 (hyper-
bolic tangent), are also the ones with slightly lower CBS recovery
ratios (92.6% and 94.1%, respectively). Correlation factor 17 with
the largest value of b ¼ 0:012 a.u. seems to decay too early (at
r12 < 1:5 a.u.), which may explain the penalty in its performance
(the CBS recovery ratio of 91.3%). The poorly performing correla-
tion factors in Fig. 2(a) have vastly different shapes in this r12
range.

We, therefore, conclude that the correct shape of the correlation
factor in 0 < r12 < 1:5 a.u. is crucial for the performance of the F12
method in the SP ansatz.
4.4. Second-order cusp and Rassolov–Chimpan conditions

The correct shape of the correlation factor is cusped at r12 ¼ 0
and concave with a radius of approximately 1.5 a.u. This is consis-
tent with the speculation of Klopper et al. [1] about the significance
of a nonzero second derivative of the correlation factor with
respect to r12. Table 1 indicates that the highly performing correla-
tion factors tend to have the second derivatives of around �1.2 to
�1.4 a.u. It is possible for a correlation factor to have the correct
shape in the short range with zero second derivative by having a
compensating third derivative (such as in correlation factors 5
and 16). However, all poorly performing factors have zero or pos-
itive second derivative, making their shapes too linear or convex
in the short range.

The above observation notwithstanding, the second derivative
does not obey a simple, universal condition independent of system
or state [17,18]. Rassolov and Chipman [18], however, found the
following condition to be met by the second and third derivatives:

@3f 12
@r312

�����
r12¼0

¼ @2f 12
@r212

�����
r12¼0

� 1
4
: ð10Þ

None of the correlation factors we studied satisfies this condi-
tion; in most cases, including highly performing correlation factors,
the left- and right-hand sides of the condition even have the oppo-
site signs. This may mean that the third-order Taylor expansion of



252 C.M. Johnson et al. / Chemical Physics Letters 683 (2017) 247–252
the correlation factor is too approximate and does not discern the
short-range shape up to r12 ¼ 1:5 a.u., not to mention whether it
has the near-constant behavior in the long range.

4.5. Orbital-pair dependence

Fig. 4 testifies that the c values at which valence-orbital-pair
F12 corrections [eij of Eq. (9)] in H2O are at minimum are essen-
tially unchanged from one pair to another. A similar result was
obtained for CH4 (not shown). This suggests that cusped holes in
pair functions have the universal shape seen in Fig. 2(b) across
valence orbital pairs (although core orbital pairs may have tighter
cusps [8]). We argue that this relative invariance in the size and
shape of the cusped holes is what makes the SP ansatz with a non-
linear correlation factor a great success. It may be recalled that the
second-order cusp condition is system- and orbital-pair-
dependent [17], whereas the appropriate form of the correlation
factor seems the same for all valence orbital pairs. This may also
be viewed as the limitation of the analysis of the correlation factor
by its Taylor expansion.
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