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A stochastic algorithm is proposed and implemented that computes a basis-set-incompleteness (F12)
correction to an ab initio second-order many-body perturbation energy as a short sum of 6- to
15-dimensional integrals of Gaussian-type orbitals, an explicit function of the electron-electron
distance (geminal), and its associated excitation amplitudes held fixed at the values suggested by
Ten-no. The integrals are directly evaluated (without a resolution-of-the-identity approximation or
an auxiliary basis set) by the Metropolis Monte Carlo method. Applications of this method to 17
molecular correlation energies and 12 gas-phase reaction energies reveal that both the nonvariational
and variational formulas for the correction give reliable correlation energies (98% or higher) and
reaction energies (within 2 kJ mol−1 with a smaller statistical uncertainty) near the complete-basis-set
limits by using just the aug-cc-pVDZ basis set. The nonvariational formula is found to be 2–10 times
less expensive to evaluate than the variational one, though the latter yields energies that are bounded
from below and is, therefore, slightly but systematically more accurate for energy differences. Being
capable of using virtually any geminal form, the method confirms the best overall performance
of the Slater-type geminal among 6 forms satisfying the same cusp conditions. Not having to
precompute lower-dimensional integrals analytically, to store them on disk, or to transform them in
a nonscalable dense-matrix-multiplication algorithm, the method scales favorably with both system
size and computer size; the cost increases only as O(n4) with the number of orbitals (n), and its parallel
efficiency reaches 99.9% of the ideal case on going from 16 to 4096 computer processors. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4964854]

I. INTRODUCTION

Slow convergence1 of electron-correlation energies with
respect to the size of atomic-orbital (AO) basis set is one of
the most serious weaknesses of ab initio molecular orbital
(MO) theory.2–5 Its cause is well recognized: the ability
of the products of the AO basis functions to describe
the exact wave functions is rather poor at short inter-
electronic distances, or even completely lacking in cases
where they are cusped at electron-electron coalescence.1,6,7

The most direct and effective remedy2,3,5,8 is to use a two-
electron basis function that depends explicitly on the inter-
electronic distance, r12, which is called a correlation factor or
geminal.

Slater9,10 and Hylleraas11,12 were the first to report the
results of such calculations for the helium atom, which
were much closer to the exactness than those without an
explicit function of r12. Kutzelnigg8 developed a general
framework in which to include the simplest geminal—a linear
function of r12—in Gaussian-basis-set second-order many-
body perturbation (MP2) theory,13,14 pioneering the explicitly
correlated MP2 (MP2-R12) method. In this method, a basis-
set-incompleteness (R12) correction to reach the complete-
basis-set (CBS) limit is written as a short sum of two-electron

a)Email: sohirata@illinois.edu

integrals over a geminal, an orthogonality projector, and
occupied orbitals only. Here, the orthogonality projector is
there to prevent a double counting of the same correlation-
energy contribution between MP2 and R12.

One may foresee at least three technical challenges
in implementing MP2-R12: (1) Integrals of a geminal
multiplying Gaussian-type orbitals (GTOs) need to be
evaluated preferably analytically, limiting the forms of such
factors to a handful of the simplest ones.15–21 (2) The excitation
amplitudes multiplying these integrals have to be determined
through an O(n6) process (where n is the number of orbitals),22

making MP2-R12 less scalable with system size than O(n5)
of its parent MP2. (3) When the orthogonal projector is
expanded, numerous three-electron (9-dimensional) and four-
electron (12-dimensional) integrals involving both occupied
and virtual orbitals emerge. Computer and human costs of
their evaluation would be prohibitive.

Combining with their Gaussian-type geminal method,
Persson and Taylor23 alleviated problems (1) and (3). In their
approach, a geminal of any form can be expanded by a small
number of Gaussian-type geminals (GTGs), and the resulting
many-electron integrals over GTOs and GTGs are directly
and analytically evaluated by the McMurchie–Davidson
algorithm24–26 or by the Rys quadrature.27–29 Although a
GTG does not satisfy the cusp conditions,1,6,7 a geminal
expanded by GTGs is still found to capture a majority of

0021-9606/2016/145(15)/154115/19/$30.00 145, 154115-1 Published by AIP Publishing.
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the R12 correction, suggesting30 that an accurate description
of a correlation hole at intermediate r12 is more important
than that at r12 = 0. Furthermore, Szalewicz et al.31,32

showed that approximating the orthogonal projector by the
so-called weak-orthogonality projector makes higher-than-
three-electron integrals disappear in the formalism. However,
such simplification comes at a price of somewhat poorer
performance.4,33

Klopper and Kutzelnigg34,35 proposed a practical and
now-widely used method that resolved problem (3), in which
all three- and four-electron integrals are approximated as linear
combinations of two-electron integrals by the resolution-
of-the-identity (RI) insertion with an auxiliary basis set
(ABS).34–37 Also, problem (1) was partially addressed by
Ten-no, who introduced16,38 a nonlinear function of r12 known
as the Slater-type geminal, which was found to accelerate
the basis-set convergence more than linear r12 or a GTG.
Ten-no thus established the MP2-F12 method. However,
the true merit of the Slater-type geminal may be that its
functional form resembles the correlation hole in a wide range
of r12 so closely that the excitation amplitudes multiplying
its geminal integrals can be held fixed at values dictated
by the cusp conditions.1,6,7 Hence, Ten-no’s fixed-amplitude
method,39 combined with his Slater-type geminal,16,38 brings
the cost scaling of MP2-F12 down to the same O(n5)
of MP2, resolving problem (2), because the excitation
amplitudes no longer have to be determined through the
O(n6) process.

In this work, we explore a rather different approach—
the use of a stochastic algorithm—to resolving all three
problems mentioned above as well as the fourth problem: (4)
In deterministic implementations, a large number of two-
electron integrals are generated from far fewer, higher-
dimensional integrals by the RI insertions, which, together
with the ordinary two-electron integrals for MP2, need to
be pre-calculated, stored (on disks), and used in a series
of dense matrix multiplications; such computational steps
are nonscalable with system size (in the sense that the cost
increases as the fifth power of the number of orbitals) or
computer size (because dense matrix multiplications40 tend to
involve large and frequent inter-processor communications).
Here, we present a novel, stochastic MP2-F12 method,
which is based on Ten-no’s fixed-amplitude method, but
otherwise differs from the existing MP2-F12 methods in
that it can use virtually any geminal, does not require
the RI approximation or an ABS, is not predicated upon
numerous molecular integrals precomputed or stored on disks,
and thus scales favorably with both system and computer
sizes.

It is an extension of the Monte Carlo MP2 (MC-MP2)
method,41 which is a member of the Brueckner–Goldstone
quantum Monte Carlo (BGQMC) family14 of methods for both
electrons41–46 and vibrations.47–50 It weds diagrammatic many-
body perturbation and Green’s function theories with the
Metropolis Monte Carlo (MC) algorithm,51 in the same spirit
as other recent studies combining ab initio MO theory with
quantum Monte Carlo (QMC).52–62 Unlike more conventional
QMC methods,63–67 MC-MP2 can compute energy differences
(such as correlation energies, correlated ionization potentials

and electron affinities, and quasiparticle energy bands) directly
and not as small differences of noisy total energies, does
not suffer from any sign problem or fixed-node error, and
is systematically convergent at the exact solutions of the
Schrödinger equations as the perturbation rank and basis-set
size are increased. It is also rigorously (diagrammatically)
size-consistent and thus free from a finite-size error. Unlike
deterministic MP2, MC-MP2 does not need two-electron
integrals precomputed or stored either in the AO or MO basis
and is, therefore, more scalable. The operation cost per MC
step of MC-MP2 is shown to be linear43 with system size and
the cost to achieve a given relative statistical uncertainty is
found to be cubic.68 It can be easily and efficiently parallelized
on many central processing units (CPUs)44 or on many
graphical processing units (GPUs),68 sometimes achieving
scalability68 unprecedented for ab initio electron-correlation
theories.

In the explicitly correlated extension called MC-MP2-
F12 presented here, we exploit another important advantage
of MC-MP2, which is its flexibility with various mathematical
forms of basis functions. MC-MP2-F12 can use virtually any
geminal forms as it evaluates necessary integrals numerically
by the Metropolis MC method. Furthermore, being a sparse
integration method, the MC method’s relative superiority over
quadrature grows with dimension; it was argued that the
former is more efficient than the latter when the dimension
exceeds eight.69 In this sense, three-electron (9-dimensional)
and higher-dimensional integrals or even two-electron (6-
dimensional) integrals may be more suitably handled by
MC integrations than by analytical integrations.25,26,28,29 The
latter are also more expensive to develop and may have a
hard ceiling of applicability when the problem size is too
large. The former, in contrast, would execute for a far larger
problem, only taking longer to converge and give meaningful
results.

Also, the MC method makes it unnecessary to factor
high-dimensional integrals into lower-dimensional ones in
MC-MP2-F12; it can directly evaluate a short sum of high-
dimensional integrals, neither requiring the RI approximation
and a large ABS nor involving many dense matrix
multiplications, which tend not to be scalable. Consequently,
the cost of MC-MP2-F12 to achieve a given relative statistical
error is found to scale more favorably [O(n4)] than MP2
or MP2-F12 with Ten-no’s fixed amplitudes. Its parallel
algorithm of MC-MP2-F12 is also found to exhibit near-
perfect scalability up to thousands of processing cores and is
essentially free of disk I/O.

In a previous Communication in this journal,41 Willow
and three of the present authors reported a pilot implementa-
tion of the MC-MP2-F12 method using the nonvariational V
formula (see below) and obtained total correlation energies
near their CBS limits using Ten-no’s fixed-amplitude ansatz39

with the Slater-type geminal.16 Since this (V ) formula is
not variational with respect to the form of the geminal
or the excitation amplitude multiplying its integrals (which
are held fixed39), whether it gives reliable relative energies
near the CBS limits was not clear. While the cost per MC
step for MC-MP2-F12 with the nonvariational (V ) formula
was shown41 to be quadratic with the number of orbitals,
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the more meaningful cost, i.e., that required to reach a
given relative statistical uncertainty, was unknown. Parallel
scalability was strongly inferred but never demonstrated,
either. Furthermore, the ease of use of any geminal was touted
but never exploited. In this paper, we fully develop MC-MP2-
F12 using both of the nonvariational (V ) and variational
(V BX) formulas and answer all of these unanswered
questions.

II. THEORY

A. EF12

The correlation energy of MP2-F12 theory8,16,22,39,41 is
written as

EMP2-F12 = EMP2 + EF12, (1)

where EMP2 is the MP2 correlation energy in a finite (AO)
basis set14 and EF12 is the correction for the basis-set-
incompleteness error. The latter (the R12 or F12 correction) is
derived from the Hylleraas functional3,5 and consists of three
terms,

EF12 = 2EV
F12 + EB

F12 + EX
F12, (2)

with

EV
F12 =

occ.
i, j,m,n

V i j
mn(2tmn

i j − tmn
ji ), (3)

EB
F12 =

occ.
i, j,k,l,m,n

tklmnBi j

kl
(2tmn

i j − tmn
ji ), (4)

EX
F12 = −

occ.
i, j,k,l,m,n

(ϵm + ϵn)tklmnX i j

kl
(2tmn

i j − tmn
ji ), (5)

where ϵ p is the pth Hartree–Fock (HF) orbital energy, tmn
i j

is the so-called geminal amplitude, and all summations
run over occupied orbitals spanned by the basis set. The
other factors are molecular integrals of two electrons,
which are written in the standard physicists’ notation
as

V i j
mn = ⟨i j |r−1

12 Q̂12 f12|mn⟩, (6)

Bi j
mn = ⟨i j | f12Q̂12(F̂1 + F̂2)Q̂12 f12|mn⟩, (7)

X i j
mn = ⟨i j | f12Q̂12 f12|mn⟩, (8)

where f12 is the geminal (an explicit function of r12) and F̂n

is the Fock operator of electron n, i.e.,

F̂n = T̂n + V̂n + Ĵn − K̂n. (9)

The right-hand side of this equation is the sum of
the kinetic-energy operator, nuclear-attraction operator,
Coulomb operator, and exchange operator, in this order.
Operator Q̂12 is the strong-orthogonality projector70–73

defined as

Q̂12 = (1 − Ô1)(1 − Ô2) − V̂1V̂2, (10)

with

Ô1 =

occ.
i

ϕi(r1)


dr3 ϕ
∗
i(r3)P̂31, (11)

V̂1 =

vir.
a

ϕa(r1)


dr3 ϕ
∗
a(r3)P̂31, (12)

where P̂31 replaces the coordinates of electron 1 by 3 in
what follows. The summation in Eq. (12) runs over all virtual
orbitals spanned by the basis set.

The F12 correction (EF12) is variational with the geminal
amplitudes, whose values are, therefore, to be determined by
minimizing EF12, through an O(n6) process,22 where n is the
number of orbitals. It can also be shown that at the minimum,
EB

F12 + EX
F12 = −EV

F12 and hence,

EF12 = EV
F12. (13)

Ten-no showed39 that an accurate F12 correction can be
obtained by holding the geminal amplitudes fixed at the values
dictated by the cusp conditions,1,6,7 i.e.,

tmn
i j =

3
8
δmiδn j +

1
8
δmjδni, (14)

insofar as an appropriate form of the geminal is used, such as
Ten-no’s Slater-type geminal,

f12 =
1 − e−γr12

γ
, (15)

where γ is an adjustable parameter. With Ten-no’s fixed
amplitudes, the F12 correction as defined by Eq. (2) (the
variational V BX formula) is no longer a variational minimum
with respect to the “size” (tmn

i j ) of the geminal, but is still
variationally bound from below with respect to its “shape” (γ).
The nonvariational (V ) formula41 [Eq. (13)] is not variational
with either. Since the errors in a variational energy have the
same sign and tend to also have similar magnitudes, they may
cancel with each other to yield accurate energy differences.
Below, we quantify the performance of the nonvariational
(V ) and variational (V BX) formulas for energy differences.
We will also address another important question: What is
special about the Slater-type geminal of Eq. (15) that makes
the fixed-amplitude method work? Below, we explore several
geminals that have the right asymptote,

f12 ≃ r12 as r12 → 0. (16)

Substituting Eq. (14) into Eq. (2), we obtain

EV
F12 =

5
8

occ.
i, j

V i j
i j −

1
8

occ.
i, j

V i j
j i , (17)

EB
F12 =

7
32

occ.
i, j

Bi j
i j +

1
32

occ.
i, j

Bi j
j i , (18)

EX
F12 = −

7
32

occ.
i, j

(ϵ i + ϵ j)X i j
i j −

1
32

occ.
i, j

(ϵ j + ϵ i)X i j
j i . (19)

Before converting them into forms suitable for MC integration,
we make two additional simplifying approximations to the
formalism.
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First, we assume the so-called generalized Brillouin
condition (GBC) and extended Brillouin condition (EBC),17,22

i.e.,

F̂nϕi(rn) = ϵ iϕi(rn), (20)

F̂nϕa(rn) = ϵaϕa(rn), (21)

where i and a label an occupied and virtual orbital,
respectively. This assumption leads to

�
F̂1 + F̂2,Q̂12

�
= 0, (22)

which, in turn, simplifies the B integrals [Eq. (7)] into

Bi j
i j = ⟨i j | f12Q̂12(F̂1 + F̂2)Q12 f12|i j⟩ (23)

= ⟨i j | f12Q̂12Q̂12(F̂1 + F̂2) f12|i j⟩
+ ⟨i j | f12Q̂12

�
F̂1 + F̂2,Q̂12

�
f12|i j⟩ (24)

= ⟨i j | f12Q̂12(F̂1 + F̂2) f12|i j⟩ (25)

and

Bi j
j i = ⟨i j | f12Q̂12(F̂1 + F̂2) f12| ji⟩, (26)

where the idempotency of Q̂12 is used, i.e., Q̂2
12 = Q̂12. As will

be discussed below, when expanded, each Q̂12 introduces a
new electron and increases the dimension of an integral by
three [see Eqs. (11) and (12)]. Therefore, Eq. (25) is far more
computationally tractable than Eq. (23).

Second, using the commutator [F̂1 + F̂2, f12], we rewrite
Eq. (25) as

Bi j
i j = ⟨i j | f12Q̂12(F̂1 + F̂2) f12|i j⟩ (27)

= ⟨i j | f12Q̂12
�
F̂1 + F̂2, f12

� |i j⟩
+ ⟨i j | f12Q̂12 f12(F̂1 + F̂2)|i j⟩ (28)
= ⟨i j | f12Q̂12

�
F̂1 + F̂2, f12

� |i j⟩
+ (ϵ i + ϵ j)⟨i j | f12Q̂12 f12|i j⟩ (29)

= ⟨i j | f12Q̂12
�
F̂1 + F̂2, f12

� |i j⟩ + (ϵ i + ϵ j)X i j
i j (30)

and

Bi j
j i = ⟨i j | f12Q̂12

�
F̂1 + F̂2, f12

� | ji⟩ + (ϵ i + ϵ j)X i j
j i . (31)

Note that the GBC is invoked in Eq. (29).
These two approximations reduce EF12 to

EF12 = 2EV
F12 + EBX

F12 , (32)

with

EBX
F12 =

7
32

occ.
i, j

(BX)i ji j +
1

32

occ.
i, j

(BX)i jj i (33)

and

(BX)i jmn = ⟨i j | f12Q̂12
�
F̂1 + F̂2, f12

� |mn⟩. (34)

The GBC is known to be an accurate approximation,
causing errors that are no greater than a milli-Hartree in
molecules ranging from H2 to O3.17 The EBC is less accurate,
but still tolerable.17,74 For a smaller basis set, in fact, it is
recommended17,74 that the EBC be invoked when the GBC is
used.

B. EV
F12

Expanding Q̂12, i.e., substituting Eq. (10) into Eq. (17),
we obtain41

EV
F12 = EV

2e + EV
3e + EV

4e, (35)

with

EV
2e =

5
8

occ.
i, j

⟨i j | f12

r12
|i j⟩ − 1

8

occ.
i, j

⟨i j | f12

r12
| ji⟩, (36)

EV
3e = −

5
4

occ.
i, j,k

⟨i j k | f23

r12
|k ji⟩ + 1

4

occ.
i, j,k

⟨i j k | f23

r12
|ki j⟩, (37)

EV
4e =

5
8

occ.
i, j,k,l

⟨i j kl | f34

r12
|kli j⟩ − 1

8

occ.
i, j,k,l

⟨i j kl | f34

r12
|kl ji⟩

− 5
8

occ.
i, j

vir.
a,b

⟨i jab| f34

r12
|abi j⟩

+
1
8

occ.
i, j

vir.
a,b

⟨i jab| f34

r12
|abji⟩, (38)

where the subscripts on the left-hand sides indicate the number
of electrons involved and thus the dimension of integrals. They
are rewritten in the MC-integrable forms as

EV
2e =


dr1dr2 FV

2e(r1,r2), (39)

EV
3e =


dr1dr2dr3 FV

3e(r1,r2,r3), (40)

EV
4e =


dr1dr2dr3dr4 FV

4e(r1,r2,r3,r4), (41)

with

FV
2e(r1,r2) = 5

8
f12O11O22

r12
− 1

8
f12O12O21

r12
, (42)

FV
3e(r1,r2,r3) = −5

4
f23O13O22O31

r12

+
1
4

f23O12O23O31

r12
, (43)

FV
4e(r1,r2,r3,r4) = 5

8
f34O13O24O31O42

r12

− 1
8

f34O14O23O31O42

r12

− 5
8

f34O13O24V31V42

r12

+
1
8

f34O14O23V31V42

r12
, (44)

where

Opq =

occ.
i

ϕ∗i(rp)ϕi(rq), (45)

Vpq =

vir.
a

ϕ∗a(rp)ϕa(rq). (46)

The formalism of this term is unchanged from Ref. 41.
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C. EBX
F12

The sum of the B and X terms, Eq. (33), is newly
considered in this work. Expanding Q̂12 in this equation, we
find

EBX
F12 = ET

2e + ET
3e + ET

4e + EK
3e + EK

4e + EK
5e, (47)

with

ET
2e =

7
32

occ.
i, j

⟨i j | f12
�
T̂1 + T̂2, f12

� |i j⟩

+
1

32

occ.
i, j

⟨i j | f12
�
T̂1 + T̂2, f12

� | ji⟩, (48)

ET
3e = −

7
16

occ.
i, j,k

⟨i j k | f12
�
T̂2 + T̂3, f23

� |k ji⟩

− 1
16

occ.
i, j,k

⟨i j k | f12
�
T̂2 + T̂3, f23

� |ki j⟩, (49)

ET
4e =

7
32

occ.
i, j,k,l

⟨i j kl | f12
�
T̂3 + T̂4, f34

� |kli j⟩

+
1

32

occ.
i, j,k,l

⟨i j kl | f12
�
T̂3 + T̂4, f34

� |kl ji⟩

− 7
32

occ.
i, j

vir.
a,b

⟨i jab| f12
�
T̂3 + T̂4, f34

� |abi j⟩

− 1
32

occ.
i, j

vir.
a,b

⟨i jab| f12
�
T̂3 + T̂4, f34

� |abji⟩ (50)

and

EK
3e = −

7
32

occ.
i, j

⟨i j | f12
�
K̂1 + K̂2, f12

� |i j⟩

− 1
32

occ.
i, j

⟨i j | f12
�
K̂1 + K̂2, f12

� | ji⟩, (51)

EK
4e = +

7
16

occ.
i, j,k

⟨i j k | f12
�
K̂2 + K̂3, f23

� |k ji⟩

+
1
16

occ.
i, j,k

⟨i j k | f12
�
K̂2 + K̂3, f23

� |ki j⟩, (52)

EK
5e = −

7
32

occ.
i, j,k,l

⟨i j kl | f12
�
K̂3 + K̂4, f34

� |kli j⟩

− 1
32

occ.
i, j,k,l

⟨i j kl | f12
�
K̂3 + K̂4, f34

� |kl ji⟩

+
7
32

occ.
i, j

vir.
a,b

⟨i jab| f12
�
K̂3 + K̂4, f34

� |abi j⟩

+
1
32

occ.
i, j

vir.
a,b

⟨i jab| f12
�
K̂3 + K̂4, f34

� |abji⟩, (53)

where we use the fact that only the kinetic-energy (T̂n) and
exchange (K̂n) operators in the Fock operator [Eq. (9)] do not

commute with f12 and, therefore,
�
F̂1 + F̂2, f12

�
=
�
T̂1 + T̂2, f12

�
−
�
K̂1 + K̂2, f12

�
. (54)

The subscripts “2e,” “3e,” etc., again refer to the number of
electrons that appear in the integrals. It is incremented in
the exchange terms [Eqs. (51)–(53)] because the exchange
operator introduces one more electron, just like Q̂12 (see
Appendix A).

After straightforward, but rather tedious algebra, which is
partially computerized in this work, we arrive at the following
MC-integrable expressions:

ET
2e =


dr1dr2 FT1

2e (r1,r2)

+


dr1dr2 FT2

2e (r1,r2), (55)

ET
3e =


dr1dr2dr3 FT1

3e (r1,r2,r3)

+


dr1dr2dr3 FT2

3e (r1,r2,r3), (56)

ET
4e =


dr1dr2dr3dr4 FT1

4e (r1,r2,r3,r4)

+


dr1dr2dr3dr4 FT2

4e (r1,r2,r3,r4), (57)

EK
3e =


dr1dr2dr3 FK

3e (r1,r2,r3), (58)

EK
4e =


dr1dr2dr3dr4 FK

4e (r1,r2,r3,r4), (59)

EK
5e =


· · ·


dr1 · · · dr5 FK

5e (r1,r2,r3,r4,r5). (60)

The integrals in the two-electron kinetic-energy contribu-
tion [Eq. (55)] are given by

FT1
2e (r1,r2) = 7

32
f12 f (a)12 O11O22

r12

+
7
32

f12 f (c)12 (O11O′22 −O′11O22)
r12

+
1
32

f12 f (a)12 O12O21

r12

+
1
32

f12 f (c)12 (O21O′12 −O′21O12)
r12

, (61)

FT2
2e (r1,r2) = 7

32
f12 f (b)12 O11O22

+
7
32

f12 f (d)12 (O11O′22 −O′11O22)

+
1
32

f12 f (b)12 O12O21

+
1
32

f12 f (d)12 (O21O′12 −O′21O12), (62)

with

O′pq =
occ.
i

ϕ∗i(rp) r12 · ∇qϕi(rq). (63)

See Appendix A for the derivation of Eqs. (61) and (62).
The integrand of Eq. (55) is divided into two terms, FT1

2e and
FT2

2e , because they have rather different behavior as r12 → 0,
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thus requiring different weight functions in MC integrations
(see below). The subscripts of r12 in Eq. (63) are always
“12” and independent of p or q. This is related to the fact
that, in Eqs. (61) and (62) and throughout our formalism,
the singular operator is chosen (by coordinate interchanges)
to be always of the form r−1

12 , so that the same weight
function containing r−1

12 can be consistently applied to these
dimensions.

The factors of the geminal, f (a), f (b), f (c), and f (d), are
defined as

�
T̂1 + T̂2, f12

�
=

f (a)12

r12
+ f (b)12 −




f (c)12

r12
+ f (d)12




r12 · (∇1 − ∇2),
(64)

whose actual forms are compiled in Table I for the 6 geminals75

considered in this work. This form is related to the so-called
Kutzelnigg’s regularization operator.8 The cusp conditions6,7

reduce to

f (a)12 ≃ −2 as r12 → 0, (65)

which is satisfied by all the geminals in Table I.
The integrands in the three-electron kinetic contribution

[Eq. (56)] are given by

FT1
3e (r1,r2,r3) = − 7

16
f23 f (a)12 O31O22O13

r12

− 7
16

f23 f (c)12 (O′22O31 −O′31O22)O13

r12

− 1
16

f23 f (a)12 O32O21O13

r12

− 1
16

f23 f (c)12 (O′32O21 −O′21O32)O13

r12
, (66)

FT2
3e (r1,r2,r3) = − 7

16
f23 f (b)12 O31O22O13

− 7
16

f23 f (d)12 (O′22O31 −O′31O22)O13

− 1
16

f23 f (b)12 O32O21O13

− 1
16

f23 f (d)12 (O′32O21 −O′21O32)O13, (67)

whereas those of the four-electron kinetic contribution
[Eq. (57)] read

FT1
4e (r1,r2,r3,r4)

=
7
32

f34 f (a)12 O31O42O13O24

r12

+
7

32
f34 f (c)12 (O′42O31 −O′31O42)O13O24

r12

+
1

32
f34 f (a)12 O32O41O13O24

r12

+
1

32
f34 f (c)12 (O′32O41 −O′41O32)O13O24

r12

− 7
32

f34 f (a)12 O31O42V13V24

r12

− 7
32

f34 f (c)12 (O′42O31 −O′31O42)V13V24

r12

− 1
32

f34 f (a)12 O32O41V13V24

r12

− 1
32

f34 f (c)12 (O′32O41 −O′41O32)V13V24

r12
(68)

and

FT2
4e (r1,r2,r3,r4)
=

7
32

f34 f (b)12 O31O42O13O24

+
7

32
f34 f (d)12 (O′42O31 −O′31O42)O13O24

+
1

32
f34 f (b)12 O32O41O13O24

+
1

32
f34 f (d)12 (O′32O41 −O′41O32)O13O24

− 7
32

f34 f (b)12 O31O42V13V24

− 7
32

f34 f (d)12 (O′42O31 −O′31O42)V13V24

− 1
32

f34 f (b)12 O32O41V13V24

− 1
32

f34 f (d)12 (O′32O41 −O′41O32)V13V24. (69)

The integrands in the exchange contributions [Eqs.
(58)–(60)] are found to be

FK
3e (r1,r2,r3) = 7

16
f23( f23 − f13)

r12
O12O33O21

+
1

16
f23( f23 − f13)

r12
O13O32O21, (70)

TABLE I. Six geminals considered in this work and the components of their commutator with the kinetic-energy operator in Eq. (64).

Geminal Name f
(a)
12 f

(b)
12 f

(c)
12 f

(d)
12

f
(1)
12 = (1−e−γr12)/γ Slater −2e−γr12 γe−γr12 e−γr12 0

f
(2)
12 = (1−e−γr

2
12)/(γr12) Gauss −2e−γr

2
12 4γr12e

−γr2
12 (e−γr2

12−1)/(γr2
12)+2e−γr

2
12 0

f
(3)
12 =γr12/(γ+r12) Rational −2γ3/(r12+γ)3 0 γ/(γ+r12) −γ/(γ+r12)2
f
(4)
12 = ln(1+γr12)/γ Logarithm −2/(1+γr12)2 −γ/(1+γr12)2 1/(1+γr12) 0
f
(5)
12 = arctan(γr12)/γ Arctangent −2/(1+γ2r2

12)2 0 1/(1+γ2r2
12) 0

f
(6)
12 = f

(1)
12 /2+ f (3)12 /2 Hybrid −e−γr12−γ3/(r12+γ)3 γe−γr12/2 e−γr12/2+γ/(2γ+2r12) −γ/(γ+r12)2/2
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FK
4e (r1,r2,r3,r4) = − 7

16
f24( f23 − f13)

r12
O43O21O34O12

− 1
16

f24( f23 − f13)
r12

O41O23O34O12

− 7
16

f34( f14 − f24)
r12

O32O44O13O21

− 1
16

f34( f14 − f24)
r12

O34O42O13O21, (71)

and

FK
5e (r1,r2,r3,r4,r5)
=

7
16

f35( f14 − f24)
r12

O32O54O31O45O21

+
1

16
f35( f14 − f24)

r12
O34O52O31O45O21

− 7
16

f35( f14 − f24)
r12

O32O54V31V45O21

− 1
16

f35( f14 − f24)
r12

O34O52V31V45O21. (72)

See Appendix A for the derivation of Eq. (70) as an example.

III. MONTE CARLO ALGORITHM

Each of the contributions to the F12 correction is
evaluated by the Metropolis MC method with the redundant-
walker convergence-acceleration technique.44 Identifying and
using an appropriate weight function are essential for the
viability (let alone efficiency) of any MC integration. A
weight function should be positive everywhere, be analytically
integrable, have the same singularity as the integrand, and
generally behave like the integrand.

A. EV
F12

The V term [Eq. (35)] is evaluated41 as

EV
2e =


dr1dr2 FV

2e(r1,r2) ≈ 1
N

N
n=1

FV
2e(r[n]1 ,r[n]2 )

w2e(r[n]1 ,r[n]2 ) , (73)

EV
3e =


dr1dr2dr3 FV

3e(r1,r2,r3)

≈ 1
N

N
n=1

1
m

m
k=1

FV
3e(r[n]1 ,r[n]2 ,r[n]3k )

w2e(r[n]1 ,r[n]2 )w1e(r[n]3k )
, (74)

and

EV
4e =


dr1dr2dr3dr4 FV

4e(r1,r2,r3,r4)

≈ 1
N

N
n=1

2!
m(m − 1)

×
m−1
k=1

m
l=k+1

FV
4e(r[n]1 ,r[n]2 ,r[n]3k ,r

[n]
4l )

w2e(r[n]1 ,r[n]2 )w1e(r[n]3k )w1e(r[n]4l )
, (75)

where N is the total number of MC steps and m is the number
of “redundant walkers” (see below for the definition).

Electron pairs with coordinates {r[n]1 ,r[n]2 |1 ≤ n ≤ N}
are distributed randomly but according to the normalized

two-electron weight function of the form,

w2e(r1,r2) = 1
N2e

g(r1)g(r2)
r12

, (76)

where g(r), in our implementation, is chosen to be a sum of
two atom-centered s-type GTOs per atom,

g(r) =
natom
A=1

(
c(1)
A

e−ζ
(1)
A
|r−rA|2 + c(2)

A
e−ζ

(2)
A
|r−rA|2

)
. (77)

Here, natom is the number of atoms and rA is the position
of the Ath atom. The normalization coefficient, N2e, can be
evaluated analytically.76 Although the r−1

12 singularity in FV
2e

[Eq. (42)] is analytically removed by f12 in its numerator, we
elect to use the above weight function that makes the MC
algorithm sample more heavily at short r12 distances. This is
appropriate or even necessary because FV

2e is expected to vary
more rapidly at short r12 distances, even after the singularity
is removed.77–79 In FV

3e [Eq. (43)] and FV
4e [Eq. (44)], the r−1

12
singularity remains and the use of the weight function that
cancels it is essential. A random distribution according to w2e
is achieved by the Metropolis algorithm.44,80

A distribution of one-electron coordinates {r[n]3k |1 ≤ n ≤
N} is generated randomly but according to the normalized
one-electron weight function,

w1e(r3) = g(r3)
N1e

, (78)

where N1e is again analytically determined.76 Electron 3 or 4
is not strongly coupled with the others in integrand FV

3e or FV
4e,

and, therefore, one-electron “walkers” whose distributions
resemble the molecule’s electron density are appropriate in
these dimensions. In the redundant-walker algorithm,41,44

m such independent distributions (redundant walkers) are
generated (1 ≤ k ≤ m), so that each of these m one-electron
walkers can be used in Eq. (74) and m(m − 1)/2 distinct
pairs of one-electron walkers in Eq. (75). Since generating m
distributions increases the cost by no more than a factor of m,
but it increases the number of distinct summands (samples)
by O(m2), this algorithm increases the sampling efficiency
of Eq. (75) by O(m). However, Eq. (73) is unaffected by
the algorithm. Therefore, the overall performance boost by
the redundant-walker algorithm in MC-MP2-F12 is hard to
predict. The V contribution implemented in this manner was
reported in Ref. 41.

B. EBX
F12

The sum of the B and X terms [Eq. (47)] consists of
two-, three-, and four-electron kinetic-energy contributions as
well as three-, four-, and five-electron exchange contributions,
which are as high as 15-dimensional. They are evaluated as

ET
2e ≈

1
N

N
n=1

FT1
2e (r[n]1 ,r[n]2 )
w2e(r[n]1 ,r[n]2 ) +

1
N

N
n=1

2!
m(m − 1)

×
m−1
k=1

m
l=k+1

FT2
2e (r[n]1k ,r

[n]
2l )

w1e(r[n]1k )w1e(r[n]2l )
, (79)
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ET
3e ≈

1
N

N
n=1

1
m

m
k=1

FT1
3e (r[n]1 ,r[n]2 ,r[n]3k )

w2e(r[n]1 ,r[n]2 )w1e(r[n]3k )

+
1
N

N
n=1

3!
m(m − 1)(m − 2)

×
m−2
k=1

m−1
l=k+1

m
h=l+1

FT2
3e (r[n]1k ,r

[n]
2l ,r

[n]
3h )

w1e(r[n]1k )w1e(r[n]2l )w1e(r[n]3h )
, (80)

and

ET
4e ≈

1
N

N
n=1

2!
m(m − 1)

×
m−1
k=1

m
l=k+1

FT1
4e (r[n]1 ,r[n]2 ,r[n]3k ,r

[n]
4l )

w2e(r[n]1 ,r[n]2 )w1e(r[n]3k )w1e(r[n]4l )

+
1
N

N
n=1

4!
m(m − 1)(m − 2)(m − 3)

m−3
k=1

m−2
l=k+1

m−1
h=l+1

m
i=h+1

×
FT2

4e (r[n]1k ,r
[n]
2l ,r

[n]
3h ,r

[n]
4i )

w1e(r[n]1k )w1e(r[n]2l )w1e(r[n]3h )w1e(r[n]4i )
, (81)

where w2e is the weight function for an electron-pair walker
for strongly coupled integration variables (r1 and r2), while w1e
is the weight function for m independent one-electron walkers
for relatively uncoupled variables. These weight functions are
identical to Eqs. (76) and (78), respectively, and hence the
same electron-pair and one-electron walkers for the V term
can be reused for the BX term (as well as for MC-MP2). The
sampling efficiency of the first term of Eq. (79) is unchanged
by the redundant-walker algorithm and that of the second
term is increased by a factor of O(m). The m-dependence
of the number of samplings in individual terms in Eqs. (80)
and (81) can be inferred similarly, but that of the overall
performance is again hard to predict, but is expected to be
small.

The exchange contributions are evaluated as

EK
3e ≈

1
N

N
n=1

1
m

m
k=1

FK
3e (r[n]1 ,r[n]2 ,r[n]3k )

w2e(r[n]1 ,r[n]2 )w1e(r[n]3k )
, (82)

EK
4e ≈

1
N

N
n=1

2!
m(m − 1)

×
m−1
k=1

m
l=k+1

FK
4e (r[n]1 ,r[n]2 ,r[n]3k ,r

[n]
4l )

w2e(r[n]1 ,r[n]2 )w1e(r[n]3k )w1e(r[n]4l )
, (83)

and

EK
5e ≈

1
N

N
n=1

3!
m(m − 1)(m − 2)

m−2
k=1

m−1
l=k+1

m
h=l+1

×
FK

5e (r[n]1 ,r[n]2 ,r[n]3k ,r
[n]
4l ,r

[n]
5h )

w2e(r[n]1 ,r[n]2 )w1e(r[n]3k )w1e(r[n]4l )w1e(r[n]5h )
, (84)

again reusing the same electron-pair walkers and m
independent one-electron walkers. The use of w2e for variables
r1 and r2 and of w1e for the other variables can be rationalized
by the structure (occurrence of singularity) in the integrands
[Eqs. (70)–(72)].

C. Statistical uncertainty

The MC integrals for both the nonvariational (V )
[Eq. (13)] and variational (V BX) [Eq. (32)] formulas can
be written in a unified form as

EF12 = lim
N→∞

IN , (85)

IN =
1
N

N
n=1

I [n], (86)

where I [n] collects all summands of the outermost summations
in Eqs. (73)–(75), (79)–(81), and/or (82)–(84). The statistical
uncertainty σN in IN at the N th MC step can be estimated as

σ2
N =

1
N2

N
n=1


I [n] − IN

2
. (87)

However, this estimate is well known81 to be an underestima-
tion of the true statistical uncertainty because the coordinates
of a walker are correlated across several MC steps. A more
accurate estimate is obtained by the blocking algorithm of
Flyvbjerg and Petersen81 as

σ2
N =

N2
b

N2

N/Nb
n=1




1
Nb

Nb
n′=1

I [(n−1)Nb+n
′] − IN




2

, (88)

where Nb is the block size, which is to be gradually enlarged
until σN plateaus. The relative error at the N th MC step is,
therefore,

σrel =
σN

IN
. (89)

The error in MC-MP2-F12 (relative to deterministic MP2-F12)
seems to be the statistical uncertainty only, and there is no
bias (i.e., systematic error).82 See Sec. IV C for more details
on this issue.

IV. RESULTS AND DISCUSSION

A massively parallel MC-MP2-F12 program was
implemented using the redundant-walker algorithm. Both
nonvariational V formula41 [Eq. (13)] and variational V BX
formula [Eq. (32)] were used, and the notational distinction is
made in this article in the parentheses following the method
label as in MC-MP2-F12(V ) and MC-MP2-F12(V BX).

The number of redundant walkers (m in various equations
in Sec. III) was 40 and the block size [Nb in Eq. (88)] was 6.
The frozen-core approximation was used in all cases. A F12
correction thus obtained was added to the corresponding MP2
energy obtained by the conventional deterministic algorithm
in .83 This is merely to isolate the performance
characteristics of MC-MP2-F12 from those of MC-MP2
because the result of the latter becomes immediately available
from the former with no extra cost.

The CBS limits of the MP2 energy were extrapolated
applying the X−3 formula84 to the deterministic values
obtained with the aug-cc-pVQZ and aug-cc-pV5Z basis sets.
Hereafter, we abbreviate the cc-pVXZ basis set as “XZ” and
the aug-cc-pVXZ basis set as “AXZ,” where X = D, T, Q,
or 5.
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FIG. 1. Five of the 6 geminals considered in this work plotted for the
near-optimal value of γ in each case. Geminal 6 (the hybrid geminal) curve is
an average of the curves of geminals 1 and 3.

A. Geminals and V versus VBX formulas

The MP2 correlation energies for H2O and CH4 at the
geometries of Bak et al.85 were computed with the MC-MP2-
F12 method with the DZ and TZ basis sets. Six geminals75

listed in Table I were used (whose forms near r12 = 0 are
visualized in Fig. 1). Recall that any differentiable function
can be employed as a geminal in MC-MP2-F12(V BX) or
any function (even a numerically defined one) in MC-MP2-
F12(V ). This is one of the unique advantages of MC-MP2-
F12, shared by QMC, the latter using the Jastrow factor
routinely,86–89 some even correlating two electrons and a

nucleus.90 See also the work of Nooijen and Bartlett,75

who proposed many geminals including those used here,
Monkhorst91 for a rational geminal whose form is dictated
by its equation of motion in the first order and asymptotic
regions, Grüneis et al.,92 who used a “Yukawa–Coulomb”
geminal with their planewave MP2-F12, and Silkowski et al.93

for a range-separated geminal.
Figure 2 shows the γ-dependence of the MC-MP2-F12

energy of H2O. The nonvariational V data are plotted as green
curves, while the variational V BX ones as purple curves. The
uncorrected MP2 energies with the DZ and TZ basis sets as
well as the CBS limit are indicated as red lines. Figure 3 plots
the same for CH4.

First, focusing on the bounded V BX curves (purple), we
find that all geminals work reasonably well with the exception
of geminal 2; the curves from all geminals except 2 are not
strongly dependent on γ and close to the CBS limit in a wide
range of γ. Geminal 1 is the Slater-type geminal introduced
by Ten-no16,38 and is widely regarded as one of the best-
performing geminals. Geminal 2 is the Gauss-type geminal,
which should be distinguished from the Gaussian geminal
that does not satisfy the cusp conditions.16 Its performance is
rather poor as its MC-MP2-F12(V BX)/DZ energy falls short
of the MP2/TZ energy at any value of γ.

Comparing these performance data with Fig. 1, we
notice that only geminal 2 has a rather different long-range
behavior than the rest. Unlike the other geminals, which rise

FIG. 2. The MP2 correlation energies of H2O as a function of γ of the 6 geminals listed in Table I. The geometry was taken from Ref. 85 and the CBS limit
was obtained by the X−3 extrapolation using the AQZ and A5Z basis sets. The number of MC steps was 8.65 × 107.
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FIG. 3. The MP2 correlation energies of CH4 as a function of γ of the 6 geminals listed in Table I. The geometry was taken from Ref. 85 and the CBS limit was
obtained by the X−3 extrapolation using the AQZ and A5Z basis sets. The number of MC steps was 8.65×107.

monotonically, geminal 2 increases and then turns to decrease
with r12, meaning that its correlation hole may be 2s-orbital-
like, when the true correlation hole is 1s-orbital-like.79 It has
been shown2,18 that the r2

12 component in the Taylor-series
expansion of a geminal plays an important role in describing
the correlation hole correctly, but among the 6 geminals
studied here, only geminals 2 and 5 lack this component (the
V BX curves of geminal 5 are equally unstable with γ as
geminal 2, but as will be shown below the relative energies
from geminal 5 seem reasonable). These may explain the poor
performance of geminal 2.

Next, turning our attention to the nonvariational V curves
(green), we observe that they strongly depend on γ and
are usually unbounded. For instance, using geminal 5 with
γ < 1.2 a.u., the F12 corrections overshoot the correct values
in both H2O and CH4, rendering the MC-MP2-F12(V )/DZ
energies more negative than the MP2/CBS values, a clear
violation of Hylleraas’ variational principle. This may or may
not become troublesome in chemical applications of MP2-F12,
wherein relative energies are often sought; if the errors from
the CBS limits have opposite signs let alone greatly different
magnitudes across molecules, the errors in relative energies
can be amplified, possibly undoing improvements made by
F12 in the total correlation energies. In Sec. IV C, we will
examine this numerically.

As will be shown in Sec. IV D, the nonvariational V
formula has the advantage over the variational V BX formula

of being 2–10 times faster. Can one then use the V formula
and reliably determine the CBS limits? We have conceived
of two ways to do this. The first is to combine two geminals
with opposite γ-dependences, such that the resulting geminal
is nearly independent of γ. Geminal 6 is indeed constructed
in this way as an average of geminals 1 and 3, whose V
curves have opposite γ-dependences. Consequently, the MC-
MP2-F12(V ) energies of geminal 6 are stable with variation
in γ and also much closer to the CBS limits than those
from geminal 1 or 3 alone at any γ. We will examine if this
construction improves total correlation energies for a wider
array of molecules in Sec. IV B and relative energies in
Sec. IV C.

The second method attempts to locate the value of γ at
which the nonvariational V formula yields the CBS limit. It
does so by combining the results of two basis sets. At a given
basis set, the V BX energy is closest to the CBS limit at γmin
that minimizes it,

EMP2/CBS ≈ EMP2/XZ

+ 2EV
F12(γmin)/XZ + EBX

F12 (γmin)/XZ. (90)

Note the approximate equality in the above expression, which
is because the left-hand side is a lower bound of the right-hand
side. At the minimum, however, the right-hand side should
be nearly equal to the V energy as per Eq. (13) insofar
as Ten-no’s fixed amplitudes39 approximate well the true
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variationally optimized geminal amplitudes,

2EV
F12(γmin)/XZ + EBX

F12 (γmin)/XZ = EV
F12(γmin)/XZ. (91)

This seems, in fact, borne out in most of the plots of Figs. 2
and 3; the intersection of the V BX and V curves of the
same basis set occurs at the minimum of the former (except
for the curves of geminal 2). This once again attests to the
excellent transferability of Ten-no’s fixed amplitudes across
all geminals that have a physically reasonable functional form.

If we now assume the equality in Eq. (90) (instead of the
approximate equality), we have

EMP2/CBS = EMP2/DZ + EV
F12(γmin)/DZ (92)

= EMP2/TZ + EV
F12(γmin)/TZ, (93)

suggesting that γmin is at the intersection of the V curves of
two different basis sets, at which the energy is the CBS limit.
Applying this method to the linearly interpolated V curves
of geminal 1, 3, and 4, we recover, respectively, 100.2%,
99.7%, and 99.2% of the CBS limit of H2O. They are closer to
100% than 94.8% or 98.0% recuperated, respectively, by the
V BX method with the DZ and TZ basis sets. Likewise, this
intersection method recovers 100.4%, 100.1%, and 100.1%
of the CBS limit for CH4 using geminals 1, 3, and 4,
respectively. Notice how closely the two green curves (of
geminals 1, 3, and 4) and the MP2/CBS line (red) meet at
one and the same point for both H2O and CH4. Although it
is at present unclear whether the efficacy of the intersection
method occurs universally across many molecules, we have
a potentially practical way of capturing nearly 100% of the

CBS limits inexpensively using only the nonvariational V
formula.

B. Correlation energies

The F12 corrections and statistical uncertainties were
calculated for 17 molecules at the geometries of Bak et al.85

by MC-MP2-F12 with the ADZ and ATZ basis sets using the
V or V BX formula. The MP2 energies were also computed
for the same molecules with the AXZ basis set (X = D, T, Q,
and 5) using .83

Table II compiles the MP2 correlation energies in the
increasing order of their magnitude. The MC-MP2-F12
calculations used the Slater-type geminal with γ = 1.1 a.u.
With the ADZ basis set, the F12 correction brings an average
error from the CBS limit from 107.1 mEh to 6.6 mEh (with
the V formula) or 6.9 mEh (V BX). The latter two errors are
smaller than the average error of 9.9 mEh in MP2/aug-cc-
pV5Z. With the ATZ basis set, MP2 has an average error of
42.5 mEh, whereas MC-MP2-F12(V ) has only 3.0 mEh and
MC-MP2-F12(V BX) 3.5 mEh. The statistical uncertainties
are on the order of a few tenths of 1 mEh with the largest
being 1.2 mEh after 1.44 × 108 MC steps using 40 redundant
walkers. They can furthermore be arbitrarily (albeit slowly)
compressed by running a longer MC run.

Figure 4 plots the proportion of the CBS limits recovered
by MP2 and MC-MP2-F12(V BX). MP2 recovers on average
74.6%, 90.2%, 95.6%, and 97.7% of the CBS limits with the
ADZ, ATZ, AQZ, and A5Z basis sets, respectively. MC-MP2-
F12(V BX)/ADZ captures 98.5% of the CBS limits, which

TABLE II. The MP2 correlation energies in Eh. The values in parentheses are statistical uncertainties.

MP2 MC-MP2-F12(V )b MC-MP2-F12(VBX )b

Moleculea ADZ ATZ AQZ A5Z CBSc ADZ ATZ ADZ ATZ

H2 −0.0273 −0.0320 −0.0333 −0.0337 −0.0343 −0.0336(0) −0.0341(0) −0.0342(0) −0.0342(0)
CH2 −0.1154 −0.1410 −0.1493 −0.1524 −0.1557 −0.1508(1) −0.1554(1) −0.1535(1) −0.1547(2)
CH4 −0.1677 −0.2008 −0.2111 −0.2149 −0.2188 −0.2134(1) −0.2189(2) −0.2165(1) −0.2186(4)
NH3 −0.1992 −0.2401 −0.2537 −0.2588 −0.2643 −0.2601(1) −0.2650(2) −0.2603(2) −0.2632(3)
H2O −0.2193 −0.2683 −0.2859 −0.2929 −0.3002 −0.3004(1) −0.3023(1) −0.2954(2) −0.2979(3)
C2H2 −0.2223 −0.2798 −0.3012 −0.3100 −0.3192 −0.3263(1) −0.3231(1) −0.3129(2) −0.3148(2)
C2H4 −0.2628 −0.3137 −0.3311 −0.3376 −0.3445 −0.3337(1) −0.3444(2) −0.3389(3) −0.3438(5)
HF −0.2847 −0.3399 −0.3583 −0.3651 −0.3722 −0.3622(2) −0.3714(5) −0.3673(4) −0.3700(9)
HNC −0.2824 −0.3377 −0.3573 −0.3650 −0.3731 −0.3660(3) −0.3739(3) −0.3677(7) −0.3714(5)
HCN −0.2943 −0.3502 −0.3699 −0.3777 −0.3859 −0.3774(2) −0.3866(2) −0.3789(4) −0.3837(4)
CO −0.2992 −0.3607 −0.3837 −0.3932 −0.4031 −0.4012(3) −0.4056(2) −0.3970(5) −0.4001(5)
N2 −0.3173 −0.3796 −0.4018 −0.4109 −0.4203 −0.4147(2) −0.4218(2) −0.4127(5) −0.4170(4)
CH2O −0.3327 −0.4021 −0.4271 −0.4370 −0.4474 −0.4439(3) −0.4492(4) −0.4405(5) −0.4436(7)
HNO −0.3686 −0.4455 −0.4729 −0.4841 −0.4957 −0.4934(3) −0.4987(3) −0.4873(5) −0.4916(7)
H2O2 −0.4154 −0.5079 −0.5411 −0.5545 −0.5685 −0.5700(4) −0.5727(5) −0.5601(7) −0.5637(10)
F2 −0.4280 −0.5361 −0.5758 −0.5927 −0.6105 −0.6253(3) −0.6193(5) −0.5978(7) −0.6023(9)
CO2 −0.5053 −0.6117 −0.6514 −0.6676 −0.6846 −0.6828(6) −0.6890(6) −0.6730(12) −0.6791(12)

Errord 0.1071 0.0425 0.0193 0.0099 0.0000 0.0066(3) 0.0030(3) 0.0069(5) 0.0035(6)

aGeometries were taken from Ref. 85.
bOnly the F12 corrections were calculated by the MC-MP2-F12 method using either the nonvariational V formula or the
variational VBX formula and the Slater-type geminal (geminal 1) with γ = 1.1 a.u. The number of MC steps was 1.44×108

and the number of the redundant walkers was 40.
cThe X−3 extrapolation using the MP2/AQZ and MP2/A5Z correlation energies.
dThe standard deviation from the MP2/CBS values (the standard deviation of the statistical uncertainties in parentheses).
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FIG. 4. The percent recovery of the CBS limits of the MP2 correlation ener-
gies by various methods. The corresponding numerical data are in Table II.

is already greater than that of MP2/A5Z. The ratio goes up
further to 99.3% with MC-MP2-F12(V BX)/ATZ.

Therefore, MC-MP2-F12 works exceedingly well for the
total correlation energies, with either the V or V BX formula.
Comparing V and V BX , the former performs slightly better
than the latter. This is not surprising because errors from
a variational formula are always positive and cannot be
accidentally small, while the results from a nonvariational
formula can scatter in both higher or lower sides of the
correct values and can accidentally agree more accurately
with the latter. As shown in Sec. IV C, V BX becomes more
accurate than V for the relative energies because systematic
cancellation of positive errors occurs in the former (but not in
the latter) when energy differences are taken.

In Table III, we revisit the question of the relative
performance of geminals for total correlation energies. With
the ADZ basis set, Ten-no’s Slater-type geminal (geminal
1) performs the best by a large margin especially in the
V formula with an average error of 6.6 mEh. The hybrid
geminal (geminal 6), designed to be insensitive to γ in the
V formula, comes next in performance with an average error
of 12.8 mEh. Geminal 2 is particularly poorly performing.
Switching from the nonvariational (V ) to variational (V BX)
formula, the average errors of some geminals decrease, while
those of the others increase, reflecting the fact that the values
of γ are not optimal for either formula. With the ATZ basis set,
the hybrid geminal (geminal 6) becomes the most accurate
in both the V and V BX formulas, perhaps supporting its
design.

TABLE IV. Gas-phase reactions considered in this work.

Reaction Formulaa

1 CO+H2→ CH2O
2 N2+3H2→ 2NH3

3 C2H2+H2→ C2H4

4 CO2+4H2→ CH4+2H2O
5 CH2O+2H2→ CH4+H2O
6 CO+3H2→ CH4+H2O
7 HCN+3H2→ CH4+NH3

8 HNO+2H2→ NH3+H2O
9 C2H2+3H2→ 2CH4

10 CH2+H2→ CH4

11 F2+H2→ 2HF
12 2CH2→ C2H4

aGeometries were taken from Ref. 85.

C. Reaction energies

Energies of 12 gas-phase reactions listed in Table IV
were calculated by MP2, MP2-F12, and MC-MP2-F12 using
geminal 1 (the Slater-type geminal) with γ = 1.1 a.u. The
results are compiled in Table V. They were computed
as the difference in the MP2 or MP2-F12 correlation
energy between reactants and products, whose geometries
were taken from the work of Bak et al.85 The MP2
part of the energy was obtained with the conventional
deterministic algorithms in ,83 whereas the F12
part was computed either by MC-MP2-F12(V ), MC-MP2-
F12(V BX), or deterministic MP2-F12(V BX), the latter
implemented in ,17,74,94,95 which uses neither the GBC nor
EBC.

First, focusing on the ADZ results, we confirm that the
correlation contributions to the reaction energies of MP2
suffer from excessively large errors from the CBS limits,
which are, on average, 12.5 kJ mol−1. They are so large that
even the sign is incorrectly predicted (as compared with the
CBS limits, if not with the reaction energies) for reactions 2,
5, and 8. Once the F12 corrections from MC-MP2-F12 are
added, be they based on the V or V BX formula, the correlation
contributions to the reaction energies are, on average, within
2.6 kJ mol−1 of the CBS limits. The statistical uncertainties are
no more than 1.7 kJ mol−1 after 1.44 × 108 MC steps and are
comparable to the intrinsic errors in the F12 method itself, but
can be arbitrarily reduced by running longer MC integrations.
Therefore, MC-MP2-F12 with either the V or V BX formula

TABLE III. The average error (in mEh) in the MC-MP2-F12 correlation energies using the geminals listed in Table I from the MP2/CBS values. The 17
molecules used were the same as those in Table II.

f
(1)
12 (γ = 1.1 a.u.)a f

(2)
12 (γ = 1.2 a.u.)a f

(3)
12 (γ = 1.2 a.u.)a f

(4)
12 (γ = 2.0 a.u.)a f

(5)
12 (γ = 2.0 a.u.)a f

(6)
12 (γ = 1.1 a.u.)a

Basis set V VBX V VBX V VBX V VBX V VBX V VBX

ADZb 6.6 (0.3) 6.9 (0.5) 20.2 (0.1) 63.4 (0.2) 17.6 (0.3) 8.7 (0.7) 17.6 (0.3) 12.3 (0.7) 21.8 (0.2) 12.1 (0.5) 12.8 (0.3) 7.2 (0.6)
ATZb 3.0 (0.3) 3.5 (0.6) 17.0 (0.2) 21.9 (0.3) 4.2 (0.3) 4.0 (0.7) 5.2 (0.4) 4.6 (0.7) 3.0 (0.3) 3.2 (0.5) 2.1 (0.3) 3.2 (0.6)

aOnly the F12 corrections were calculated by the MC-MP2-F12 method using either the nonvariational V formula or the variational VBX formula. The number of MC steps was
1.44×108 and the number of the redundant walkers was 40.
bThe standard deviation from the MP2/CBS values (the standard deviation of the statistical uncertainties in parentheses).
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TABLE V. The MP2 correlation contributions to the reaction energies in kJ mol−1. The values in parentheses are statistical uncertainties.

ADZ ATZ CBSb

Reactiona MP2 F12(VBX )c MC-F12(V )d MC-F12(VBX )d MP2 MC-F12(V )d MC-F12(VBX )d MP2

1 −16.1 −24.6 −23.8 (1.0) −24.2 (1.9) −24.9 −24.9 (1.2) −24.5 (2.3) −26.4
2 1.8 −13.3 −12.1 (0.8) −13.5 (1.5) −12.2 −15.3 (1.0) −18.2 (1.9) −14.2
3 14.2 16.2 13.6 (0.7) 15.4 (1.3) 15.4 18.7 (1.4) 20.8 (2.6) 17.2
4 21.2 5.2 8.4 (1.7) 7.3 (3.3) 5.8 5.3 (1.9) 3.5 (3.6) 6.1
5 0.5 −8.4 −6.8 (0.8) −7.5 (1.6) −7.9 −9.8 (1.2) −11.9 (2.3) −8.4
6 −15.7 −33.1 −30.6 (0.7) −31.7 (1.4) −32.8 −34.7 (0.9) −36.5 (1.7) −34.8
7 24.1 13.7 12.6 (0.6) 12.7 (1.1) 13.9 13.1 (0.9) 11.4 (1.7) 14.5
8 12.1 −0.1 0.5 (0.8) 0.3 (1.5) 2.9 −0.9 (1.1) −3.0 (2.0) −0.7
9 24.1 23.9 20.4 (0.6) 22.8 (1.1) 21.3 23.3 (1.2) 23.5 (2.3) 25.2
10 −65.8 −75.4 −76.2 (0.3) −75.4 (0.5) −73.0 −77.2 (0.6) −78.2 (1.1) −76.0
11 28.3 17.4 16.4 (1.0) 16.1 (2.0) 22.2 18.9 (1.4) 18.3 (2.7) 16.7
12 −141.6 −158.4 −159.2 (0.6) −158.3 (1.3) −151.9 −159.1 (1.3) −159.1 (2.5) −160.0

Errore 11.9 0.0 1.9 (0.9) 1.0 (1.7) 2.7 1.4 (1.2) 2.8 (2.3) 1.1
Errorf 12.5 1.1 2.6 (0.9) 1.7 (1.7) 3.5 1.3 (1.2) 2.6 (2.3) 0.0

aSee Table IV.
bSee footnote c of Table II.
cThe deterministic MP2-F12 calculation using the variational VBX formula and the Slater-type geminal (geminal 1) with γ = 1.1 a.u. Unlike MC-MP2-F12, neither the GBC nor
EBC was assumed.
dMC-MP2-F12 calculations. See footnote b of Table II.
eThe standard deviation from the deterministic MP2-F12(VBX )/ADZ values (the standard deviation of the statistical uncertainties in parentheses).
f The standard deviation from the MP2/CBS values (the standard deviation of the statistical uncertainties in parentheses).

does work well in practice for relative energies, consistently
achieving the chemical accuracy from the CBS limits.

We also find that MC-MP2-F12(V BX) gives the results
that are systematically closer [than MC-MP2-F12(V )] to
deterministic MP2-F12(V BX) for all reactions barring one.
Therefore, we argue that the MC-MP2-F12 method does
not have a bias82 and is convergent at the correct limit,
i.e., the result of the deterministic version of the corresponding
method. The statistical uncertainties are also reasonable,
but somewhat overestimated as the V BX results are within
1σ (statistical uncertainty) from the deterministic values.
The V results are often outside 3σ from the deterministic
results, but this does not mean an underestimation of σ; it
simply means that MC-MP2-F12(V ) and MP2-F12(V BX) are
two different methods with slightly different correct results.
Note that deterministic MP2-F12(V BX) used here does not
invoke either the GBC or EBC, unlike MC-MP2-F12(V BX),
which assumes both. However, we numerically confirmed
(not shown) that the differences in the F12 corrections caused
by these approximations are much smaller than the typical
statistical uncertainties and negligible, except when γ is too
small (γ ≤ 0.4 a.u. in the case of the Slater-type geminal).

Furthermore, the errors from the CBS limits are distinctly
smaller in MC-MP2-F12(V BX) than in MC-MP2-F12(V )
with the ADZ basis set. This may well be because the intrinsic
errors in the F12 method, which are always positive with
the variational V BX formula, cancel between reactants and
products in MC-MP2-F12(V BX). However, the statistical
uncertainties are nearly twice as large in the V BX results as in
the V results, making it difficult to draw a definitive conclusion.
The greater statistical uncertainties in the results of the V BX
formula are due to the larger number and higher dimension
of its integrals and are expected. Nonetheless, the difference

in the overall accuracy between V and V BX is small, and
given its much smaller computational cost (see Sec. IV D) and
somewhat smaller statistical uncertainty, the nonvariational V
formula may be preferred in most applications.

Turning to the results of the ATZ basis set, we find
the benefit of the F12 method to diminish rather rapidly
with a basis-set extension especially in the MC-MP2-F12
implementation. The average error from the CBS limits is
compressed significantly from 12.5 to 3.5 kJ mol−1 going from
MP2/ADZ to MP2/ATZ. In the meantime, the same quantity
of MC-MP2-F12(V ) decreases from 2.6 to 1.3 kJ mol−1,
while the average statistical uncertainty increases from 0.9
to 1.2 kJ mol−1. With MC-MP-F12(V BX), the average error
from the CBS limits increases from 1.7 kJ mol−1 (ADZ)
to 2.6 kJ mol−1 (ATZ), probably owing to the increased
statistical uncertainty from 1.7 to 2.3 kJ mol−1. However, we
do not consider this to be particularly troubling because it is
with a small basis set that the F12 method is most needed.
That MC-MP2-F12 is relatively more effective and efficient
(in the sense of giving smaller statistical uncertainties) with
ADZ than with ATZ which should indeed be considered as a
practical advantage.

Table VI summarizes the geminal-dependence of the
reaction energies calculated by MC-MP2-F12/ADZ with the
V or V BX formula. Figure 5 plots the same using the
V BX data and the values from the deterministic counterparts.
The statistical uncertainties are comparable across different
geminals, but the average errors from the CBS limits vary more
greatly and are a better gauge of the geminals’ performance.

The Slater-type geminal (geminal 1) is confirmed to be
the one with the smallest average errors, either with the V or
V BX formula, and is, therefore, judged to be the most suitable
for the fixed-amplitude MP2-F12 method (at least among the
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TABLE VI. The correlation contributions to the reaction energies in kJ mol−1 calculated by MC-MP2-F12/ADZ using the geminals listed in Table I.

f
(1)
12 (γ = 1.1 a.u.)b f

(2)
12 (γ = 1.2 a.u.)b f

(3)
12 (γ = 1.2 a.u.)b f

(4)
12 (γ = 2.0 a.u.)b f

(5)
12 (γ = 2.0 a.u.)b f

(6)
12 (γ = 1.1 a.u.)b

Reactiona V VBX V VBX V VBX V VBX V VBX V VBX CBSc

1 −23.8 −24.2 −25.0 −22.1 −23.6 −26.7 −22.8 −26.2 −23.3 −25.6 −23.7 −25.7 −26.4
2 −12.1 −13.5 −23.4 −19.8 −9.6 −15.1 −6.5 −12.7 −11.7 −13.6 −9.4 −11.7 −14.2
3 13.6 15.4 4.9 6.8 15.0 16.6 16.5 18.5 12.0 13.2 13.5 14.4 17.2
4 8.4 7.3 2.6 −0.1 13.7 14.5 17.4 15.3 9.7 7.4 11.8 10.7 6.1
5 −6.8 −7.5 −11.1 −10.9 −3.5 −3.7 −4.9 −9.6 −5.2 −5.2 −5.4 −6.0 −8.4
6 −30.6 −31.7 −36.1 −33.0 −27.1 −30.3 −27.7 −35.8 −28.5 −30.8 −29.1 −31.7 −34.8
7 12.6 12.7 3.0 8.1 16.8 16.0 17.8 14.7 13.8 13.9 14.3 13.1 14.5
8 0.5 0.3 −13.8 −13.2 4.6 3.7 5.6 0.9 1.2 2.1 1.6 −0.2 −0.7
9 20.4 22.8 5.4 7.8 22.4 23.6 23.1 20.6 18.6 20.2 21.6 23.3 25.2
10 −76.2 −75.4 −81.3 −75.6 −74.3 −75.7 −73.1 −74.9 −75.2 −76.1 −75.2 −76.0 −76.0
11 16.4 16.1 −3.8 −1.0 19.9 17.9 19.8 12.4 14.1 15.0 18.1 17.4 16.7
12 −159.2 −158.3 −163.1 −152.1 −156.1 −158.4 −152.8 −152.0 −156.9 −159.3 −158.5 −160.9 −160.0

Errord 2.6 1.7 10.9 9.5 4.5 3.4 5.7 4.1 3.8 2.6 3.4 2.2 0.0

aSee Table IV.
bSee footnote b of Table II.
cSee footnote c of Table II.
dThe standard deviation from the MP2/CBS values.

six studied). This may or may not be rationalized by the
limiting behavior of the solution of the two-electron equation
of motion pointed out by Monkhorst.91 However, insofar as
the short-range r12-dependence is similar to the Slater-type
geminal (see Fig. 1), other geminals (barring geminal 2) work
almost as effectively. For instance, geminal 3 (the rational
geminal) has the average errors that are roughly twice those
of geminal 1 (the Slater-type geminal). Geminal 6 (the hybrid
geminal) is an average of geminals 1 and 3 and its errors also
come in between those of its parent geminals. This geminal
may be said to have the advantage that its F12 corrections
are nearly independent of γ (see Figs. 2 and 3). If an optimal
value of γ is unknown, one may use either the V BX formula
or geminal 6.

D. System-size scaling

Here, we determine the asymptotic functional dependence
(scaling) of the cost of MC-MP2-F12 on the number of basis
functions (n), i.e., the system’s spatial size.

Figure 6 plots the cost scaling per MC step. To understand
the observation, we briefly review the algorithm first. In

each MC step, an electron-pair walker and m one-electron
walkers need to be propagated by the Metropolis algorithm.
The cost scaling of this step is O(mn) because a processor
must evaluate O(n) weight functions at O(m) coordinates.
Next, n AO amplitudes at m accepted walker coordinates are
computed at an O(mn) cost. Then, these AO amplitudes are
transformed into MO amplitudes at an O(mn2) cost because at
each of O(m)walker coordinates, O(n2)multiplications of MO
coefficients and AO amplitudes occur in this step. Thereupon,
Opq [Eq. (45)], Vpq [Eq. (46)], and O′pq [Eq. (63)] arrays
are constructed at an O(m2n) cost, for each array is a sum
over O(n) orbitals evaluated at two walker coordinates, whose
number grows as O(m2). Once these arrays are constructed,
a processor accumulates the F12 correction. The cost of this
step is cheap and independent of n (but is heavily dependent
on m).

Figure 6 shows that the wall time required for 128 MC
steps of the MC-MP2-F12 calculations using the V formula
falls accurately on the n2 line in the large n limit. This is
because the overall cost per MC step is dominated by the
AO-to-MO transformation of orbital amplitudes, whose cost
is an O(mn2) quantity, when the number of redundant walkers

FIG. 5. The correlation contributions
to the reaction energies obtained with
the MP2, MP2-F12(VBX), and MC-
MP2-F12(VBX) methods using the
geminals listed in Table I. The basis set
is ADZ. The corresponding numerical
data are found in Table VI. The error
bars are the statistical uncertainties.
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FIG. 6. The wall time (in seconds) spent in 128 MC steps of the MC-MP2-
F12(VBX ) (red dots) and MC-MP2-F12(V ) (green dots) calculations as a
function of the number of basis functions (n). The number of redundant
walkers was 40. A set of 31 molecules ranging from water (n = 10) to tetrahy-
drocannabinol (n = 472) in the DZ basis set was used. Lines proportional to
n and n2 are superimposed to guide the eyes.

(m) is as small as 40 in this case. For small n, the cost per
MC step appeared linear with n,43 as the O(mn) AO amplitude
calculation step is dominant with a large prefactor on the
cost function caused by its many exponential evaluations.
For larger n, as explored in this work, the O(mn2) MO
amplitude calculation step supersedes the former, despite its
small prefactor. When a large value of m is used, the cost
per MC step reverts back to linear scaling with n,68 since
the O(m2n) step of constructing Opq, Vpq, and O′pq becomes
the hotspot. The same logic applies to the cost scaling of
MC-MP2. Therefore, the cost scaling of MC-MP2-F12 varies
with the balance between n and m, but is observed to be O(n2)
per step in the present implementation and for a wide range
of molecular sizes.

The cost function of the V BX formula may not have
entered an asymptotic region by n = 472, but its functional
form is almost certain to be O(n2) because a V BX calculation
includes all steps of the V calculation. For a small molecule,
a V BX calculation is nearly an order of magnitude more
expensive than a V calculation. The gap becomes smaller and
is only a factor of 2.3 for the largest molecule in the plot with
n = 472. Hence, in large molecules, the cost advantage of the
V formula may be considered insignificant, rendering the V BX
formula preferred for its variational stability; recall that MC-
MP2 and MC-MP2-F12 are designed for large molecules as
they are not competitive with their deterministic counterparts
for smaller ones.

The scaling of cost per MC step is not a useful measure of
a stochastic method’s efficiency. A more useful measure is the
scaling of cost to reach a given accuracy. Figure 7 testifies that
the relative statistical uncertainty (σrel) [as defined by Eq. (89)
with IN understood to include the MP2 correlation energy]
after some MC steps (say, Nrel) is asymptotically proportional
to n,

σrel = O(n). (94)

As is well known, the statistical uncertainty in an MC integral
tends to fall off accurately in proportion to N−1/2, where N is

FIG. 7. The relative statistical uncertainty [Eq. (89) with IN including
the MP2 correlation energy] of the MC-MP2-F12(VBX ) (red dots) and
MC-MP2-F12(V ) (green dots) calculations as a function of the number of
basis functions (n). The number of MC steps was 6.55×106, the number
of redundant walkers was 40, and the block size was 7. The same set of
molecules and basis set to generate Fig. 6 were used. Lines proportional to
n and n2 are superimposed to guide the eyes.

the number of MC steps. That this is also the case with the MC-
MP2-F12 results has been confirmed with the data presented
in Fig. 8 and elsewhere. Therefore, the relative statistical
uncertainty (σfin) after Nfin MC steps is accurately predicted
to be

σfin ≈
σrel√

Nfin/Nrel
=

O(n)
√

Nfin
. (95)

For σfin to become smaller than a given size-independent
tolerance, Nfin has to be an O(n2) quantity. The total cost is,
therefore, Nfin times the O(n2) cost per MC step, which is
O(n4). We conclude that the MC-MP2-F12 cost to achieve
a given accuracy (as measured by a relative statistical
uncertainty) increases as O(n4). This may be compared with
the O(n5) scaling of deterministic MP2 or MP2-F12 with fixed
amplitudes.

FIG. 8. Convergence of the MP2 correlation energy of tetrahydrocannabinol
(n = 472) in the DZ basis set with respect to the number of MC steps. The
error bars correspond to σN of Eq. (88) with the block size of 7. The
Slater-type geminal (geminal 1) with γ = 1.1 a.u. was used. The number of
redundant walkers was 40. The 4096-way parallel VBX calculation with a
total of 7.87×108 MC steps took 7.17 h of wall time.
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FIG. 9. Speedup (relative to the 16-CPU run) of parallel MC-MP2-
F12(VBX )/DZ calculations for the water molecule as a function of the
number of CPU cores measured in terms of the wall time spent for the same
number of samples. A speedup line for the perfect scalability is superimposed.

E. Computer-size scaling

Figure 9 records the parallel scalability of MC-MP2-F12
on many CPUs. The speedup was measured as the rate of
compression of the wall time spent in the last 25 000 MC
steps of an MC-MP2-F12(V BX)/DZ calculation of the water
molecule. The number of redundant walkers, m, was 20. The
unit of speed was taken as that of an execution on 16 CPU
cores or one XE node of Blue Waters at National Center for
Supercomputing Applications of University of Illinois.

The MC-MP2-F12 algorithm is naturally parallel by
design, in which each processor is tasked with its own
Metropolis propagation of walkers and accumulation of
the F12 correction with no mandatory interprocessor
communications. All processors occasionally (every 128 MC
steps) report their snapshot values of the F12 correction and
statistical uncertainty to the master process by _,
just to periodically protect the most current calculation
results. As a result, it achieves scalability of 99.9% going
from 16 CPU cores to 4096 CPU cores or a 255.8-fold
speedup for the tiniest problem of the water molecule in the
DZ basis set, attesting to its strong scaling. For a larger
calculation for tetrahydrocannabinol in the DZ basis set
(n = 472) shown in Fig. 8, a speedup by a factor of 7.84
(98% scalability) is observed from 512 to 4096 CPU cores
(using the V BX formula). Furthermore, these calculations are
indefinitely restartable in the sense that the F12 corrections
and statistical uncertainties from two separate executions on
different computers can be concatenated to produce the result
for a longer continuous calculation.

V. CONCLUSIONS

Dense matrix multiplications, which have dominated
electronic-structure algorithms, may be fundamentally non-
scalable with both system and computer sizes. One may,
therefore, need to redesign new, scalable algorithms when
applications are attempted to large molecules, solids, or
even liquids, running on a modern supercomputer, which

nowadays has up to hundreds of thousands or millions
of processors. There are at least two such fundamentally
scalable algorithms: local-basis (fragment or divide-and-
conquer) algorithms96–99 and stochastic (Monte Carlo)
algorithms.51,64,65

The local-basis algorithms, introduced to ab initio
electron-correlation theories by Saebø and Pulay,96,97 take
advantage of a rapid decay of interparticle interactions in
a chemical system100,101 and the resulting sparsity of the
associated interaction matrices in a spatially local basis set.
In the stochastic algorithms, the dimensional sparsity of
interaction matrices is exploited by sampling increasingly
less in higher dimensions. This is achieved by the Metropolis
algorithm80 with an appropriate weight function that describes
the desired dimension-biased distribution of samples.

In this work, we have fully developed a stochastic
algorithm of MP2-F12 using both the variational V BX formula
and nonvariational V formula, the latter on the basis of the
pilot implementation reported as Ref. 41. On the basis of
numerical experimentation, we have established the O(n4)
scaling of the MC-MP2-F12 method with the number of
orbitals n, which is one-rank lower than the usual O(n5)
scaling of MP2 or MP2-F12. The former does not need to use
the RI approximation with an ABS to lower the dimensions
of integrals or to evaluate the resulting long sum-of-products
of lower-dimensional integrals, which is not scalable. It does
not have to precompute or store any integrals and is free of
any significant disk I/O.

Since all integrals (except one-electron integrals available
from the HF calculations) are evaluated numerically by the
MC method, MC-MP2-F12 can use nearly any mathematical
form of geminal. Taking advantage of this, we have quantified
the relative performance of the 6 geminals that satisfy the cusp
conditions. We have confirmed the overall best performance
of the Slater-type geminal. The Gauss-type geminal, which
has a noticeably different long-range behavior than the rest,
is distinctly poorly performing to the extent that the reaction
energies are hardly improved by its F12 correction.

Contrary to our concern that the nonvariational formula
may be practically useless for relative energies because its
F12 corrections are dependent on the shape of a geminal (γ,
in particular) in a manner that is hard to predict, we found it to
give reliable results at a computational cost that is 2–10 times
smaller than the variational formula. Nevertheless, the relative
energies from the variational formula are systematically more
accurate because the errors caused by the suboptimal nature
of the geminal shape cancel between the two total energies.
For larger molecules, the cost differential between the two
formulas becomes smaller, and it may thus be recommended to
use the variational formula whenever possible. The statistical
uncertainties in reaction energies are less than 2 kJ mol−1

after 1.44 × 108 MC steps with the ADZ basis set, which
are roughly half of the systematic errors of the F12 method
itself (from the CBS limits) with the same basis set. The
former can be made arbitrarily smaller by running longer MC
calculations.

The parallel scalability is excellent by virtue of the
embarrassingly parallel nature, by design, of the algorithm.
Each processor carries out its own MC integrations with no
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mandatory, frequent, or large interprocessor communications.
A speedup by a factor of 255.8 has been achieved upon
increasing the number of processors from 16 to 4096,
which is 99.9% of the perfect parallel efficiency, which
may not be surprising when this method is viewed as
a QMC variant. Our algorithm’s speed is likely limited
only by the hardware size rather than by the software
limitations.

MC-MP2-F12 and its sister methods are not intended
to be a replacement of its deterministic counterparts and
are slower and less precise than the latter for smaller
problems. Rather, these two classes of implementations have
completely different sets of merits and demerits, making
them complementary in their applicabilities. MC-MP2-
F12 is designed for grand-challenge applications on high-
end massively parallel supercomputers, for which existing
deterministic implementations may not even start owing
to their more rigid resource requirements, higher cost
scaling, and lower parallel scaling. Next, we will examine
applicability and performance of MC-MP2-F12 for such large
problems.
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APPENDIX A: DERIVATIONS OF EQS. (61), (62),
AND (70)

We show that the terms carrying the numerical factor of
7/32 in Eqs. (61) and (62) arise from the first term of Eq. (48).
The other terms in Eqs. (61) and (62) as well as higher-order
integrands are derived similarly.

Substituting Eq. (64) into the first term of Eq. (48), we
obtain

7
32

occ.
i, j

⟨i j | f12
�
T̂1 + T̂2, f12

� |i j⟩ = 7
32

occ.
i, j

⟨i j | f12




f (a)12

r12
+ f (b)12



|i j⟩ − 7

32

occ.
i, j

⟨i j | f12




f (c)12

r12
+ f (d)12




r12 · (∇1 − ∇2)|i j⟩ (A1)

=
7

32


dr1dr2

occ.
i, j

ϕ∗i(r1)ϕ∗j(r2)



f (a)12

r12
+ f (b)12



ϕi(r1)ϕ j(r2)

− 7
32


dr1dr2

occ.
i, j

ϕ∗i(r1)ϕ∗j(r2)



f (c)12

r12
+ f (d)12



ϕ j(r2) r12 · ∇1ϕi(r1)

+
7

32


dr1dr2

occ.
i, j

ϕ∗i(r1)ϕ∗j(r2)



f (c)12

r12
+ f (d)12



ϕi(r1) r12 · ∇2ϕ j(r2) (A2)

=
7

32


dr1dr2

f12 f (a)12 O11O22

r12
+

7
32


dr1dr2 f12 f (b)12 O11O22

+
7

32


dr1dr2

f12 f (c)12 (O11O′22 −O′11O22)
r12

+
7

32


dr1dr2 f12 f (d)12 (O11O′22 −O′11O22), (A3)

where a change in the order of summations and integrations is
made in Eq. (A2), an essential step for bringing the expression
into a MC-integrable form.

Next, we show that the first term of Eq. (70) with
the numerical factor of 7/16 comes from the first term of
Eq. (51).

Substituting the definition of the exchange operator,

K̂1 =

occ.
k


dr3 ϕ

∗
k(r3) 1

r13
P̂13ϕk(r3), (A4)

into the K̂1 contribution of the first term of Eq. (51), we obtain
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− 7
32

occ.
i, j

⟨i j | f12
�
K̂1, f12

� |i j⟩ = − 7
32

occ.
i, j


dr1dr2 ϕ

∗
i(r1)ϕ∗j(r2) f12

occ.
k


dr3 ϕ

∗
k(r3) 1

r13
P̂13ϕk(r3) f12ϕi(r1)ϕ j(r2)

+
7

32

occ.
i, j


dr1dr2 ϕ

∗
i(r1)ϕ∗j(r2) f12 f12

occ.
k


dr3 ϕ

∗
k(r3) 1

r13
P̂13ϕk(r3)ϕi(r1)ϕ j(r2) (A5)

= − 7
32


dr1dr2dr3

occ.
i, j,k

ϕ∗i(r1)ϕ∗j(r2) f12ϕ
∗
k(r3) 1

r13
ϕk(r1) f32ϕi(r3)ϕ j(r2)

+
7

32


dr1dr2dr3

occ.
i, j,k

ϕ∗i(r1)ϕ∗j(r2) f12 f12ϕ
∗
k(r3) 1

r13
ϕk(r1)ϕi(r3)ϕ j(r2) (A6)

= − 7
32


dr1dr2dr3

O13O22O31 f12 f32

r13
+

7
32


dr1dr2dr3

O13O22O31 f12 f12

r13
(A7)

= − 7
32


dr1dr2dr3

O12O33O21 f13 f23

r12
+

7
32


dr1dr2dr3

O12O33O21 f23 f23

r12
, (A8)

in the last step of which a coordinate interchange of r2↔ r3
(additionally r1↔ r2 in the last term) is carried out to
ensure that the singularity occurs only at r12 = 0, which is
also essential for brining the final expression into a form
most convenient for MC integration. Furthermore, using a
coordinate interchange of r1↔ r2, we can immediately show
that the K̂2 contribution of the first term of Eq. (51) is

− 7
32

occ.
i, j

⟨i j | f12
�
K̂2, f12

� |i j⟩ = − 7
32

occ.
i, j

⟨i j | f12
�
K̂1, f12

� |i j⟩,

(A9)

yielding

− 7
32

occ.
i, j

⟨i j | f12
�
K̂1 + K̂2, f12

� |i j⟩

=
7
16


dr1dr2dr3

f23( f23 − f13)
r12

O12O33O21. (A10)

TABLE VII. The weight function [Eq. (77)] for DZ and ADZ.

Atom (A) c
(1)
A

ζ
(1)
A

c
(2)
A

ζ
(2)
A

H 0.5 0.6 0.05 0.15
C 1.0 1.0 0.10 0.25
N 2.5 1.4 0.25 0.30
O 3.0 1.8 0.30 0.37
F 4.5 1.8 0.45 0.35

TABLE VIII. The weight function [Eq. (77)] for TZ and ATZ.

Atom (A) c
(1)
A

ζ
(1)
A

c
(2)
A

ζ
(2)
A

H 0.5 0.6 0.05 0.10
C 1.0 0.8 0.10 0.13
N 2.5 1.0 0.25 0.19
O 3.0 1.0 0.30 0.22
F 4.5 1.2 0.45 0.28

The other term of Eq. (51) and higher-rank integrands can be
derived similarly.

APPENDIX B: WEIGHT FUNCTIONS

Two types of weight function are used in MC-MP2-F12
calculations. One is the one-electron weight function, w1e(r),
in the form of Eq. (78), and the other is the two-electron
weight function, w2e(r1,r2), of Eq. (76). They both are defined
in terms of a linear combination, g(r), of two atom-centered
s-type GTOs [Eq. (77)]. For each atom, the two exponents
and expansion coefficients in g(r) are given in Tables VII
and VIII. The only important consideration in defining g(r)
is that it should be more diffuse than the most diffuse of
the integrands, so that the Metropolis algorithm over-samples
rather than under-samples. An incidence of under-sampling
can be detected as a vertical jump in the evolution of the
statistical uncertainty.
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