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1. INTRODUCTION

One of the central challenges of computational molecular inves-
tigation is the solutionof the time-independent, nonrelativistic Born!
Oppenheimer electronic Schr€odinger equation. For a system of n
electrons and N nuclei with atomic numbers ZI and interparticle
separations rij and riI, the eigenvalue equation in atomic units is

! ∑
n

i¼ 1

1
2
∇2

i ! ∑
n

i
∑
N

I

ZI

riI
þ ∑

n

i>j¼ 1

1
rij

 !

Ψ ¼ EΨ ð1Þ

Accurate approximations to the eigenfunctions and energies
provide valuable information for spectroscopy, thermochemistry,
and kinetics and form the basis of computational molecular
dynamics. They often also are the first step in more accurate
treatments that account for nonadiabatic and relativistic effects.
The challenge researchers face is to devise numerical methods
that are sufficiently accurate to provide reliable predictions while
at the same time requiring modest computational resources such
that chemically relevant systems can be investigated.

Today, much research is being carried out in the field of
quantum chemical methods that make use of explicitly correlated
electronic wave functions. Efficient computer codes have re-
cently been developed in the framework of large (commercial)
quantum chemical program packages, and the number of appli-
cations of these codes is increasing rapidly. By using explicitly
correlated electronic wave functions, electronic correlation ener-
gies of molecular ground and excited states can be computed
close to the limit of a complete basis set at high levels of, for
example, coupled-cluster theory. Methods based on a single
Slater determinant as a reference wave function have been
developed toward practical tools for all kinds of applications,
and methods for multireference problems are currently being
developed as well as methods for analytical computation of

nuclear gradients and (response) properties for ground and
excited states.

In this manuscript, we present a comprehensive review of
explicitly correlated approaches, beginning with the early ideas
and methods and progressing to the state of the art of the field.
We give particular prominence to the F12 approach that has
received a surge of impetus over the past decade and become a
useful tool for routine chemical investigations. Before discussing
explicit correlation, however, we first review exact and approx-
imate wave functions from a more general perspective.

2. CORRELATION IN ELECTRONIC WAVE FUNCTIONS

To successfully construct accurate trial electronic wave func-
tions it is important to have a clear understanding of the nature of
electronic correlation, where it is, and where it is not represented
in common approximate wave function forms. In the following
sections, we present a systematic discourse that we hope fulfills
this aim and is somewhat pedagogical in nature. Related dis-
courses on this topic can be found in refs 1 and 2.

2.1. Statistical Correlation
The motion of two particles is said to be statistically uncorre-

lated if the pair probability distribution function factorizes into a
product of distribution functions for the individual particles

P12ðx1, x2Þ ¼ P1ðx1ÞP2ðx2Þ ð2Þ
Equivalently, this can be expressed in terms of the conditional
electron densityP12(x1|x2),

3 the probability distribution function for
particle 1 when particle 2 is at x2. If the particles are statistically
uncorrelated, P12(x1|x2) is independent of the position of particle 2

P12ðx1jx2Þ ¼ P12ðx1, x2Þ
P2ðx2Þ

¼ P1ðx1Þ ð3Þ

Whenever the above identities do not hold, the particles are said
to be statistically correlated. If the particles are distinguishable, then
P1(x) andP2(x)may be different fromeach other andP12(x1,x2) can
be different for every particle pair. Electrons, however, are indis-
tinguishable, and therefore, for every electron pair

P1ðxÞ ¼ P2ðxÞ ¼ 1
n
FðxÞ ð4Þ

P12ðx1, x2Þ ¼ 1
nðn! 1ÞF2ðx1, x2Þ ð5Þ

where F(x) is the electron density and F2(x1,x2) is the pair density

FðxÞ ¼ n
Z

dx2:::
Z

dxnΨ&ðx, x2, :::, xnÞΨðx, x2, :::, xnÞ ð6Þ

F2ðx1, x2Þ ¼ nðn! 1Þ
Z

dx3:::
Z

dxnΨ&ðx1, x2, :::, xnÞΨðx1, x2, :::, xnÞ

ð7Þ

F2(x1,x2) is the probability of finding an electron at position x1 at the
same time as finding another electron at position x2. Since the elec-
trons are countable, if there is an electron at x1 then there can only be
n! 1 electrons at x2 and F2 integrates to n(n! 1) (some authors
normalizeF2 to (1/2)n(n! 1) so thatVee=

R
dx1
R
dx2r12

!1F2(x1,x2)).
Thus, the electrons in an n-electron system are statistically uncorre-
lated if 4

F2ðx1, x2Þ ¼ n! 1
n

Fðx1ÞFðx2Þ ð8Þ
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Note that x is a composite space and spin coordinate x = (rx,ry,rz,s).
The nonrelativisticHamiltonian is spin free, and in the nonrelativistic
limit, the electron repulsion energy only depends on the distribution
of the electrons in space. In this respect we are primarily interested in
the spatial probability distributions. These are obtained by simply
integrating over all the spin coordinates in F(x) and F2(x1,x2) to give
F(r) and F2(r1,r2).

Correlation between electrons has two independent sources.
• Fermi correlation: electrons are countable but indistinguish-
able particles that obey Fermi statistics, which requires that
the wave function is antisymmetric with respect to exchange
of configurations x1 and x2 for any pair of electrons.

• Coulomb correlation: electrons interact through a repulsive
Coulomb force e2/(4πε0r12), where r12 is the distance
between the electrons.

In terms of approximate representations for electronic wave
functions, Fermi correlation has two distinct consequences. The
first is that any expansion of the wave function has exactly zero
contribution from n-electron orbital product wave functions
where two or more electrons occupy the same spin orbital. We
shall see that this gives rise to correlation between electrons in
the statistical sense. The second consequence of Fermi correla-
tion is that the antisymmetry requirement introduces additional
correlation, which is referred to as exchange.

In the following sections we illustrate the consequences of the
intrinsic entanglement of electrons through Fermi and Coulomb
correlation using the simple two-electron systems of helium and
molecular hydrogen. However, first, it is instructive to contrast
the language used in wave function theory with that used in
density functional theory (DFT).
2.1.1. Exchange-CorrelationHole inDensity Functional

Theory. In density functional theory a pair correlation function
h(x1,x2) is defined through

F2ðx1, x2Þ ¼ Fðx1ÞFðx2Þð1 þ hðx1, x2ÞÞ ð9Þ

The exchange-correlation hole for an electron at x1 is defined as

Fxcðx1, x2Þ ¼ Fðx2Þhðx1, x2Þ ð10Þ

and serves to separate the total electronic interaction energy into
a classical interaction calculated from an uncorrelated probability
distribution, F(x1)F(x2), and a “nonclassical” contribution

Vee ¼ 1
2

Z
dx1dx2

1
r12

F2ðx1, x2Þ

¼ 1
2

Z
dx1dx2

1
r12

Fðx1ÞFðx2Þ þ
1
2

Z
dx1dx2

1
r12

Fðx1ÞFxcðx1, x2Þ

ð11Þ

The pair correlation function, h(x1,x2), is symmetric and contains
both Fermi and Coulomb correlation and also a contribution
removing the self-interaction of the electrons. The exchange-
correlation hole is related to the conditional electron density
through

Fxcðx1, x2Þ ¼ ðn! 1ÞP12ðx2jx1Þ ! Fðx2Þ ð12Þ

and therefore
Z
dx2Fxcðx1, x2Þ ¼ ! 1 ð13Þ

This results from the contribution that eliminates self-interaction.
The exchange-correlation hole can be partitioned into exchange

and (Coulomb) correlation parts, where the exchange part is
defined as

Fxðx1, x2Þ ¼ Fðx2ÞhHFðx1, x2Þ ð14Þ

and hHF(x1,x2) is the pair correlation function for the Hartree!
Fock pair density. Fx(x1,x2) contains contributions from both
Fermi correlation and the self-interaction correction and thus
also satisfies eq 13.
2.1.2. Exchange and Coulomb Holes in Wave Function

Theory. In wave function methods the key object of interest is
the wave function rather than the density. The Hartree!Fock
wave function ΨHF forms the basis for almost all approximate
methods and accounts for Fermi correlation (see below). It is
therefore convenient to define a Coulomb hole as

hc ¼ Ψ!ΨHF ð15Þ

This is the function that must be modeled successfully to obtain
accurate solutions to the Schr€odinger equation. The (Coulomb)
correlation energy is defined similarly5

Ecorr ¼ Eexact ! EHF ð16Þ

In fact, such is the importance of Coulomb correlation that
this energy is referred to simply as the correlation energy, even
though EHF contains the effects of Fermi correlation. Note that
we assumed L€owdin’s definition, eq 16, of the correlation energy,
which is based on a restricted Hartree!Fock (RHF) wave func-
tion. Pople and Binkley6 have given a definition based on an un-
restricted Hartree!Fock wave function, but spin contamination
makes the separation of Fermi and Coulomb correlation much
less well-defined (see also ref 7).
2.1.3. Radial, Angular, and Left!Right Correlation.

When visualizing and discussing electron correlation in molecules,
it is commonplace to speak of three possibilities.
• Radial correlation: if an electron is close to a nucleus it is
more probable for the other electrons to be far out from that
nucleus.

• Angular correlation: if an electron is on one side of a nucleus
it ismore probable for the other electrons to be on the opposite
side of that nucleus.

• Left!right correlation: if an electron is close to a nucleus on
the left side of a chemical bond it is more probable for the
other electrons to be close to the nucleus on the right.

Radial and angular correlation are separable when using a
nucleus as the origin and convenient descriptors of correlation in
atoms or for correlation close to each nucleus in a molecule.
Left!right correlation is convenient for describing correlation in
regions between atoms in a molecule. These descriptors are not
specific to Fermi or Coulomb correlation and simply refer to the
correlation in two-particle probability distribution functions.

2.2. Fermi Correlation: Shell Structure
A Hartree product wave function for an n-electron system has

the general form8!10

Ψðx1, x2, :::, xnÞ ¼ Π
n

i¼ 1
ϕkiðxiÞ ð17Þ

where ϕk1 are orthonormal spin orbitals. The Hartree product
wave function may be criticized on several fronts. Although the
wave function is an eigenfunction of Ŝz, it is not in general an
eigenfunction of Ŝ2. More importantly, however, assigning elec-
tron l to occupied orbital ϕk1, electron 2 to ϕk2, and so on, makes
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the implicit assumption that the electrons are distinguishable.
Consequently, every pair of electrons i,j has a different set of one-
and two-particle probability distribution functions

PiðxiÞ ¼ ϕ
&
kiðxiÞϕkiðxiÞ ð18Þ

PjðxjÞ ¼ ϕ
&
kjðxjÞϕkjðxjÞ ð19Þ

Pijðxi, xjÞ ¼ PiðxiÞPjðxjÞ ð20Þ

Since for every pair the two-particle probability distribution
function factorizes into a product of one-particle distribution
functions one may be tempted to say that the electrons are
statistically uncorrelated. This is only true if the electronic coor-
dinates are treated as distinguishable. However, because electrons
are in fact indistinguishable the correct measure for statistical
correlation between electrons is eq 8. For the Hartree product
wave function

Fðx1Þ ¼ ∑
n

i¼ 1
Piðx1Þ ð21Þ

F2ðx1, x2Þ ¼ ∑
n

i, j¼ 1
i6¼j

Pijðx1, x2Þ ð22Þ

and therefore

F2ðx1, x2Þ ¼ Fðx1ÞFðx2Þ ! ∑
n

i¼ l
Piðx1ÞPiðx2Þ ð23Þ

Thus, the electron pair probability distribution derived from a
Hartree product wave function is statistically correlated. To
appreciate the nature of this correlation it is perhaps helpful to
consider a Hartree product wave function for certain bosonic
states where all indistinguishable particles occupy the same
orbitals. For such a wave function

PiðxÞ ¼ 1
n
FðxÞ " i ¼ l, n ð24Þ

F2ðx1, x2Þ ¼ Fðx1ÞFðx2Þ !
1
n
Fðx1ÞFðx2Þ ð25Þ

and the particles are statistically uncorrelated.
For an electronic Hartree product wave function the prob-

ability distribution reflects the shell structure of the electronic
distribution where, in accordance with the Pauli exclusion
principle, every spin orbital in the Hartree product is different.
This is by far the largest correlation between electrons and has
the largest impact on the electronic energy.

2.3. Fermi Correlation: Exchange
A Slater determinant wave function for an n-electron system

has the general form11

Ψðx1, x2, :::, xnÞ ¼
ffiffiffiffi
n!

p
A

Yn

i¼ 1
ϕkiðxiÞ ¼ jΦKæ ð26Þ

where ϕki are a set of orthonormal spin orbitals and |ΦKæ denotes
a Slater determinant of orbitals ki.A projects onto the antisym-
metric irreducible representation of the symmetric group

A ¼ 1
n! ∑

n!

u¼ 1
εuPu ð27Þ

where εu is the parity of a permutation Pu. The fundamental
deficiency of the Hartree product representation has been
remedied: The Slater determinant is antisymmetric with
respect to exchange of any two electrons, as appropriate for
fermionic indistinguishable particles. A Slater determinant
wave function is an eigenfunction of Ŝz, but it is only an
eigenfunction of Ŝ2 for electronic states with closed-shell or
high-spin open-shell configurations. For low-spin open-shell
configurations, a wave function that is an eigenfunction
of both Ŝz and Ŝ

2 can be constructed from a linear combination
of Slater determinants

ΨS,Msðx1, x2, :::, xnÞ ¼ ∑
K

cK jΦKæ ð28Þ

These are configuration state functions (CSFs). The deter-
minants |ΦKæ that enter the sum are those with the same spatial
occupation, but differing spin occupations with Ŝz eigenvalue
Ms and the coefficients cK are determined by group theoretical
considerations.

Antisymmetric wave functions correlate electrons over and
above the correlation present in a Hartree product description.
For a single Slater determinant the one-electron probability
distribution is

P1ðxÞ ¼ 1
n
FðxÞ ð29Þ

FðxÞ ¼ ∑
n

i¼ 1
ϕ&kiðxÞϕkiðxÞ ð30Þ

The pair density is given by

F2ðx1, x2Þ ¼ Fðx1ÞFðx2Þ ! ∑
n

i, j¼ 1
ϕ
&
kjðx1Þϕkiðx1Þϕ

&
kiðx2Þϕkjðx2Þ

ð31Þ

The additional correlation that arises from antisymmetry is given
by the difference between eqs 31 and 23 and is the exchange com-
ponent of Fermi correlation

! ∑
n

i 6¼j
i, j¼ 1

ϕ
&
kjðx1Þϕkiðx1Þϕ

&
kiðx2Þϕkjðx2Þ ð32Þ

Integrating over the spin coordinates we see that exchange lowers
the probability of like-spin electrons being close in space, but has
no effect on opposite spin electron pairs. In fact, F2(x1,x1) = 0,
that is, there is identically zero probability of finding two
electrons with the same spin at the same point in space. This is
the exchange hole.

For a single Slater determinant the correlation arising
from exchange is always negative. For low-spin open-shell
configurations, however, the CSFs are linear combinations
of Slater determinants and the antisymmetry requirement
can also lead to positive correlation, which is known as a
“Fermi heap”.
2.3.1. Case Study: He Atom. Let us now illustrate these

concepts through a consideration of the three lowest lying energy
electronic states of the helium atom. The CSF for the (1s2) con-
figuration is

Ψ0, 0
11S ¼ j1sðr1Þj1sðr2Þ½αðs1Þβðs2Þ ! βðs1Þαðs2Þ(2!1=2

ð33Þ
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and for the (1s2s) configuration we get four CSFs: The three
components of the triplet-adapted CSF

Ψ1, 1
23S ¼ ½j1sðr1Þj2sðr2Þ ! j2sðr1Þj1sðr2Þ(2!1=2αðs1Þαðs2Þ ð34Þ

Ψ1, 0
23S ¼ ½j1sðr1Þj2sðr2Þ !j2sðr1Þj1sðr2Þ(2!1=2½αðs1Þβðs2Þ

þ βðs1Þαðs2Þ(2!1=2 ð35Þ

Ψ1, !1
23S ¼ ½j1sðr1Þj2sðr2Þ ! j2sðr1Þj1sðr2Þ(2!1=2βðs1Þβðs2Þ

ð36Þ

and a singlet-adapted CSF

Ψ0, 0
21S ¼ ½j1sðr1Þj2sðr2Þ þ j2sðr1Þj1sðr2Þ(2!1=2½αðs1Þβðs2Þ

! βðs1Þαðs2Þ(2!1=2 ð37Þ

The 11S state and theMs = 1,!1 components of the triplet state
are single Slater determinants. The Ms = 0 component of the
triplet state and the open-shell singlet state 21S are plus and
minus linear combinations of two Slater determinants

Ψ1, 0
23S ¼ ðj1sα2sβæ þ j1sβ2sαæÞ2!1=2 ð38Þ

Ψ0, 0
21S ¼ ðj1sα2sβæ! j1sβ2sαæÞ2!1=2 ð39Þ

The extent of electron correlation is very different in the three
states 11S, 23S, and 21S. Figure 1 is a plot of the two-particle
radial densities Pr(r1,r2) = 16π2r1

2r2
2F2(r1,r2) for the low-lying

states of helium (note that since only s orbitals are occupied,

F2 does not depend on the angular coordinates of the electrons).
Consider first the 11S ground state in Figure 1a

FðrÞ ¼ 2j&
1sðrÞj1sðrÞ ð40Þ

F2ðr1, r2Þ ¼ 1
2
Fðr1ÞFðr2Þ ð41Þ

The spatial probability distribution is therefore statistically un-
correlated. In Figure 1 this is seen by noting that the shape of
Pr(r1,r2) as a function of r1 does not depend on r2; it is only scaled
by P(r2). The same is true for the (2s2)1S doubly excited state in
Figure 1c, but it should be realized that these uncorrelated states
only exist for two-electron systems, and the electrons are spatially
statistically uncorrelated but remain correlated in space-spin
configuration space.
Now let us consider the singly excited states 23S and 21S. The

Hartree product wave functions for these two states are degen-
erate in energy because they have the same spatial probability
distributions

FðrÞ ¼ j&
1sðrÞj1sðrÞ þ j&

2sðrÞj2sðrÞ ð42Þ

F2ðr1, r2Þ ¼ j&
1sðr1Þj1sðr1Þj

&
2sðr2Þj2sðr2Þ

þ j&
2sðr1Þj2sðr1Þj

&
1sðr2Þj1sðr2Þ ð43Þ

Note the shell structure: when an electron is in the 1s orbital the
other electron is in the 2s orbital. In contrast to the Hartree
products, the CSFs for the 23S and 21S states have different two-
particle spin-free densities due to the coupling of space and spin

Figure 1. Fermi correlation depicted through the two-electron radial densities in the helium atom for (clockwise from the top left) the 11S ground state,
the 23S and 21S singly excited states, and the (2s2)1S doubly excited state. The 1s and 2s orbitals used for the excited states were obtained by a variational
minimization of the 23S state. Reprinted with permission from ref 2. Copyright 2007 John Wiley and Sons.
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coordinates through the antisymmetry requirement

3F2ðr1, r2Þ ¼ j&
1sðr1Þj1sðr1Þj&

2sðr2Þj2sðr2Þ

þ j&
2sðr1Þj2sðr1Þj&

1sðr2Þj1sðr2Þ
! 2j&

2sðr1Þj1sðr1Þj&
1sðr2Þj2sðr2Þ ð44Þ

1F2ðr1, r2Þ ¼ j&
1sðr1Þj1sðr1Þj

&
2sðr2Þj2sðr2Þ

þ j&
2sðr1Þj2sðr1Þj

&
1sðr2Þj1sðr2Þ

þ 2j&
2sðr1Þj1sðr1Þj

&
1sðr2Þj2sðr2Þ ð45Þ

In the triplet state there is a Fermi hole, where the exchange term
reduces the probability of the two electrons being close together.
In Figure 1b this can be seen through the node in Pr(r1,r2) along
the line r1 = r2. In the singlet state there is a Fermi heap. In this
case the exchange term increases the probability of the two
electrons being in the same region of space. This can be seen in
Figure 1d, where there is a local maximum in Pr(r1,r2) when
r1 = r2 = 0.5 a0.
The energetic consequences of the exchange term (the Fermi

hole and Fermi heap) is to lower the energy of the triplet and
raise the energy of the singlet state, leading to a singlet!triplet
splitting in the ionization potentials. Table 1 lists the computed
ionization potentials (IPs) using Hartree product and CSF wave
function descriptions for the three lowest states of helium. Note
that in these illustrative calculations the orbitals for the excited
states are taken as those that variationally minimize the 23S state.
Consequently, the 11S and21S states are not orthogonal and the com-
puted IPs for the 21S state do not obey the variational principle; the
method of Hylleraas will be discussed in section 4.1.1.

2.4. Coulomb Correlation
The IPs computed from CSFs in Table 1 deviate significantly

from the experimental values. The primary source of error in
these energy differences is that the pair distribution functions do
not account for the effects of the Coulombic repulsion between
the electrons. The missing correlation is Coulomb correlation.
For the ground-state Coulomb correlation is always negative,
that is, it always acts to reduce the probability of two electrons
being found in the same region of space.

In a Slater determinant or CSF wave function the only
variational parameters are the orbital functions. The coefficient
of each Hartree product function is determined by antisymmetry,
and the wave function does not have sufficient flexibility to
account for Coulomb correlation. In Hartree!Fock theory
the orbitals are optimized to minimize the energy expectation
value and is therefore a mean-field theory, where the Coulomb

repulsion between the electrons only influcences the wave
function through an effective potential.

One systematically improvable route toward the exact solution
to the nonrelativistic Born!Oppenheimer Schr€odinger equa-
tion, where Coulomb correlation is fully included, is to expand
the wave function as a linear combination of Slater determinants
with varying electronic configurations. Such a configuration inter-
action (CI) wave function has the form

Ψ ¼ ∑
K

cK jΦKæ ð46Þ

where in general all possible determinants enter the sum. The
way in which the coefficients cK are determined defines a class of
trial wave functions, including Møller!Plesset, coupled-cluster,
and full CI wave functions. The convergence properties of eq 46
are discussed in section 3.7.

In Figure 2 we illustrate the way in which a CI wave function
accounts for Coulomb correlation between electrons by taking
the 11S ground state of helium as an example using the set of
configurations 1s2, 1s2s, 2s2, and 2p2. The coefficients cK have
been determined variationally using the Rayleigh!Ritz method.
The single 1s2 configuration has a statistically uncorrelated spin-
free pair density. In Figure 2b we see that the 1s2s and 2s2 con-
figurations, which contain a radial node through the 2s orbital,
introduce radial correlation. The contribution from the 2s con-
figurations acts to decrease the wave function in the region where
r1≈ r2, lowering the probability of finding the two electrons close
together. In Figure 2c we see that the 2p2 configurations intro-
duce angular correlation. The combined effect, resulting in the
correlation hole of this simple trial wave function, is in Figure 2d.
In Figure 2a we see that Coulomb correlation is a very small per-
turbation to the Hartree!Fock wave function for helium.
2.4.1. Static and Dynamic Correlation. In the case of

helium the fully correlated two-particle density matrix is qualita-
tively similar to that obtained through aHartree!Fock description,
and Coulomb correlation can thus be considered as a relatively
small perturbation of the Hartree!Fock state. The difference
purely arises from the fact that the electrons are aware of the
instantaneous interactions with the other electrons (in contrast
to the mean-field interaction in the Hartree!Fock state), and
hence, one usually speaks of dynamic correlation.
At variance to this, there are cases in which more than one

Slater determinant (or CSF) leads to a low-lying solution of the
Hartree!Fock equation and a qualitatively correct zeroth-order
description of the system requires one to include all these
configurations. A prominent example is the homolytic cleavage
of a bond (cf. the example in section 2.4.2). At least two con-
figurations are necessary to properly describe this process, and
the physical interpretation of the wave function suggests a strong
right!left correlation of the two electrons involved in the bond.
From this picture the notion “static correlation” has emerged.
Note, however, that a strict distinction of static and dynamic
correlation is not possible in general.
2.4.2. Case Study:MolecularHydrogen.Molecular hydro-

gen serves as an excellent example for the various kinds of Fermi
and Coulomb correlation discussed in the previous sections.
Consider aminimal basis CI calculation for the low-energy states.
The set of CSFs that enter this simple CI calculation are

Ψ0, 0
1Σ þ

g
¼ j1σg

ðr1Þj1σg
ðr2Þ½αðs1Þβðs2Þ ! βðs1Þαðs2Þ(2!1=2

ð47Þ

Table 1. Calculated and Experimental IPs and Energy Dif-
ferences of Helium (in eV)a

Hartreeb CSFb Hylleraasb Exp.c

IP (11S) 23.447 23.447 24.591 24.587

IP (23S) 4.359 4.742 4.768 4.767

IP (21S) 4.359 3.976 3.972 3.972

ΔE(23S) ! 11S 19.088 18.706 19.823 19.820

ΔE (21S) ! 23S 0.000 0.766 0.796 0.796
aThe orbitals for the excited-state Hartree products and CSFs are those
that variationally minimise the 23S state. b From ref 2. c From ref 12.
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which corresponds to the (1σg
2) configuration

Ψ1, 1
3Σ þ

u
¼ ½j1σgðr1Þj1σuðr2Þ ! j1σuðr1Þj1σgðr2Þ(2

!1=2αðs1Þαðs2Þ

ð48Þ

Ψ1, 0
3Σ þ

u
¼ ½j1σgðr1Þj1σuðr2Þ ! j1σuðr1Þj1σgðr2Þ(2

!1=2½αðs1Þβðs2Þ

þ βðs1Þαðs2Þ(2!1=2 ð49Þ

Ψ1, !1
3Σ þ

u
¼ ½j1σgðr1Þj1σuðr2Þ ! j1σuðr1Þj1σgðr2Þ(2

!1=2βðs1Þβðs2Þ

ð50Þ

Ψ0, 0
1Σ þ

u
¼ ½j1σgðr1Þj1σuðr2Þ þ j1σuðr1Þj1σgðr2Þ(2

!1=2½αðs1Þβðs2Þ

! βðs1Þαðs2Þ(2!1=2 ð51Þ

which are the three components of the triplet-adapted CSF and
the singlet-adapted CSF corresponding to the configuration
(1σg1σu) and

Ψ0, 0
1Σ þ

g
¼ j1σuðr1Þj1σuðr2Þ½αðs1Þβðs2Þ ! βðs1Þαðs2Þ(2!1=2

ð52Þ

which is the CSF for the (1σu
2) configuration. These states are

analogous to those of helium, except with the atomic orbitals 1s
and 2s replaced by molecular bonding and antibonding orbitals
1σg and 1σu, respectively. In Figure 3 we plot the spin-free pair
probability distribution functions for the four states obtained by
variationally minimizing the energy with respect to the coeffi-
cients in the CI expansion eq 46. For each of these states, the

projection of the spin-free pair probability distribution function
P12(r1,r2) on the molecular axis (z) is plotted.
In the CI calculation the 3∑u

+ and 1∑u
+ CSFs do not mix with the

other states, and these CSFs are plotted in Figure 3b and 3d,
respectively. Correlation in these states is purely Fermi type, and
the impact of exchange is to completely alter the pair probability
distribution. In the triplet state there is a Fermi hole around the
Fermi node at z1 = z2, and if an electron is close to one nucleus,
the other electron is much more likely to be found at the other
nucleus (strongly negative left!right correlation). For the singlet
state (Figure 3d) there is a Fermi heap at z1 = z2, resulting in
strongly positive left!right correlation. It is much more pro-
bable to find the two electrons on the same nucleus than on dif-
ferent nuclei.
In the CI calculation the 1σg

2 and 1σu
2 states mix, which intro-

duces Coulomb correlation. The ground state is statistically
uncorrelated at the Hartree!Fock level of theory, but the
probability distribution resulting from the CI calculation in
Figure 3a is statistically correlated. In this state there is negative
left!right correlation, reducing the probability of the two elec-
trons being found close in space. This correlation is entirely due
to the instantaneous Coulombic repulsion force between the
electrons.
The energetic consequences of Fermi correlation and the

strength of mixing of states due to Coulombic interactions both
depend heavily on the internuclear separation. In Figure 4 we
plot the potential energy curves of the four states. In Figure 4a we
see that the open-shell Hartree product functions are degenerate
at all bond lengths, the dotted line. Fermi correlation lifts this
degeneracy, and the energetic consequences of the antisymmetry

Figure 2. Coulomb correlation in the 11S state of the He atom. The He wave function and contributions to it plotted with one electron fixed at 0.65 a0
from the nucleus, plotted in a plane containing the nucleus and the two electrons (note different scales): (a) the CI wave function calculated from 1s, 2s,
and 2p; (b) contribution to the correlation hole from the 2s orbital; (c) contribution to the correlation hole from the 2p orbitals; (d) correlation hole
from 2s and 2p. Reprinted with permission from ref 2. Copyright 2007 John Wiley and Sons.
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requirement (the exchange energy) increases as the bond length-
ens due to the increasing energy difference between the two
electrons being close together or far apart. Figure 4b illustrates
that the closed-shell 1σg

2 and 1σu
2 CSFs become degenerate at

infinite nuclear separation. The pair probability distributions for
these states differ only in the probability of the two electrons
being found between the nuclei as opposed to close to the nuclei,
and neither distribution is left!right correlated (they are both
statistically uncorrelated). At short nuclear separations the left!
right correlation is weak and the Slater determinants are qualita-
tively correct. At long bond lengths the energetic consequences
of Coulomb correlation are large and the negative left!right
correlation fundamentally alters the probability distributions,
lifting the degeneracy of the two states. At short separation we
speak of dynamic Coulomb correlation, and at large separation
we speak of static Coulomb correlation.

3. CUSP CONDITIONS AND ENERGY CONVERGENCE

With the objective of constructing accurate trial wave func-
tions any a priori knowledge of the exact wave function gains
importance. As we have seen, the Fermi structure of the electronic
wave function is by far the most important aspect to include in
wave function approximations. This is elegantly achieved using
Slater-determinant-based expansions. In addition to the fermionic
nature of electrons, the Coulombic nature of the interactions
between the quantum particles additionally dictates the form of
the wave function at short interparticle separations. In particular,
sharp features appear in the wave function at electron!nucleus
and electron!electron coalescence points. These cusps have

important ramifications for the choice of basis function used in
wave function approximation and have been the driving force
behind development of explicitly correlated approaches to electro-
nic structure theory. In the following we review the state of
the current knowledge of the exact wave function and the impact
on the rate of energy convergence in CI-type wave function
approximations.

3.1. Regularity Conditions
In 1957 Kato proved that all eigenfunctions of the nonrelati-

vistic Hamiltonian are continuous throughout configuration
space, and they have partial derivatives of first order, except at the
Coulomb-type singular points on the potential.13 In other words,
Ψ is locally Lipschitz. This important result was the foundation
for Kato’s famous characterization of the first-order derivative
discontinuity at the Coulomb-type singularity: Kato’s cusp con-
dition.13 In 2005, Kato’s proof of regularity was sharpened by
Fournais et al.,14 who found that electronic wave functions of
atoms and molecules have a representationΨ = FΦ, where F is
an explicit universal factor, locally Lipschitz, and independent of
the eigenvalue and the solution Ψ itself and Φ has first-order
partial derivatives in all configuration space and second-order
partial derivatives, except at the Coulomb-type singular points.
The explicit form of F is (in atomic units)

F ¼ ! ∑
N

I¼ 1
∑
n

i¼ 1
ZIriI þ 1

2 ∑
n

i < j¼ 1
rij

þ C0 ∑
N

I¼ 1
∑
n

i < j¼ 1
ZIriI 3 rjI lnðr

2
iI þ r2jIÞ ð53Þ

Figure 3. Electron correlation in the hydrogen molecule depicted through axial probability distribution functions for (clockwise from the top left) the
1∑g

+ ground state, the 3∑u
+ and 1∑u

+ singly excited states, and the (1σu
2)1∑g

+ doubly excited state. The hydrogen nuclei are located at 0.7 a0 and!0.7 a0, and
the states have been determined from a CI calculation. Reprinted with permission from ref 2. Copyright 2007 John Wiley and Sons.
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where C0 = (2 ! π)/6π and I runs over the N nuclei, with
charge ZI and i,j run over the n electrons. F embodies three
types of coalescence conditions, which we now consider
individually in detail using the analysis of Pack and Byers
Brown.15

3.2. Nuclear Cusp Conditions
In the region of configuration space where an electron is

close to a clamped nucleus I and all other particles are well
separated, we may expand the spatial component of the exact
Born!Oppenheimer, nonrelativistic wave function as a Taylor
series in r, the electron!nucleus separation, centered at the
nucleus

ψðr, r2, :::, rnÞ ¼ ∑
∞

l¼ 0
∑
l

m¼ ! l
∑
ν

k¼ 0
rl þ kf klmðr2, :::, rnÞYlmðθ,jÞ

þO ðrl þ νÞ ð54Þ

The coefficients in the series expansion depend parametrically
on the positions of the other particles in the system. It is worth
noting that an expansion of this kind is possible because of
Kato’s regularity result. Inserting this wave function expansion
into the Schr€odinger equation and equating powers of r one
finds that the angular coordinates are uncoupled up toO (rl0+2)
in the wave function, where l0 is the lowest l with nonzero
f lm
0 and that for this l

f 1lm ¼ ! ZI

ðl þ 1Þ f 0lm ð55Þ

This relationship results from the requirement that the singularity in
the Coulomb potential!ZI/r is exactly canceled by a singularity
in the kinetic energy. The better known version of this derivative
discontinuity condition is the one given by Kato for l = 0, which is
equivalent to

f∂ψ00

∂r

"""""
r¼ 0

¼ ! ZIψðr ¼ 0Þ ð56Þ

ψ ¼ ð1! ZIrÞψðr ¼ 0Þ þ a 3 r þ O ðr2Þ ð57Þ

where the tilde with superscript 00 denotes projection onto the
spherical harmonic Y00. The ramifications of eq 55 for the wave
function can be understood from a consideration of the hydrogen

atom. Figures 5b and 5d contain plots of the 1s and 2pz wave
functions, respectively. For the 1s wave function eq 57 applies
and manifests as a cusp in the wave function at the electron!
nucleus coalescence point

ψðrÞ ¼ N expð ! rÞ ¼ Nð1! rÞ þ O ðr2Þ ð58Þ

In the limit of rf 0 the wave function depends linearly on r and
the second term in eq 57 is absent because only l = 0 terms
contribute to eq 54 for the 1s orbital. Equation 57 does not apply
to the 2p states because the wave function is zero at the nucleus
and only l = 1 terms enter the expansion in eq 54. Consequently,
there is no cusp in the wave function and the derivative dis-
continuity eq 55 is at second order, which is expressed by the
coalescence condition

g
∂
2ψ1m

∂r2

"""""
r¼ 0

¼ ! ZI

f∂ψ1m

∂r

"""""
r¼ 0

ð59Þ

ψ ¼ r 3
∂ψ
∂r

"""""
r¼ 0

1! 1
2
ZIr

# $
þ r 3 b 3 r þ O ðr3Þ ð60Þ

The tilde with superscript 1m denotes projection onto the
spherical harmonic Y1m, and b is a traceless tensor. Electronic
states of many-electron systems where the wave function is
zero at a nucleus are rare, but for such states with

Q
symmetry,

eq 60 applies. For states with Δ symmetry, the derivative
discontinuity enters at third order and so on. The result eq 55
was first obtained by Pack and Byers Brown,15 who’s analysis
went beyond the Born!Oppenheimer approximation using
center of mass and relative coordinates, which results in only
a minor modification to eq 55. The behavior of the wave
function at the nucleus has important consequences for
the choice of orbital basis set, which we expand upon in
section 3.7.1.

3.3. Electron Coalescence Conditions
The conditions on the wave function at electron!electron

coalescence are analogous to those for electron!nucleus
coalescence. Pack and Byers Brown’s analysis is general to
both cases and proceeds in this case by considering the
region of configuration space where two electrons are close
together and all other particles are well separated. Trans-
forming to the center of mass s and relative r coordinates of

Figure 4. Potential energy curves of the hydrogen molecule. (a) Fermi correlation of open-shell states. The dotted line represents the energy of the
Hartree product states; full lines represent the spin-adapted triplet 3∑u

+ (lower curve) and singlet (upper curve) 1∑u
+ states. (b) Coulomb correlation in

closed-shell states. The dotted lines represent the CSFs; the full lines represent the variationally optimized linear combinations of these functions. (c)
Potential energy curves of the variationally optimized closed-shell states and spin-adapted open-shell states. Reprinted with permssion from ref 2.
Copyright 2007 John Wiley and Sons.
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two coalescing electrons

s ¼ ðr1 þ r2Þ=2 ð61Þ

r ¼ r1 ! r2 ð62Þ

the spatial component of the exact wave function is expanded as a
Taylor series centered at r = 0

ψðr, s, r3, :::, rnÞ ¼ ∑
∞

l¼ 0
∑
l

m¼ ! l
∑
ν

k¼0
rl þ kf klmðs, r3, :::, rnÞYlmðθ,jÞ

þO ðrl þ νÞ ð63Þ

Inserting this wave function expansion into the Schr€odinger
equation and equating powers of r one finds that just as for the
electron!nucleus case the angular coordinates are uncoupled
up to O (rl0+2) in the wave function, where l0 is the lowest l
with nonzero f lm

0 . The electron!electron derivative disconti-
nuity condition for this l is

f 1lm ¼ 1
2ðl þ 1Þ f 0lm ð64Þ

Note that the !ZI in eq 55 has been replaced by 1/2. In fact,
the general form is with Z1Z2μ/(l + 1), where μ is the reduced
mass of the coalescing particles with charges Z1, Z2. For
electron!electron coalescence the lowest l with nonzero
f lm
0 depends on the space and spin coupling of the coalescing
electrons. The following three situations have been identified
in the literature.

3.3.1. Singlet Coalescence. Antisymmetry dictates that
Ψ(x1,x2,...,xn) = !Ψ(x2,x1,...,xn). Therefore, for singlet coupled
electrons,Ψ(r1,r2,...,rn) =Ψ(r2,r1,...,rn) and only terms with even
l enter in eq 63. For states without special restriction on the
spatial symmetry the lowest lwith nonzero f lm

0 in eq 63 is l = 0. In
this case the derivative discontinuity eq 64 is equivalent to Kato’s
famous cusp condition

∂ψ
∂r

"""""
r¼ 0

¼ 1
2
ψðr ¼ 0Þ ð65Þ

ψ ¼ 1 þ 1
2
r

# $
ψðr ¼ 0Þ þ O ðr2Þ ð66Þ

This is often referred to as the s-wave coalescence condition, and
the electrons are said to have natural spatial parity. Figure 5a is
a plot of the exact and Hartree!Fock wave functions for the
11S ground state of the helium atom.We plot the radial cut where
one electron is located at 0.5 a0 from the nucleus and the other
electron moves along the z axis through the two particles.
The nuclear cusp at z1 = 0 is the most obvious feature. The
electron!electron cusp is at z1 = 0.5 and characterized by linear
dependence on the interelectronic separation. The positive
coefficient reflects that Coulomb correlation is always negative
and there is a Coulomb hole at electron coalescence. TheHartree!
Fock wave function does not possess an electron!electron cusp
since it does not contain Coulomb correlation.
3.3.2. Triplet Coalescence. For electrons that are triplet

coupled the antisymmetry requirement of the exact wave

Figure 5. (a) Wave function for the 11S helium ground state with an electron fixed at a distance of 0.5 a0 on the z axis with the nucleus
at the origin. (b) 1s wave function of hydrogen. (c) Wave function for the 23S helium state with an electron fixed at a distance 0.5 a0 on the
z axis with the nucleus at the origin. (d) 2pz wave function of hydrogen. Reprinted with permissoin from ref 2. Copyright 2007 John Wiley
and Sons.
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function dictates that only terms with odd l enter eq 63. In this
case, the lowest l with nonzero f lm

0 is l = 1 and the derivative dis-
continuity is at second order

g
∂
2ψ1m

∂r2

"""""
r¼ 0

¼ 1
2

f∂ψ1m

∂r

"""""
r¼ 0

ð67Þ

ψ ¼ r 3
∂ψ
∂r

"""""
r¼ 0

1 þ 1
4
r

# $
þ O ðr3Þ ð68Þ

This is referred to as the p-wave coalescence condition and is
analogous to the nuclear derivative discontinuity in the 2p state
of hydrogen. Figure 5d is a plot of a radial cut through the exact
and Hartree!Fock wave functions for the 23S state of the helium
atom. As a result of the antisymmetry requirement both exhibit
an exchange hole at r1 = r2, where the wave function is zero.
There is no cusp at this point; rather the discontinuity is in the
second derivative. As for the singlet case, theHartree!Fockwave
function does not have any derivative discontinuities at the electron
coalescence point.
3.3.3. Unnatural Parity Singlet Coalescence.One further

possibility was found by Kutzelnigg and Morgan,16 which results
from additional spatial symmetry requirements, in particular the
gerade or ungerade parity of the spatial function upon inversion
Ψ(r,s) =(Ψ(!r,!s). The singlet and triplet conditions above
apply to their natural parity states, gerade and ungerade, respec-
tively. For ungerade singlet states (unnatural parity), such as the
1Pu state from a 2p3p configuration, the coupling of space and
spin symmetries dictates that the lowest l for which f lm

0 is nonzero
is l = 2. Therefore, the derivative discontinuity is at third order

g
∂
3ψ2m

∂r3

"""""
r¼ 0

¼ 1
2

g
∂
2ψ2m

∂r2

"""""
r¼ 0

ð69Þ

ψ ¼ r 3
∂
2ψ
∂r2

"""""
r¼ 0

3 r 1 þ 1
6
r

# $
þ O ðr4Þ ð70Þ

where the overline is used to denote that the trace has been
subtracted. Note that the exchange hole for this case vanishes
quadratically with the interelectronic distance, as opposed to
linearly for triplet exchange holes. This wide exchange hole
makes unnatural parity singlet states energetically favorable over
triplet states, and this has been used in a more rigorous general-
ization of Hund’s rules.17!19

3.4. Three-Particle Coalescence Conditions
The Jastrow20 function F in eq 53 accounts for the s-wave

electron!nucleus and electron!electron derivative discontinu-
ities, and therefore, Φ is free from all cusps at two-particle coal-
escence. Equation 53 also contains a contribution for the three-
particle cusp where two singlet coupled electrons coalesce at a
nucleus. In this region the wave function depends on the logari-
thm of r1I

2 + r2I
2 , with a prefactor that depends on the angle between

the paths of convergence between the electrons. The necessity for
log terms to satisfy the three-particle coalescence in helium and to
ensure completeness in an analytic expansion for the ground state
of helium had been shown by Fock in 1958.21,22

Very little is known about the coalescence conditions for
triplet spin-coupled electrons coalescing at a nucleus. The wave
function is zero at coalescence, and by analogy one expects that

any derivative discontinuities must appear at second order. Just as
little is known about three-electron coalescence. The most we
can presently say is that the wave function vanishes at coales-
cence due to the Fermi hole, and therefore, derivative disconti-
nuities can be second order at worst. Hoffmann-Ostenhof et al.23

give a general analysis of N-particle coalescence for fermions in
terms of the hyper-radius ~r of an N-dimensional sphere. Accord-
ing to their work, the wave function goes asymptotically with ~r2

for~rf 0, which coincides with the behavior of the wave function
in the case of the two-electron triplet cusp, in line with the
previous argument.

3.5. Second-Order Coalescence Conditions
Recently, a number of authors have probed deeper into the

structure of the wave function at two-particle coalescence, extend-
ing the analysis of Pack and Byers Brown.24!26 Upon closer inspec-
tion of the Schr€odinger equation at short-range interparticle
separation r with all other particles well separated one finds that the
Ylm are uncoupled up to O (rl+3) and even O (rl+4) for coales-
cence of identical particles. This leads to the following relations

f 2lm ¼ μ
ð2l þ 3Þ

γ2

μðl þ 1Þ þ Ŝ! E

 !

f 0lm ð71Þ

f 3lm ¼ μγð3l þ 4Þ
3ðl þ 1Þð2l þ 3Þðl þ 2Þ

γ2

μð3l þ 4Þ þ Ŝ! E

 !

f 0lm

ð72Þ

where γ =Z1Z2μ and Ŝ is the part of theHamiltonian that is order
r0. Equation 72 holds only for identical particle coalescence.
These second-order and third-order coalescence conditions can
be formulated as

e∂l þ kψlm

∂rl þ k

"""""
r¼ 0

¼ ðl þ kÞ!
l!

ckl ðb
k
l þ Ŝ! EÞ

e∂lψlm

∂rl

"""""
r¼ 0

ð73Þ

with k = 2 and 3 and where l, m, and k relate to eq 63. The
coefficients bl

k and cl
k are universal, depending only on the nature

of the coalescing particles. However, because of the presence of
Ŝ! E, theO (rl+2) andO (rl+3) terms in eqs 54 and 63 depend on
the molecule and state and vary throughout configuration space.

3.6. CoalescenceConditions andApproximateWaveFunctions
Pack and Byers Brown’s analysis may be applied to the

Hartree!Fock equations for the orbitals in a Slater determinant
wave function. One finds that the electron!nucleus coalescence
conditions apply to each orbital individually. The same is also
true for the Kohn!Sham orbitals in density functional theory.27

Provided that each orbital in a CI wave function (or in an ap-
proximate density in DFT) satisfies the coalescence conditions
the trial wave function (and density) also satisfies the coalescence
conditions.

Expansions similar to eq 63 may also be inserted into the
equations in correlatedwave function approximations. For example,
in the spin-adapted equations for the first-order pair functions in
second-order Møller!Plesset (MP2) theory

ðF̂1 þ F̂2 ! εi ! εjÞusij þ Q̂ 12
1
r12

Φs
ij ¼ 0 ð74Þ

where F̂ and εi are the Hartree!Fock operator and orbital
eigenvalues, respectively, and Q̂ 12 is the strong-orthogonality
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operator that projects out the one-particle excitations from 1/r12
(these are contained in F̂). Expanding both the Hartree!Fock
pair functions Φij

s and the first-order pair functions uij
s results

in the (natural parity) singlet and triplet MP2 coalescence
conditions

∂u0ij
∂r12

"""""
r12 ¼ 0

¼ 1
2
Φ0

ijðr12 ¼ 0Þ ð75Þ

u0ij ¼ 1 þ 1
2
r12

# $
Φ0

ijðr12 ¼ 0Þ þ O ðr212Þ ð76Þ

g
∂
2u1ij

1m

∂r212

"""""
r12 ¼ 0

¼ 1
2

g
∂Φ0

ij
1m

∂r12

"""""
r12 ¼ 0

ð77Þ

u1ij ¼ r12 3
∂Φ1

ij

∂r12

"""""
r12 ¼ 0

1 þ 1
4
r12

# $
þ O ðr312Þ ð78Þ

These s- and p-wave coalescence conditions for the first-order
pair functions have gained significant importance in explicitly
correlated MP2 and coupled-cluster methods.

Formation of spin-adapted pair functions uij
s and Φij

s is only
possible when theMP2 theory uses a closed-shell reference state.
To generalize to the open-shell case it is possible to apply the
wave function expansion to spin!orbital pairs.28 As first under-
stood by Bokhan et al.29 in this case both the s-wave and the
p-wave coalescence conditions apply.

3.7. Convergence Properties of CI Wave Functions
Now let us turn to the convergence properties of CI-type

expansions. We shall see that the rate of convergence is strongly
linked to the behavior of the basis functions at the singularities.

The full CI method proceeds by selecting a set of N one-
electron basis functions, which define the extent of the set of
orbitals from which ( n

2N) n-electron Slater determinant basis func-
tions can be formed. The coefficients cK in eq 46 are determined
by the Rayleigh!Ritz method, where the energy is made sta-
tionary with respect to variations in the CI coefficients. This leads
to the matrix eigenvalue problem

∑
L

HKLcL ¼ E ∑
L

SKLcL ð79Þ

where the Hamiltonian and overlap matrix elements are the
expectation values

HKL ¼ ÆΦK jĤjΦLæ ð80Þ

SKL ¼ ÆΦK jΦLæ ð81Þ

In 1977 Klahn and Bingel30,31 proved that the eigenvalues of the
matrix eigenvalue problem converge with increasing N to the
eigenvalues of the nonrelativistic, Born!Oppenheimer Schr€odinger
equation, subject to certain completeness conditions on the set of
one-electron basis functions. Specifically, this requires complete-
ness in the first Sobolev space, that is, the space of functionswhere
both the function itself and its derivative are square integrable.
Completeness here has the meaning that the error can be made
arbitrarily small by increasing the number of functions in the
expansion.

The vast majority of molecular electronic structure programs
use Gaussian atomic orbital basis functions.32 Gaussian functions
satisfy the required completeness relations, and the energies
from a full CI calculation are guaranteed to converge to the exact
nonrelativistic Born!Oppenheimer electronic energies. How-
ever, this does not guarantee that the convergence will be rapid.
The basis-set convergence of both the Hartree!Fock and CI
energies have been studied extensively by many authors, both
numerically and analytically.16,33!56 The rates of convergence
depend critically on the choice of basis functions and are largely
understood.
3.7.1. One-Electron Convergence. The important aspects

of one-electron basis-set convergence may be understood by exam-
ining the rate of convergence of the energy expectation value of the
hydrogen atom using three choices of Gaussian basis functions57

ψnlm ¼ Nrn ! 1e!ηl r
2
Ylmðθ,jÞ; n > l; n! l ¼ 1, 3, 5:::

ð82Þ

ψnlm ¼ Nrn ! 1e!ηl r
2
Ylmðθ,jÞ; n > l; n! l ¼ 1, 2, 3:::

ð83Þ

ψklm ¼ Nrle!ηlkr
2
Ylmðθ,jÞ ð84Þ

Applying arguments similar to the theory of Fourier series, Klahn
and Morgan34 were able to demonstrate that the error in the
energy expectation value using basis functions eq 82, which is
equivalent to a set of Hermite functions, goes as ∼n!3/2. By
including odd powers of r the convergence becomes exponential.
The source of the slow convergence of basis functions eq 82 is the
inability to describe the wave function in the vicinity of the
singularities of the function being expanded, namely, near the
nuclear cusps.33!35,57 Modern Gaussian-based electronic struc-
ture codes use basis functions of type eq 84, which, although they
do not contain any derivative discontinuities, can reproduce the
cusp to arbitrary precision through ever tighter exponents. In
1986 Klopper and Kutzelnigg36 studied the hydrogen energy
error ε with these basis functions and Huzinaga’s set of expo-
nents58 and found an excellent numerical fit of the form

ε ¼ A expð ! b
ffiffiffi
n

p
Þ ð85Þ

Subsequently, Kutzelnigg was able to derive this result analyti-
cally for even tempered basis sets.57 Extrapolation based on eq 85
appears to be useful for many-electron systems.59Many researches
use a slighly different extrapolation formula, which has a some-
what more empirical justification60

EHFX ≈ EHFlimit þ A expð ! BXÞ ð86Þ

EHFlimit ≈
EHFX ! bEHFX ! 1

1! b
, b ¼ e!B ¼ EHFX ! EHFX ! 1

EHFX ! 1 ! EHFX ! 2
ð87Þ

whereX is the cardinal number of the basis set (see section 3.7.5).
Note that both extrapolation methods require three computed
energies to determine the basis-set limit estimate.
Some authors debate the relative merits of choosing Slater-

type basis functions over Gaussian basis functions.61 In particu-
lar, Slater-type orbitals have a derivative discontinuity at the
nucleus and decay more slowly than Gaussians, although neither
Gaussians nor Slater functions have the correct long-range
behavior. The incorrect asymptotic behavior of the basis
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functions at large electron!nucleus distances does not appear to
limit the energy convergence rate, at least in the regime of
accuracy presently attainable. The situation may, however, be
different for properties such as hyperpolarizibilities that depend
critically on the fringes of the electron cloud.
3.7.2. Two-Electron Convergence. In Figure 6 we plot

the correlation hole (eq 15) for helium in its ground 11S state.
The correlation cusp is clearly visible at the coalescence point of
the two electrons at the bottom of the hole. Contrasting this
numerically exact correlation hole with that of the small CI
calculation in Figure 2d we see that the only sharp feature in the
approximate hole is, erroneously, at the nucleus. This is a result of
the very restricted set of configurations adopted in the illustrative
CI calculation of section 2.4. Increasing the one-electron basis by
increasing the maximum principal quantum number of the atomic
orbitals improves the correlation description, and the conver-
gence toward the exact wave function is plotted in Figure 7.
In contrast to the exponential one-electron convergence it is

clear that the two-electron convergence is extremely slow. This is
true independently of the choice of one-electron basis functions.
Away from the nucleus, the only possibility for a function of
the smooth atomic orbitals to describe the correlation hole is
through a tighter and tighter mesh of radial and angular nodes,
which necessitates very large basis sets. It is worth emphasizing
that because the cusp itself has zero volume the fact that the
smooth basis functions can never reproduce it exactly is not itself
a problem. Rather, it is the linear-r12 form of the wave function
around the cusp that is at the heart of the slow energy
convergence. The correlation cusp at electronic coalescence arises
as a consequence of their Coulombic interactions. This has two

ramifications: the correlation cusp is present in all electronic wave
functions, and consequently, all CI-type correlated wave functions
suffer from this convergence problem. However, the universal
nature and particular functional formof the correlation cuspmeans
that the convergence with basis size is both smooth and predict-
able, which makes possible extrapolation.
3.7.3. Partial Wave Expansion. Schwartz analyzed the rate

of convergence of the second-order helium energy in a 1/Z
expansion,33 where the zeroth-order Hamiltonian is the bare-
nucleus Hamiltonian. He found that (in atomic units) the partial-
wave contributions to the second-order energy have the analytic
form

Eð2Þ ¼ ∑
∞

l¼ 0
Eð2Þl ð88Þ

Eð2Þl ¼ ! 45
256

l þ 1
2

# $!4

! 225
1024

l þ 1
2

# $!6

þ :::

ð89Þ

The (l + 1/2)!4 convergence is very slow and results directly
from the fact that the CI expansion corresponds to a partial wave
expansion of the Coulomb singularity. Following the work of
Klahn and Morgan,34 Hill analyzed the partial wave expansion of
the variationally optimized CI energy expectation value.35 Hill
found that

E ¼ ∑
∞

l¼ 0
El ð90Þ

El ¼ ! 3C1 l þ 1
2

# $!4

! 4C2 l þ 1
2

# $!5

þ ::: ð91Þ

where C1 = 2π2R
0
∞|Ψ(r,r,0)|2r5 dr ≈ 0.024742 and C2 =

(12π/5)
R
0
∞|Ψ(r,r,0)|2r6 dr≈ 0.007747. As for the second-order

energy the convergence goes as (l + 1/2)!4 with increasing l,
but the coefficient is different. This is an example of the
interference between correlation model and basis-set effects
resulting in differing rates of convergence.44,48,62!64 The fact
that odd powers of (l + 1/2) appear as a result of correlation

Figure 6. (a) Cut of the Coulomb hole hc(x1,y1,0.5,0) for helium in its
ground 11S state. The nucleus is at the origin. (b) Jastrow function
J(x1,y1) where hc(x1,y1,0.5,0) = J(x1,y1)j1s(r1)j1s(r2).

Figure 7. Helium ground-state wave function with both electrons on
the same circle of radius 0.5 a0 computed with the CI approach using
increasing basis size with maximum principal quantum number nmax.
Reprinted with permission from ref 2. Copyright 2007 John Wiley
and Sons.
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effects beyond second order was verified by Kutzelnigg and
Morgan.16 Moreover, they were able to show that in many-
electron systems different pair contributions converge at differ-
ent rates. Natural parity singlet pairs converge as (l + 1/2)!4,
which results from the partial wave expansion of the s-wave corre-
lation cusp. Natural parity triplet pairs converge as (l + 1/2)!6,
which results from a partial wave expansion of the second-order
derivative discontinuity at p-wave coalescence. Unnatural parity
singlet states converge as (l + 1/2)!8, which results from the
third-order derivative discontinuity at d-wave coalescence.
3.7.4. Principal Expansion. Using natural orbitals, which

have the same nodal structure as hydrogenic and Laguerre
functions, Carroll et al.38 demonstrated numerically for the 11S
helium state that, to a good approximation, each orbital provides
an energy contribution proportional to

εnlm ≈ ! al n! 1
2

# $!6

ð92Þ

For l = 0, al ≈ 0.29. For l > 0, al ≈ 0.22, and the energy
contribution from each orbital depends only on its principal
quantum number. Consequently, partial wave expansions are
rarely used in quantum chemistry, and instead, basis sets are
chosen according to a principal expansion where basis sets are
increased by including all ∼n2 functions in the next shell. Each
shell contributes an amount of energy proportional to n!4. The
correlation-consistent basis sets cc-pVXZ of Dunning, Peterson,
Woon, and co-workers65 are constructed on this principle. A basis
is expanded by including the set of functions that have approxi-
mately equal energy contributions while simultaneously optimiz-
ing the exponents and Slater-type-Gaussian contraction coeffi-
cients to minimize both the Hartree!Fock and the correlation
energies.
3.7.5. Extrapolation. It has been observed numerically that

energy convergence both for partial wave expansions and for
principal expansions goes as (L + 1)!3, where L is the highest
angularmomentum function present in the one-electron basis.40,41

For the partial wave expansion of ground-state helium, this may
be explained through the following argument. In a CI calculation,
the error in the energy due to omitting all terms l > L is ΔEL =
E ! ∑l = 0

L El and can be estimated by summing over the leading
term of the contribution from each omitted partial wave

ΔEL ¼ 3C1 ∑
∞

l¼L þ 1
l þ 1

2

# $!4

≈ 3C1

Z ∞

L þ 1=2
l þ 1

2

# $!4

dl ¼ C1ðL þ 1Þ!3 ð93Þ

Kutzelnigg recently re-examined the second-order 1/Z expan-
sion for two-electron atoms in natural orbitals and confirmed that
each shell contributes an amount of energy proportional to n!4,
where n is the principal quantum number of the expansion.55 The
cardinal number of the correlation-consistent basis sets X may
be identified with both n and L + 1, which concurs with the
power law error estimate observed by Helgaker et al.40,41 This
provides a simple two-point extrapolation procedure to eliminate
the leading basis-set errors

EcorrX ≈ Ecorrlimit þ AX!3 þ O ðX!4Þ ð94Þ

Ecorrlimit ≈ EcorrX þ ðEcorrY ! EcorrX Þ Y 3

Y 3 ! X3 þ O ðX!4Þ ð95Þ

In pair theories such as MP2 and coupled-cluster singles and
doubles (CCSD) the total correlation energy convergence is
determined by the natural parity singlet pairs. For triplet pairs,
the appropriate power law is X!5 and basis-set limit estimation
can be improved by extrapolating singlet and triplet pairs sep-
arately.66 The different convergence behavior of singlet and
triplet pairs is illustrated in Figure 8, which plots the basis-set
errors for the singlet and triplet pair energy contributions to the
CCSD energy of neon. The power law extrapolations work well
because of the systematic way the correlation-consistent basis
sets are constructed, but they are somewhat idealized. Many
alternative extrapolation formulas have appeared in the literature,
and one of particular note is the Schwenke-type extrapolation50

Ecorrlimit ≈ EcorrX þ ðEcorrY ! EcorrX Þ Yp

Yp ! Xp ð96Þ

3.7.6. Explicit Correlation. Atom-centered basis functions
are ill suited to describe the electron-centered features of the
correlation hole. In particular, the linear dependence of the wave
function on the interelectron separation r12 in the region of elec-
tron coalescence leads to very slow convergence of the electronic
energy with basis size in CI-type expansions of Slater determi-
nants. Although this can be ameliorated by exploiting the smooth
and systematic nature of the convergence through extrapolation,
large basis sets are still required for high accuracy, which limits
the size of systems that can be subject to reliable computational
investigation. This review is concerned with an alternative
strategy, where basis functions that depend explicitly on r12 are
incorporated into the wave function expansion.While such expan-
sions converge very rapidly with basis size, n-electronHamiltonian
matrix elements no longer factorize into products of one- and
two-electron integrals and several alternative strategies have been
developed. The focus of this review is on the R12 and F12
methods, which have evolved into practical tools for quantum
chemistry. In the next sections we review the alternatives to F12
before giving the established details and latest developments in
F12 methodology.

4. N-ELECTRON EXPANSIONS

The most widely used numerical approaches of quantum
chemistry are based on expansions in terms of (antisymmetrized)
products of orthonormalized one-electron functions, the molecular

Figure 8. Basis-set errors for the singlet ()) and triplet (b) pair energy
contributions to the CCSD correlation energy of neon computed using
the cc-pVXZ basis sets.67



18 dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4–74

Chemical Reviews REVIEW

orbitals (MOs). Such MOs are obtained from a mean-field
or self-consistent field (SCF) calculation, for example, from
a Hartree!Fock calculation, but also Kohn!Sham or other
approaches may be employed to generate a set of MOs. In the
mean-field approach, the electronic state is represented by a
subset of the MOs, the occupied MOs. In terms of spin orbitals
ϕk(x), where x indicates both spatial and spin coordinates, there
are as many occupied spin orbitals as there are electrons, and the
antisymmetrized product of the occupied spin orbitals is known
as a Slater determinant. Correspondingly, this mean-field descrip-
tion is known as a one-determinantal approximation. The orbital!
product approaches are also known as the algebraic approximation
to quantum chemistry, since the resulting equations can all be
formulated in terms of matrix operations.

Having this in mind, let us start our description of the elec-
tronic system by performing aHartree!Fock calculation without
any spin restrictions, that is, in an unrestricted Hartree!Fock
(UHF) manner, in which the occupied spin orbitals are those
orbitals ϕk that build the determinant

Φ ¼
ffiffiffiffi
n!

p
Aϕ1ϕ2ϕ3:::ϕn ð97Þ

which minimizes the expectation value

EHF ¼ ÆHFjĤjHFæ ¼ min
Φ

ÆΦjĤjΦæ ð98Þ

with respect to orthonormal transformations among all of the
orthonormalized MOs (occupied and others). The Hartree!
Fock level is often (erroneously) denoted as the “uncorrelated”
level, because it does not account for the effects of Coulomb corre-
lation. However, as discussed in sections 2.1!2.3 the Hartree!
Fock wave function is highly correlated due to Fermi correlation.
The remaining Coulomb correlation (cf. section 2.4) is obtained
when the wave function is approximated as a linear combina-
tion of determinants, as in the configuration-interaction (CI)
method

jCIæ ¼ ð1 þ T̂ÞjHFæ ¼ jHFæ þ ∑
μ

cμτ̂μjHFæ ð99Þ

In eq 99 the excitation operator τ̂μ generates a new Slater deter-
minant by replacing one or more MOs occupied in the reference
determinant |HFæ by one or more other orbitals, which are not
contained in |HFæ. The latter are denoted as virtual orbitals.
In the following we shall denote occupied MOs with the indices
i, j, k,..., and the virtual orbitals with a, b, c,... Together, the occupied
and virtual orbitals form a finite basis set ofMOs, which are denoted
with the indices p, q, r,... Furthermore, we note that the CI wave
function in eq 99 is written in intermediate normalization, that is

ÆHFjCIæ ¼ 1 ð100Þ

When the excitation operator τ̂μ replaces one orbital it may be
written as τ̂i

a = aa
†ai, when two orbitals are replaced as τ̂ij

ab =
aa
†aiab

†aj, when three are replaced as τ̂ijk
abc = aa

†aiab
†ajac

†ak, and so on.
The creation (aq

†) and annihilation (ap) operators satisfy the
anticommutator relation [ap,aq

†]+ = δpq, and we note that the
excitation operators τ̂μ mutually commute, [τ̂μ,τ̂ν] = 0. When
only τ̂i

a is included the CI approach only contains single excita-
tions and the method is denoted as a configuration-interaction
singles (CIS) method. With the operators τ̂i

a and τ̂ij
ab we obtain

the configuration-interaction singles and doubles (CISD) method
with τ̂ijk

abc the configuration-interaction singles, doubles, and
triples (CISDT) method, and so forth.

Because the CI approach is not size extensive it is not used
much any more in modern wave function-based quantum chem-
istry. Rather, the coupled-cluster (CC) approach has become the
method of choice for such calculations. The CC approach is size
extensive, which means that the energy scales correctly with the
number of electrons in the system. The size extensivity is acco-
mplished by choosing an exponential ansatz for the coupled-
cluster wave function

jCCæ ¼ expðT̂ÞjHFæ; T̂ ¼ ∑
μ

tμτ̂μ ð101Þ

Hence, the cluster operator T̂ is a linear combination of excita-
tion operators τ̂μ, each multiplied by a cluster amplitude tμ.
These are determined by multiplying the Schr€odinger equation
from the left with exp(!T̂) and projecting onto the excited states
Æμ| = ÆHF|τ̂μ†

Æμj expð ! T̂ÞĤ expðT̂ÞjHFæ ¼ 0 ð102Þ

Similarly, the CC energy is obtained from the corresponding
projection onto the Hartree!Fock state

ECC ¼ ÆHFj expð ! T̂ÞĤ expðT̂ÞjHFæ ð103Þ

There are as many nonlinear amplitude equations, eq 102, as
there are amplitudes tμ.

As in the case of the CI wave function, the cluster operator T̂
can be written as a sum of single (T̂1), double (T̂2), triple (T̂3)
excitations, and so forth. Hence

T̂ ¼ T̂1 þ T̂2 þ T̂3 þ :::

¼ ∑
ia

tai τ̂
a
i þ 1

4 ∑ijab
tabij τ̂

ab
ij þ 1

36 ∑ijkabc
tabcijk τ̂

abc
ijk þ ::: ð104Þ

With all excitation operators included up to the level of the
n-excitation operator T̂n for a n-electron system the CC wave
function is equivalent with the full configuration interaction
(FCI) treatment in the given one-electron basis (MOs). In
common applications, however, the wave function is restricted
to single excitations (CCS, coupled-cluster singles method),
single and double excitations (CCSD, coupled-cluster singles
and doubles method), single, double, and triple excitations
(CCSDT, coupled-cluster singles, doubles, and triples method),
and so on.

It is not the purpose of the present review to discuss the details
of standard present-day coupled-cluster theory such as the appro-
ximate treatment of triple excitations, CCSD(T), nor to discuss
related approaches such as quadratic configuration interaction
with singles and doubles (QCISD) or Brueckner doubles theory
(BD). For details of coupled-cluster theory we refer to textbooks
or other review articles, for example, refs 68!71.

There are two points that we want to make here. First, we note
that the second order of Møller!Plesset perturbation theory
(MP2), which will be discussed in more detail later in this review,
is readily obtained by inserting the corresponding perturbation
expansions T̂ = T̂(1) + T̂(2) + ... and Ĥ = Ĥ(0) + Ĥ(1) into the
above-mentioned CC equations and collecting all terms up to
first order in the amplitudes and second order in the energy

0 ¼ ÆμjĤð1Þ þ ½Ĥð0Þ, T̂ð1Þ(jHFæ ð105Þ

EMP2 ¼ EHartree!Fock þ ÆHFj½Ĥð1Þ, T̂ð1Þ(jHFæ ð106Þ
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where we used that Æμk|Ĥ(0)|HFæ = 0 for k g 1 by construction
of H(0).

Second, the n-electron expansions (CI, CC, Møller!Plesset
theory) discussed in this section are all based on expanding the
n-electron wave function in a basis of Slater determinants. Such
expansions are not able to satisfy the electronic cusp conditions
and consequently it is very difficult (basically impossible, except for
very large one-electronbasis sets) to accurately describe theCoulomb
holes in the wave function (see section 2.4). As a result, the con-
vergence of the CI, CC, and MP2 energies toward their respective
basis-set limits (E∞) is extremely slow. It can be represented as

72

EN ¼ E∞ þ aN!1 ð107Þ

or40

EX ¼ E∞ þ cX!3 ð108Þ

whereN is the numberof basis functions in a principal-expansion (i.e.,
correlation-consistent) basis set with cardinal number X (see also
section 3.7).

To improve the slow convergence significantly we must go
beyond expanding the wave function using determinants, that is,
antisymmetrized products of one-electron functions, eq 97.
Obviously, the next step beyond products of one-electron func-
tions (orbitals) is to include two-particle functions (geminals),
for example, in terms of the n-electron basis functions

Ψ ¼
ffiffiffiffi
n!

p
A f ðx1, x2Þϕkðx3Þ:::ϕmðxnÞ ð109Þ

In the following subsections, several examples of expansions
beyond (antisymmetrized) products of one-electron functions
will be discussed. The corresponding expansions are referred to
as “explicitly correlated wave functions”. See also refs 73!75.

4.1. Hylleraas-Type Wave Functions
4.1.1. He Atom. The first successful electronic-structure

computation using an explicitly correlated wave function was
the calculation on the He ground state by Hylleraas in 1929.76 In
his classical paper76 Hylleraas carried out a calculation on the 11S
ground state of the He atom using the coordinates

s ¼ r1 þ r2; t ¼ r1 ! r2; u ¼ r12 ð110Þ

where r1 is the distance of electron 1 from the nucleus, r2 is the
distance of electron 2 from the nucleus, and r12 the distance
between the two electrons. In the Hylleraas expansion the spatial
part of the He ground-state wave function is written as

ΨN ¼ expð ! ζsÞ ∑
N

k¼ 1
ckslk t2mkunk ð111Þ

Only even powers of t contribute to singlet states, which have a
symmetric spatial part and an antisymmetric spin function. With
only 3 terms, that is, with the spatial wave function

Ψ3 ¼ expð ! ζsÞðc1 þ c2u þ c3t2Þ ð112Þ

Hylleraas obtained the energy E = !2.90243 Eh, after variation-
ally optimizing both the linear parameters ck and the nonlinear
parameter ζ (which was determined to ζ = 1.82 a0

!1).
It is interesting to note77 that prior to using an explicitly correlated

wave function Hylleraas had tried to solve the He ground-state
problem using a conventional CI expansion. This expansion was
found to converge unacceptably slowly, however. Hylleraas was
thus one of the first researchers to suffer from the slow con-
vergence of the conventional CI expansion. This convergence

problem was solved using an explicitly correlated wave function.
Hylleraas’ choice was, however, not motivated by a consideration
of the singularities of the Hamiltonian and the related electron!
electron cusp. This was done by Slater in 1928.78 This author
analyzed the properties of the He wave function and found that
the Coulomb singularity in the Hamiltonian imposes a certain
behavior on the wave function at the electron!electron coales-
cence point. Slater therefore suggested that the wave function
should be multiplied by a factor of exp(r12/2) in order to model
the behavior at the coalescence point. In Slater’s work78 it
is noted that “It can be easily shown, however, that the correct
wave function for the S states should approach e!2(r1+r2)+r12/2 at
small r’s; when [the Hamiltonian] H operates on this, the result is in
terms of zero order in the r’s.”
Indeed, Slater’s function Ψ = e!2(r1+r2)+r12/2 satisfies Kato’s

cusp condition

f∂Ψ
∂r12

"""""
r12 ¼ 0

¼ 1
2
Ψðr12 ¼ 0Þ ð113Þ

where the wide tilde indicates spherical averaging. Furthermore,
a Taylor expansion of Slater’s r12-dependent wave function factor
yields exp(r12/2) = 1 + (1/2)r12 + O (r12

2 ), and thus, the correct
linear dependence on the interelectronic coordinate for small r12,
as is the case in present-day R12methods that use wave functions
with linear r12 terms.
Hence, both Slater and Hylleraas may be seen as the persons

who introduced explicitly correlated wave functions to electronic
structure theory. Slater’s function e!ζ(r1+r2)+γr12 was proposed in
1928, but the first computations with explicitly correlated wave
functions were carried out byHylleraas in 1929 (in fact, Hylleraas
also studied a function of the type e!ζ(r1+r2)+γr12). Concerning
Slater’s function e!2(r1+r2)+r12/2 we note that the correlation
function χ(r12) = exp(r12/2) seemed physically unreasonable
to Hartree and Ingman.79 These authors argued that the function
χ(r12) should approach a constant value for r12 f∞ and that it
should decrease to a smaller value for r12 f 0. They therefore
suggested to use the trial wave function

expð ! ζ½r1 þ r2(Þ½1! c expð ! γr12Þ( ð114Þ

with ζ > 0 and γ> 0. As will become clear later in the present
review, this 1933 wave function of Hartree and Ingman contains
the correlation factor that is used in modern F12 methods. Today,
these factors are referred to as Slater-type geminals (STG). It
seems appropriate to relate this factor to the work by Slater.
Keeping ζ fixed, Hylleraas found that the 6-term function

Ψ6 ¼ expð ! 1:82sÞðc1 þ c2u þ c3t2 þ c4s
þ c5s2 þ c6u2Þ ð115Þ

yields the energy E = !2.90324 Eh.
76 For this 6-term function,

however, it was found later that the variationally optimal non-
linear parameter is ζ = 1.76 a0

!1, and with this value, the energy
becomes E = !2.90333 Eh.

80!82 Furthermore, with another
6-term Hylleraas expansion

Ψ~ 6 ¼ expð ! ζsÞðc1 þ c2u þ c3t2 þ c4s2u
þ c5s3u þ c6u2Þ ð116Þ

a still lower energy of E = !2.90345 Eh can be obtained (ζ =
1.86 a0

!1).83 In a systematic approach the He ground-state
energy can be computed from an N-term Hylleraas expansion
with all terms that satisfy lk + 2mk + nk e Lmax. With Lmax = 6,
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a 50-term Hylleraas expansion and microhartree accuracy in the
ground-state energy is obtained; with Lmax = 13, a 308-term
Hylleraas expansion yielding nanohartree accuracy is obtained.84

Much progress was achieved in the decade from 1955 to
1965.85 Pekeris86!88 succeeded to perform large-scale Hylleraas
calculations using Laguerre polynomials multiplied by an expo-
nential using perimetric coordinates of the form x = (1/2)(u + t),
y = (1/2)(u ! t), and z = s ! u as variables, and several authors
have suggested to extend and/or modify the original Hylleraas
expansion. For example, Kinoshita suggested to allow for nega-
tive powers89,90

ΨN ¼ expð ! ζsÞ ∑
N

k¼ 1
ckslkðt=uÞ2mkðu=sÞnk ð117Þ

H. M. Schwartz proposed using half-integer powers91,92

ΨN ¼ expð ! ζsÞ ∑
N

k¼ 1
ckslk=2t2mkunk=2 ð118Þ

C. Schwartz93 suggested using half-integer powers of s only

ΨN ¼ expð ! ζsÞ ∑
N

k¼ 1
ckslk=2t2mkunk ð119Þ

He performed calculations with all terms up to lk/2 + 2mk +
nk e 8(1/2).
Motivated by the Fock expansion,21,22,94,95 several researchers

included logarithmic terms into the Hylleraas wave functions.
Such logarithmic terms are needed to describe the wave function
at the point of coalescence of three particles (i.e., in He, both
electrons at the nucleus).96 In 1966, for example, the calculations
by Frankowski and Pekeris97 were carried out using terms such as
ln s, (ln s)2, and (s2 + t2)1/2 in expansions of the type

ΨN ¼ expð ! ζsÞ ∑
N

k¼ 1
ckslk t2mkunkðs2 þ t2Þik=2ðln sÞjk

ð120Þ

yielding the He ground-state energy E = !2.9037243770326 Eh
from a 1078-term wave function. Logarithmic terms were again
investigated some 20!25 years later (ca. 1986!1990),98!101 but
it was also found at the same time that similarly accurate results
can be obtained from aHylleraas expansion, not with logarithmic
terms but with a “double basis set” instead.102!105 The “double
basis set” consists of the basis functions

fΦ0,ΦijkðαA, βAÞ,ΦijkðαB, βBÞg ð121Þ

Φijkðα, βÞ ¼ ð1 þ P̂12Þri1r
j
2r

k
12 expð ! αr1 ! βr2Þ ð122Þ

where P̂12 permutes r1 and r2. Of course, this concept of “double
basis set” can be extended to that of a “triple basis set”, and so
forth, and with a “triple basis set”, Drake and co-workers have
been able to compute the He ground-state energy with about
20-significant-digits accuracy.106 Note that this result was obtain-
ed without logarithmic terms. Even more accurate calculations
are possible for He, however, with up to 40-significant-digits
accuracy. For example, C. Schwartz107 obtained an accuracy of
about 35 decimal places using the original scheme of Hylleraas
plus a combination of negative powers and a logarithm of the
Hylleraas coordinate s. A 25-significant-digits accuracy was obtain-
ed by Korobov108 using an expansion in terms of Slater-type

geminals (Φk)

ΨN ¼ ∑
N=2

k¼ 1
fckRðΦkÞ þ dkJðΦkÞg;

Φk ¼ expð ! αkr1 ! βkr2 ! γkr12Þ ð123Þ

where αk, βk, and γk are complex parameters. Forty significant
digits were finally obtained by Nakashima and Nakatsuji109 using
the free iterative complement interaction (ICI) method. For the
He atom, this method is similar to a Hylleraas-type expansion.
Consider, for example, the functions

Φð0Þ
1 ¼ expð ! ζð0ÞsÞ;

Φð0Þ
2 ¼ expð ! ζð0ÞsÞlnðs þ uÞ;
g ¼ ðs2 ! t2Þ=ð4sZÞ þ u ð124Þ

where Z is the atomic number. In free ICI calculations, at each
order n, new basis functions are generated by applying both g and
gĤ to all k basis functionsΦk

(n!1) of order n!1, and the energy is
obtained from an expansion in this new basis

ΨðnÞ ¼ ∑
Mn

k¼ 1
cðnÞk ΦðnÞ

k ð125Þ

by variationally optimizing the ck
(n)’s as well as the exponent ζ(n).

This procedure leads to an ultimate wave function expansion of
the form

ΨðnÞ ¼ expð ! ζðnÞsÞ ∑
Mn

k¼ 1
cðnÞk slk t2mkunk ½lnðs þ uÞ(jk ð126Þ

at free-ICI order n, where lk ∈Z,mk ∈N, nk ∈N, and jk ∈ {0,1}.
Table 2 provides an overview of some of the most recent and
most accurate calculations of the ground state of the He atom.
The purpose of this table is not to provide a complete overview of
explicitly correlated calculations on He but rather to give a few
examples from the recent literature.
Of course, all of the approaches just mentioned can not only be

applied to the 11S ground state of He but also and equally well to
electronically excited states as well as to all He-like ions such as

Table 2. Nonrelativistic Born!Oppenheimer (i.e., infinite
nuclear mass) Ground-State Energy of Helium
system Ka E/Eh function ref

He 600 !2.903724377022 ECG 110
600 !2.903724377033 LECGb 110
616 !2.903724377034073 Hylleraasc 102
308 !2.9037243770341144 Hylleraasd 111, 112
2114 !2.90372437703411959582 Hylleraase 105
4648 !2.9037243770341195982999 Hy-CI 113
2358 !2.903724377034119598305 Hylleraase 106
5200 !2.903724377034119592311587 STGf 108, 114
10 257 !2.903724377034119598311592 Hylleraasg 107

2451944044400495
22 709 !2.903724377034119598311592 free ICIh 109, 115

2451944044466969
aNumber of terms in the expansion. b ECG expansion plus terms linear
in r1, r2, or r12.

cHylleraas wave function (double basis set). dHylleraas
wave function (fractional and negative powers of s and u). eHylleraas
wave function (triple basis set). f Slater-type geminals. gHylleraas wave
function with negative powers and ln(s). h Free iterative-complement-
interaction method; Hylleraas type with ln(s + u).
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H!, Li+, and so on. However, since such computations do not
add much (there may be some symmetry issues) to the topic of
the present review, we here focus on the He ground state. Besides
electronically excited states, He-like ions, their properties, and so
forth, the more interesting question is how Hylleraas-type trial
wave functions may be designed for many-electron systems such
as Li, Be, B, C, and so on. A further important question is how a
compact trial wave function may be designed that is suitable for
generalizations toward electronic-structure computations on
polyatomic molecules.
Concerning the latter question we note that there is a very rich

early literature on various compactwave functions for two-electron
systems in which, for example, functions such as116!124

Ψ ¼ expð ! 2½r1 þ r2(Þχðr12Þ ð127Þ

Ψ ¼ expð ! ζ½r1 þ r2(Þexpð ! γr12Þ ð128Þ

Ψ ¼ expð ! ζ½r1 þ r2(Þð1 þ cr12Þ ð129Þ

Ψ ¼ expð ! ζ½r1 þ r2(Þð1! c exp½ ! γr12(Þ ð130Þ

Ψ ¼ jðr1Þjðr2Þð1 þ cr12Þ ð131Þ

Ψ ¼ jðr1Þjðr2Þχðr12Þ ð132Þ

Ψ ¼ ½jðr1Þϕðr2Þ þ ϕðr1Þjðr2Þ(χðr12Þ ð133Þ

Ψ ¼ ð1 þ cr12Þ ∑
p e q

cpq½jpð1Þjqð2Þ

þ jqð1Þjpð2Þ( ð134Þ

Ψ ¼ ð1! c exp½ ! γr12(Þ ∑
p e q

cpq½jpð1Þjqð2Þ

þ jqð1Þjpð2Þ( ð135Þ

have been studied. Equations 134 and 135 contain CI expansions
that are multiplied by a correlation factor. With respect to the
other functions, the orbitals j(r), ϕ(r), and/or the correlation
factor χ(r12) are obtained numerically by solving the appropriate
differential equations or expanded in one-electron and/or two-
electron basis sets, respectively. Later in this review we shall see
that today functions of these types are indeed used for calcula-
tions on polyatomic molecules (e.g., with terms such as (1 + cr12)
or (1 ! c exp[!γr12])).
Let us first consider many-electron atoms. Obviously, Hyller-

aas’ ansatz could be extended in a straightforward manner toward
many-electron atoms by including not only the coordinate r12 but
also the other interelectronic coordinates r13, r23, r14, r24, r34, and
so forth, into the many-electron wave function. In the most
general Hylleraas wave function products such as r12r13, r12r13r14,
and so on, occur. In the following we will refer to the correspond-
ing computations as Hyleraas-type calculations. One can, how-
ever, make the restriction that no products of interelectronic
coordinates shall occur, only individual linear terms. This was,
presumably for the first time, done in the landmark paper by
James and Coolidge on the Li atom from 1936,125 and this is the
essence of theHylleraas-configuration-interaction (Hy-CI)method.
Let us consider the Li atom, for which a general Hylleraas-type

expansion can be written as126!132

Ψ ¼ ∑
K

μ¼ 1
cμA ðΦμχ1Þ ð136Þ

where A is the (three-electron) antisymmetrizer and Φμ is a
spatial basis function of the type

rk11 r
k2
2 r

k3
3 r

k4
12r

k5
13r

k6
23 expð ! ζ1r1 ! ζ2r2 ! ζ3r3ÞY LM

ðl 1 l 2Þl 12, l 3ðr1, r2, r3Þ

ð137Þ

where

χ1 ¼ αβα! βαα ð138Þ

is a spin function with spin angular momentum 1/2 (doublet). It
was shown that inclusion of the second linearly independent spin
function

χ2 ¼ 2ααβ! αβα! βαα ð139Þ

is not necessary to obtain the correct basis-set limit for the energy.133

Y LM
ðl 1 l 2Þl 12, l 3ðr1, r2, r3) is a vector-coupled product of spherical

harmonics for the three electrons forming a state of total angular
momentumL.129Not only the 1s22s 2S ground state but also excited
states such as 1s22p 2P and 1s23d 2D can be treated in this manner.
Multiple basis sets are constructed by replication of the basis
functions, eq 137, with different exponents ζ1,ζ2,ζ3.

130

The Hylleraas-configuration-interaction (Hy-CI) method125,134

(for an n-electron atom) is defined as follows

Ψ ¼ ∑
K

m¼ 1
cmÔðL2ÞA ðχjr

νm
12

Yn

i¼ 1
jimÞ ð140Þ

where Ô(L2) is an idempotent orbital angular momentum
projection operator, A the usual n-electron antisymmetrizer,
χj an n-electron spin function (e.g., such as χ1 of eq 138 or χ2 of
eq 139), andjim a one-electron spatial orbital (Slater-type orbital,
STO). Configurations without (νm = 0) and with (νm = 1) the
Hylleraas coordinate r12 are included.
The advantage of the Hy-CI method in comparison with

methods that use general Hylleraas-type wave functions of the
form eq 137 is that in the Hy-CImethod the types of integrals are
restricted to one-, two-, three-, and four-electron integrals. Thus,
the Hy-CI method may have some potential to be applied to
atoms with more than three or four electrons. The complexity of
the integrals will not increase when the number of electrons
becomes larger. In contrast, using a general Hylleraas-type wave
function would require one to compute four-electron integrals
for a four-electron atom, five-electron integrals for a five-electron
atom, and so on. Furthermore, high accuracy can be obtained
with only one r12 term per configuration in addition to terms
without r12 dependence. Products such as r12r13r23... seem not
absolutely necessary, at least not for the Li atom. In recent work,
Sims and Hagstrom note that when accurate wave functions are
considered products of odd powers of rij contribute only at the
subnanohartree level.135 A similar conclusion was drawn by
Thakkar and co-workers,136 who in their study on the lithium iso-
electronic series noted that compact and accurate results may
possibly be obtained fromwave functions inwhich the restriction is
imposed that no term has more than one of the powers of the
interelectronic distances.
We note in passing that it is also possible to design approaches

in between the general Hylleraas scheme and the Hy-CI method.
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For example, Kleindienst and L€uchow137 proposed a Hylleraas-
type method with linear terms rij and “double-linked” terms rijrkl.
The many-electron integrals138 were implemented for this
“double-linked” Hylleraas-configuration-interaction expansion,
and calculations were performed on the Be atom.139

In any case, already for the Hy-CI methods many-electron
integrals up to the level of four-electron integrals are needed.
Two- and three-electron integrals occur over the following
operators (where k is 1 or 2)

1=r12; rk12; r12r13; rk12=r13; r12r13=r23 ð141Þ

together with four-electron integrals over the operators

r12r13=r14; r12r13=r34; r12r34=r23 ð142Þ

Further integrals are required for the kinetic energy and nuclear
attraction parts of the Hamiltonian. Progress on evaluating all of
these integrals has been reported over a long period of time.140!162

In particular, the “fully linked” three-electon integral r12r13/r23
requires special attention, and important progress toward its
analytical and efficient evaluation has been reported in the last
few decades.146!148,154,158 Despite the progress in (atomic)
many-electron integral evaluation, benchmark calculations using
Hylleraas-type wave functions or the Hy-CI method have thus far
been restricted to atoms not larger than Be (Clary and Handy169

performed Hy-CI calculations on the Ne atom in 1976, but they
obtained only ca. 73.5% of the correlation energy due to com-
putational constraints). Results for the atoms Li and Be are
shown in Table 3. Boron and larger atoms seem to remain a com-
putational challenge. Very accurate results from the ECGmethod
(exponentionally correlated Gaussians, section 4.2.1) have been
reported, however, for boron.167 In ref 168 the value for the C
atom was obtained from a rather short expansion with only 500
terms, and the total energy has not yet converged to within one
millihartree of the basis-set limit.
Despite the limited range of applications we note that relati-

vistic and finite-mass effects, including corrections due to quan-
tum electrodynamics (QED), have been computed for the small
atoms with unprecedented accuracy for ground and excited
states. In the present review, however, we focus on the general
aspects of nonrelativistic wave function expansions that depend
on the interelectronic coordinates rij and are less interested in the
numerous and more specialized applications of Hylleraas-type
wave functions.

The Hylleraas, Hy-CI, and ECG methods aim at reaching
ultimate accuracy for few-electron atoms and small molecules. In
contrast, as we shall see further below in this review, the much
more economical R12 and F12 methods aim at reaching reason-
ably high accuracy at low costs for larger systems. In Table 4,
therefore, we list the total correlation energies of the atoms,
cations, and anions of H through Ne. These total correlation
energies are compared with the estimated basis-set limits of
Davidson and co-workers.170,171 We observe that the correlation
energies obtained at the F12 level172 agree to within a few tenths
of a millihartree with those of Davidson and co-workers.170,171

While Hylleraas, Hy-CI, and ECG calculations are able to
provide much more accurate correlation energies for atomic sys-
tems with up to 4 (Be) or 5 (B) electrons than the F12 approach,
the F12 total energies are probably the most accurate “directly
computed” ground-state energies for the atoms C!Ne. Neither ex-
trapolation techniques nor empirical corrections have been used
in the F12 calculations, but explicitly correlated calculations were

Table 3. Nonrelativistic Born!Oppenheimer Ground-State
Energies of Three-, Four-, Five-, and Six-Electron Atoms

system Ka E/Eh function ref

Li 10 000 !7.4780603238 ECG 163

16 764 !7.4780603234519 Hy-CI 135

9576 !7.4780603238897 Hylleraasb 131

9577 !7.4780603238924 Hylleraasb 130

13 944 !7.478060323909560 Hylleraasb 132

Be 5306 !14.6673547 Hylleraasc 139

41 871 !14.667356411 Hy-CI 164

10 000 !14.667356486 ECG 165, 166

B 5100 !24.65386608(250) ECG 167

C 500 !37.84012879 ECG 168
aNumber of terms in the expansion. bGeneralized Hylleraas wave
function. cDouble-linked Hylleraas wave function.

Table 4. Nonrelativistic Born!Oppenheimer Ground-State
Energies (in Eh) of the AtomsH!Ne, Including Their Cations
and Anions, As Obtained in Ref 172

X EX+ refs 170, 171 EX refs 170,171. EX!

Hartree!Fock (ROHF) energy

H !0.499995 !0.487901

He !1.999943 !2.861627

Li !7.236411 !7.432723 !7.432727 !7.428219

Be !14.277372 !14.277395 !14.573013 !14.573023

B !24.237547 !24.237575 !24.529037 !24.529061 !24.519187

C !37.292175 !37.292224 !37.688574 !37.688619 !37.708800

N !53.887924 !53.888005 !54.400857 !54.400934

O !74.372458 !74.372606 !74.809265 !74.809398 !74.789624

F !98.831501 !98.831720 !99.409140 !99.409349 !99.459263

Ne !127.817494 !127.817814 !128.546789 !128.547098

correlation energy

H !0.039822

He !0.042041

Li !0.043500 !0.045336 !0.04533 !0.072542

Be !0.047364 !0.04737 !0.094321 !0.09434

B !0.111260 !0.11134 !0.124779 !0.12485 !0.144985

C !0.138590 !0.13880 !0.156231 !0.15640 !0.182637

N !0.166193 !0.16661 !0.188061 !0.18831

O !0.193991 !0.19423 !0.257627 !0.25794 !0.331258

F !0.260984 !0.26109 !0.324284 !0.32453 !0.400123

Ne !0.325389 !0.32529 !0.390485 !0.39047

total energy

H !0.499995 !0.527723

He !1.999943 !2.903668

Li !7.279911 !7.478058 !7.500761

Be !14.324736 !14.667334

B !24.348807 !24.653816 !24.664172

C !37.430765 !37.844805 !37.891437

N !54.054116 !54.588917

O !74.566449 !75.066892 !75.120882

F !99.092485 !99.733424 !99.859386

Ne !128.142884 !128.937274
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combined with conventional CI-type calculations. The F12
total energy for B from Table 4 (!24.653816 Eh) is almost as
accurate as the ECG value from Table 3 (!24.653866 Eh),
which is remarkable in view of the fact that already the error in
the Hartree!Fock energy, which is part of the F12 total
energy, amounts to 24 μEh. From the energies reported
in Table 4, ionization energies and electron affinities are
obtained that compare well (within a few tenths of a meV)
with the corresponding experimental values and earlier bench-
mark calculations.172,173

In the next section we shall have a look at Hylleraas- and Hy-
CI-type expansions for linear (e.g., H2) and nonlinear (e.g., H3

+

as simplest example) molecules. Hy-CI calculations have also
been reported for LiH, He2

+, and He2, but these calculations
were done in 1977 and were not as accurate as would be possible
today.174,175 Also, more recently, Hylleraas-type wave functions
have been applied to molecules such as the LiHmolecule, but the
required integrals were not computed analytically but rather by
means of Monte Carlo numerical integration techniques. See, for
example, ref 176.
4.1.2. H2 and H3

+ Molecules. The first explicitly correlated
wave function for a molecule, that is, the hydrogen molecule, was
proposed by James and Coolidge in 1933.177,178 Millihartree
accuracy (E =! 1.173559 Eh) at R = 1.4 a0 was obtained using a
compact 13-term expansion.179,180 The James!Coolidge ansatz
was employed by Kozos andWolniewicz in their landmark papers
of 1964/65.181,182 In the James!Coolidge calculations, elliptic
coordinates and wave functions of the type

ξi ¼ ðriA þ riBÞ=R; ηi ¼ ðriA ! riBÞ=R,

expð ! αξ1 ! βξ2Þξk1η
l
1ξ

m
2 η

n
2r

μ
12 ð143Þ

were used, where R is the internuclear distance and where riA
and riB denote the distances of electron i from the two nuclei
(A and B). Kozos and Wolniewicz183 extended the ansatz of
James and Coolidge to enable a proper dissociation of the
molecule. Recent results for the ground state of the hydrogen
molecule are presented in Table 5, including not only the
James!Coolidge and Kozos!Wolniewicz ans€atze but also
energies obtained from the free ICI184,185 and ECG186,187

methods. It is seen that the difference in accuracy is small
between wave functions using Hylleraas-/James!Coolidge-type
basis functions and exponentially correlated Gaussians (con-
cerning H2 (see also ref 188)). Both methods can probably be
pushed further to even more accurate variational ground-state
energies. Finally, as for the atomic systems, we note that not
only the ground-state energy has been of interest, of course.
Non-Born!Oppenheimer and relativistic effects, excited
states, H2-like ions such as HeH+ and so on, have also been
studied.
Concerning H3

+, pioneering work on the Hy-CI method was
done by Preiskorn, Clementi, and co-workers189!193 in the de-
cade 1982!1992, computing all of the integrals analytically that
are needed in calculations with basis sets of Gaussian atomic
orbitals.194 Their Hy-CI energy for H3

+ is given in Table 5. More
recently, potential energy hypersurfaces have also been com-
puted using the CISD-R12 method as well as using exponentially
correlated Gaussians, and an overview of the corresponding
results, including rovibrational levels, is presented in ref 195.
In terms of a set of spin orbitals {ϕik}, the antisymmetrized

Hy-CI wave function for a general n-electron polyatomic

molecule can be written as

ΨHy-CI ¼ ∑
K

k¼ 1
ckA rμk12

Yn

i¼ 1
ϕikðxiÞ ð144Þ

with μk being either 0 or 1. Only two-electron integrals are re-
quired for computations on the H3

+ molecule, of course, and in
general the complexity of the Hy-CI method is restricted to
(eight-center) four-electron integrals.
Kutzelnigg’s CISD-R12 ansatz208 for two-electron systems

may be regarded as a special case of the Hy-CI ansatz with only
one two-electron basis function that depends on r12

ΨCISDð1, 2Þ ¼ c0r12Φ0ð1, 2Þ þ ∑
K ! 1

k¼ 1
ckΦkð1, 2Þ ð145Þ

where Φ0(1,2) is a two-electron reference determinant built
from a doubly occupied molecular orbital (obtained from either
the bare-nuclear-Hamiltonian problem or a Hartree!Fock
calculation) and where Φk(1,2) are all of the two-electron
determinants that can be built from a given one-electron basis.
Table 5 shows Hy-CI and CISD-R12 energies for H3

+, but note
that the one-electron basis used in the CISD-R12 calculation is
much larger than in the Hy-CI calculation. Furthermore, the
CISD-R12 energy is not strictly variational, because the following
approximation was made when evaluating the matrix elements of
the Hamiltonian

ÆΦkjĤ0r12jΦ0æ ≈ ÆΦkj½Ĥ0, r12(jΦ0æ þ E0ÆΦkjr12jΦ0æ
ð146Þ

where Ĥ0 = ĥ(1) + ĥ(2) and E0 is the energy of the reference
determinant. In the H3

+ molecule the reference determinant is
not an exact eigenfunction of Ĥ0.
It is noteworthy that the early 1993 work on the CISD-R12

approach already contained an approximation to the Hamiltonian
matrix elements (between the explicitly correlated function
and the conventional determinants) that is reminiscent of the
“approximation C” that is used in modern explicitly correlated
F12 theory. We shall come back to this point in section 4.5.

Table 5. Nonrelativistic Born!Oppenheimer Ground-State
Energies of H2 (R = 1.4011 a0) and H3

+ (R = 1.65 a0)

system Ka E/Eh function ref

H2 883 !1.174475930742 KWb 196

1200 !1.174475931211 ECG 186

7034 !1.174475931399840 JCc 197

6776 !1.174475931400027 free ICId 184, 185

4800 !1.174475931400135 ECG 187

22 363 !1.17447593140021599 JCc 198

H3
+ 700 !1.3438220 ECG 199

e !1.3438279 Hy-CI 192

f !1.3438341 CISD-R12 200, 201

g !1.34383509 CISD-R12 200, 202

600 !1.343835624 ECG 203!205

1000 !1.3438356250187 ECG 206, 207
aNumber of terms in the expansion. bKozos!Wolniewicz wave func-
tion. c James!Coolidge wave function. d Free iterative-complement-
interaction method. e 13s5p3d atomic orbital basis. fCISD-R12 calcula-
tion in a 10s8p6d4f atomic orbital basis. gCISD-R12 calculation in a
30s20p12d9f atomic orbital basis.
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4.2. Gaussians
Since 1960, when Boys209 and Singer210!213 introduced

Gaussian basis functions including electron!nucleus dis-
tances as well as interelectronic distances (“functions with
direct correlation”) to quantum chemistry for calculations on
polyatomic molecules, numerous applications of these many-
electron Gaussian functions have been published. For exam-
ple, Lester and Krauss214,215 applied two-electron Gaussians
(Gaussian geminals) in calculations on two-electron systems
such as He, H2, and H3

+. They also presented the general
formulas for the necessary integrals.214 Important theorems
concerning the completeness of the correlated Gaussian basis
set were given by King.216 The calculations on two-electron
systems were encouraging, and it became clear that Gaussian
geminals are well suited to describe the overall shape of the
Coulomb hole well, despite the fact that they have no cusps at
the points of electron!electron coalescence.217 Also, Salmon
and Poshusta employed Gaussian geminals in their calcula-
tions on the H3

+ ion,218 and Karunakaran and Christoffersen
performed variational calculations on the LiH molecule with
Gaussian geminals.219

It is perhaps interesting to note that Boys not only
introduced the well-known Gaussian-type orbitals (GTO) to
quantum chemistry, which are one-electron functions, but also
Gaussian-type geminals (GTG), which are two-electron func-
tions. Boys also pointed out how to compute the integrals.209

Usually, in the literature, Boys’ work is cited with respect to
use of GTOs.32

A GTG has the following general form

G0
μðr1, r2Þ ¼ expð ! αμr21Pμ ! βμr

2
2Qμ

! γμr
2
12Þ ð147Þ

with

r1Pμ ¼ jr1 ! Pμj, r2Qμ ¼ jr2 !Q μj, r12 ¼ jr1 ! r2j
ð148Þ

r1Pμ and r2Q μ
are the distances of the electrons 1 and 2 from the

centers Pμ and Q μ, respectively, which may be chosen indivi-
dually and freely for each basis function Gμ

0 (floating lobe
functions). Furthermore, r12 is the interelectronic distance and
αμ, βμ, and γμ are Gaussian exponents, which are allowed to be
negative as long as the GTG is square integrable. Hence, each
two-electron GTG basis function contains 9 nonlinear param-
eters (3 Gaussian exponents and 6 coordinates).

The GTGs can also be used with Cartesian prefactors, that is,
in the form

Gμðr1, r2Þ ¼ x
kμx
1Pμy

kμy
1Pμz

kμz
1Pμx

lμx
2Qμ

y
lμy
2Qμ

z
lμz
2Qμ

expð ! αμr21Pμ ! βμr
2
2Qμ

! γμr
2
12Þ

ð149Þ

and obviously, wave functions for two-electron systems can
directly be expanded in terms of such Cartesian GTGs

Ψðx1, x2Þ ¼ AfΘS,MSðσ1, σ2ÞP R½ ∑
K

μ¼ 1
cμGμðr1, r2Þ(g ð150Þ

where x = {r,σ} contains spatial and spin coordinates, A is the
usual antisymmetrizer, Θ(σ1,σ2) a proper spin function corres-
ponding to the quantum numbers S and MS, and P R the
symmetry projector accounting for symmetry adaptation
(projector onto the relevant irreducible representation R of the
symmetry group of the molecule). The cμ are linear parameters.

Of course, it is also possible to expand the two-electron wave
function in terms of the Gaussian-lobe geminals Gμ

0.
When many-electron methods such as Møller!Plesset per-

turbation theory through second (MP2) and third (MP3) order—
and so forth—or coupled-cluster theory with double (CCD)
or coupled-cluster theory with single and double excitations
(CCSD) are formulated (in first quantized form) in terms of pair
functions that describe the correlation between electrons in two
occupied Hartree!Fock orbitals, then eq 150 can be used to
expand these pair functions. Such methods have been devel-
oped for calculations on many-electron atoms and molecules for
about 30 years,220!225 including calculations in the framework of
symmetry-adapted perturbation theory for treating intermolecular
correlation energies.226!229 In 1982, Szalewicz and co-workers230

proposed using a special functional for such calculations. We
shall discuss the corresponding GTG pair theories further below,
but first, we shall be concerned with variational calculations using
GTGs or products of those. The corresponding methods are
today known as methods using exponentionally correlated
Gaussians (ECG).
4.2.1. ECGs: Exponentionally Correlated Gaussians. For

a two-electron system, ECG calculations are variational methods231

with eq 150 as a two-electron wave function. Hence, the linear
variational parameters are optimized by minimizing the expecta-
tion value

EECG ¼ ÆΨðx1, x2ÞjĤjΨðx1, x2Þæ=ÆΨðx1, x2ÞjΨðx1, x2Þæ ¼ min

ð151Þ

where Ĥ is the Hamiltonian of the atom or molecule.
ECG calculations have, for example, been performed on the

singlet ground states of He, H2, and H3
+. In these cases, the spin

function takes the form

Θ0, 0ðσ1, σ2Þ ¼ 1ffiffiffi
2

p fαðσ1Þβðσ2Þ ! βðσ1Þαðσ2Þg ð152Þ

Tables 2 and 5 show a few selected ECG results for two-electron
systems in comparison with those obtained from (extended)
Hylleraas- and James!Coolidge-type wave functions. The ground
state of the He atom can virtually be computed with arbitrary
accuracy, which becomes clear from the work of Nakashima and
co-workers,109,115 who report the ground-state energy of He with
ca. 40 digits. With a 600-term ECG expansion, the error in theHe
ground-state energy is only about 0.01 nanohartree. Interest-
ingly, already for the H2 molecule, the 4800-term ECG wave
function of Cencek and Szalewicz187 is competitive with the
Hylleraas- and James!Coolidge-type wave functions, and for the
H3

+ molecule-ion the ECG method is certainly the method of
choice to compute an accurate potential energy hypersurface.205

The above also applies to other two-electron systems such as
HeH+.232

Calculations on atomic systems with up to 3 electrons can
accurately be carried out using Hylleraas-type wave functions,
but beyond 3 electrons the most accurate ground- and excited-
state energies to date are obtained by the ECG ansatz, which is
applicable to molecules with 3 electrons (such as H3)

233,234 and
in general to systems with 4!6 electrons. These systems include
molecules such as LiH,235,236 LiH!,237 BH,238 the H2

239 and
He dimers,187,240,241 and the atoms beryllium,242,243 boron,167 and
carbon.168

In the ECG approach, the spatial part of the electronic wave
function of an n-electron system is represented by the linear
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combination

ΨðrÞ ¼ ∑
K

k¼ 1
ckΦkðrÞ ð153Þ

ΦkðrÞ ¼ exp½ ! ðr! skÞ 3 ðAk X I3Þðr! skÞ( ð154Þ

where r is a 3n-dimensional vector formed by the vectors r1, r2,
r3, ..., rn stacked on top of each other, Ak a symmetric n ) n
matrix, I3 the 3 ) 3 identity matrix, and X is the Kronecker
product symbol. The 3n-dimensional vector sk is a “shift vector”
that generates floating centers of the Gaussians. The matrix Ak is
a positive definite matrix and is therefore best represented in the
Cholesky-decomposed form Ak = LkLk

T, where Lk is a lower
triangular matrix and Lk

T its transpose. The basis functions in
eq 154 may be multiplied by Cartesian factors such as x1, and so
on, to facilitate the description of atomic P states, diatomic π
states, and the like. Also, prefactors such as r1, r12, and r12

2 have
been investigated.110,166 The elements of Ak and sk constitute a
large number of nonlinear variational parameters that must be
optimized very carefully in order to obtain highly accurate results.
To conclude this subsection, we note that the form in eq 154 is

equivalent with the notation chosen by Cencek and Rychlewski244

in their pioneering work on the ECG method. In that work, the
ECG wave function was written as

Ψ ¼ ∑
K

k¼ 1
ckΦk ð155Þ

Φk ¼ A χP R expð ! ∑
i < j

βij;kr
2
ijÞ
Yn

i¼ 1
gikðriÞ

" #( )

ð156Þ

where gik(ri) is a usual Cartesian Gaussian basis function (i.e.,
one-electron basis function),A the n-electron antisymmetrizer,
P R the symmetry projector onto the irreducible representation
R of the molecular point group, and χ an appropriate n-electron
spin function. In the samemanner that the Hy-CImethod is a sim-
plification of the fullHylleraas approach, Cencek andRychlewski245

investigated the “single” exponentionally correlated Gaussian
(SECG)model in which only oneGaussian geminal is considered
at a time

Φk ¼ A χP R expð ! βkr
2
12Þ

Yn

i¼ 1
gikðriÞ

" #( )

ð157Þ

The advantage of the SECGmethod is that the complexity of the
many-electron integrals in a Rayleigh!Ritz variational calcula-
tion is limited to the level of four-electron integrals.
Finally, we note that since 1991/1992 Kozlowski and

Adamowicz246!250 utilized ECG-type basis functions for gener-
ating nonadiabatic many-body wave functions.
4.2.2. GTGs: Gaussian-Type Geminals. In 1970!72 Pan

and King220,221 proposed using Gaussian geminals for electron-
pair correlation, that is, for the expansion of the pair functions of
the first-orderwave function ofMøller!Plesset perturbation theory.
Already in these early works ca. 87!88% of the all-electron MP2
correlation energy of the Ne atom was obtained in this manner.
In 1982 Szalewicz, Jeziorski, and Monkhorst proposed a new

functional for variational calculations of atomic and molecular
second-order (MP2) correlation energies using Gaussian gem-
inals: the weak-orthogonality (WO) functional.230 In a series of

papers251!255 this new approach was applied to the systems He,
Be, H2, and LiH, not only at the level of second-order perturba-
tion theory but also at the third-order perturbation theory252 and
coupled-cluster levels.253

For a discussion of this WO functional consider the following
pair equation for the first- and higher-order (coupled-cluster)
pair functions τ~ij

ðF̂1 þ F̂2 ! εi ! εjÞτ~ij ¼ Rijðτ~Þ ð158Þ

where F̂1 and F̂2 are the Fock operators of electrons 1 and 2 and
where εi and εj are the orbital energies of the occupied orbitals i
and j. This pair equation must be satisfied together with the
strong-orthogonality requirements

ð1! Ô1Þð1! Ô2Þτ~ij ¼ τ~ij ð159Þ

ð1! Ô1Þð1! Ô2ÞRijðτ~Þ ¼ Rijðτ~Þ ð160Þ

Ô is the projection operator onto the space of occupied spin
orbitals, Ô = ∑i|iæ Æi|. When these strong-orthogonality require-
ments are satisfied, the pair functions τ~ij may be obtained by
minimizing the functional

SOLðτ~ijÞ ¼ Æτ~ijjF̂1 þ F̂2 ! εi ! εjjτ~ijæ! 2Æτ~ijjRijðτ~Þæ ð161Þ

This functional, introduced by Sinano"glu,256,257 shall be referred
to as the strong-orthogonality (SO) functional in the following.
(In passing, we note that it was recognized by Sinano"glu already
in the original work that this functional facilitates introduction of
r12-dependent functions into many-electron systems.)
At theMP2 level, the right-hand-sideRij(τ~) is simply!(1! Ô1)-

(1 ! Ô2)r12
!1|ijæ, where |ijæ t |ϕiϕj| is the two-electron Slater

determinant built from the two spin orbitals i and j. At higher
levels, Rij(τ~) is a function of the (strongly orthogonal) pair
functions τ~kl.
Let us now consider the pair function τij, which is expanded in

a basis of Gaussian geminalsGμ as in eq 150, that is, τij = ∑μ=1
K cμ

ijGμ.
This pair function τij is not strongly orthogonal to the Har-
tree!Fock reference determinant, that is, it does not satisfy the
strong-orthogonality requirement in eq 160. Of course, acting
with the projection operator (1! Ô1)(1! Ô2) onto the geminals
expansion τijwould yield a strongly orthogonal pair function τ~ij =
(1! Ô1)(1! Ô2)τij, but inserting this pair function into eq 161
would give rise to up to four-electron integrals already at theMP2
level (due to the Fock matrix elements Æτ~ij|F̂1 + F̂2|τ~ijæ). There-
fore, Szalewicz et al. suggested minimizing the WO functional

WOLðτijÞ ¼ Æτijj~̂F1 þ ~̂F2 ! εi ! εjjτijæ! 2Æτ~ijjRijðτ~Þæ
ð162Þ

with

~̂F ¼ F̂ þ ΔijÔ; Δij ¼
1
2
ðεi þ εjÞ ! ε1 þ η ð163Þ

ε1 is the smallest orbital energy, and η is a positive parameter. At
the MP2 level, eq 162 becomes

WOLðτijÞ ¼ Æτijj~̂F1 þ ~̂F2 ! εi ! εjjτijæ! 2Æτ~ijjr!1
12 jijæ ð164Þ

No SO projection operator is applied in the first term on the
right-hand side, that is, only the raw geminals expansion τij is
inserted here. By this means, four-electron integrals are avoided.
The SO projection operator is still present in the second term on
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the right-hand side of eq 164, but this only gives rise to three-
electron integrals. At higher orders of perturbation theory or at
the level of coupled-cluster theory, however, the SO projection
operators in the term Æτ~ij|Rij(τ~)æ would give rise to four-electron
(at the third order) and five-electron integrals (at the fourth
order) if it were evaluated without further approximations.254

Obviously, significant simplifications are obtained by computing
Rij not from the strongly orthogonal pair functions τ~ij= (1! Ô1)-
(1 ! Ô2)τij but rather from some functions χij that are obtained
by expanding τ~ij in the basis set of Gaussian geminals, that is

χij ¼ ∑
K

μ¼ 1
dijμGμ;

∑
K

ν¼ 1
ÆGμjGνædijν ¼ ÆGμjð1! Ô1Þð1! Ô2Þτijæ, " μ ð165Þ

This approach is referred to as the weak orthogonality with
projection (WOP) approach.254 The corresponding functional
may be sketched as

WOPLðτijÞ ¼ Æτijj~̂F1 þ ~̂F2 ! εi ! εjjτijæ! 2Æτ~ijjRijðχÞæ
ð166Þ

The WOP functional produces accurate third- and higher-
order energies, but evaluation of the term Æτ~ij|Rij(χ)æ is very
time consuming due to the larger number of three-electron
integrals that occur in such a calculation. When we rewrite the
SO projection operator that is contained in τ~ij in eq 166 in the
form

ð1! Ô1Þð1! Ô2Þ ¼ 1! Ô1Ô2 ! Ô1ð1! Ô2Þ ! ð1! Ô1ÞÔ2

ð167Þ

we find that the last two terms give rise to the three-electron
integrals. Hence, these can easily be avoided when the super weak
orthogonality (SWO) approach is applied, that is, when the terms
with Ô1(1! Ô2) and (1! Ô1)Ô2 are neglected. In combination
with the projection of the WOP approach, this yields the SWOP
method (super weak orthogonality with projection)

SWOPLðτijÞ ¼ Æτijj~̂F1 þ ~̂F2 ! εi ! εjjτijæ! 2Æτijjð1! Ô1Ô2ÞRijðχÞæ

ð168Þ

The above discussion of the approaches WO, SWO, WOP, and
SWOP is only meant to provide a rough sketch of the ideas that
have been developed for usingGaussian geminals in pair theories.
For details, we refer the reader to the original literature254 as well
as to recent reviews75,258 because the theory is, in fact, a little
more complex than indicated here. For example, the SWO func-
tional used at the coupled-cluster level is not fully comparable
with the one shown above, which applies to the MP2 level. The
bottom line is that four- and five-electron integrals can entirely be
avoided at the coupled-cluster level when the model is limited to
the factorizable coupled-cluster-doubles level (FCCD). If the
nonfactorizable contributions toRij shall be computed, then four-
electron integrals must be evaluated. Their number is Nbas

2K3,
where Nbas is the number of one-electron (Hartree!Fock) basis
functions and K the number of geminals. Inclusion of single
excitations was worked out by Bukowski et al.,259 and it was
found that neither the difference between CCD and FCCD
nor the difference between CCSD and CCD is sensitive to the

electron!electron cusp, and thus, these differences are not dif-
ficult to converge in a conventional orbital!product expansion.
Hence, a cost-efficient and accurate approach consists of com-
puting FCCD energies using GTGs and full CCSD energies
using orbital!product expansions.260,261

Gaussian-type geminal basis sets for correlation-energy cal-
culations are usually obtained by optimization of the second-
order energy functional. For a discussion of the optimization
of the nonlinear parameters see ref 262. More recently, an
IEPA-like functional (independent electron-pair approximation
functional) has been investigated for the purpose of optimiz-
ing the nonlinear parameters for subsequent coupled-cluster
applications.263

Thus far, GTG calculations have been restricted to systems not
larger than 10 electrons. At the MP2 level, for example, the H2O
molecule was computed,264 and at the coupled-cluster level, the
Ne atomwas treated.255 TheGTGapproachwas also used to com-
pute a very accurate He 3 3 3He pair potential in 1996/97.265,266

At the internuclear distance of R = 5.6 a0, the currently most
accurate and reliable values for the electronic dissociation
energy are De/kB = !10.9996(105),267 !11.0037(31),261

and !11.0006(2) K.187

We conclude this subsection by noting that the analytical
calculation of first-order properties has been developed for
GTG basis sets (see also section 8.2). The analytical approach
was applied to calculation of the second- and third-order corre-
lation corrections to the lowest multipole moments of the mole-
cules H2 and LiH.268

4.2.3. GGn Methods: GTGs Combined with Orbital
Expansions. Motivated by the success of the R12 methods
(cf. section 4.5), Persson and Taylor269 suggested combining
GTG and orbital expansions in 1991. The idea was to replace
the linear r12 term of the R12 theories by a short linear
combination of Gaussian geminals. It appeared to be possible
to fit the electron!electron distance r12 with only a few (6!9)
Gaussian functions with good accuracy, although the electron
cusp, of course, is not satisfied. Nevertheless, it was known
that it should be possible to achieve high accuracy and rapid
basis-set convergence with Gaussian geminals. The overall
shape of the Coulomb hole for a wide range of electron!
electron distances (which can be represented well with
Gaussian geminals) seemed to be much more important than
the electron cusp itself.217 One can rationalize the rapid basis-
set convergence with Gaussian geminals by noting that the
cusp at r12 = 0 should to be of minor importance for
calculation of the electronic energy because the volume
element 4πr12

2 suppresses contributions for very short r12,
but Kutzelnigg195 argues that “the smallness of the domain in
which the singularity really matters does not affect the rate of
convergence of a Fourier-type expansion”.
At the level of Møller!Plesset second-order (MP2) theory,

the Persson!Taylor ansatz for the pair function τij with a
contracted GTG is

τij ¼ ð1! V̂ 1V̂ 2Þgðr12Þ ∑
xy

cxyij jxyæ þ ∑
ab

cabij jabæ ð169Þ

with

gðr12Þ ¼ ∑
mGTG

m¼ 1
bm½1! expð ! γmr

2
12Þ( ð170Þ
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The coefficients cij
xy and cij

ab are obtained by minimizing the weak-
orthogonality (WO) functional

WOLðτijÞ ¼ ÆτijjF̂1 þ F̂2 ! εi ! εjjτijæ

þ 2Æτijjð1! Ô1Þð1! Ô2Þr!1
12 jijæ

þ ΔijÆτijjÔ1 þ Ô2jτijæ g Eexactij ð171Þ

where the factorΔij of the last term, which may be interpreted as
a “penalty” term, is a level shift defined by Δij = (1/2)(εi + εj)!
ε1 + η with ε1 e εk "k and η g 0. The projection operators in
eqs 169 and 171 are

Ô ¼ ∑
i
jiæÆij; V̂ ¼ ∑

a
jaæÆaj ð172Þ

Typically, the sets of exponents γm in the correlation factor are
chosen to be even-tempered series of the type γm = αβm!1 with
β = 3. For example, formGTG = 3, 6, 9, or 12 one may choose α =
1/3, 1/9, 1/27, or 1/243, respectively. In the approach with
contracted GTGs, the (contraction) coefficients bm were obtain-
ed by the least-squares minimization

χ2 ¼
Z xmax

0
e!2x½x! ∑

mGTG

m¼ 1
bmð1! e!γmr

2
12Þ(2dx ð173Þ

where the fitting range was chosen as xmax = 2, 5, or 10 a0. It
was soon realized,269 however, that an obvious way to
improve the results is to optimize the coefficients of the
Gaussians, for example, by means of the variational principle,
rather than constraining them by the fit. This leads to
the Persson!Taylor ansatz for the pair function τij with
uncontracted GTGs

τij ¼ ð1! V̂ 1V̂ 2Þ ∑
mGTG

m¼ 1
expð ! γmr

2
12Þ ∑

xy
cxy;mij jxyæ

þ ∑
ab

cabij jabæ ð174Þ

Note that the projection operator (1 ! V̂ 1V̂ 2) is introduced
here to minimize the couplings between the conventional and
the explicitly correlated parts of the pair function without
having any effect on the final pair function or energy.
One major advantage of this approach is that all variational

parameters are linear. No tedious and time-consuming opti-
mization of nonlinear parameters, which, for example, may be
determined using methods based upon the random-tempering
approaches developed by Poshusta270,271 and Alexander
and co-workers199,272!274 or using methods based on
Fletcher!Powell or Newton!Raphson procedures,244,275 are
needed in the Persson!Taylor ansatz. However, as we shall out-
line below, the ansatz may not be sufficiently flexible to reduce the
strong-orthogonality penalty, depending on the choice of xy.
As in the work of Szalewicz and co-workers (cf. section 4.2.2),

the WO functional was used to avoid evaluation of four-electron
integrals. The intention of the Persson-Taylor ansatz was to
develop a method that would provide results similar to the MP2-
R12 method but without the need to insert resolution of the
identity approximations that violate the upper-bound property of
the Hylleraas functional. Even though evaluation of the necessary
three-electron integrals is tedious and time consuming,276!278

it was argued that in an integral-direct manner this evaluation would
perform favorably on massive parallel computer architectures

and that due to the short range of the Gaussians exp(!γmr12
2 )

efficient integral screening, in particular, in the framework
of local-correlation methods,279!284 would eventually lead to a
method that scales linearly with the size of the system (the scaling
with the size of the one-electron basis would still remain N6, of
course, with N the number of basis functions per atom).
In the original ansatz of Persson and Taylor, the sum over

x,y was restricted to xy = ij. The ansatz can be extended to run
over all occupied orbitals (xy ∈ kl) in the sense of the orbital-
invariant formulation of the MP2-R12 method in ref 285.
This ansatz is known as kl ansatz or the GG0 approach. In the
more flexible GG1 approach, also those GTGs are included,
where either x or y refers to a virtual orbital: xy ∈ {kl,kb,al}.
Finally, all MOs are included in the GG2 approach, with xy ∈
{kl,kb,al,ab}. Obviously, the GGn performance improves
with increasing geminal level n, but at the same time,
determination of the coefficients cij

xy;m becomes more diffi-
cult. On one hand, the dimension of the set of linear
equations becomes very large, and on the other hand, these
equations become more prone to (near) linear dependencies
and numerical instabilities.
Unexpectedly, recent results by Dahle et al.286 revealed that

the performance of the GG0 method is startlingly poor. In the
aug-cc-pCVDZ basis and using a primitive set of 9 GTGs, the
value of !333.1 mEh was computed for the all-electron second-
order correlation energy of the Ne atom. The corresponding
MP2-F12 value (see section 6.4) using a single contraction of the
same 9 GTGs is !380.6 mEh. This difference between the two
calculations was highly unexpected because one expects that the
MP2 value will be lowered when a contracted GTG basis is decon-
tracted to a primitive basis. Such energy lowering due to decon-
traction of the GTG basis is indeed observed in the work by
Valeev.287 Hence, according to common sense, Dahle’s value
(!333.1 mEh) should have been lower than the corresponding
MP2-F12 value (!380.6 mEh), but it is not. On the contrary, the
difference is very large (almost 50 mEh) with the wrong sign. The
apparent contradiction is resolved by recognizing that the GG0
expansion is unable to form strongly orthogonal pairs.288 Hence,
the GG0 expansion is not well suited for use with the WO func-
tional. The poor performance of the GG0 calculation is not due
to the GG0 ansatz itself but rather to its use in conjunction with
the WO functional.
The poor performance of the combination GG0/WO is also

illustrated in Table 6, which shows results for the Ne atom in the

Table 6. GG0 All-Electron Second-Order Correlation Energyb

(in mEh) of the Ne Atom in the aug-cc-pCVTZ(spd) Basis of
Ref 286a

GTG basis with 9 primitives

functional contracted uncontracted

SOc !384.3 !385.5d

IOe !369.6

WOf !345.3 !353.9g
aData taken from ref 288. bThe most accurate estimate of the basis-set
limit is !388.131 mEh, obtained from FEM-MP2 calculations.289
c Strong-orthogonality functional; computed using RI approximations.
dCf. refs 287 and 288. e Intermediate-orthogonality functional of Tew
et al.288 (η = 0.1 Eh).

fWeak-orthogonality functional (η = 0.1 Eh).
gCf.

ref 286.



28 dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4–74

Chemical Reviews REVIEW

aug-cc-pCVTZ(spd) basis of ref 286. MP2-F12 calculations
using the same 9 GTGs as in the GG0 calculations yield energies
of !384.3 and !385.5 mEh with a contracted and uncontracted
GTG basis, respectively. Even though it is notmuch, the energy is
lowered by decontracting the GTG basis, as expected.
As an improvement to the WO functional, Tew and co-

workers suggested use of an intermediate-orthogonality (IO)
functional.288 The result obtained from this functional is also
shown in Table 6. The IO functional is defined as follows

IOLðτijÞ ¼ ÆτijjP̂12ðF̂1 þ F̂2 ! εi ! εjÞP̂12jτijæ

þ 2Æτijjð1! Ô1Þð1! Ô2Þr!1
12 jijæ

þΔijÆτijjÔ1ð1! P̂2Þ
þ ð1! P̂1ÞÔ2jτijæ g Eexactij ð175Þ

with

P̂12 ¼ 1! Ô1Ô2 ! Ô1V̂ 2 ! V̂ 1Ô2;

Δij ¼
1
2
ðεi þ εjÞ ! ε1 þ η ð176Þ

Since the one-electron projection operators in P̂12 occur in pairs,
no four-electron integrals aris, and for any positive η the IO
functional provides a strict upper bound to the MP2 correlation
energy (when using exact Hartree!Fock orbitals and evaluating
the three-electron integrals analytically).
When using the WO functional, the quality of the computed

energy depends on the ability of the chosen geminal basis to form
strongly orthogonal pairs. In the limit of a complete geminal
basis,264,290 the pair function satisfies the strong-orthogonality
condition and the exact MP2 energy is obtained, but the GG0
geminal basis is by far not flexible enough to yield high-quality
results. In the IO functional, however, the strong-orthogonality
violating single excitations within the finite MO basis are pro-
jected out. The only strong-orthogonality violating components
of the explicitly correlated geminals that enter the functional are
those that correspond to single excitations outside the finite MO
space. When using the IO functional, the geminal basis needs
only to be flexible enough to zero these terms.
To date, the IO functional has not been used much, but for

future work in the field of GGnmethods (or other MP2 methods
in which all integrals are computed exactly and which provide
strict upper bounds) it certainly deserves attention.
Asmentioned above, the GGnmethods may have some poten-

tial especially in combinationwith local-correlationmethods.279!284

Indeed, Polly and co-workers developed a corresponding local
MP2 (LMP2) method with GTGs and the WO functional.291 In
this LMP2-GTGmethod, the local pair functions for the localized
orbitals i and j are

τij ¼ ð1! V̂ 1V̂ 2Þ ∑
mGTG

m¼ 1
expð ! γmr

2
12Þ ∑

k ∈ PsðijÞ
∑

μ ∈ ½ij(
ckμ;mij jkμæ

þ ∑
ab ∈ ½ij(

cabij j~a~bæ ð177Þ

where k is an localized occupied orbital from the list Ps(ij), μ is an
atomic orbital (basis function), and ~a and ~b are projected atomic
orbitals279,282 (PAOs). The summation over μ is restricted to the
pair domain [ij], and the summation of k is limited to the list
Ps(ij), which includes all localized occupied MOs k for which
either (ik) or (kj) is a “strong pair”. Roughly, this LMP2-GTG

method corresponds to the GG1 approach. Two further remarks
are appropriate: first, the factor Δij of the weak-orthogonality
functional is computed from the diagonal Fock matrix elements,
that is, Δij = (1/2)(fii + fjj)! f11 + η, such that the upper-bound
property of the WO functional is not strictly valid any more;
second, the projection (1! V̂1V̂ 2) has thus far been carried out
only using canonical virtual orbitals (not PAOs).
In Table 7 LMP2-GTG results for ethene (C2H4) are col-

lected, and pair energies with respect to Pipek-Mezey localized
orbitals292 are presented. A comparison with the work of Samson
and Klopper293 is made, although these authors used the Boys
localization scheme294 (only the valence orbitals within the
molecular plane, that is, theσ-type orbitals were localized, leaving
the π-type orbital unchanged). Clearly, adding 9 GTGs to the
correlation-consistent double-ζ (cc-pVDZ) basis yields approxi-
mately quintuple-zeta (cc-pV5Z) quality pair energies, but we
note that the LMP2-GTG calculations are very time consuming
(according to ref 291, they were tractable only in the cc-pVDZ
basis). Furthermore, the cc-pVDZ+9GTG and cc-pV5Z results
are still several millihartrees away from the basis-set limit pair
energies.293 Note that the latter add up293 to a total valence-shell
MP2 correlation energy of !373.6 mEh, which compares well
with the value obtained in ref 295: !373.0 ( 0.2 mEh (at a
slightly different geometry).

4.3. Transcorrelated Methods
A different approach, based on a similarity transformation of

the Hamiltonian, was proposed by Hirschfelder in 1963.296 In his
approach the wave function takes the form ψ = JΦ, where J
depends on the interelectronic distances. He showed thatΦmay
be determined using a similarity transformed Hamiltonian H0 =
J!1ĤJ where, if J is properly chosen, H0 is free from Coulomb
singularities, thereby simplifying construction ofΦ. This method
was pursued by Jankowski,297,298 and in 1969 Boys and Handy
established a practical method for determination of parameters in
both J andΦ, which required evaluation of at most three-electron
integrals.299!302 Boys and Handy chose to use a single Slater
determinant of spin orbitals forΦ and a Jastrow factor formed of

Table 7. Valence-Shell Second-Order Pair Energies of C2H4
with Respect to LocalizedOccupiedOrbitals;η = 0.5 Eh in the
Calculations with the WO Functionala

LMP2 best estimateb

pair cc-pVDZc +9GTGd cc-pV5Ze ref 293

σCC
2 !15.45 !25.50 !25.24 !26.77

σCH
2 !22.77 !30.79 !30.75 !31.59

πCC
2 !23.05 !27.33 !27.13 !27.88

σCC!σCH !8.29 !11.02 !11.32 !11.72

σCC!πCC !29.11 !37.66 !38.09 !39.40

σCH!πCC !13.91 !17.32 !17.98 !18.26

σCH!σ0CH (geminal) !10.43 !13.39 !13.77 !13.86

σCH!σ0CH (cis) !1.10 !1.31 !1.41 !1.42

σCH!σ0CH (trans) !1.17 !1.39 !1.44 !1.38
aData taken from ref 291. bObtained at the MP2-R12 level in the
C:19s14p8d6f4g3h2i/H:9s6p4d3f2g basis by adding 60% of the MP2-
R12/A energy to 40% of the MP2-R12/B energy.293 c LMP2 pair
energies obtained in the cc-pVDZ basis. d LMP2 pair energies obtained
in the cc-pVDZ basis after adding 9 GTGs. e LMP2 pair energies
obtained in the cc-pV5Z basis.
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a product of two-electron correlation functions and 1-electron
orbital relaxation functions

J ¼
Y

i < j
expð∑

μ
DμGμðri, rjÞ þ ∑

λ

dλ½gλðriÞ þ gλðrjÞ(Þ

ð178Þ

¼ expðCÞ ¼ exp ∑
i < j

Cij

 !

ð179Þ

The original equations for determining the orbitals and the wave
function parameters Dμ and dλ were

ÆδΦjĤ þ ½Ĥ,C( þ 1
2
½½Ĥ,C(,C( ! EjΦæ ¼ 0 ð180Þ

ÆGμΦjĤ þ ½Ĥ,C( þ 1
2
½½Ĥ,C(,C( ! EjΦæ ¼ 0 ð181Þ

ÆgλΦj½Ĥ,C(jΦæ ¼ 0 ð182Þ

The significance of the last equation is both to remove the
redundancy between gλ and the orbitals and to make the
transcorrelated Hamiltonian as hermitian as possible for orbital
optimization. The energy is evaluated by projection

E ¼ ÆΦjH0jΦæ ð183Þ

Boys and Handy chose the following one- and two-electron
functions for the Jastrow factor

G1ðr1, r2Þ ¼ 1
2

ar12
a þ r12

ð184Þ

Gμðr1, r2Þ ¼ ð~ri1A~r
j
2B þ ~ri2A~r

j
1BÞ~rk12 ð185Þ

gλðr1Þ ¼ r1A
a þ r1A

ð186Þ

~r ¼ r
a þ r

ð187Þ

The correlation factor is linear at short-range interparticle sep-
arations and satisfies the electron and nucleus cusps. At long-
range interelectronic separations the correlation factor is con-
stant and the wave function tends to an antisymmetrised orbital
product function. Table 8 lists the commutator expansion for the
transcorrelated Hamiltonian. Since C only contains one- and
two-electron functions, the expansion truncates at three-electron
operators.

The transcorrelated method of Boys and Handy was further
refined by Handy, who reduced the problems associated with the
lack of a variational upper bound to the energy for the similarity-
transformed Hamiltonian. He proposed replacing eq 181 with a

minimization of the transcorrelated variance

UTC ¼ ÆfðH0 ! EÞΦg2æ ð188Þ

Handy also replaced the Jastrow factor functions with Gaussian
orbital and geminal functions where the one-, two-, and three-
electron integrals have simple analytic forms. Handy applied his
approach to the ground-state energies of He, H2, LiH, and
H2O.303,304

The transcorrelated method has received a moderate level of
renewed interest over the past decade. In 1998 Nooijen and
Bartlett suggested using a frozen similarity transformation in-
stead of optimizing the factor J.305 Ten-no adopted this approach
in his examination of the transcorrelated method in 2000, giving
efficient formulas for the three-electron integration.306,307 Ten-
no chose a coupled-cluster wave function forΦ and expandedH0

as F̂ + V̂ , where F̂ is the usual Fock operator and evaluated the
amplitudes in the coupled-cluster wave function using second-
order perturbation theory. His results were intermediate between
basis-set limitMP2 andMP3 quality, indicating that some 3-body
correlation effects have been captured, but he found that a more
flexible one-electron basis is required in comparison with other
explicitly correlated methods. In similar work in 2003 Zweistra
et al.308 used a Gaussian damped Jastrow factor in combination
with a CI expansion forΦ. Luo and co-workers analyzed the trans-
correlated method from a quantum Monte Carlo perspective,309

and very recently, Luo introduced a variational formulation of the
transcorrelated method,310,311 which amounts to replacing the
nonhermitian equation for the orbital optimization eq 180 with
the hermitian equation

ÆδΦjĤ þ 1
2
½½Ĥ,C(,C( ! EjΦæ ¼ 0 ð189Þ

Luo found that the numerical stability is greatly improved, while
the quality of the wave function is not adversely effected.

4.4. Quantum Monte Carlo Methods
A very different way to deal with high-dimensional or analy-

tically intractable integrals is Monte Carlo integration. In fact,
quantum Monte Carlo (QMC) methods have a close relation to
explicitly correlated methods; a detailed discussion, however, is
not the scope of the present review, andwe refer the reader to refs
312!314. The aforementioned relation is most obvious for
variational Monte Carlo methods,315,316 which try to evaluate
the N-dimensional integral of a trial wave function’s energy
expectation value by stochastic integration. The wave function
ansatz can be, in principle, arbitrarily complex. In particular, it can
take care of the cusp conditions by employing Jastrow factors in
the ansatz, like those of Boys-Handy type, eq 178, as used in the
work of Schmidt and Moskowitz,317 or improved versions there-
of (see, e.g., ref 318). Likewise, the free complement local
Schr€odinger equation (FC LSE) method of Nakatsuji and co-
workers109,115,176,184,185 may be viewed as a special version of
variational Monte Carlo. Jastrow factors are also used for the
guide functions in diffusion Monte Carlo.319!321

First molecular applications of QMC, on H3
+, have been

reported by Anderson.320 The method features a favorable N3

scaling with system size, and also linear scaling approaches have
been reported.322 However, the better scaling comes along with a
rather huge prefactor as the statistical error decays only with the
inverse square root of the computer time. On the other hand,
very efficient parallel algorithms exist, making possible applica-
tions to large systems, like interactions of DNA base pairs,323

Table 8. Hamiltonian Commutator Expansion in the Trans-
correlated Method

kinetic energy potential energy

Ĥ !(1/2)∑i3i
2 !∑iAZAriA

!1+∑i<jrij
!1

[Ĥ,C] !∑j6¼i((1/2)3i
2Cij+3iCij 33i) 0

(1/2)[[Ĥ,C],C] !(1/2)∑j,k6¼i3iCij 33iCik 0

(1/6)[[[Ĥ,C],C],C] 0 0
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excited states of free-base porphyrin,324 the chromophore of
green fluorescent protein,325 or retinal.326

4.5. R12 Methods
In 1985 Kutzelnigg proposed a new explicitly correlated

approach, the R12 method.208 The key idea of this work was,
as stated in ref 208, that “traditional CI is not really bad, it only has
difficulties to represent the wave function at those regions of config-
uration space where one interelectronic distance rij approaches zero.”
Hence, the basic idea was to begin the wave function expansion
with just a few (two-electron) basis functions that depend expli-
citly on the interelectronic distances rij and to continue with add-
ing a conventional CI expansion in terms of antisymmetrized
orbital products. In his 1985 paper208 Kutzelnigg focused on the
He atom, for which numerical results were obtained using the
ansatz

ΨCISD-R12 ¼ 1 þ 1
2
r12

# $
Φ0ð1, 2Þ

þ ∑
p, q

cpqjϕpð1Þϕqð2Þj ð190Þ

where Φ0(1,2) = Nα exp{!α(r1 + r2)}χ with a spin function χ
and a normalization constant Nα. For the two-electron system
He, only one single explicitly correlated basis function was added,
and the general idea for many-electron systems was to add one
explicitly correlated basis function for each pair of electrons.
Noting that

Ĥ ¼ T̂1 þ T̂2 !
α
r1
! α
r2

þ α! Z
r1

þ α! Z
r2

þ 1
r12

¼ Ĥ0 þ α! Z
r1

þ α! Z
r2

þ 1
r12

ð191Þ

eq 190 is somewhat special in the sense thatΦ0(1,2) is an exact
eigenfunction of Ĥ0, the bare-nuclear Hamiltonian, Ĥ0Φ0(1,2) =
E0Φ0(1,2). This allows for exact reformulations of the type

Ĥ0r12Φ0ð1, 2Þ ¼ ½Ĥ0, r12(Φ0ð1, 2Þ þ r12E0Φ0ð1, 2Þ ð192Þ

The reference functionΦ0(1,2) was optimized by minimization
of the matrix element H00

H00 ¼ ÆΦ0ð1, 2Þ 1 þ 1
2
r12

# $
jĤj 1 þ 1

2
r12

# $
Φ0ð1, 2Þæ=S00

ð193Þ

S00 ¼ ÆΦ0ð1, 2Þ 1 þ 1
2
r12

# $
j 1 þ 1

2
r12

# $
Φ0ð1, 2Þæ

ð194Þ

which was denoted as “overhead”. For He, α was optimized to
α = 1.885 a0

!1 and the corresponding overhead was H00 =
!2.888718 Eh. Hence, about 64% of the correlation energy
was obtained already from the explicitly correlated basis function
(1 + (1/2)r12)Φ0, and the conventional CI expansion was only
needed for the remaining 36%. It was found that the convergence
of this conventional CI expansion for the remainder was rather
fast (microhartree accuracy was already obtained with only up to
h-type functions in the one-electron basis set used for the CI
expansion).

In ref 208 Kutzelnigg not only presents results for He and
He-like ions but also, more importantly, discusses possible

generalizations toward (molecular) many-electron systems. Such
generalizations are discussed in terms of partial-wave expansions.

Let us regard the conventional CI approach as an approxima-
tion to the CISD-R12 method in which the term r12Φ0 is
expanded in a basis of Slater determinants

r12Φ0 ¼ ∑
p, q

~cpqjpqæ; jpqæ * jϕpð1Þϕqð2Þj ð195Þ

Hence,

1 ¼ ÆΦ0jr!1
12 jr12Φ0æ ¼ ∑

p, q
~cpqÆΦ0jr!1

12 jpqæ ð196Þ

The slow convergence of the conventional CI comesmainly from
the expansion, eq 196, whose l increments in terms of a partial-
wave expansion go as (l + 1/2)!4, that is, as the l increments in
the conventional CI approach. Similarly, the l increments of

ÆΦ0r12jr!1
12 jr12Φ0æ ¼ ∑

p, q
∑
r, s

~cpq~crsÆpqjr!1
12 jrsæ ð197Þ

go as (l + 1/2)!5. Concerning many-electron atoms, Kutzelnigg
argued that integrals such as

ÆΦjr12r!1
23 jΦæ; ÆΦjr12r!1

23 r34jΦæ ð198Þ

have finite l expansions and that integrals such as

ÆΦjr12r!1
23 r13jΦæ ð199Þ

have an infinite but comparably fast rate of convergence, namely,
(l + 1/2)!6. Hence, the key idea of Kutzelnigg’s R12method is to
evaluate slowly convergent but trivial expansions such as eq 196
exactly, that is, as closed sums of partial wave amplitudes, but to
use basis-set expansions for difficult many-electron inte-
grals that are characterized by quickly convergent expansions.

In ref 200 Kutzelnigg’s CISD-R12 ansatz was applied to theH2
and H3

+ molecules, not only with Φ0 being the (approximate)
eigenfunction of the bare nuclear Hamiltonian but also withΦ0
being the Hartree!Fock reference determinant. Moreover, two
different approaches were applied to compute the matrix ele-
ments that occur due to the coupling between the reference
determinant Φ0 and the conventional determinants |ϕpϕq|. Let
us consider the two approaches in the case of the Hartree!Fock
reference determinant. TheHamiltonian can be written as Ĥ = F̂ +
r12
!1! Ĵ + K̂, where F̂, Ĵ, and K̂ are two-electron operators (sum of
two one-electron operators). In the first approach, the above-
mentioned matrix elements are evaluated as

ÆpqjðF̂ þ r!1
12 ! Ĵ þ K̂Þr12jΦ0æ ≈ ÆpqjΦ0æ þ 2ε1Æpqjr12jΦ0æ

þ Æpqj½T̂, r12(jΦ0æ! Æpqjr12ð̂J ! K̂ÞjΦ0æ ð200Þ

where ε1 is the orbital energy of the doubly occupied orbital j1.
In this first approach it is assumed thatΦ0 is an exact eigenfunc-
tion of the Fock operator F̂. The integrals with r12(̂J ! K̂) were
computed by inserting a resolution of the identity. In the second
approach the same matrix elements are evaluated as

ÆpqjðF̂ þ r!1
12 ! Ĵ þ K̂Þr12jΦ0æ ≈ ÆpqjΦ0æ

þ ðεp þ εqÞÆpqjr12jΦ0æ! Æpqjð̂J ! K̂Þr12jΦ0æ ð201Þ

In this second approach it is assumed that all orbitals ϕp are
eigenfunctions of the Fock operator. In both approaches, the
matrix element H00 was computed in exactly the same manner
after some reformulations involving the double commutator

Pierre-Francois Loos
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[r12,[T̂,r12]] = 2, with the kinetic energy operator for the
two electrons, T̂ = T̂1 + T̂2 =!(1/2)(r1

2 +r2
2). Table 9 shows

results for the H2 molecule obtained from the two approaches
using various basis sets. The difference between the two approaches
is small in reasonably large basis sets (10s8p6d and 10s8p6d4f).
In ref 200 it was argued that the “simplifications” due to using
eq 201 are not really important, because calculation of the commu-
tator integrals [T̂,r12] is neither difficult nor time consuming.
Nevertheless, the two-electron integrals over the operator [T̂,r12]
are often avoided in present-day F12 theories, as proposed by
Ked#zuch et al. in 2005.327 In the recent F12 literature, the approach
of ref 327 is sometimes referred to as “approximation C”.

The generalization of Kutzelnigg’s R12 ansatz toward molec-
ular many-electron systems was accomplished at theMP2 level in
1987.328 At this level the second-order correlation energy E(2) is
given as a sum of pair energies Eij, which are obtained by mini-
mizing the Hylleraas functional

LðτijÞ ¼ ÆτijjF̂1 þ F̂2 ! εi ! εjjτijæ þ 2Æτijjr!1
12 jijæ g Eexactij

ð202Þ

where F̂1 and F̂2 are the Fock operators for electrons 1 and 2,
respectively, and where |ijæ is a two-electron Slater determinant
built from the spin orbitals ϕi and ϕjwith orbital energies εi and εj,
respectively. The MP2-R12 ansatz, as proposed in 1987, is

τij ¼
1
2
cijð1! Ô1Þð1! Ô2Þr12jijæ þ χij;

χij ¼ ∑
a, b

cabij jabæ ð203Þ

where

Ôμ ¼ ∑
i
jϕiðμÞæÆϕiðμÞj * ∑

i
jiæÆij ð204Þ

is the projection operator (for electron μ) onto the space of
occupied orbitals.

Interestingly, in Kutzelnigg’s original work it was suggested to
keep the coefficient cij fixed to cij = 1. The numerical results from
this “fixed coefficient” ansatz were disappointing, however, and
the cij’s were therefore treated as linear variational parameters in
the 1987 work.328 The results were much improved by optimiz-
ing the cij’s by minimizing the Hylleraas functional, but the
drawback of this approach was that the corresponding MP2-R12
method was not invariant with respect to orthogonal transforma-
tions among the occupied orbitals. This drawback was remedied
in 1991 by extending the ansatz to285

τij ¼
1
2
ð1! Ô1Þð1! Ô2Þr12 ∑

kl
cklij jklæ þ χij ð205Þ

This is interesting from a historical perspective because in
modern R12 theories the linear term r12 is replaced by the
function329 (see also section 6.6.1)

f12 ¼ f ðr12Þ ¼ 1
γ
f1! expð ! γr12Þg ð206Þ

where γ is a “length-scale” parameter. When using this function
of r12 it turned out to be advantageous to return to the form

τij ¼
1
2
cijð1! Ô1Þð1! Ô2Þf12jijæ þ χij ð207Þ

and to fix the coefficients cij to the values required to satisfy the
s- and p-wave cusp conditions (rational generator approach, also
known as SP ansatz).330 Today, eq 207 is often referred to as the
MP2-F12method (keeping the nameMP2-R12 for the correspond-
ing method with the linear r12 term), and it is recommended to use
this method with fixed cij. In other words, research has gone in a
circle. If the functions f12, which are known as Slater-type geminals,
had been considered already in the original work in 1987, then there
would have been no need to treat the coefficients cij as variational
parameters nor to extend the ansatz in the sense of eq 205.

Already in the years 1987!1990328,331 the MP2-R12 method
could be applied to molecules such as H2O and the carbocations
C2H5

+ and C3H7
+. This had become possible because of a

number of assumptions, or rather approximations, that made this
explicitly correlated theory applicable to polyatomic, many-electron
systems. These approximations became later known as “standard
approximations” in a series of articles on the general R12 theories
published in 1991.332!334 They are as follows: (a) It is assumed
that the occupied MOs ϕi are eigenfunctions of the exact Fock
operator F̂ rather than of its approximation in the finite basis {ϕp}
used for the calculation. This assumption is today known as
generalized Brillouin condition, GBC. It allows for the reformulation

1
2
fF̂1 þ F̂2 ! εi ! εjgr12jijæ ≈

1
2
½F̂1 þ F̂2, r12(jijæ

¼ 1
2
½T̂1 þ T̂2, r12(jijæ

! 1
2
½K̂1 þ K̂2, r12(jijæ

¼ ! 1
2
r12
r12 3

ð∇1 !∇2Þjijæ!
1
r12

jijæ

!1
2
½K̂1 þ K̂2, r12(jijæ ð208Þ

where T̂ is the kinetic energy operator and K̂ the exchange
operator. The Coulomb operator Ĵ is local and commutes with
r12. Furthermore, in ref 331 it is recommended to orthogonalize
the explicitly correlated part of the pair function τij ! χij to all
pairs constructable in the given basis {ϕp}, that is, to define

ωij ¼ ð1! P̂1P̂2Þðτij ! χijÞ; P̂ ¼ ∑
p
jpæÆpj ð209Þ

One then obtains

τij ¼
1
2
cijð1! Ô1 ! Ô2 þ Ô1P̂2 þ P̂1Ô2 ! P̂1P̂2Þr12jijæ þ χij

ð210Þ

(b) If it is now assumed that an extended Brillouin condition
(EBC) is satisfied, according to which the matrix elements of the
Fock operator F̂ vanish between functions contained in the basis

Table 9. CISD-R12 Energy of H2 (R = 1.4 a0) in Hartree,
Obtained from Calculations with Commutator [T̂,r12], That
Is, Using eq 200, and from Calculations without Commutator
[T̂,r12], That Is, Using eq 201a

basis eq 200 eq 201 difference

10s !1.173138 !1.172117 0.001021

10s8p !1.174357 !1.174414 !0.000057

10s8p6d !1.174454 !1.174456 !0.000002

10s8p6d4f !1.174467 !1.174468 !0.000001
aData taken from ref 200.
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and functions not contained in the basis, it is found that the
Hylleraas functional decomposes as

LðτijÞ≈ LðωijÞ þ LðχijÞ ð211Þ

where L(χij) is just the conventional, finite-basis MP2 functional
and L(ωij) the basis-set incompleteness correction to it. The
decomposition implies that both functionals may be computed
independently.

(c) A resolution of the identity approximation 1 ≈ P̂μ (RI
approximation or completeness relation) is inserted into the terms
ofL(ωij) that arise from the isolated operators Ô1 and Ô2, which have
no partner projection operator for the other electron. This yields

1! Ô1 ! Ô2 þ Ô1P̂2 þ P̂1Ô2 ! P̂1P̂2 ≈ 1! P̂1P̂2 ð212Þ

for the corresponding terms.
Concerning approximation (a) above, we note in passing that

orthogonalizing the explicitly correlated part of the pair func-
tion to all pairs constructable in the given basis {ϕp}, as done in
ref 331 in 1990, is equivalent to orthogonalizing it to all virtual
pairs {|abæ}

ωij ¼ ð1! V̂ 1V̂ 2Þðτij ! χijÞ; V̂ ¼ ∑
a
jaæÆaj ð213Þ

because

ð1! V̂ 1V̂ 2Þð1! Ô1Þð1! Ô2Þ

¼ 1! Ô1 ! Ô2 þ Ô1P̂2 þ P̂1Ô2 ! P̂1P̂2 ð214Þ

Hence, the particular forms of the explicitly correlated pair
functions chosen by Wind et al.,335,336 by Valeev,337 and in the
original work328,331 are equivalent.

In the early work on theMP2-R12method,285,328,331!334,338,339

it was noted that, in the ansatz for the pair function τij, the strong
orthogonality projector (1! Ô1)(1! Ô2) could be replaced by
the operator (1! P̂1)(1! P̂2) without changing the final work-
ing equations. Consider, for example, the integral Æτij|r12!1|ijæ.
According to eq 210, this integral is evaluated as

Æτijjr!1
12 jijæ ¼

1
2
cijÆijjr12ð1! Ô1 ! Ô2 þ Ô1P̂2

þ P̂1Ô2 ! P̂1P̂2Þr!1
12 jijæ þ Æχijjr!1

12 jijæ ð215Þ

Then, invoking the RI approximation eq 212 yields

Æτijjr!1
12 jijæ ≈

1
2
cijÆijjr12ð1! P̂1P̂2Þr!1

12 jijæ þ Æχijjr!1
12 jijæ ð216Þ

Taking

τ~ij ¼ 1
2
cijð1! P̂1Þð1! P̂2Þr12jijæ þ χij

¼ 1
2
cijð1! P̂1 ! P̂2 þ P̂1P̂2Þr12jijæ þ χij ð217Þ

as ansatz for the pair function yields the same final working
equation as when the terms with the isolated operators P̂1 and P̂2
are evaluated using the RI approximation, that is, by means of
replacing !P̂1 and !P̂2 both by !P̂1P̂2

Æτ~ijjr!1
12 jijæ ≈

1
2
cijÆijjr12ð1! P̂1P̂2Þr!1

12 jijæþ Æχijjr!1
12 jijæ

ð218Þ

The important point to make here is that in the early days of R12
method development, due to the approximations made (GBC,
EBC, and RI approximation), there was no difference whatsoever
between using (1 ! P̂1)(1 ! P̂2), (1 ! Ô1)(1 ! Ô2), or (1 !
V̂ 1V̂ 2)(1 ! Ô1)(1 ! Ô2) as a projection operator. The final
working equations and final results were the same. In modern
R12/F12 theory, however, in which, for example, some three-
electron integrals are evaluated exactly335,336 or in which an
auxiliary basis set340 is used for the RI approximation, the differ-
ent projection operators are no longer equivalent. They may be
referred to as “ansatz 1” (with P̂) and “ansatz 2” (with Ô),
respectively340 (see section 6.1 for details).

Before turning to CI and CC calculations using R12 terms, let
us have a look at the MP2-R12 working equations of the early
work,328,331,338 in which the total pair energy Eij is a sum of two
terms: the conventional MP2 pair energy eij

MP2 plus the basis-set
incompleteness correction eij

R12

eR12ij ¼ ∑
3

k¼ 1
Æijjr12ð1! P̂1P̂2ÞAkjijæ ð219Þ

with

A1 ¼ cij !
1
2
c2ij

# $
r!1
12 ð220Þ

A2 ¼ ! 1
4
c2ij
r12
r12 3

ð∇1 !∇2Þ ð221Þ

A3 ¼ ! 1
4
c2ij½K̂1 þ K̂2, r12( ð222Þ

If the term A3 is ignored (known as “approximation A”) it follows
that

eR12ij ¼ ð2cij ! c2ijÞVij þ c2ijUij ð223Þ

Vij ¼
1
2
! 1
2 ∑p < q

Æijjr12jpqæÆpqjr!1
12 jijæ ð224Þ

Uij ¼
3
4
! 1
4 ∑p < q

Æijjr12jpqæÆpqj
r12
r12 3

ð∇1 !∇2Þjijæ ð225Þ

Optimizing eij
R12 with respect with cij gives cij = Vij/(Vij! Uij). In

conventional MP2 theory the partial-wave expansion (in the
atomic case) has energy increments proportional to (l + 1/2)!4,
to (l + 1/2)!6, and so on, for each saturated shell of one-electron
basis functions with angular momentum quantum number l. The
slowly convergent (l + 1/2)!4 energy increments are canceled by
the term A1; the somewhat faster but still slowly convergent (l +
1/2)!6 energy increments are canceled by the terms A2 and A3.
Thus, increments on the order of (l + 1/2)!8 may be expected if
all terms A1, A2, and A3 are computed (known as “approximation
B”), which would result in a truncation error on the order of L!7

when the basis set is truncated after the saturated shell of basis
functions with l = L. For approximation A, the expected trunca-
tion error is on the order of L!5.

In approximation B only the term A3
m in

A3 ¼ Ap
3 ! Am

3 ¼ ! 1
4
c2ijðK̂1 þ K̂2Þr12 þ 1

4
c2ijr12ðK̂1 þ K̂2Þ

ð226Þ
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needs to be computed,332 because the term A3
p vanishes due to

the RI approximation. This is reasonable because in the atomic
case the partial wave expansion ofA3

m goes as (l + 1/2)!6 whereas
that of A3

p goes as (l + 1/2)!8. The latter can thus be ignored.
Finally, we note that the MP2-R12 method has also been

implemented by Valeev and co-workers within the framework of
the open-source MPQC package.49,341!349 Furthermore, as first
noted by Bearpark and Handy,339 the integrals needed for the
MP2-R12methodmay be used to define basis-set quality diagno-
stics with respect to basis-set completeness.339,350 Such diagnos-
tics are related to the ability of the given one-electron basis set to
describe the Coulomb hole in coupled-cluster calculations.351

All matrix elements required for a closed-shell CISD, CEPA,
MP2, or MP3 calculation with linear r12 terms were published in
a paper by Kutzelnigg and Klopper in 1991.332 First results at the
CID-R12 and CEPA-R12 levels were also published in that year
(single excitations were included later at the coupled-cluster
level).352 In this work, the CID-R12 wave function was written as

ΨCID-R12 ¼ Φ þ 1
2 ∑ij

cijΦij þ
1
4 ∑ijab

tabij Φ
ab
ij ð227Þ

whereΦij
ab = τ̂ij

abΦ is a standard doubly substituted determinant
(double excitation) and where

Φij ¼
1
4 ∑αβ

Æijjr12jαβæτ̂αβij Φ! 1
4 ∑ab

Æijjr12jabæτ̂abij Φ ð228Þ

is the explicitly correlated linear r12 term. As will be detailed later,
the indices α,β denote a complete set of virtual orbitals while the
indices a,b denote the finite set of virtual orbitals obtained from
the underlying Hartree!Fock calculation, which was carried out
in a finite set of atomic orbitals (see section 6.1). Concerning
eq 228 we note two things: first, the linear r12 terms are not (yet)
generalized to the orbital-invariant form of ref 285, that is, asΦij

kl

with coefficients cij
kl, and second, the effect of the second term of

the right-hand side of eq 228 is to project out all double
excitations constructable in the given finite basis, that is, equiva-
lent with adding the projection operator (1! V̂1V̂ 2). The expli-
citly correlated linear r12 termΦij of eq 228 is obtained from the
Hartree!Fock determinant by replacing the spin!orbital pair

jijæ ¼ 1ffiffiffi
2

p ½ϕið1Þϕjð2Þ ! ϕjð1Þϕið2Þ( ð229Þ

by

1
2
ð1! Ô1Þð1! Ô2Þð1! V̂ 1V̂ 2Þr12jijæ ð230Þ

In other words, the ansatz chosen in the early 1991 papers is the
same as inmodern F12 theories, in which the projection operator
eq 246 is used. CID-R12 and CEPA-R12 calculations were
performed on systems such as Ne, Ar, H2O, and N2.

352

Coupled-cluster R12 theories were developed in 1992, shortly
after extension of the MP2-R12 methods toward an orbital-
invariant theory.285 On one hand, the orbital-invariant formula-
tion was an important step forward because it enabled accurate
calculations on extended systems such as Be and Mg clusters, the
benzene!argon potential and other van der Waals complexes,
HF and H2O clusters, [10]annulene, and ferrocene.72,353!363

(These calculations had also beenmade possible by virtue of a newly
developed integral package364 and an efficient, Turbomole-based
implementation.353,365) On the other hand, the orbital-invariant

formulation turned out to facilitate a clear and consistent dia-
grammatic formulation of coupled-cluster R12 theory.74,366!370

The explicitly correlated coupled-cluster-singles-and-doubles ansatz
(CCSD-R12) is as follows366

ΨCCSD-R12 ¼ expðŜÞΦ ð231Þ

Ŝ ¼ T̂1 þ T̂2 þ R̂ ; R̂ ¼ 1
4 ∑ij ∑kl

cklij R̂
kl
ij ð232Þ

R̂kl
ij ¼ 1

4 ∑αβ
Ækljr12jαβæτ̂αβij ! 1

4 ∑ab
Ækljr12jabæτ̂abij ð233Þ

Hence, the standard double excitations are projected out, as in
the CID-R12 and CEPA-R12 cases. In contrast to the early MP3-
R12, CID-R12, and CEPA-R12 studies, however, the orbital-
invariant formulation is used and single excitations are included.
Moreover, Noga and Kutzelnigg also derived the necessary matrix
elements and integrals for explicitly correlated coupled-cluster
singles, doubles, and triples (CCSDT-R12) calculations.367 Further
developments such as an integral-direct implementation,368

a CCSD-R12 theory for open-shell atoms and molecules,371,372

code parallelization, and improved triple excitations373 followed
quickly thereafter, all within the program package Dirccr12.374

The early CCSD-R12 and CCSD(T)-R12 methods were
successfully applied for benchmark calculations on small to
medium-sized molecules using large basis sets.346,375!394 These
benchmark studies include calculations of equilibrium geome-
tries, harmonic vibrational frequencies, and potential energy hyper-
surfaces at (or very close to) the basis-set limit of CCSD(T)
theory.

5. STRATEGIES FOR AVOIDING N-ELECTRON
INTEGRALS

In the Hylleraas-type and ECG methods the wave function
expansions are inserted into a Rayleigh!Ritz variational optimi-
zation. Each resulting Hamiltonian matrix element requires n!
evaluations of n-electron integrals where all n electronic coordi-
nates are coupled through the explicit dependence on all rij. Even
for the ECG method where each integral has a known analytic
form and is cheap to evaluate, the exponential scaling of the
method has so far prevented calculations beyond 6-electron sys-
tems. For an explicitly correlated theory to be of practical use in
applications to systems with more than a few electrons it is
essential that the Hamiltonian matrix elements in the working
equations can be evaluated with a low computational cost and in
a way that does not scale exponentially with system size.

Researchers have utilized a variety of ingenious strategies for
overcoming the n-electron integral problem, many of which have
been discussed in the above historical narrative. The n-electron
issue is key to all explicitly correlated approaches, and it is appro-
priate here to provide a concise summary linking and contrasting
the approaches thus far proposed in the literature.

5.1. Restricting the Wave Function Parameter Space
Restricting the n-electron basis functions such that only a few,

m, electronic coordinates are explicitly coupled at a time reduces
the dimension of the nonfactorizable component of the n-elec-
tron electron repulsion integrals to at most min[n,2m]. Varia-
tional flexibility and therefore accuracy is traded for computa-
tional simplification. When combined with the Rayleigh!Ritz
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variational approach, this kind of restriction of the wave function
parameter space breaks size extensivity in the same way that
truncated CI wave functions are not size extensive. The Hy-CI,
SECG, and CISD-R12 methods are all examples of this approach
withm = 2. Note, however, that in theHy-CI and SECGmethods
the wave function can account for n-body electron correlation
through the nonexplicitly correlated part of the wave function,
whereas only 2-body correlation effects are parametrized in the
CISD-R12 method.

5.2. Nonvariational Approaches
Wave function parameter space may be reduced while retaining

size extensivity provided that the wave function has the structure

ψ ¼ A exp ∑
i
g1ðxiÞ þ ∑

i < j
g12ðxi, xjÞ þ ∑

i < j < k
g123ðxi, xj, xkÞ þ :::

 !

ð234Þ

Clearly, even wave functions truncated after g12 contain termswith
all n electronic coordinates explicitly coupled. However, by
abandoning the Rayleigh!Ritz variational approach in favor of
projectionmethods, the dimension of the nonfactorizable integrals
that enter the working equations can be drastically reduced. One
example is the transcorrelated approach, where no terms beyond
g12 appear. Here, atmost three-electron explicitly coupled integrals
are required, independent of the number of electrons in the
system. If g123 terms were to be included in a transcorrelated
method, then five-electron integrals would be required. In general,
wave function terms explicitly coupling m electronic coordinates
require (2m ! 1)-electron integrals.

Explicitly correlatedMøller!Plesset and coupled-cluster wave
functions are further important examples of this technique, and
indeed, the CCSD approach differs from the transcorrelated
method primarily in that, in the language of second quantization,
only excitation rather than both excitation and de-excitation
operators enter the wave function parametrization. In the expli-
citly correlated MP2 and CCSD approaches, where no terms
beyond g12 appear, up to three-electron integrals are required for
MP2 and up to four-electron integrals for CCSD. This, however,
assumes that g1 and g12 are strongly orthogonal, which is not in
general the case. Enforcing strong orthogonality through the use
of projection operators introduces additional four-electron inte-
grals inMP2 and five-electron integrals in CCSD. It should be noted
that the accuracy of explicitly correlated CCSD theory is limited
because only 2-body correlation effects are parametrized. Higher-
order correlation effects can be included through triple and higher
excitations either with or without explicitly correlated g123... terms.

5.3. Weak Orthogonality
The weak orthogonality functional, discussed in section 4.2.2,

helps to further reduce the dimensionality of the required inte-
grals in explicitly correlated theories. The many-electron integrals
arising from enforcing strong orthogonality (see the previous
section) can be avoided by dropping the strong orthogonality
projectors from the equations and introducing a penalty function
that vanishes when the functions g1 and g12 satisfy the strong
orthogonality conditions. This is successful provided that the
parametrization of g1 and g12 has sufficient flexibility for the
functions to become strongly orthogonal through optimization.

5.4. Stochastic Numerical Integration
Stochastic numerical integration is another way to deal with

high-dimensional integrals. It is used in variational Monte Carlo

and related methods (see section 4.4). The efficient sampling of
the energy integral ÆΨT|Ĥ|ΨTæ/ÆΨT|ΨTæ over a trial wave
function ΨT(x) requires a low variance of the local energy

ELðxÞ ¼ ĤΨTðxÞ
ΨTðxÞ

ð235Þ

which for the exact wave function is a constant. Use of trial wave
functions that fulfill the cusp conditions avoids singularities and
greatly improves the convergence of the Monte Carlo integra-
tion. Otherwise, the method puts no limit on the complexity of
ΨL as it only requires evaluation of eq 235 at random values of x.

5.5. Resolution of the Identity
Integrals wherem electronic coordinates are explicitly coupled

through pairwise coupling terms can be approximated by succes-
sive insertions of an approximate resolution of the identity (RI)

1≈ P̂00 ¼ ∑
p00

jp00æÆp00j ð236Þ

For example

Æpqrjr12r!1
23 jstuæ ≈ ∑

p00
Æpqjr12jsp00æÆp00rjr!1

12 jtuæ ð237Þ

If the set of orthonormal orbitals p00 was complete then the
resolution of the identity would be exact. In practice, use of a
finite set of orbitals results in a residual error in the approximate
integral. The magnitude of the error for each RI insertion depends
on the rate of convergence of the expansion, which depends on
the particular operators in the integrand. For the atomic case the
RI insertion is equivalent to a partial wave expansion and the
convergence properties are well known. A typical RI error for
the above integral using a standardRI basis set is 0.01%.336While use
of the RI approximation makes mEh accuracy difficult to obtain
even for small systems, all three-, four-, and five-electron integrals
in explicitly correlated CCSD theory can be constructed from
two-electron integrals, which ensures that the computational
scaling is reduced to N 6 (see also sections 6.2 and 6.3).

5.6. Numerical Quadrature
Numerical quadrature can be used as an alternative to RI as a

method for decomposing many-electron integrals into sums of
products of lower-index objects. For example, electron repulsion
integrals can be represented as sums of two- and three-center
objects over grid points395,396

ðprjr!1
12 jqsÞ ≈ ∑

g
wðrgÞϕpðrgÞϕrðrgÞÆqjr

!1
1g jsæ ð238Þ

where w(rg) is the weight of the quadrature grid point rg. Applied
to three-electron integrals, numerical quadrature yields

Æpqrjr!1
12 f23jstuæ ≈ ∑

g
wðrgÞϕqðrgÞϕtðrgÞÆpjr

!1
1g jsæÆrjf1g juæ

ð239Þ

(Note that this three-electron integral is over orbital products,
not Slater determinants, and can also be written as (ps|r12

!1|qt|f23|
ru).) This approach was applied by Ten-no in his early work on
the transcorrelated method306,307 andmore recently inMP2-F12
theory330 and CCSD(F12) theory.397

5.7. Two-Electron Integrals
In retrospect, insertion of completeness relations into the

many-electron integrals of the early R12 methods was the main
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clue to success of these methods. By virtue of the completeness
relations, or resolution of the identity approximations, three- and
more-electron integrals could be avoided completely and made
the methods applicable to many-electron polyatomic molecules.
With respect to the R12 methods, in which linear correla-
tion factors of the type r12 are employed, we furthermore note
that the integrals over the electron!nucleus Coulomb attraction
!ZCr12/r1C, where r1C is the distance of electron 1 from the
nucleus C with atomic number ZC and which would have required
a numerical integration, are also avoided. This was achieved by
introducing the commutator of the bare nuclear Hamiltonian, or
the Fock operator, with the linear r12 term, because the Coulomb
operator commutes with r12. After this introduction of commu-
tators the remaining integrals are

r!1
12 ; f12; f 212; r!1

12 f12; ½T̂1 þ T̂2, f12(;

½f12, ½T̂1 þ T̂2, f12(( ¼ j∇1f12j2 þ j∇2f12j2 ð240Þ

which here are given for the general case that the correlation
factor f12 is a function of the interelectronic distance, f12t f(r12).

Integral formulas for the two-electron integrals that arise with
linear r12 terms can be found in refs 194 and 364 (see also refs 338
and 341). The only integral that needs some further considera-
tion is the commutator integral [T̂1 + T̂1, f12]. In various F12
implementations, this integral is avoided by means of the
“approximation C” of Ked#zuch et al.,327 but it can in fact easily be
computed from

ðabj½T̂1, f12(jcdÞ ¼ 1
2
ðΔA !ΔBÞðabjf12jcdÞ ð241Þ

where a, b, c, and d denote atomic basis functions at the centersA,
B, C, and D. For correlation factors of the type f12 = r12
exp(!γr12

2 ) or for correlation factors f12 expanded in a basis of
Gaussian geminals integral formulas are reported in refs 398!400.
Finally, we note that also the necessary integrals that occur with
Slater-type geminals f12 = exp(!γr12) can be computed
analytically.329,401,402

6. GENERAL F12 THEORY

Today’s F12 methods have emerged during the past decade
from the original R12 methods through several conceptual and
technical developments, which aimed at making these explicitly
correlated approaches applicable to larger polyatomic systems
and further enhance the basis-set convergence. As outlined in
section 4.5, R12 methods augment the conventional excitations
into products of unoccupied one-electron orbitals by excitations
of electron pairs into explicitly correlated pair functions, which
are constructed as Q̂ 12r12ϕiϕj, where r12 is the interelectronic
distance and Q̂ 12 is a strong-orthogonality projector (vide infra).
F12 methods employ more flexible pair functions of the form
Q̂ 12f12ϕiϕj, where f12 can be any function of r12 of the form
f(r12) = r12 + O (r12

2 ). The increased flexibility allows one to
describe a much larger region of the Coulomb correlation hole.
Today, the predominant choice for the correlation factor f12 is a
Slater-type function (cf. discussions in sections 4.1.1 and 6.6.1)

f12 ¼ 1
γ
ð1! expð ! γr12ÞÞ ð242Þ

The exponent γ is a length-scale parameter and accounts for how
strongly the interelectronic interaction is on average screened by
the circumjacent electron density. Slater-type geminal functions

(STGs) describe very efficiently the correlation hole and alone
recover a large fraction of the dynamic pair correlation energy,
that is, without conventional excitations into orbital products.403

A key development has also been introduction of a comple-
mentary auxiliary basis set (CABS) which is used in addition to
the orbital basis for the resolution of the identity (RI) in the fac-
torization of many-electron integrals.337,340 This made it possible
to use medium-sized standard basis sets for R12 and F12 methods,
which reduced the costs of such calculations significantly.

Together with othermethodological advances, including robust
density fitting for the additional integrals,413,414 efficient integral
evaluation techniques,329,330,400!402,406,407 systematic approxima-
tions,327,340,408!410 combination with local methods,407,411!413

and specially optimized orbital and complementary auxiliary
basis sets,414!417 these developments have converted the original
R12 methods into efficient tools for electronic structure calcula-
tions on polyatomic molecules. They are capable to recover
already with optimized double-ζ basis sets about 98% of the
basis-set limit correlation energy—an accuracy which in con-
ventional calculations is first reached with large quintuple-zeta
basis sets.

Originally developed at the MP2-F12 level, these techniques
have during the last 5!10 years carried over to other correlated
wave function methods such as, for example, several coupled-
cluster models,29,397,418!429 CASPT2-F12,430,431 and MRCI-
F12.432,433 In the following subsections we will describe the
general ansatz of F12 theories and the approximations made to
evaluate or avoid three- and four-electron integrals and briefly
show how the F12 theory can be combined with some standard
correlated wave function methods.

6.1. General Ansatz
Correlated wave function methods are most conveniently

presented using the formalism of second quantization outlined
in section 4. For the following we use again the convention intro-
duced in the latter section that indices i,j,k,l,m,n refer to orbitals
occupied in the Hartree!Fock (or reference state), a,b,c,d to
virtual orbitals and p,q,r,s to any orbital within the finite orbital
basis. To represent excitations into the explicitly correlated pair
functions in second quantization, we introduce formally an addi-
tional basis for the complementary space which together with the
orbital basis forms a complete basis for the one-electron Hilbert
space. For functions of the complementary space we use indeces
α^,β^, while indeces α,β denote any virtual orbitals within or
outside the finite orbital space (see Figure 9). The orbitals in the
complementary auxiliary basis set (CABS) used to improve the
RI span a subspace of the full complementary space and will be
denoted with indeces a0,b0.

The general form of the geminals used today in F12 methods is

jwxyæ ¼ Q̂ 12f12Ŝxyjϕxϕyæ ð243Þ

where |ϕxϕyæ is a two-electron determinant and the rational
generator Ŝxy ensures that the s- and p-wave coalescence condi-
tions are satisfied

Ŝxyjxð1Þjyð2Þσxð1Þσyð2Þ

¼ 3
8
jxð1Þjyð2Þ þ 1

8
jyð1Þjxð2Þ

# $
σxð1Þσyð2Þ

ð244Þ

In the last equation jx and σx are, respectively, the spatial and
spin components of a spin orbital ϕx. The set of orbitals x,y, from
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which the geminals are constructed, is usually chosen as the set of
active occupied orbitals. Within the complete basis for the virtual
spaceα,β, introduced above, double excitations into the geminals
can be expressed as

jwxyæ ¼ ∑
α < β

wxy
αβa

†
αa

†
βjvacæ ð245Þ

with overlap matrix elements wαβ
xy = Æαβ|wxyæ and the vacuum

state |vacæ. In the following we will for double excitations also use
the shorthand notation aij

αβ = aα
†aiaβ

†aj.
For the strong-orthogonality projector Q̂ 12 there are two

ans€atze in use. The choice that leads to the most accurate des-
cription of the correlation hole is referred to as ansatz 2 and
defined as

Q̂ 12 ¼ ð1! Ô1Þð1! Ô2Þð1! V̂ 1V̂ 2Þ ð246Þ

where Ôi projects onto the space of (active and frozen) occupied
and V̂ i onto the space of active virtual orbitals

Ô1 ¼ ∑
i
jϕið1ÞæÆϕið1Þj ð247Þ

V̂ 1 ¼ ∑
a
jϕað1ÞæÆϕað1Þj ð248Þ

Thus, Q̂ 12 projects out of the functions f12|xyæ any contributions
of occupied pairs |ijæ or singly excited pairs |iαæ, which ensures
that the excitations into geminals are pure double excitations and
have no Pauli-forbidden components. Furthermore, the factor
(1 ! V̂ 1V̂2) keeps the geminals orthogonal to all conventional
doubly excited pairs |abæ. This minimizes the coupling between
amplitudes for conventional and explicitly correlated double
excitations and guarantees that approximations made in evaluat-
ing the geminal contributions will not change the basis-set limit
of a wave function method. Some authors denote the choice for
the projector in eq 246 as “ansatz 3” and reserve the notation
“ansatz 2” for projection with (1 ! Ô1)(1 ! Ô2). These two
expressions for the strong orthogonality projector lead indeed to
wave function ans€atze which would be equivalent if double exci-
tations into orbital products and into geminals are treated on the
same footing and no approximations are made in the evaluation
of matrix elements. The projector (1 ! Ô1)(1 ! Ô2) leads,
however, to a strong coupling between the two sets of double
excitations and expressions for the geminal contributions to the
wave function that do not vanish in the limit of a complete one-
electron basis set. This is inconvenient as approximations for the

matrix elements then also affect the basis-set limit. To avoid these
problems modern implementations employ for ansatz 2 the
projector in the form given in eq 246 with the additional ortho-
gonalization onto the space spanned by the double excitations
into orbital products, (1 ! V̂ 1V̂2).

An alternative choice for the strong orthogonality projector,
denoted as ansatz 1, is

Q̂ ð1Þ
12 ¼ ð1! P̂1Þð1! P̂2Þ ð249Þ

with P̂i = Ôi + V̂ i. It restricts the F12 geminals to the space of
|α^β^æ, that is, in contrast to ansatz 2, also contributions from
pair functions |aβ^æ are projected out. This reduces the number
of coupling terms between geminal and conventional excitations
in the equations for the wave function amplitudes and thus to
much simpler working equations but also to a significantly less
accurate description of the Coulomb hole. Therefore, most
modern F12 methods use ansatz 2 for the dominant geminal
contributions, while ansatz 1 is usually only employed for small
higher-order terms.

6.2. Auxiliary Basis Sets
In practical calculations, the strong orthogonality projectors

are partially approximated by a resolution of the identity in a
finite basis set

1 ≈ P̂00 ¼ ∑
p00

jp00æÆp00j ð250Þ

This allows one to avoid calculation of three- and four-electron
AO (atomic orbital) integrals, which for polyatomic molecules
becomes soon prohibitively expensive, by expanding them in
products of two-electron integrals (vide infra). The first imple-
mentations of R12 methods208,285,328,331!334,336,337,434 used the
orbital basis set (OBS) for the RI approximations, that is, P̂00 = P̂.
With P̂1 ≈ P̂1P̂2, the strong orthogonality projector for ansatz 1
then takes the simple form

Q̂ ð1Þ
12 ¼ 1! P̂1 ! P̂2 þ P̂1P̂2 ≈ 1! P̂1P̂2 ð251Þ

This approach was (in combination with a few more approxi-
mations) termed “standard approximation” (vide infra). With
a careful choice how the RI approximation is introduced, this
approximation does not infringe the fast convergence with the
angular momentum of the basis functions. It imposes, however,
the requirement that the atomic orbital basis sets are saturated for
the angular momenta included in the basis set. This hindered the
applicability of these methods, since they required specially desi-
gned large one-electron basis sets. Klopper and Samson340

showed that this restriction on the orbital basis sets can be lifted
by introducing an auxiliary basis set for the RI approximation, for
example, for ansatz 1

Q̂ ð1Þ
12 ¼ 1! P̂1P̂002 ! P̂001 P̂2 þ P̂1P̂2 ð252Þ

This auxiliary basis-set approximation (ABS) allowed us to use
standard orbital basis sets for R12 calculations. Only the auxiliary
basis {p00} had to be specially designed: for an accurate RI it has
to cover the space of the orbital basis and should be saturated
for angular momenta up toLmax + 2Locc, where Lmax is the highest
angular momentum of the OBS and Locc the highest angular
momentum of the occupied Hartree!Fock orbitals. Valeev337

recognized that the numerical accuracy of the RI can be improved
and the computational costs for it reduced if only the projec-
tion onto the orthogonal complement P̂^ = ∑α^

|ϕα^
æÆϕα^

| is

Figure 9. Orbital subspaces used in F12 calculations and their notation.
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approximated with an auxiliary basis set as P̂^≈ P̂0 = ∑a0|ϕa0æÆϕa0|.
This is equivalent to constructing the basis for the RI as the union
of the orbital basis and a complementary auxiliary basis set
(CABS)

1 ≈ P̂ þ P̂0 ð253Þ

The projector for ansatz 1 becomes with this approximation

Q̂ ð1Þ
12 ¼ 1! P̂1P̂2 ! P̂1P̂02 ! P̂01P̂2 ð254Þ

and the projector for ansatz 2 in eq 246 can—within the CABS
approximation—be rewritten as

Q̂ 12 ≈ 1! P̂1P̂2 ! Ô1P̂02 ! P̂01Ô2 ð255Þ

For some matrix elements, also the contribution of the unit
operator would result in three- or four-electron integrals. In these
cases, the even more approximate form

Q̂ 12 ≈ P̂01P̂
0
2 þ V̂ 1P̂02 þ P̂01V̂ 2 ð256Þ

of the projector for ansatz 2 is applied to obtain feasible working
equations. The corresponding approximation for ansatz 1 is

Q̂ ð1Þ
12 ≈ P̂01P̂

0
2 ð257Þ

With an empty CA basis, that is, if P̂10 and P̂20 vanish, the pro-
jectors for both ans€atze in eqs 255 and 254 reduce to Q̂ 12 =
1 ! P̂1P̂2, which is the approximation for the strong orthogon-
ality projector used in the standard approximation of the original
R12 methods (cf. section 4.5).

All of the above approximate forms of the projector Q̂ 12 given
in eqs 251!257 do not eliminate all strong-orthogonality violat-
ing components from the pair functions: even with the CABS
approach the contributions Ô1R̂2 and R̂1Ô2 where R̂ = 1! P̂ ! P̂0

remain. Therefore, MP2-R12 and MP2-F12 energies are not
bounded from below, although in practical calculations an over-
estimation of the MP2 correlation energy due to approximations
for the projector has mainly been observed for the original MP2-
R12 method without auxiliary basis set, while with the ABS and
CABS approaches this problem can be avoided using a suffi-
ciently accuracte auxiliary basis.340

6.3. Many-Electron Integrals and Standard Approximations
Augmentation of a conventional correlated wave function

ansatz with excitations into geminals leads to additional matrix
elements over the one- and two-electron parts of the Hamiltonian
and the unit operator (i.e., overlap matrix elements). The “standard
approximation” (SA) denotes the set of approximations and
assumptions used in the original R12 methods to evaluate these
matrix elements. The most important assumption has been that
the resolution of the identity can be well represented in the
orbital basis set, that is, Q̂ 12 ≈ 1 ! P̂1P̂2. For the evaluation of
matrix elements involving the Fock operator it was further assumed
that the orbital space is closed under the Fock operator, that is,
that the generalized Brillouin condition (GBC)

fiα^ ¼ 0 ð258Þ

and the extended Brillouin condition (EBC)

fpα^ ¼ 0 ð259Þ

are fulfilled. In some variants—indicated by letter codes A, A0,
B, C, etc. (vide infra)—certain terms were neglected. Today, one
avoids (at least for the most important terms) such severe

approximations to keep the demands for the orbital and CA basis
sets as low as possible.

For the following discussion of post-Hartree!Fock methods
it is convenient to partition the Hamiltonian as

Ĥ ¼ F̂ð0Þ þ F̂ð1Þ þ Φ̂ ð260Þ

where F̂(0) and F̂(1) are the zeroth- and first-order contributions
to the Fock operator

F̂ð0Þ ¼ F̂ ! F̂ð1Þ ¼ ∑
ij
fija†i aj þ ∑

αβ

fαβa†αaβ ð261Þ

F̂ð1Þ ¼ ∑
iα

fiαa†i aα þ ∑
αi

fαia†αai ð262Þ

and Φ̂ is the electron fluctuation potential, Φ̂ = Ĥ ! F̂. For F12
variants of single-reference pair theories, such as MP2, CCSD,
CISD, or CEPA, the most important additional matrix elements
needed are

Vxy
rs ¼ Ærsjr!1

12 jwxyæ ¼ ŜxyÆrsjr!1
12 Q̂ 12f12jxyæ ð263Þ

Pxyvw ¼ Æwvwjr!1
12 jwxyæ ¼ ŜvwŜxyÆvwjf12Q̂ 12r!1

12 Q̂ 12f12jxyæ
ð264Þ

Zxy, q
vw, p ¼ Æwvw, pjð1! p̂13Þr!1

13 þ ð1! p̂23Þr!1
23 jwxy, qæ

¼ ŜvwŜxyÆvw, pj f12Q̂ 12ðð1! p̂13Þr!1
13 þ ð1! p̂23Þr!1

23 ÞQ̂ 12f12jxy, qæ

ð265Þ

Cxy
ab ¼ ÆabjF̂ð0Þjwxyæ ¼ ŜxyÆabjðF̂ð0Þ1 þ F̂ð0Þ2 ÞQ̂ 12f12jxyæ

ð266Þ

Bxyvw ¼ ÆwvwjF̂ð0Þjwxyæ ¼ ŜvwŜxyÆvwjf12Q̂ 12ðF̂ð0Þ1 þ F̂ð0Þ2 ÞQ̂ 12f12jxyæ

ð267Þ

Xxy
vw ¼ Æwvwjwxyæ ¼ ŜvwŜxyÆvwjf12Q̂ 12f12jxyæ ð268Þ

In eq 265 the operator p̂ij exchanges two electrons and the
comma indicates that the third index is not antisymmetrized. All
other terms or intermediates involving the geminals can be
evaluated by directly approximating the complementary space
by the CABS using eq 256 or 257, since the corresponding partial
wave expansions are either rapidly convergent or finite.367,422,435

Taking the intermediate V as an example, one sees that if Q̂ 12
were used as defined in eq 246 this would, due to the terms linear
in the one-electron projectors Ô1 and Ô2, give rise to three-
electron integrals
Z Z

ϕrð1Þϕsð2Þr
!1
12 Ô1f12ϕxð1Þϕyð2Þdτ1dτ2

¼ ∑
m

Z
ϕsð2Þ

Z
ϕrð1Þr

!1
12 ϕmð1Þdτ1 3

Z
ϕmð3Þf23ϕxð3Þdτ3

% &
ϕyð2Þdτ2

ð269Þ

¼ ∑
m

Ærsmjr!1
12 f23jmyxæ ð270Þ

where in the last equation Ærsm|r12!1f23|myxæ is an integral over
orbital products, not Slater determinants. Even four-electron
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integrals would be required for evaluation of the intermediates B,
P, and Z. This is avoided by inserting an approximate resolution
of the identity (RI). In the CABS approach the basis set for the RI
is chosen as the union of the orbital basis and a complementary
auxiliary basis, which leads to the expressions in eqs 255 and 256.
The more accurate form in eq 255, where the CABS orbitals are
only used to approximate the contribution from the space
spanned by the functions |iα^æ, is applied whenever the integrals
for the unity in Q̂ 12 do not result in three-electron integrals.
Inserting eq 255 into the expression for the intermediateV leads to

Vxy
rs ¼ Ŝxy Ærsjr!1

12 f12jxyæ! ∑
p>q

Ærsjr!1
12 jpqæÆpqjf12jxyæ

 

! ∑
ma0

Ærsjr!1
12 jma

0æÆma0jf12jxyæ

!

ð271Þ

A similar expression is obtained for the X intermediate. With the
shorthand notation

gpqrs ¼ Ærsjr!1
12 jpqæ ð272Þ

rxyrs ¼ ŜxyÆrsjf12jxyæ ð273Þ

vxyrs ¼ ŜxyÆrsjr!1
12 f12jxyæ ð274Þ

xxyvw ¼ ŜvwŜxyÆvwjf 212jxyæ ð275Þ

for the required two-electron integrals, the expressions for the
intermediates V and X become

Vxy
rs ¼ vxyrs ! ∑

p>q
rxypqg

pq
rs ! ∑

ma0
rxyma0g

ma0
rs ð276Þ

Xxy
rs ¼ xxyrs ! ∑

p>q
rxypqr

pq
rs ! ∑

ma0
rxyma0 r

ma0
rs ð277Þ

The most involved intermediate is B. Together with V it
determines the leading explicitly correlated contributions to
the wave function and the energy and must therefore be evalua-
ted with high accuracy. The most important terms arise from
the kinetic energy operator since these should balance, in the
Schr€odinger equation, the contribution from the Coulomb
interaction r12

!1 at the interelectronic cusp. However, due to the
Coulomb and exchange parts of the Fock operator, already the
contributions from the unity in Q̂ 12 give rise to three-electron
integrals. This dilemma is partially solved by splitting the Fock
operator into its contributions

F̂ ¼ T̂ þ V̂ þ Ĵ ! K̂ ð278Þ

where T̂ is the kinetic energy operator, V̂ is the nuclear potential,
and Ĵ and K̂ are, respectively, the Coulomb and exchange
operators and applying different approximations for the different
contributions. For the unity in Q̂ 12 as many contributions as
possible should be evaluated without inserting a resolution of the
identity. This can be achieved by rewriting this part as

Ævwjf12ðF̂1 þ F̂2Þf12jxyæ ¼ 1
2
Ævwj½f12, ½F̂1 þ F̂2, f12((jxyæ

þ 1
2
ÆvwjðF̂1 þ F̂2Þf 212jxyæ þ 1

2
Ævwjf 212ðF̂1 þ F̂2Þjxyæ ð279Þ

The nested commutator in the first term on the right-hand side
vanishes for the multiplicative operators in F̂ (i.e., V̂ and Ĵ), while
for T̂ the following identity holds

1
2
½f12, ½T̂1 þ T̂2, f12(( ¼ j∇1f12j2 ð280Þ

The matrix element in eq 279 can thus be rewritten as

Ævwjf12ðF̂1 þ F̂2Þf12jxyæ ¼ Ævwjj∇1f12j2jxyæ

þ 1
2
Ævwj½f12, ½K̂1 þ K̂2, f12((jxyæþ

1
2
ÆvwjðF̂1 þ F̂2Þf 212jxyæ

þ 1
2
Ævwjf 212ðF̂1 þ F̂2Þjxyæ ð281Þ

The integrals of |r1f12|
2 can, with the common correlation

factors, be calculated analytically with costs not much higher
than for the integrals of f12 itself. For the R12 methods, |r1r12|

2 =
1, and for the exponential correlation factor (1/γ)(1 ! e!γr12)
one obtains |r1f12|

2 = e!2γr12. This allows one to evaluate the first
(and most important) contribution in eq 281 with high accuracy
and to insert approximate resolutions of the identity in finite basis
sets only for those parts that necessarily lead to three-electron
integrals. The particular way in which the remaining con-
tributions to B are evaluated, which approximations are used
and whether or not certain terms are neglected, has led to a
bewildering array of acronyms for MP2-R12 and MP2-F12
theories, such as the so-called approximations A, A0, B, and C,
sometimes combined with additional approximations indi-
cated with asterisks, etc. For the details, we refer the inter-
ested reader to the literature.327,334,340,408,410,436,437

In the approximations A and A0 the contributions from V̂ , Ĵ,
and K̂ are partially neglected to reduce the computational
complexity. This reduces somewhat the accuracy achieved but
leads to some computational savings at the MP2 level. The vari-
ants B and C neglect no terms but differ slightly in how the
approximate resolutions of the identity are inserted. Almost all
programs employ the variants B or C beyond MP2-F12 theory,
since for more costly methods no real saving is gained from
further approximations for the B intermediate.

The intermediate C is evaluated with the approximate Q̂ 12
given in eq 256, which leads to the expression

Cxy
ab ¼ ∑

c0
ðrxyac0 f

c0
b þ rxyc0b f

c0
a Þ ð282Þ

The intermediate Cab
xy appears in equations for the wave function

amplitudes only in connection with the contributions of double
excitations into the functions |aβ^æ which are not at all present
with ansatz 1 or with the standard approximations applied in the
original R12 methods. Since these contributions are rather small
and decline quickly with increasing orbital basis sets, direct inser-
tion of the RI for this intermediate does not affect the overall
basis convergence of F12 methods.

The intermediate P only appears in contributions that are of
fourth and higher order in Møller!Plesset perturbation theory
and (at least) quadratic in the amplitudes for excitations into
geminals. The intermediate Z occurs in third- and higher-order
terms which are at least second order in the geminal contribution
to the wave function. The individual contributions from the inter-
mediates P and Z can be sizable but cancel each other system-
atically (see section 7.1). Therefore, most modern F12 methods
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neglect such contributions altogether. For a discussion of P, Z,
and other intermediates for such higher-order terms we refer to
the literature (see, for example, ref 367 or 438).

6.4. MP2-F12 Theory
Møller!Plesset perturbation theory through second order,

MP2, is the correlated wave function method with the least com-
putational complexity. It is thus a good example to illustrate how
the geminals introduced in F12 theory are combined with a wave
function expansion in conventional Slater determinants. At the
same time, MP2 is also an important test ground for the different
ans€atze and approximations.

To derive the working equations for Møller!Plesset pertur-
bation theory we first partition the Hamiltonian as

Ĥ ¼ Eð0Þ þ F̂ð0ÞN þ F̂ð1ÞN þ Φ̂N ð283Þ

where E(0) = EHF is the zeroth-order or Hartree!Fock energy
and F̂N

(0) the normal ordered part of the diagonal occupied/
occupied and virtual/virtual blocks of the Fock operator F̂(0)

(cf. eq 261)

F̂ð0ÞN ¼ F̂ð0Þ ! ÆHFjF̂ð0ÞjHFæ ð284Þ

F̂N
(0) is used as the zeroth-order Hamiltonian, and the perturba-

tion is defined as the sum of the off-diagonal occupied/virtual
blocks F̂N

(1) = F̂(1) of the Fock operator and the normal ordered
fluctuation potential given by Φ̂N

Φ̂N ¼ Φ̂! ÆHFjΦ̂jHFæ ¼ Ĥ ! EHF ! F̂N ð285Þ

If the Hartree!Fock reference wave function fulfills the Brillouin
condition, that is, the matrix elements fia and fai of F̂

(0) are zero,
the MP2 energy correction is given by

ΔEMP2 ¼ ÆHFjΦ̂N jMP1æ ð286Þ

The first-order wave function MP1 can be written as

jMP1æ ¼ T̂ð1Þ
2 jHFæ ð287Þ

with

T̂ð1Þ
2 ¼ ∑

i>j
a>b

tijð1Þab a†aaia
†
baj ¼ ∑

i>j
a>b

tijð1Þab aabij ð288Þ

The double-excitation amplitudes tab
ij(1) are determined by requir-

ing that the projection of the first-order Schr€odinger equation

ðEð0Þ þ F̂ð0ÞN ÞjMP1æ þ Φ̂N jHFæ ¼ Eð0ÞjMP1æ þ Eð1ÞjHFæ ð289Þ

on the doubly excited determinants Æabij | = ÆHF|aj†abai†aa =
(HF|aij

ab)† vanishes

ÆijabjðF̂
ð0Þ
N jMP1æ þ Φ̂N jHFæÞ ¼ Æijabj½F̂

ð0Þ
N , T̂ð1Þ

2 ( þ Φ̂N jHFæ ¼ 0 ð290Þ

Alternatively, the expression for EMP2 in eq 286 and the condi-
tion for the first-order wave function amplitudes, eq 290, can be
combined into the variational Hylleraas functional

HMP2 ¼ ÆHFjΦ̂NT̂
ð1Þ
2 jHFæ þ ∑

i>j
a>b

tijð1Þab Æijabj½F̂
ð0Þ
N , T̂ð1Þ

2 ( þ Φ̂N jHFæ

ð291Þ

which is a special case of a Lagrange functional. We have then EMP2
= HMP2, and the amplitudes are determined by the variational

condition

dHMP2

dtijð1Þab

¼ 0 ð292Þ

Note that in eqs 290 and 291 the index N (indicating normal
ordering of the operators) can be dropped as subtracting
the expectation values for |HFæ from F̂(0) and Φ̂ has in these
equations no effect.

In MP2-F12 theory the set of conventional double excitations
aij
ab is augmented by the excitations into the explicitly correlated
geminals |wxyæ defined in eq 243 or 245 in section 6.1

jMP1-F12æ ¼ ðT̂ð1Þ
2 þ T̂ð1Þ

20 ÞjHFæ ð293Þ

with

T̂ð1Þ
20 ¼ ∑

i>j
x>y

cijð1Þxy ∑
α>β

wxy
αβa

αβ
ij ð294Þ

Two alternative (but equivalent) expressions for the F12 double
excitation operator T̂20

(1) are

T̂ð1Þ
20 ¼ ∑

i>j
x>y

cijð1Þxy τxyij ¼ ∑
i>j
x>y

tijð1Þαβ aαβij ð295Þ

with excitation operators τij
xy and the amplitudes tαβ

ij defined as

τxyij ¼ ∑
α>β

wxy
αβa

αβ
ij and tijαβ ¼ ∑

x>y
cijxyw

xy
αβ ð296Þ

The form of T̂20
(1) on the right-hand side of eq 295 is sometimes

useful for comparing contributions from double excitations into
geminals with their conventional counterparts, but it should be
kept in mind that the additional variable parameters in F12
theory are the coefficients cxy

ij . To determine the coefficients cxy
ij(1)

that enter in T̂20
(1), also the projection manifold for the first-order

Schr€odinger equation is extended by the double excitations into
geminals. This leads to a coupled set of equations for the
conventional double-excitation amplitudes tab

ij(1) and the coeffi-
cients cxy

ij(1)

Æijabj½F̂
ð0Þ
N , T̂ð1Þ

2 þ T̂ð1Þ
20 ( þ Φ̂N jHFæ ¼ 0 ð297Þ

Æijxyj½F̂
ð0Þ
N , T̂ð1Þ

2 þ T̂ð1Þ
20 ( þ Φ̂N jHFæ ¼ 0 ð298Þ

with the bra states Æxyij | =HF|(τijxy)†. TheMP2-F12 energy is given by

ΔEMP2-F12 ¼ ÆHFjΦ̂N jMP1-F12æ

¼ ÆHFjΦ̂NðT̂ð1Þ
2 þ T̂ð1Þ

20 ÞjHFæ ð299Þ

The last three equations can again be cast into a variationalHylleraas
functional

HMP2-F12 ¼ ÆHFjΦ̂NðT̂ð1Þ
2 þ T̂ð1Þ

20 ÞjHFæ

þ ∑
i>j
a>b

tijð1Þab Æijabj½F̂
ð0Þ
N , T̂ð1Þ

2 þ T̂ð1Þ
20 ( þ Φ̂N jHFæ

þ ∑
i>j
a>b

cijð1Þxy Æijxyj½F̂
ð0Þ
N , T̂ð1Þ

2 þ T̂ð1Þ
20 ( þ Φ̂N jHFæ

ð300Þ
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which is now required to be stationary with respect to variations of
tab
ij(1) and cxy

ij(1).
With the matrix elements introduced in eqs 263!268 the

equations for theMP2-F12 energy and the first-order amplitudes
become

ΔEMP2-F12 ¼ ∑
i>j
a>b

tijð1Þab gabij þ ∑
i>j
a>b

cijð1Þxy Vxy
ij ð301Þ

0 ¼ ∑
c

tijð1Þac fcb þ tijð1Þcb fca
' (

! ∑
k

tikð1Þab fkj þ tkjð1Þab fki
' (

þ ∑
x>y

Cxy
abc

ijð1Þ
xy þ gijab

ð302Þ

0 ¼ ∑
v>w

Bvwxy c
ijð1Þ
vw ! ∑

v>w
Xvw
xy ∑

k
cikð1Þvw fkj þ ckjð1Þvw fki

' (

þ ∑
a>b

Cxy
abt

ijð1Þ
ab þ Vxy

ij

ð303Þ

The coupled equations for tac
ij(1) and cvw

ik(1) can be solved directly in
this form with computational costs scaling as O (N 6) with the
system size, in contrast to a conventional MP2 calculation with
costs scaling as O (N 5). The computationally most demanding
steps of a MP2-F12 calculation are the calculations of the matrix
elements of B, V, X, and C. This motivated the development of
several more cost-efficient approximations.327,340,408,410

In eqs 302!303 the matrix elements Cab
xy cause a coupling

between the equations for the amplitudes tab
ij(1) of the conven-

tional double excitations and the equations for the geminal
coefficients cxy

ij(1). These matrix elements vanish with ansatz 1
for the strong orthogonality projector or with the original
standard approximations and the MP2-F12 energy becomes

ΔEansatz1MP2-F12 ¼ ΔEMP2 þ ΔEansatz1F12 ð304Þ

where ΔEMP2 is the conventional MP2 energy

ΔEMP2 ¼ ! ∑
i>j
a>b

Æabjr!1
12 jijæ

2

εa þ εb ! εi ! εj
ð305Þ

and ΔEF12
ansatz1 a basis-set incompleteness correction from the

geminal contribution

ΔEansatz1F12 ¼ ∑
i>j
x>y

cijð1Þxy Vxy
ij ð306Þ

Such a partitioning of the MP2-F12 energy can also be obtained
for ansatz 2 if the equations are slightly reformulated. In a
(semi)canonical molecular orbital basis, which diagonalizes the
occupied and virtual blocks F(0) such that fij = δijεi and fab =
δabεa, the general expression for the MP2-F12 energy can be
written as

ΔEMP2-F12 ¼ ΔEMP2 þ ΔEF12; ΔEF12 ¼ ∑
i>j
x>y

cijð1Þxy
~Vxy
ij

ð307Þ

where the modified Vij
xy intermediate is defined as

~Vxy
ij ¼ Vxy

ij ! ∑
a>b

Cxy
ab

Æabjr!1
12 jijæ

εa þ εb ! εi ! εj
ð308Þ

Also, the equations for the geminal coefficients cvw
ij(1) can be

rewritten such that an explicit reference to the amplitudes of the
conventional double excitations is avoided

0 ¼ ∑
v>w

Bvwxy ! ðεi þ εjÞXvw
xy ! ∑

a>b

Cxy
abC

vw
ab

εa þ εb ! εi ! εj

( )

cijð1Þvw þ ~Vxy
ij

ð309Þ

The last equation is particularly useful in connection with the
so-called SP approach, where the coefficients cxy

ij are fixed by the
s- and p-wave coalescence conditions at the interelectronic cusp
at cxy

ij = δixδjy ! δiyδjx instead of optimizing them. The corre-
lation energy is then not calculated through eq 301, since this
would be too inaccurate, but through the variationally stable
Hylleraas functional for the MP2-F12 energy, which can be
written using eq 309

HMP2-F12 ¼ ΔEMP2 þ ∑
i>j
x>y

cijxy ∑
v>w

Bvwxy ! ðεi þ εjÞXvw
xy

(

! ∑
a>b

Cxy
abC

vw
ab

εa þ εb ! εi ! εj

)

cijð1Þvw þ 2 ∑
i>j
x>y

cijxy ~V
xy
ij ð310Þ

For the SP approach, where cxy
ij = δixδjy! δiyδjx, the last equation

reduces to

HSP
MP2-F12 ¼ ΔEMP2 þ ∑

i>j
Bijij ! ðεi þ εjÞXij

ij

(

! ∑
a>b

Cij
abC

ij
ab

εa þ εb ! εi ! εj

)

þ 2 ∑
i>j

~Vij
ij ð311Þ

Due to the diagonal structure of the coefficients cxy
ij the SP

approach requires calculation of only a small subset of the matrix
elements of B, V, and X and the MP2-F12 energy can be com-
puted with O (N 5) scaling costs, that is, with the same scaling
as a conventional MP2 calculation. Because of the larger number
of integrals and intermediates required for an MP2-F12 calcula-
tion, the prefactor of the computational costs is larger than for a
conventional calculation in the same orbital basis set, but this is
—depending on the required accuracy with respect the basis-set
errors—partially or completely outweighed by the much faster
basis-set convergence, which allows use of smaller basis sets. The
MP2-F12 method was reviewed in 2006, providing details of the
approximations made, the techniques used for the integral
evaluation, and the like.439 More details of theMP2-F12method,
including the most recent developments and some large-scale
calculations that illustrate its range of application, can be found in
a recent article440 on the implementation441!443 of theMP2-F12
method in the TURBOMOLE program package. Figure 10 provides
an illustration of the performance of the MP2-F12 method. For
the model cluster CH3OH 3 3 3HAl(OH)(OSiH3)3, taken from
the work of Svelle et al.,444 the electron-correlation contribution
to the interaction energy (ΔE in mEh; the basis-set limit is 13.42
mEh) with respect to dissociation into the fragments CH3OH
andHAl(OH)(OSiH3)3 is shown. The geometries of the fragments
were kept fixed. Themuch improved basis-set convergence of the
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MP2-F12 model is obvious. Moreover, the counterpoise correc-
tions445 to the electron-correlation contribution to the interac-
tion energy are much smaller at the MP2-F12 level than at the
conventional MP2 level. Accurate results can also be obtained
using basis-set extrapolation techniques, but as noted in ref 446,
basis-set extrapolation schemes should be applied to the counter-
poise-corrected conventional MP2 values, which show a mono-
tonic behavior.

6.5. CCSD-F12 Theory
As mentioned in section 4, coupled-cluster theory employs for

the correlated wave function an exponential parametrization

jCCæ ¼ expðT̂ÞjHFæ ð312Þ

where T̂ is called cluster operator and consists of a linear
combination of excitation operators, T̂ = ∑μtμτ̂μ. Instead of the
Hartree!Fock wave function HF, also other wave functions, for
instance, from a Kohn!Sham density functional theory or from a
multiconfigurational self-consistent field calculation, can be used
as a reference for the coupled-cluster expansion, which leads then
to the wave function ansatz |CCæ = exp(T̂)|Refæ. In the standard
coupled-cluster methods the amplitudes tμ are determined by
solving a projected Schr€odinger equation which can be obtained
in two different ways. Projecting the Schr€odinger equation for
|CCæ directly onto the reference wave function and the bra states
Æμ| = ÆRef|τ̂μ† gives the so-called unlinked form of the cluster
equations

ÆμjðĤ ! ECCÞjCCæ ¼ 0 ð313Þ

Alternatively, the Schr€odinger equation can be transformed
before the projection with the inverse of exp(T̂), which results
in the linked cluster equations introduced in section 4

Æμjexpð ! T̂ÞðĤ ! ECCÞjCCæ ¼ 0 ð314Þ

The two forms of the cluster equations, eqs 313 and 314, are
equivalent if no other approximations are made than a truncation
of the manifold of excitation operators τ̂μ that are included in the
cluster operator T̂, and this truncation is made such that the
projection manifold {ÆRef|,Æμ|} is closed under de-excitation.
The latter criterion is fulfilled if for all excitation operators τ̂μ, τ̂ν
included in T̂ also τ̂μ

†τ̂ν is included unless τ̂μ
†τ̂ν |Refæ = 0.

For example, if the excitation operators aa
†aj and aa

†aiab
†aj are

included, also the single-excitation ab
†ai is needed for a projection

manifold that is closed under de-excitation.
With the unlinked form of the cluster equations the work-

ing equations are similar to those of configuration interac-
tion (CI) theory and coupled electron pair approximations
(CEPA)

ÆμjðĤ ! ECCÞ T̂ þ 1
2
T̂2 þ :::

# $
jRef æ ¼ 0 ð315Þ

On the other hand, one can exploit with the linked form of the
cluster equations that the nested commutator expansion of the
similarity-transformed Hamiltonian exp(!T̂)Ĥ exp(T̂) trun-
cates at four nested commutators

expð ! T̂ÞĤ expðT̂Þ ¼ Ĥ þ ½Ĥ, T̂( þ 1
2
½½Ĥ, T̂(, T̂(

þ 1
6
½½½Ĥ, T̂(, T̂(, T̂( þ 1

4!
½½½½Ĥ, T̂(, T̂(, T̂(, T̂( ð316Þ

The latter expansion is also termwise size extensive, that is, in
the linked form of the cluster equations

ÆμjĤ ! ECC þ ½Ĥ, T̂( þ 1
2
½½Ĥ, T̂(, T̂( þ 1

6
½½½Ĥ, T̂(, T̂(, T̂(

þ 1
4!
½½½½Ĥ, T̂(, T̂(, T̂(, T̂(jRef æ ¼ 0 ð317Þ

any commutator can be neglected without violating the size-
extensive structure of coupled-cluster theory.

For single-reference coupled-cluster calculations the reference
wave function |Refæ is usually chosen as a single Slater determi-
nant with orbitals optimized in a preceding Hartree!Fock cal-
culation, |HFæ. We restrict the following discussion to this case.
The cluster operator T̂ can then be expanded in terms of exci-
tation levels as

T̂ ¼ T̂1 þ T̂2 þ T̂3 þ ::: ð318Þ

where T̂i includes excitation operators which promote i electrons
from orbitals occupied in |HFæ to unoccupied molecular orbitals.
Truncating T̂ after a maximum excitation level and including up
to this level all possible excitations out of the set of active
occupied orbitals into a set of active unoccupied orbitals gives
the standard hierarchy of coupled-cluster models CCSD
(coupled-cluster with singles and doubles), CCSDT (coupled-
cluster with singles, doubles, and triples), etc. Note that for these
methods the projection manifold is closed under de-excitation,
and thus, the linked and unlinked forms of the cluster equations
are equivalent. At the CCSD level the equations are greatly
simplified by using T̂1-transformed operators, defined as

~̂
H ¼ expð ! T̂1ÞĤ expðT̂1Þ ð319Þ

The linked cluster equations for CCSD are then given by

ECCSD ¼ ÆHFj ~̂H þ ½Ĥ, T̂2(jHFæ ð320Þ

0 ¼ Æμ1j
~̂
H þ ½ ~̂H , T̂2(jHFæ ð321Þ

0 ¼ Æμ2j
~̂
Φ þ ½ ~̂H , T̂2( þ

1
2
½½Ĥ, T̂2(, T̂2(jHFæ ð322Þ

Figure 10. (a) Frozen-core MP2/aug-cc-pV(T+d)Z equilibrium geo-
metry of the model complex CH3OH 3 3 3HAl(OH)(OSiH3)3. Color
code: H, white; C, gray; Al, yellow; Si, cyan; O, red. (b) Basis-set
convergence of the magnitude of the electron-correlation contribution
to the interaction energy as a function of the cardinal number X of the
aug-cc-pV(X+d)Z basis sets obtained at the frozen-core MP2 and MP2-
F12 levels with and without counterpoise (CP) correction. Data taken
from ref 440.
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where Æμ1| and Æμ2| are, respectively, the singly and doubly
excited determinants of the projection manifold. For later
reference we will abbreviate the right-hand side of eq 321 as
Ωμ1,CCSD and that of eq 322 as Ωμ2,CCSD.

Explicitly correlated coupled-cluster theory with single and
double excitations has recently been reviewed by Tew et al.425

and Werner et al.426 In CCSD-F12 theory, the cluster operator
and the projectionmanifold are extended similarly as in theMP2-
F12 approach by accounting for additional double excitations
into the F12 geminals

T̂20 ¼ ∑
i>j
x>y

cijxyτ
xy
ij ð323Þ

The expression for the energy and the linked cluster equations
for CCSD-F12 become

ECCSD-F12 ¼ ECCSD þ ÆHFj½Ĥ, T̂20 (jHFæ ð324Þ

0 ¼ Ωμ1, CCSD þ Æμ1j½
~̂
H , T̂20 (jHFæ ð325Þ

0 ¼ Ωμ2, CCSD þ Æμ2j½
~̂
H , T̂20 ( þ ½½Ĥ, T̂20 (, T̂2( þ

1
2
½½Ĥ, T̂20 (, T̂20 (jHFæ

ð326Þ

0 ¼ Æμ20 j
~̂
Φ þ ½ ~̂H , T̂2 þ T̂20 ( þ

1
2
½½Ĥ, T̂2 þ T̂20 (, T̂2 þ T̂20 (jHFæ

ð327Þ

In the last equation, Æμ20| are the additional bra states obtained
from the double excitations into the F12 geminals, Æxyij | =
ÆHF|(τijxy)†. The above equations are formally identical to con-
ventional CCSD except that there are now in addition to double
excitations into orbital pairs also those into F12 geminals. The
size extensivity, the orbital invariance, and also the basis-set limit
of CCSD are retained. For both ansatz 1 and 2 Æμ20|[[Ĥ, T̂2],
T̂2]|HFæ = 0, and eq 327 can also be written as

0 ¼ Æμ20 j
~̂
Φ þ ½ ~̂H , T̂2 þ T̂20 ( þ

1
2
½½Ĥ, 2T̂2 þ T̂20 (, T̂20 (jHFæ

ð328Þ

For ansatz 1 or within the original standard approximations also
Æμ2|[[Ĥ, T̂20], T̂20]|HFæ = 0.

Similar as for MP2-F12, an attractive alternative to optimizing
the geminal coefficients cxy

ij is to predetermine them by the
coalescence conditions at the interelectronic cusp as cxy

ij = δixδjy
! δiyδjx. In this so-called CCSD-F12-SP approach the ampli-
tudes for conventional excitations are optimized by solving
eqs 325 and 326 in the presence of the fixed geminal contribu-
tions. This approach is numerically less sensitive to the accuracy
of the RI approximations and several contributions of T̂20 can be
precontracted, which reduces significantly the computational
costs. The energy for the SP approach is calculated from the
Lagrange functional

ECCSD-F12-SP ¼ ECCSD þ ÆHFj½Ĥ, T̂20 (jHFæ

þ ∑
i>j

Æijijj
~̂
Φ þ ½ ~̂H , T̂2 þ T̂20 ( þ

1
2
½½Ĥ, 2T̂2 þ T̂20 (, T̂20 (jHFæ

ð329Þ

In the last equation we used explicitly correlated bra states
defined as

Æijijj ¼ ∑
x>y

cijxyÆHFjðτ
xy
ij Þ

† ð330Þ

With the strong orthogonality projector for ansatz 1, eq 249, and
also for the original standard approximation, Q̂ 12 = 1! P̂1P̂2, the
projection manifold for CCSD-F12 is closed under de-excitation.
However, for ansatz 2, eq 246, which is the most accurate choice,
this is not the case. The combination of a conventional single de-
excitation ai

†aa with a double excitation into a geminal τij
xy gives

with ansatz 2 single excitations into the orthogonal complement
of the orbital basis with ai

†aaτij
xy|HFæ 6¼ 0, which cannot be

expanded in the singly excited states |i
aæ. For ansatz 2, linked

and unlinked cluster equations are therefore not comple-
tely equivalent. They differ in the equations for the geminal
coefficients by Æμ20|T̂1Ĥ exp(T̂)|HFæ, which is only present in
the linked form of the equations. However, this term is of high
order in the fluctuation potential and for most circumstances
negligibly small.

6.6. Geminal Basis Functions
F12methods, to a large part, owe their success to the fact that a

high percentage of the dynamic correlation energy can be
recovered with just a single geminal basis function in the corre-
lation treatment of each pair of occupied orbitals. This fact
becomes even more remarkable when considering that the expli-
cit r12 dependence of the geminal functions enters only as a
spherical correlation factor. It is appropriate therefore to discuss
the physics behind the choice of geminal basis function and the
situations where the geminal basis should be extended.
6.6.1. Correlation Factor. The original choice of r12|ϕiϕjæ to

correlate a Hartree!Fock orbital pair |ϕiϕjæwas motivated by the
coalescence conditions of the first-order pair functions (see
section 3.6). The function r12|ϕiϕjæ is a very close fit to the corre-
lation hole at short-range r12. However, because the correlation
hole integrates to zero, it was recognized that the linear r12
correlation factor is unphysical at long-range r12. A variety of corre-
lation factors have been tested, including r12 with Gaussian,398

exponential and complementary error function damping,447,448

and the exponential and complementary error functions them-
selves.329,406,409,447,448 The results of a comparison due to Tew
and Klopper447,448 demonstrated that the Slater-type geminal is
the best choice in the F12 approach. Tew and Klopper447 com-
puted the optimum correlation factor for a series of two-electron
ions, defined as the function f(r12), such that f(r12)ΨHF has the
maximum overlap with a tightly converged Hylleraas wave func-
tion. The results are plotted in Figure 11 for both the 11S and the
23S states.
Although the function r12e

!γr12 is also a good candidate, the
faster rate of decay to a constant of (1 ! e!γr12) appears to be
advantageous, giving a better separation of short- and long-range
correlation effects.448While the Jastrow factor for the short-range
correlation is close to spherical in nature (see Figure 6), this is
certainly not the case for long-range correlation. In F12 methods,
the long-range correlation is parametrized through expansion in
excited-state configurations.
The necessary two-electron integrals for the overlap, Coulomb

and kinetic energy terms in the CCSD-F12 working equations,
can be solved analytically for the Slater-type correlation factor
but are significantly more complicated than standard elec-
tron repulsion integrals.329,401,402 In many programs, the Slater
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function is expanded as a linear combination of Gaussians (STG-
nG contraction)

∑
n

i
cie!αir212 ≈ e!γr12 ð331Þ

The integrals for the Gaussian geminals resulting from the STG-
nG contraction are well known and date back to Boys and
Singer.209,210 The necessary recursion formulas for integral evalua-
tion have been reported in refs 398 and 400 for the McMurch-
y!Davidson and Obara!Saika recursive schemes, respectively,
and the coefficients ci for the STG-nG fit with n = 3, 4, 5, and 6 can
be found in ref 447 or, alternatively, computed using the prescrip-
tion in ref 410.
In Table 10 we list the coefficients c and exponents γ in a STG

fit to the optimum correlation factors for the helium isoelectronic
series of cations in their 1S ground states, refit from the data in ref
447. Note that c is not expected to be exactly 1/2 but is very close
to 1/2 because Ψ ≈ ΨHF (see section 3.3.1). γ closely follows
a(Z ! b) with a = 0.7177 and b = 0.8481, which may be
interpreted as the length scale of the correlation hole shrinking in
proportion to the contraction of the electron density. As
remarked by Tew and Klopper447 and Valeev,287 shortly after the
introduction of STG-type correlation factors, different exponents
γ are expected to be appropriate for correlating core and valence
orbitals and significant differences are expected between anions,
cations, and neutral species.
The length-scale parameter γ has been of considerable inter-

est, and the stability of the energy with respect to the choice of γ
is very often tested. Fortunately, there is significant redundancy
between the F12 geminal function and the orbital configuration
expansion, and in practice, the dependence on γ is weak. Figure 12
is a plot of statistical measures of the basis-set errors in the
CCSD-F12 correlation energy as a function of the exponent γ in
the STG correlation factor (actually, the CCSD(F12) method
was used (see section 7.2)). The test set consists of 58 com-
pounds of H, C, N, O, and F. For the valence orbitals of these
molecules, γ = 1 a0

!1 works extremely well.
A number of authors have investigated the dependence of the

MP2-F12 energy on γ for heavier elements, including Zn and
Zn2+449 and hydrides of N, P, As, and Sb.437Much larger values of
γ, toward 2 a0

!1, were found to be appropriate for molecules
with heavy elements. Additionally, Bischoff et al.437 found that
the optimum γ depended on which orbital pair was being corre-
lated. Low γ values are appropriate for valence electron pairs,

whereas the tighter electron densities in the core and d and f
shells warranted higher exponents. In 2008 Tew25 derived an
analytic formula for the optimum γ for a given occupied pair in
MP2-F12 calculations based on the second-order coalescence
conditions (see section 3.5), but this has not yet been tested
numerically.
6.6.2. Multiple Geminals. In 2006 Valeev287,450 performed

MP2 calculations using a set of geminals with a range of Gaussian
correlation factor exponents, which may be viewed as a decon-
tracted set in eq 331. For the small molecules tested, the im-
provement upon decontraction was small, underlining the near
optimum form of the Slater function. The principal improvement
came from the better description of core and core!valence
correlation since the geminal basis could adapt to the different
length scales. It is interesting to note that the geminal basis for
these calculations is the same as in the GG0 method of Dahle
et al.,286 but Valeev used the strong-orthogonality functional and
RI rather than the weak-orthogonality functional to determine
the pair function parameters. Unfortunately, Valeev’s approach is
not compatible with the SP ansatz, which is important for both
computational efficiency and reducing basis-set superposition
errors.448 Additionally, to make the B matrix positive definite, it
was necessary to perform a singular value decomposition to elimi-
nate the near dependencies in the geminal basis.
A pragmatic alternative has been developed simultaneously by

Werner et al.451 and Tew and G€otz.452 Here, Hartree!Fock
orbital pairs are classified as either core, core!valence, or valence
and a different correlation factor is used for each type. For core
and core!valence pairs a correlation factor exponent of 2 a0

!1 is
appropriate, and for valence pairs an exponent of 1 a0

!1 or even
smaller is appropriate. While such an approach breaks orbital
invariance, it may be used in combination with the SP ansatz.
Furthermore, since only the integrals are affected, this approach
is easily incorporated in CCSD-F12 calculations.

Figure 11. (a) R12 and F12 correlation factors (c = 0.49, γ = 0.81 a0
!1) compared to the optimum factor for 11S helium. (b) R12 and F12 correlation

factors (c = 0.29, γ = 1.40 a0
!1) compared to the optimum factor for 23S helium. Reprinted with permission from ref 425. Copyright 2010 Springer.

Table 10. Parameters for the Fit cγ!1(1 ! e!γr12) to the
Optimum Correlation Factor for He and Its Isoelectronic
Series of Cationsa

Z 2 3 4 5 6 7 8

c 0.49 0.49 0.49 0.49 0.49 0.49 0.49

γ (a0
!1) 0.81 1.55 2.27 2.99 3.70 4.42 5.12

a(Z!b) 0.83 1.54 2.26 2.98 3.70 4.42 5.13
aTaken from ref 425.
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6.6.3. Open-Shell Aspects. For open-shell calculations it is
impossible to satisfy the MP2 coalescence conditions using the
functions f(r12)|jijjæ only.29 The reason for this is that both the
s-wave and the p-wave coalescence conditions apply to pairs of
opposite-spin electrons in a spin!orbital formulation. To satisfy the
s-wave coalescence conditions requires that the spatial component
of the first-order pair function uij for opposite spin pairs obeys

ð1 þ p̂12Þuij ¼
1
2
Q̂ 12r12ðjið1Þjjð2Þ þ jjð1Þjið2ÞÞ þ O ðr212Þ

ð332Þ

where ϕi =jiα andϕj=jjβ and p̂12 permutes electrons 1 and 2. To
satisfy the p-wave coalescence conditions requires that

ð1! p̂12Þuij ¼
1
4
Q̂ 12r12ðjið1Þjjð2Þ ! jjð1Þjið2ÞÞ þ O ðr312Þ

ð333Þ

Therefore, to satisfy both the s- and the p-wave coalescence
conditions we have

juijæ ¼
3
8
Q̂ 12r12jjiαjjβæ þ 1

8
Q̂ 12r12jjjαjiβæ þ O ðr312Þ

ð334Þ

The second determinant is referred to as a spin-flipped geminal
function whereji, the spatial component of ϕi, now acquires β spin
jj, the spatial component of ϕj now acquires α spin. Inclusion of
spin-flipped geminals to satisfy both the s- and the p- wave
coalescence conditions is vital to ensure that the energy converges
as (L + 1)!7 and is therefore necessary for a balanced treatment of
open- and closed-shell species.28,453 For UHF-based calculations,
this doubles the computation time of an MP2-F12 calculation, but
since only the integrals and MP2-F12 intermediates are affected,
there is no additional expense in the CCSD iterations. For ROHF-
based calculations, inclusion of spin-flipped geminals carries almost
no additional cost. The spin-flipped geminals are included in the
formulation in section 6.1 through the rational generator in eq 243.
For completeness, we note that Wilke and Schaefer454,455 pre-

sented an explicitly correlated second-order perturbation theory
and coupled-cluster singes and doubles theory for high-spin
open-shell states in the framework of Z-averaged perturbation
theory. Their ZAPT-F12 approach allows for a spin-restricted

formalism with equivalent α and β subspaces, similar in cost to
closed-shell calculations.
6.6.4. Extension of the Generating Orbital Space. The

standard choice for the orbitals x, y that generate the geminal,
namely, their restriction to occupied orbitals of the Hartree!
Fock reference function, is fully sufficient for calculating the
ground-state energy including derivative properties such as
equilibrium structures and harmonic frequencies. This also holds
true for static electric properties calculated as orbital relaxed deri-
vatives of the ground-state energy, as the geminal basis needs
only be suited to describing the correlation hole of the ground
state. For example, using finite difference techniques, Franke
et al.456 demonstrated that the basis-set convergence of the static
electrical properties of F!, Ne, and HF are greatly accelerated
using the standard CCSD(T)-R12 method. However, the orbital
unrelaxed approach is favored in coupled-cluster response theory,
particularly for calculation of frequency-dependent properties,
because singularities from the Hartree!Fock reference would
spoil the pole structure of the resulting response function at the
correlated level. In the orbital unrelaxed approach the geminal
basis functions f(r12)|ijæ alone are not appropriate for parame-
trizing the response function.457 For example, in calculations of
single excitation energies it is necessary to include basis functions
of the type f(r12)|iaæ to give a balanced treatment of the ground
and excited states.458 In general, the F12 cluster operator becomes

T̂20 ¼ ∑
i>j,α>β
k>l

cijklw
kl
αβa

αβ
ij þ ∑

i>j,α>β
kb

cijkbw
kb
αβa

αβ
ij þ ∑

i>j,α>β
a>b

cijabw
ab
αβa

αβ
ij

ð335Þ

A similar extension was discussed for the GGn methods (see
section 4.2.3). The computational cost of including all such
geminals is prohibitively large, however, so Neiss et al.458 pro-
posed transforming the virtual orbitals a,b by diagonalizing the
virtual!virtual block of the MP2 density matrix. Then only a few
virtuals from each symmetry are required in response calcula-
tions in addition to the geminals constructed from the occupied
pairs. This approach was dubbed “R12+” and has been applied
successfully to compute excitation energies,458 electric polarizi-
bilites and hyperpolarizibilities,459,460 and excited-state struc-
tures and harmonic frequencies.461,462 The R12+ method is

Figure 12. (a) Mean basis-set errors (kJ mol!1 per valence electron) in the valence CCSD(F12)/cc-pVXZ-F12 correlation energies over 58 molecules
for X = D ()) and T (b) as a function of γ (a0

!1). The standard deviation is given as an error bar. (b) Mean basis-set errors (kJ mol!1 per valence
electron) in the valence CCSD(F12)-SP/cc-pVXZ-F12 correlation contribution to 53 (pseudo) heats of formation for X = D ()) and T (b) as a
function of γ (a0

!1). The standard deviation is given as an error bar. Reprinted with permission from ref 425. Copyright 2010 Springer.
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not compatible with the SP ansatz and requires optimization of
the geminal amplitudes.
An alternative approach that extends the SP ansatz has been

pursued by K€ohn and co-workers.463!465 The extended SP
ansatz (XSP ansatz) uses a general geminal operator

R̂ ¼ R̂ðhhÞ þ R̂ðhpÞ þ R̂ðppÞ ð336Þ

¼ ∑
i>j
α>β

wij
αβa

αβ
ij þ ∑

i, a
α>β

wia
αβa

αβ
ia þ ∑

a>b
α>β

wab
αβa

αβ
ab ð337Þ

We recall that thematrix elements over the geminal factor involve
appropriate symmetrization of the orbitals such that the cusp
conditions are fulfilled (see eq 244)

wpq
αβ ¼ ŜpqÆαβjQ̂ 12 f12jpqæ ð338Þ

The superscripts in eq 336 refer to the type of orbitals to which
f12 is applied: Pairs of occupied orbitals (“hole” orbitals, hence
abbreviated hh), pairs of occupied and virtual orbitals (“hole” and
“particle” orbitals, hp), and pairs of virtual orbitals (pp). This
geminal operator is then used for a cluster ansatz of the form
{eR̂}eT̂|HFæ, where the curly brackets denote a normal-ordered
exponential, in order to avoid a nonterminating series of self-
contractions of R̂. When acting on a Hartree!Fock reference
function, the following rearrangements are equivalent to the
above cluster ansatz

eT̂e!T̂feR̂geT̂ jHFæ

¼ eT̂ exp R̂ þ ½R̂, T̂( þ 1
2
½½R̂, T̂(, T̂(

# $% &
jHFæ ð339Þ

¼ exp T̂ þ R̂ðhhÞ þ ½R̂ðhpÞ, T̂( þ ð½R̂ðppÞ, T̂(Þc:b:

 

þ 1
2
½½R̂ðppÞ, T̂(, T̂(

$
jHFæ ð340Þ

The index c.b. denotes “closed from below” which means
(alluding to the respective diagrams) that all particle annihilation
indices of R̂(pp) are fully connected to T̂. In this case, all
summands in the exponential commute and give a nonvanishing
linear term when acting on the reference function.
With the first two terms in the argument of the exponential,

eq 340, we recover the usual SP ansatz, T̂20 = R̂(hh), which is
restricted to geminals generated from occupied orbitals. The next
terms suggest a way to extend the cluster operator with further
geminal contributions, in the followingwewill restrict the discussion
to [R̂(hp), T̂]. This introduces contributions like [R̂(hp), T̂1] and
[R̂(hp), T̂2] which are effective two and three-body operators, as
illustrated by their diagrammatic representations, Figure 13. [R̂(hp),
T̂1] introduces geminal functions like f(r12)|iaæ and helps to obtain a
balanced description of ground and excited states in response
calculations (see sections 8.3 and 8.4). The commutator with T̂2,
on the other hand, introduces the necessary geminal functions to
enhance the basis-set convergence of connected triple excitations in,
for example, CCSD(T) calculations (see section 6.8).

6.7. CABS Singles
F12-type geminal functions accelerate the basis-set conver-

gence in the double-excitation space, but by construction they
have no contribution to the single excitations. Furthermore, when
small orbital basis sets are used to compute the Hartree!Fock

reference determinant, there is a substantial basis-set error in the
Hartree!Fock energy resulting from the incomplete parametri-
zation of the Hartree!Fock orbitals. All of these issues can be
addressed by extending the parameter set for single excitations
beyond that of the Hartree!Fock orbital space.

In 2007 Noga et al.466 defined new single excitations using the
one-electron component of the geminal functions, and in an
approach analogous to the dual basis-set work of Wolinski and
Pulay467 (see also refs 468 and 469), they computed a second-
order energy correction in this basis. It was quickly realized that
the second-order energy is a perturbative basis-set incomplete-
ness correction to the Hartree!Fock energy and has no con-
tribution to singles correlation. As suggested by Adler et al.,428

the more natural parametrization of the new singles is therefore
done in terms of the orbitals of the CA basis427,436,470

T̂10 ¼ ∑
ia0

tia0a
a0
i ð341Þ

K€ohn and Tew471 performed a systematic investigation of the
effect of including single excitations into CA orbitals in the
CCSD-F12 method, which extends the basis for both HF and
correlation contributions. A series of truncated models was defi-
ned based on perturbation arguments similar to those used to
construct the CC2 and CC3 methods. Note that Møller!Plesset
partitioning of the Hamiltonian, eq 283, implies that T̂10 is first
order in the perturbation. The conclusions were clear: The
dominant energy contribution for both total and relative energies
is the Hartree!Fock basis-set error correction. For closed-shell
molecules considered as single-reference cases, the improve-
ment in the singles correlation energy is unimportant. Moreover,
a second-order perturbative Hartree!Fock energy correction is
almost as accurate as a second-order iterative CCS correction and
is much cheaper to evaluate. Contributions beyond second order
are smaller than the error in the incompleteness of the unified
orbital plus CA basis sets for standard choices of RI basis sets.

The CABS singles second-order energy correction is obtained
by solving427

EðS2Þ ¼ EHF þ ÆHFj½F̂ð1Þ, T̂1 þ T̂10 (jHFæ ¼ EHF þ f ai t
i
a þ f a

0

i t
i
a0

ð342Þ

0 ¼ Æμ1jF̂ð1Þ þ ½F̂ð0Þ, T̂1 þ T̂10 (jHFæ ¼ f ia þ f ba t
i
b ! f ij t

j
a þ f b

0

a t
i
b0

ð343Þ

0 ¼ Æμ10 jF̂ð1Þ þ ½F̂ð0Þ, T̂1 þ T̂10 (jHFæ ¼ f ia0 þ f b
0

a0 t
i
b0 ! f ij t

j
a0 þ f ba0 t

i
b

ð344Þ

Figure 13. Representation of [ R̂(hp), T̂1] and [ R̂(hp), T̂2] in terms of
the corresponding Brandow-type diagrams. The single bar denotes the
T̂1 or T̂2 operator, respectively, and the double bar is the R̂ operator;
double arrows denote excitations into the formally complete virtual
space (we implicitly assume the presence of the projector Q̂ 12 for R̂). For
each diagram, the number of pairs of in- and out-going arrows
determines the rank of the operator.
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where summation over repeated indices is assumed. At second
order this energy correction is entirely decoupled from the MP2-
F12 doubles energy correction and the singles and doubles ampli-
tudes are determined independently. All of the Fock matrix
elements are required for constructing the B intermediate, and
the cost of computing ΔE(S2) is negligible compared to both the
underlying HF calculation and the MP2-F12 energy correction.
For ROHF open-shell calculations both T̂1 and T̂10 introduce
spin contamination, and Knizia et al. derived spin-free expres-
sions where the CABS singles correct for the ROHF energy
without introducing spin contamination.436

Table 11 is taken from ref 427 and lists the rms basis-set errors
for Hartree!Fock calculations on reaction energies, atomization
energies, ionization potentials, and electron affinities with and
without the CABS singles correction. For a HF/aug-cc-pVXZ
calculation the cc-pVXZ JKFIT basis set was used for CABS. The
basis-set limit was taken as the aug-cc-pV6Z value, and the
ROHF method was used for all open-shell calculations.

The CABS singles correction reduces the Hartree!Fock
basis-set errors by an order of magnitude and, despite its per-
turbative rather than variational nature, is sufficient to ensure that
the basis-set errors in the Hartree!Fock energies are not larger
than those of the CCSD-F12 correlation energies. In the context
of response theory, however, the basis-set incompleteness in the
singles correlation contribution becomes important. Here, an
iterative CABS singles approach is appropriate that includes coupl-
ing terms between the singles and doubles amplitudes.463,465,471

Very recently, Kong and Valeev472 devised a CABS singles
correction for CASSCF wave functions. They investigated two
choices for the zeroth-order Hamiltonian, ĤF

(0) and ĤD
(0)

Ĥð0Þ
F ¼ P̂F̂P̂ þ f b

0

a0 a
a0
b0 þ ðf ba0a

a0
b þ f b

0

a a
a
b0Þ ð345Þ

Ĥð0Þ
D ¼ P̂ĤP̂ þ f b

0

a0 a
a0
b0 þ ðf ba0a

a0
b þ f b

0

a a
a
b0Þ ð346Þ

f q
p are the matrix elements of the CASSCF Fock operator, and P̂
projects onto the OBS. Although ĤF

(0) is the correct zeroth-order
Hamiltonian for a CASSCF calculation, the more complete
ĤD

(0) Hamiltonian was found to give superior basis-set corrections.
The energy correction is computed using second-order Rayleigh!
Schr€odinger perturbation theory and requires only 1- and 2-particle
reduced densitymatrices (evaluated from theCASSCFwave function)

ΔEð2Þ ¼ f a
0

i t
j
a0γ

i
j ð347Þ

0 ¼ f ba t
j
bγ

i
j ! f kj γ

i
k þ 1

2
glmjk λ

ik
lm

# $
tja þ f b

0

a t
j
b0γ

i
j ð348Þ

0 ¼ f ja0γ
i
j þ f b

0

a0 t
j
b0γ

i
j ! f kj γ

i
k þ 1

2
glmjk λ

ik
lm

# $
tja0

þ f ba0 t
j
bγ

i
j ð349Þ

Here, λrs
pq=γrs

pq! γr
pγs

q+γs
pγr

q is the two-particle cumulant andγp
q and

γrs
pq are the 1- and 2-particle reduced density matrices, respectively.

The equations for the ĤF
(0) zeroth-orderHamiltonian are obtained

by replacing the intermediate (f j
kγk

i + (1/2)gjk
lmλlm

ik ) with f l
k(λjk

il !
γk
iγj

k). The two methods have essentially the same computational
cost, O (O2X2), where O and X are the number of occupied and
CABS orbitals, respectively. This is one order lower scaling than
the underlying CASSCF calculation, which scales as O (O4V),
where V is the number of virtual orbitals.

For a single Slater determinant λrs
pq vanishes and γq

p reduces to
a delta function. Hence, in the single-reference limit eqs 342!344
are recovered. The performance of the CASSCF CABS singles
correction is similar to the Hartree!Fock case and consistent
over potential energy surfaces.

6.8. Explicitly Correlated Triples
Inclusion of the cluster operator which describes connected

triple excitations

T̂3 ¼ ∑
i>j>k
a>b>c

tijkabca
abc
ijk ð350Þ

is vital for obtaining quantitative results in coupled-cluster theory.
A very accurate estimate of the T̂3 contribution is obtained by the
noniterative CCSD(T) correction.473,474 The amplitudes are
obtained from the second-order equations in Møller!Plesset per-
turbation theory by substituting the converged T̂2 amplitudes from
CCSD for the first-order amplitudes. The corresponding fourth-
order energy expression can be written as a Hylleraas functional

H4 ¼ ÆHFjT̂†
3½F̂

ð0Þ
N , T̂3( þ T̂†

3½Φ̂N , T̂2(

þ T̂†
2½Φ̂N , T̂3(jHFæ ð351Þ

The stationarity condition leads to the amplitude equations for T̂3

Æijkabcj½F̂
ð0Þ
N , T̂3( þ ½Φ̂N , T̂2(jHFæ ¼ 0 ð352Þ

The pure fourth-order correction is known in the literature as the
CCSD+T(CCSD) or CCSD[T] method.475 It was later recog-
nized that much improved results could be obtained by adding
the couplings to the T̂1 equations, which formally are fifth order
in perturbation theory;473,474 for a rationalization see, e.g., ref
476. The CCSD(T) energy then reads

EðTÞ ¼ E4 þ E5 ð353Þ

¼ ÆHFjT̂†
2½Φ̂N , T̂3(jHFæ þ ÆHFjT̂†

1½Φ̂N , T̂3(jHFæ
ð354Þ

¼ ! ÆHFjT̂†
3F̂

ð0Þ
N T̂3jHFæ þ ÆHFjT̂†

1½Φ̂N , T̂3(jHFæ
ð355Þ

Table 11. Hartree!Fock RMSBasis Set Errors for Open- and
Closed-Shell Reaction Energies (kJ mol!1), Atomization
Energies (kJ mol!1), Ionization Potentials (meV), and Elec-
tron Affinities (meV) with and without the CABS Singles
Correctiona

method basis RE(cs) RE(os) AE IP EA

RHF aug-cc-pVDZ 13.45 28.88 24.39 65.14 76.22

aug-cc-pVTZ 2.07 3.61 3.47 11.07 11.80

aug-cc-pVQZ 0.49 1.17 0.82 2.27 3.58

aug-cc-pV5Z 0.17 0.35 0.25 0.59 0.98

E(S2) aug-cc-pVDZ 1.79 2.22 1.64 8.16 8.04

aug-cc-pVTZ 0.48 0.54 0.29 2.76 1.80

aug-cc-pVQZ 0.18 0.17 0.13 1.04 1.01
aData taken from ref 427.



47 dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4–74

Chemical Reviews REVIEW

where in the last equality the stationarity condition was used to
rewrite the forth-order term, such that it can directly be evaluated
from the amplitudes. For canonical orbitals, the T̂3 amplitudes
take the explicit form

tijkabc ¼ ! ~̂P
ijk

abc

∑
d
gidabt

jk
dc ! ∑

l
gijalt

lk
bc

εa þ εb þ εc ! εi ! εj ! εk
ð356Þ

where the operator ~̂Pabc
ijk ensures the appropriate antisymmetry of

the amplitudes.
The correlation factor introduced in R12 and F12 theory by

design only takes care of pair correlation. Hence, starting with
early work on CC-R12 theory,366,367 explicit correlation for
connected triples is not considered. Instead, after a CCSD-R12
or CCSD-F12 calculation, the conventional expression, eq 352, is
used; see, for example, refs 419!421 and 428. There also exist a
number of works which include conventional higher-order clus-
ter operators up to T̂4, both for energy477,478 and response cal-
culations.465 The numerical results from all these publications
show that the basis-set convergence of E(T), or any other
correlation contribution beyond the pair level, is not improved.
For total correlation energies this may seem justified as usually
the contribution of connected triples is by 1 order of magnitude
smaller than the CCSD correlation energy. This observation,
however, does not necessarily carry over to relative energies.

In fact, it was found that particularly in F12 theory the error in
the E(T) contribution can become dominant, as demonstrated by
Knizia et al. in refs 427 and 479. The same authors also suggested a
scaled T̂3 correction, denoted (T*), which is defined as

EðT&Þ ¼ EðTÞ )
EMP2-F12

EMP2
ð357Þ

In Table 12 the E(T) error statistics for a number of test sets
are listed. It is found that the uncorrected E(T) can have very
large basis-set errors for the smaller basis sets. For the aug-cc-
pVQZ basis the deviations are below 1 kJ mol!1, but they are
usually larger than the error in the CCSD correlation energy
(see ref 427). The correction, eq 357, leads to clearly more
satisfactory results; nevertheless, a more rigorous treatment of
E(T) seems desirable within F12 theory. This issue was addressed
recently by K€ohn.464,480

First, some considerations are in place about the type of short-
range correlation that governs the convergence behavior of E(T).

We can distinguish two cases: (a) two-electron coalescence with
correlated motion of a third electron at some distance away and
(b) a genuine three-electron coalescence. Thus far, the latter
issue has not received much attention in the literature and not
much is known about the functional behavior in such a case. There is
clear evidence, however, that b is much less important than a.

In case b, as discussed in section 3.4, the wave function must
vanish by virtue of the exclusion principle, as at least two
electrons must be triplet coupled. Hence, the convergence of
the partial wave expansion cannot be worse than in the triplet
case of two-electron coalescence which shows an (L + 1)!5

behavior. In case a, also singlet coalescence is possible, leading to
a (L + 1)!3 convergence in line with empirical observations.481

The task is hence to find an appropriate ansatz for a T̂30 operator
that incorporates geminal contributions into a connected triples
cluster. One way to achieve this is the extended SP ansatz (XSP
ansatz)438,464 (see section 6.6.4). The expansion, eq 340, suggests
considering

T̂30 ¼ ½R̂ðhpÞ, T̂2( ð358Þ

as the leading order geminal correction to connected triple-
excitation clusters. The diagrammatic representation of this
expression, Figure 13, immediately reveals the three-body char-
acter of the operator. It also suggests a direct physical interpreta-
tion in the spirit of case a (see above): R̂(hp)describes a short-
range scattering of two electrons, the correlation of this close pair
with a third electron (at some distance) is included by T̂2.

The working equations are obtained from the fourth-order
Hylleraas functional, eq 351, by substituting T̂3 + T̂30 for T̂3.
Stationarity with respect to the conventional triples amplitudes
leads to a modified set of equations

Æijkabcj½F̂
ð0Þ
N , T̂3( þ ½F̂ð0ÞN , T̂30 ( þ ½Φ̂N , T̂2 þ T̂20 (jHFæ ¼ 0

ð359Þ

The explicitly correlated part, eq 358, has no additional unknown
amplitudes. In analogy to the SP approach for CCSD-F12
(section 6.5), the energy contributions are instead evaluated
from a modified energy functional. Hence, for the fourth-order
energy contribution, we obtain

E4, F12 ¼ ! ÆHFjT̂†
3F̂

ð0Þ
N T̂3jHFæ þ 2ÆHFjðT̂†

2 þ T̂†
20Þ½Φ̂N , T̂30 (jHFæ

þ ÆHFjT̂†
30 F̂

ð0Þ
N T̂3jHFæ ð360Þ

Table 12. RMS Basis Set Errors in the Isolated E(T) Contribution to Reaction Energies of Closed-Shell Molecules (REc) and
Open-Shell Molecules (REo), as Well as Atomization Energies (AE), Ionization Potentials (IP), and Electron Affinities (EA)a

method/basis REc/kJ mol!1 REo/kJ mol!1 AE/kJ mol!1 IP/meV EA/meV

Conv/CBS[DT] 0.713 0.611 0.604 2.15 2.14

Conv/CBS[TQ] 0.144 0.136 0.130 0.64 1.52

Conv/CBS[Q5] 0.032 0.062 0.092 0.24 0.44

(T)/aVDZ 2.683 5.930 8.767 33.40 42.09

(T*)/aVDZ 1.375 3.779 3.671 24.34 26.19

(T)/aVTZ 1.292 1.670 2.470 10.51 13.07

(T*)/aVTZ 0.564 0.822 0.368 4.97 4.63

(T)/aVQZ 0.604 0.731 1.066 4.58 5.78

(T*)/aVQZ 0.227 0.380 0.150 1.67 1.87
a Listed are the root mean square deviations from the basis-set limit estimate from conventional CCSD(T)/CBS[56] extrapolations. The first three lines
are conventional extrapolated values; the remaining lines are the nonextrapolated results obtained by evaluation of the conventional expression, eq 353,
with T̂1 and T̂2 from CCSD-F12a (cf. section 7.3) calculations with γ = 1.0 a0

!1. (T*) denotes the scaled energies, eq 357. Data taken from ref 427.
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while the fifth-order energy is simply

E5, F12 ¼ ÆHFjT̂1
†½Φ̂N , T̂3 þ T̂30 (jHFæ ð361Þ

In addition, there is a fourth-order contribution with the Fock
matrix

E4F, F12 ¼ ÆHFjT̂†
2½F̂

ð1Þ
N , T̂3 þ T̂30 (jHFæ ð362Þ

The purely conventional contribution in eq 362 vanishes if the
Brillouin condition is fulfilled; neglect of the corresponding F12
part implies the assumption of the GBC.

Full expansion of these equations leads to a rather large
number of terms. These can effectively be reduced by applying
the standard approximation scheme, and the resultant method
will be denoted as (T)-XSP’ in the following. A detailed discus-
sion of the resulting working equations can be found in ref 480.
The main observations can be summarized as follows.
• The overall scaling of the method remains atN 7, whereN is
a measure of the size of the system. With the exception of
one term (discussed below), all additional F12 terms arising
from eqs 360!362 scale with N 6 only. Likewise, the
calculation time for all necessary additional F12 intermedi-
ates scales with N 6 at most.

• The coupling between T̂20 and T̂30 (a part of the second term
of eq 360) leads to a term involving the intermediate Zij

ab =
∑k(Zik,j

ak,b + Zjk,i
bk,a + Zij,k

ak,b), where Zvw,p
xy,q is defined in eq 265.

Building this intermediate requires N 7 scaling steps, which
without additional approximations even includes a cubic
scaling with the number of CABS functions. The effort can be
reduced to terms with atmost linear dependence on the CABS;
nevertheless, the amount of additional computation time (in
comparison to the conventional expression) is large. Precise
statements are difficult to draw from the present pilot imple-
mentation, but it is clear that future applications of this
method will critically depend on a more efficient treatment
of this contribution. We note that this problem is alleviated
for iterative approaches, like CCSDT, and that Zij

ab does
not contribute to response properties and may hence be
neglected in such calculations.

The numerical effect of the geminal correction for T̂3 clusters
can be illustrated by the following examples. For theNe atom, the
rate of convergence of the partial wave expansion is investi-
gated.480 Figure 14 shows a double logarithmic plot of the CCSD
correlation energy and E(T) as a function of themaximum angular
momentum quantum number L included in the expansion. A
large uncontracted 20s14p11d9f7g5h3i basis set was used for
these calculations in order to provide a sufficiently saturated basis
for each angular momentum.

For conventional CCSD and CCSD(T) correlation energies
the expected (L + b)!3 convergence is found (due to the pre-
sence of triplet pairs, b 6¼ 1, as a pure (L + 1)!3 behavior holds for
singlet pairs only). Using the CCSD(F12*) method (which is an
accurate approximation to full CCSD-F12, cf. section 7.5), a
nearly ideal (L + 1)!7 behavior arises. Inserting the T̂1 + T̂2
amplitudes from this calculation into the conventional energy
expression, eq 353, seems to give a close to converged E5
contribution but the dominating E4 contribution is not im-
proved. The overall convergence is (L + b)!3 (not shown in
Figure 14); just like in the conventional case, but the total E(T)
typically deviates further from the basis-set limit. The latter
effect is possibly due to the T̂2 amplitudes’ avoiding the cusp
region in the presence of T̂20. Adding the first part of the

correction terms (not including the Z intermediate) improves
the energy but leads to a (L + 1)!5 behavior only. Only when Z is
included, the (L + 1)!7 convergence of F12 methods is
recovered, leading to a run of the E(T) energy that is perfectly
parallel to the CCSD(F12*) correlation energy. This also in-
dicates that virtually all significant short-range contributions are
recovered with ansatz, eq 358. Genuine three-electron coales-
cence seems hence to be of minor importance.

Effects of including T̂30 are also present for reaction energies.
Figure 15 provides a graphical representation based on the data
from ref 480. While CCSD(F12*) in conjunction with the
reoptimized cc-pVTZ-F12 basis set greatly outperforms conven-
tional CCSD/aug-cc-pV6Z calculations (Figure 15, left), much
of the gain is lost in the standard approach with a conventional
(T) correction due to the rather inaccurate E(T) contributions
(Figure 15, right, dotted curve). This shortcoming is significantly
removed using the corrected expression, eq 360.

6.9. Multireference Methods
Most work on R12 or F12 theory has so far focused on single-

reference theories, that is, a single determinant is assumed to be a
proper zeroth-order description of the electronic state (see
section 2),. This assumption breaks down for many open-shell
cases, for instance, biradicals or transition metal compounds.

Figure 14. Basis-set convergence of the CCSD(T) correlation energy
of the Ne atom. Double logarithmic plot of the deviations from the
estimated basis-set limit as a function of (L + b) for CCSD and
CCSD(F12*) correlation energies (the latter is an accurate approxima-
tion to full CCSD-F12, cf. section 7.5) and for the (T) and (T)-XSP0

corrections (without and with contribution from the Z intermediate, see
text). The conventional CCSD calculations fit best to (L + 0.51)!3,
while for the conventional (T) correction, (L + 0.09)!3 is found. The
F12 results, (T)-XSP0, show an (L + 1)!7 behavior. Omitting the Z
contribution from (T)-XSP0, however, reduces the rate of convergence
to (L + 1)!5. Reprinted with permission in part from ref 480. Copyright
2010 American Institute of Physics.
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Hence, multireference methods are a necessary extension of the
quantum chemist’s toolbox, and as the problem of short-range
correlations persists, the transfer of explicitly correlated techni-
ques to such methods is desired. The field of explicitly correlated
multireference methods is rather undeveloped, and work for
modern F12 theory has only started recently. Below, we will start
with a short historical overview of the developments follo-
wed by a more detailed description of the approaches.
6.9.1. Overview. Pioneering work in this area dates back to

the 1990s when Gdanitz combined linear R12 theory and
multireference configuration interaction (MRCI)482!484 or the
approximately size-extensive multireference averaged coupled-
pair functional (MRACPF).485 The standard approximation
scheme was used to arrive at feasible working equations. A
number of applications were reported, for example, calculation
of atomic ground states and ionization potentials,486 electron
affinities,487 as well as potential energy surfaces of N2,

484 Be2,
488

He2,
46,489 Ne2,

490 HF,491 and the F+ H2 fHF + H reaction.492

Also, the valence excited states of CH2 were investigated.
493

One drawback of the approach was the use of an uncontracted
basis which leads to difficulties inmaintaining an orbital-invariant
theory without running into serious numerical difficulties.484,488

This problem can be solved in the framework of F12 theory using
Slater-type geminals, as initially demonstrated by Ten-no430 for
the case of multireferenceMP2 (MRMP2).494 Using the SP ansatz,
the geminal contribution can be formulated in an internally
contracted manner (see next section for details) which both is
orbital invariant and numerically stable.
In the same spirit as Ten-no’s ansatz, Torheyden and Valeev

proposed a generalized perturbative correction to arbitrary wave
functions, includingMRCIwave functions as a particular example.495

Their ansatz is applied to the complete wave function which on the
one hand leads to a very general theory; on the other hand, the work-
ing equations scale with the sixth power of the entire orbital basis set,
which renders the method rather expensive in practice.

Most recently, Shiozaki et al. extended the work of Ten-nowithin
the context of internally contracted multireference expansions.
These authors reported the implementation of CASPT2-F12431

and MRCI-F12, also including the approximately size-consistent
modifications MRACPF and MRAQCC.432,433 Furthermore,
Ked#zuch et al.496 recently developed an explicitly correlated multi-
reference Brillouin!Wigner coupled-cluster singles and doubles
method (MRBW-CCSD-F12) based upon the standard approxima-
tion.496,497 First pilot applications were reported for a model
system consisting of four hydrogen atoms and for the F2 molecule.
For completeness, we note that Varganov and Martínez

combined a CASSCF wave function with a Slater-type correla-
tion factor.498 No strong orthogonality projector was applied,
and the structure of the theory is more related to Hylleraas-CI
than to genuine F12 theory. Results were reported for two-electron
systems only.
6.9.2. Details of the Theories. The starting point in multi-

reference theories is the definition of a set of determinants which
span the reference function |Ψ0æ. All orbitals, which are occupied
in at least one of these determinants, are called internal orbitals,
and we will in the following use the indices i, j, k, ..., for these. A
distinction of closed-shell orbitals (that is, doubly occupied for all
reference determinants) and active orbitals (occupied for a
subset of reference determinants) will not be necessary in the
following. Usually the properly spin-coupled linear combina-
tions, called configuration state functions (CSFs), are con-
sidered as the basic building blocks of the wave functions.
The uncontracted MRCI singles and doubles wave function

can be represented as

jΨæ ¼ jΨ0æ þ jΨiæ þ jΨsæ þ jΨdæ ¼ ∑
I0

cI0 jΦI0 æ

þ ∑
I
cI jΦIæ þ ∑

S, a
cSajΦ

a
Sæ þ ∑

D, ab
cDabjΦ

ab
D æ

ð363Þ

Figure 15. Basis-set error of the CCSD (left) and CCSD(T) (right) correlation contribution to reaction energies (adapted from ref 480, assuming
Gaussian distributions). The error is normalized to the number of valence electrons. The curves labeled “aVXZ” refer to conventional calculations using
the aug-cc-pVXZ basis sets; the F12 calculations were done with the CCSD(F12*) method (cf. section 7.5) and the cc-pVTZ-F12 basis set. “(T)” uses
the conventional expression, eq 355, “(T)-XSP0” uses eq 360.
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Here, |Ψ0æ is the reference wave function (with cI0 obtained from
an MCSCF calculation), while |Ψiæ collects all internal contribu-
tions to the correlated CI wave function. These consist of the
CSFs |ΦIæ which span the reference state and those which are
generated by considering all single and double excitations from
the former which remain within the internal orbital space. In the
case of a complete active space, the set of CSFs spanning |Ψiæ is
identical to the one that spans the reference state |Ψ0æ. |Ψsæ
consists of all singly external CSFs |ΦS

aæ, where S runs over all
possibilities to create a hole in the reference functions and a
denotes the virtual (external) orbital that is occupied instead.
Similarly, |Ψdæ consists of all doubly external CSFs |ΦD

abæ. The
respective coefficients can be evaluated variationally. Approxi-
mately size-extensive energies can be obtained either using the
Davidson correction499 or self-consistently usingMRACPF485 or
variants thereof. Using intermediate normalization, ÆΨ0|Ψæ = 1,
the MRACPF energy functional is

F ¼ ÆΨjĤ ! E0jΨæ
1 þ giÆΨijΨiæ þ geðÆΨsjΨsæ þ ÆΨdjΨdæÞ

ð364Þ

where the parameters are chosen as gi = 1 and ge = 2/n, n being
the number of correlated electrons.
Explicitly correlated contributions are included, in line with the

philosophy of R12 and F12 theory for single-reference methods,
by augmenting the expansion eq 363 with a term containing the
geminal contribution. The original ansatz of Gdanitz is482,483

jψd0 æ ¼ ∑
K
∑
ðijÞK
∑
k>l

cðijÞK ,Kkl ∑
α>β

w̅kl
αβa

αβ
ðijÞK

jΦKæ ð365Þ

The index K enumerates all reference determinants (indeed
determinants rather than CSFs are considered here), k, l run
over all internal orbitals, while the pair of internal orbitals (ij)K is
restricted to those occupied in determinant |ΦKæ. The matrix
element over the correlation factor is defined as

w̅ij
αβ ¼ Æαβjð1! V̂ 1V̂ 2Þr12jijæ ð366Þ

which ensures that all configurations created by eq 365 are
orthogonal to those of the conventional expansion, eq 363.
A fully orbital invariant implementation of the method is

difficult as it requires optimization of ckl
(ij)K,K. This, however, is

hampered by near linear dependencies.484 In actual calculations
only unitary invariance between subsets of orbitals is considered,
where for a given i, j only those k, l are taken into account which
form corresponding antibonding or bonding orbitals. The idea is
to maintain unitary invariance for orbital pairs that describe bond
breaking.484 Alternative schemes were considered as well, for
instance, “contracted geminals”, where the coefficients ckl

(ij)I,Iwere
obtained by first-order perturbation theory.488

With Slater-type correlation factors, the complications arising
for an unitary invariant formulation can be circumvented by
making use of the SP ansatz. For theMRMP2method,494 Ten-no
considered the following contracted ansatz for the additional
explicitly correlated terms430

jψd0 æ ¼ ∑
i>j
α>β

wij
αβa

αβ
ij ∑

K
cK jΦKæ ð367Þ

In this equation, the expansion of the reference function in terms of
determinants |Ψ0æ = cK|ΦKæ was used in order to emphasize the
internally contracted nature of the ansatz. Note that otherwise the

MRMP2method is based on an uncontracted expansion, which has
the same principle structure as given in eq 363.
The further derivation of the energy expressions in Ten-no’s

work includes the assumptions of the standard approximation, in
particular, the EBC, eq 259. In addition, the B matrix was restri-
cted to approximation A. This leads to a very simple energy ex-
pression for the F12 correction

ΔE ¼ ∑
i>j
k>l

γijklðB
kl
ij þ 2Vkl

ij Þ ð368Þ

where γij
kl = ÆΨ0|aij

kl|Ψ0æ is the internal part of the reduced two-
particle density matrix of the reference state. The intermediates B
and V are just the obvious generalizations of the single-reference
case with the index range extended to all internal orbitals.
In close analogy to the above ansatz, Torheyden and Valeev

proposed a perturbative correction denoted [2]F12 that is appli-
cable to arbitrary wave functions.495 The ansatz is constructed
from the entire conventional wave function |Ψæ, for example, a
MRCI wave function, as defined above. It reads

jψd0 æ ¼ ∑
p>q
r>s

cpqrs ∑
k>λ

Ŝ~wrs
kλ~a

kλ
pq jΨæ ð369Þ

where k, λ, ... run over the entire formally complete orbital
space and ~apq

kλ = apq
kλ ! ap

rγq
λδr

k + aq
rγp

λδr
k + ap

rγq
kδr

λ ! aq
rγp

kδr
λ +

γpq
rs (δr

kδs
λ ! δs

kδr
λ) is the generalized normal ordered excitation

operator, as defined by Kutzelnigg and Mukherjee.500 γp
r and γpq

rs

are the reduced one- and two-particle density matrices of |Ψæ.
The matrix elements over the correlation factor ~wkλ

rs are defined
as in single-reference theory but with a projector Q̂ P = 1 ! P̂1P̂2
(which effectively removes those parts which are already covered
by the wave function |Ψæ). The additional projector

Ŝ ¼ 1! ∑
stα^

aα^
s jΨæðγ!1ÞstÆΨjatα^

ð370Þ

projects out those configurations which are only single excitations
with respect to |Ψæ; the necessary inverse of the metric can be
expressed by γ!1, the inverse of the one-particle density matrix.
In the further derivation of explicit expressions a number of

approximations are made, mainly inspired by the standard
approximation (denoted “screening approximations” by Valeev).
In addition, the contributions from three- and four-particle redu-
ced densitymatrices are approximated by lower-order cumulants.501

A Hylleraas functional can be formulated that allows one to solve
for the expansion coefficients in eq 369, crs

pq, or to evaluate the
energy taking advantage of the SP ansatz. With this an energy
expression for the correction term is obtained that bears some
resemblance with Ten-no’s formula, eq 368. However, the ap-
proximations employed by Torheyden and Valeev go beyond
approximation A. The [2]F12 correction then becomes

ΔE ¼ ∑
p>q
r>s

γpqrs ~B
rs
pq ! ϕpqrs ~X

rs
pq þ 2γpqrs ~V

rs
pq

' (
ð371Þ

For details of the definitions of the modified intermediates ~B, ~X ,
and ~V we refer to the original article.495 We only note that the
definition of ~B builds upon approximation C but includes some
further terms from the cumulant expansion. The matrix elements
ϕrs
pq contain products of the Fock matrix and cumulants.
The main difference from eq 368, however, lies in the sum-

mation over the complete computational basis (instead of inter-
nal orbitals). Hence, the expressions scale with the sixth power of
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the entire orbital basis set, which is rather expensive. Conse-
quently, only results for small basis sets have been reported.495

A more compact representation of the CI wave function is
obtained by use of internally contracted schemes. The approach
of Werner and Knowles uses the following CI wave function502

jΨCIæ ¼ ∑
I0

cI0 jΦI0æ þ ∑
I
cI jΦIæ þ ∑

S, a
cSajΦ

a
Sæ þ ∑

p, i>j
a>b

cij, pab jΦ
ab
ij, pæ

ð372Þ

In contrast to the uncontracted wave function, eq 363, contracted
doubly external configurations |Φij,p

ab æ = Eij,p
ab |Ψ0æ are employed.

The Ei
a are spin-free excitation operators (summed over spin,

Ei
a = aiα

aα + aiβ
aβ), and orthogonally spin-adapted double excita-

tions are obtained as Eij,+1
ab = (1 + δij)

!1(Ei
aEj

b + Ej
aEi

b) and
Eij,!1
ab = Ei

aEj
b ! Ej

aEi
b.

Shiozaki et al. recently presented an implementation of
CASPT2-F12431 and MRCI-F12432,433 based on the above ansatz
which is augmented by

tjψd0æ ¼ tðQ̂ P þ Q̂ SÞ½∑
p, i>j
α>β

~wij, p
αβE

αβ
ij, p þ ∑

i,α, j,m
~wij
αmE

αm
ij (jΨ0æ

ð373Þ

t is a global scaling factor, see below, and

~wij, p
αβ ¼ ri, jα, β þ prj, iα, β ð374Þ

~wij
αm ¼ ri, jα,m ð375Þ

where rα,β
i,j is the integral over the correlation factor including the

rational generator but without antisymmetrization. The projector
Q̂ P removes ~wab

ij contributions, and Q̂ S removes the single-
excitation contributions but allows for semi-internal doubles

Q̂ S ¼ jΦα^
S æÆΦα^

S j 1! Eα^
i jΨ0æðγ!1ÞijÆΨ0jEjα^

h i
ð376Þ

The intermediates that result from the doubly external geminal,
eq 374, resemble those of the single-reference theory, with
occupied indices replaced by all internal indices. The additional
semi-internal geminal contribution gives rise to additional terms,
which can be evaluated by direct expansion in the CABS.
The working equations forMRCI-F12 can be derived from the

Lagrange functional

L ¼ ÆΨCIjĤjΨCIæ þ 2ÆΨCIjĤjψd0æt þ ÆΨd0 jĤjψd0æt2

ðÆΨCIjΨCIæ þ Æψd0 jψd0 æt2Þ

þ 2λðÆΨ0jΨCI þ ψd0æ! 1Þ
ð377Þ

In order to enforce the cusp conditions, one must set t = 1. In this
case the Lagrange multiplier λ takes care of the intermediate
normalization with respect to |Ψ0æ. If t is used as a variation
parameter, λ can be set to zero and one obtains the usual CI
eigenvalue problem. In general, the variation of t is problematic as
this scaling is global and hence violates size consistency. For CI
theories, however, pragmatic considerations render this option
acceptable, as it significantly facilitates the theory, particularly if
more than one state is considered at a time (see refs 432 and 433).
The coupling terms ÆΨCI|Ĥ|Ψd0æ can be evaluated along the

same lines as in single-reference theory. The analogous inter-
mediates occur in conjunction with the appropriate coupling

coefficients from CI theory. For the geminal!geminal part,
ÆΨd0|Ĥ|Ψd0æ, the same efficiency considerations emerge as for
coupled-cluster theory (see section 7). In this respect, the work
of Shiozaki et al. sticks to the F12b scheme (section 7.3), which
features nearly vanishing computational overhead as compared
to the conventional implementation.
In Table 13 some sample results from ref 432 are collected which

demonstrate the use of the approach. Comparison with the
CASSCF convergence shows that the remaining error is dominated
by the basis-set incompleteness in the underlying reference function.
A scheme analogous to the CABS singles correction (section 6.7)
was not considered in that work; a possible second-order correction
was recently proposed by Kong and Valeev472 (see section 6.7).

7. COMPUTATIONALLY EFFICIENT FORMULATIONS

As detailed above, explicitly correlated methods with linear
and Slater-type correlation factors by now have a rather long
history, but they have only recently started to become standard
tools in quantum chemistry. This is mainly owing to their higher
complexity in comparison to conventional orbital expansions,
which required a series of developments in order to arrive at
computationally efficient implementations.

Certainly, the main development target is coupled-cluster
theory, since for these methods, CCSD(T) in particular, basis-
set errors determine the accuracy and the need for extremely
large basis sets significantly reduces the range of applicability.67,70,503

One of the main obstacles in formulating and implementing a
CCSD-F12 method, as compared to MP2-F12, is the large number
of extra terms that occur in a straightforward expansion.367,438 Initial
implementations of CCSD-R12366,371 were therefore based on the
standard approximation which leads to significant reductions in the
number of terms.337 Extensions of this approach to Slater-type
correlation factors were reported in more recent works.29,435,504 A
full implementation in the CABS formalism that takes care of all
terms has only recently been achieved using automated implemen-
tation techniques.422,505,506

A perturbational analysis, however, shows that only a limited
number of terms contribute significantly (section 7.1). This
analysis may serve as a posthoc justification of the various
approximations to full CCSD-F12 that have been suggested in
the past years and which we will discuss subsequently, including a
comparison of the working equations in section 7.6.

Alongside this, there have been a number of further important
developments such as density fitting techniques (section 7.7) and
local correlation methods (section 7.8) which originally have
been worked out for conventional methods. For F12 methods
these ideas seem to both work better and have an even larger
impact on computational efficiency than for traditional methods.
F12 methods are particuarly well suited to localization techniques.

A final issue is basis sets, as detailed in section 7.9. The success
of the auxiliary basis-set approaches was mainly that one could
avoid the use of the specialized (and in fact large) basis sets that
are required for the standard approximation. Being able to use
the basis sets established for conventional calculations made
possible direct comparisons of conventional and F12 methods
and has certainly contributed to the acceptance of F12 methods.
It was then recognized, however, that F12 methods can give more
accurate results for a basis set of a given size if reoptimized exponents
are used (see section 7.9.1). Similarly, the issue of developing opti-
mal auxiliary basis sets for the RI and density fitting helped to im-
prove the efficiency of calculations (sections 7.9.2 and 7.9.3).
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7.1. Perturbational Analysis
The analysis438 is based on the following partitioning of the

(normal-ordered) Hamiltonian

Ĥ ¼ EHF þ F̂ð0ÞN þ F̂ð1ÞN þ Φ̂
ð1Þ
N ð378Þ

where the superscripts denote the formal order, EHF = ÆHF|Ĥ|
HFæ the Hartree!Fock energy, F̂N the Fock operator, and Φ̂N
the fluctuation potential. The zeroth- and first-order Fock
operators F̂N

(0) and F̂N
(1), respectively, correspond to those in

eq 283. A number of alternative partitionings have been con-
sidered byNoga et al.466 The first-order part is further subdivided
into a part that lies within the orbital basis set and a part that
couples the occupied orbitals and the complementary space

Fð1Þ ¼ σFðσÞ þ τFðτÞ ð379Þ

¼ σ ∑
ai
ðf iaa

a
i þ f ai a

i
aÞ þ τ ∑

α^ i
ðf iα^

aα^
i þ f α^

i aiα^
Þ ð380Þ

More importantly, the fluctuation potential is split into three
parts with strength parameters λ, μ, and ν

Φ̂
ð1Þ
N ¼ λΦ̂

ðλÞ
N þ νΦ̂

ðνÞ
N þ μΦ̂

ðμÞ
N ð381Þ

with

Φ̂
ðμÞ
N ¼ ∑

p>r
q>s

gqspra
pr
qs ð382Þ

Φ̂
ðνÞ
N ¼ ∑

p, γ^
q>s

ðgqspγ^a
pγ^
qs þ gpγ^qs aqspγ^Þ ð383Þ

Φ̂
ðμÞ
N ¼ the remainder ð384Þ

The idea behind this additional partitioning is that the different
parts of the first-order Hamiltonian give rise to perturbations of
different “strength”. The perturbation associated with λ remains
within the finite orbital basis set and gives rise to the major part of
correlation effects. The parts associated with μ and ν lead to the
correction terms for the incompleteness of the finite orbital basis
set. While Φ̂(μ) leads to integrals with nontruncating partial wave
expansions, the integrals due to Φ̂(ν)

N will, in the atomic case,
truncate at some finite angular momentum L = 3Lmax, where
Lmax is the maximum angular momentum contained in the finite
orbital basis set.

Perturbation theory immediately gives that T̂2 is first order in
λ. The part of T̂20 that completely excites into the complementary
space is first order in μ

T̂ðμÞ
20 ¼ ∑

i>j
α^>β^

wij
α^β^

aα^β^
ij ð385Þ

while the remainder is first order in ν

T̂ðνÞ
20 ¼ ∑

i>j
aβ^

wij
aβ^

aaβ^ij ð386Þ

Likewise, T1 and T10 are first order in σ and τ, respectively.
Furthermore, the CCSD-F12 Lagrange functional

L ¼ ECCSD-F12 þ ∑
μ1

λμ1Ωμ1, CCSD-F12 þ ∑
μ2

λμ2Ωμ2, CCSD-F12

þ ∑
μ20

λμ20Ωμ20 , CCSD-F12 ð387Þ

Table 13. Spectroscopic Constants of OH, C2, and O2 As Calculated with MRCI and MRCI-F12 Wave Functions (including the
Davidson correction) and the aug-cc-pVXZ Basis Sets (abbreviated as aVXZ)a

molecule, state CASSCF MRCI MRCI-F12 CASSCF MRCI MRCI-F12 CASSCF MRCI MRCI-F12

OH, X2Π re (expt. 0.970) ωe (expt. 3737.8) De (expt. 106.6)

aVDZ 0.980 0.980 0.972 3700.3 3685.4 3725.8 95.8 99.4 104.6

aVTZ 0.975 0.974 0.972 3714.0 3711.3 3725.5 96.7 104.5 106.4

aVQZ 0.974 0.971 0.971 3723.1 3729.8 3733.2 96.9 106.2 107.0

aV5Z 0.973 0.971 0.971 3724.8 3733.4 3734.2 96.9 106.7 107.1

CBS[56] 0.971 3734.9 107.1

C2, X
1Σg

+ re (expt. 1.243) ωe (expt. 1854.7) De (expt. 146 ( 3)

aVDZ 1.267 1.274 1.262 1843.2 1800.7 1844.2 139.0 128.3 137.9

aVTZ 1.255 1.253 1.248 1839.1 1828.9 1844.5 142.5 139.4 143.0

aVQZ 1.254 1.248 1.246 1841.7 1843.6 1850.2 143.2 142.8 144.3

aV5Z 1.253 1.247 1.246 1842.2 1847.9 1851.2 143.3 143.7 144.5

CBS[56] 1.246 1851.1 144.6

O2, X
3Σg

‑ re (expt. 1.208) ωe (expt. 1580.2) De (expt. 120.6)

aVDZ 1.221 1.225 1.215 1542.8 1536.3 1575.2 91.2 107.5 114.9

aVTZ 1.218 1.217 1.213 1536.5 1550.0 1567.4 94.4 115.1 118.3

aVQZ 1.215 1.212 1.210 1547.8 1571.9 1579.8 95.1 118.1 119.6

aV5Z 1.215 1.211 1.210 1548.1 1575.9 1580.3 95.1 118.9 119.7

CBS[56] 1.210 1581.2 119.7
aBond lengths re are given in Angstroms, harmonic frequencies in cm!1, and dissociation energies in kcal/mol. CBS[56] denotes the X!3 basis-set
extrapolation of the conventional result. All values taken from ref 432.
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can be defined, where ECCSD-F12 is the energy expression, eq 324,
augmented with the residuals Ωμi ,CCSD-F12, eqs 325!327, as
constraints and corresponding Lagrange multipliers λμi . The La-
grange multipliers have the same leading order in perturbation
theory as the corresponding cluster operators. Thus, each term of
eq 387 can be assigned an order of the general form σsτtλlμmνn. We
now can classify the terms according to the following three criteria.
1 The total order in perturbation theory, s + t + l + m + n.
2 The order of the geminal correction, m + n.
3 The order in strong coupling to the complementary space,
m, leading to the terms present with ansatz 1 (or in the
standard approximation).

Formally, the relative importance of the terms should decrease
with increasing order, and they should decrease faster for weak
perturbations like Φ̂N

(ν). The validity of this assumption has also
been demonstrated numerically.438 Here, we will discuss an
explicit example, as given in Table 14. The numbers are based
on ref 438, where the entire CCSD-F12 Lagrange functional was
evaluated perturbatively using the ta

i and tab
ij amplitudes of a

preceding conventional CCSD calculation.
The analysis shows that the most significant F12 contributions

come from second- and third-order terms and from the terms
that survive under the assumptions of the standard approxima-
tion. This observation basically explains the success of the
truncated methods described in the subsequent sections.

In addition, Table 14 is divided into “(F12) terms” and terms
“beyond (F12)” which will become more clear in the next
section. Here, we only note that the terms “beyond (F12)” can
be large individually but cancel very systematically (in particular,
the third-order “ladder” and “ring” terms, which correspond to
the P and Z intermediate (see section 6.3)). In particular, for
larger basis sets their contributions to total correlation energies
and reaction energies becomes negligibly small.

7.2. CCSD(F12)
The CCSD(F12) approximation was first considered for

linear R12 theory and described in the work of Fliegl et al.;418,419

the generalization to F12 theory was later reported by Tew
et al.;420 a variant of CCSD(F12) using numerical quadrature was
published by Bokhan et al.397

The reasoning for the approximation is as follows: the fluctua-
tion potential Φ̂N and the T20 amplitudes are considered first order.
On the basis of this classification all terms are removed from the full
CCSD-F12 equationswhich are higher than secondorder. Thework-
ingequations arehence (cf. the fullCCSD-F12equations, eq324!327)

ECCSDðF12Þ ¼ ECCSD þ ÆHFj½ ~̂H, T̂20 (jHFæ ð388Þ

0 ¼ Ωμ1, CCSD þ Æμ1j½
~̂
H, T̂20 (jHFæ ð389Þ

0 ¼ Ωμ2, CCSD þ Æμ2j½
~̂
H, T̂20 ( þ ½½Φ̂N , T̂2(, T̂20 (jHFæ ð390Þ

0 ¼ Æμ20 j
~̂
ΦN þ ½F̂N , T̂20 ( þ ½ ~̂H, T̂2(jHFæ ð391Þ

with ECCSD denoting the conventional energy expression and
Ωμ1,CCSD and Ωμ2,CCSD as a short cut for the conventional
residuals.

The (F12) approximation effectively removes all terms non-
linear in T̂20 and the terms arising from Æμ2|[ΦN,T20]|HFæ. In
comparison to MP2-F12 theory, no new types of special F12

intermediates occur, except for the V intermediate which is
generalized to Vpq

ij to include contributions of T20 to the μ2
residual and vice versa.

The overall computational scaling of CCSD(F12) isN 6, i.e., the
same as for conventional CCSD. This has to be contrasted with the
situation for MP2-F12 (which has a less favorable scaling than
conventional MP2) and full CCSD-F12: The latter requires, if
the geminal coefficients are optimized, noniterative N 7 and N 8

steps.371,438 Nevertheless, CCSD(F12) still requires in each itera-
tion evaluation of computationally demanding terms which scale
withO3V2X, whereO, V, and X are the number of occupied, virtual,
and auxiliary basis orbitals, respectively. Hence, a single iteration
usually takes 3!5 times longer than in a conventional calculation.

The iterative cost can be reduced by the SP ansatz.423 The
energy is then obtained from the modified energy functional (see
also eqs 329 and 330)

ECCSDðF12Þ-SP ¼ ECCSD þ ÆHFj½H, T̂20 (jHFi

þ ∑
i>j

Æijijj
~̂
ΦN þ ½F̂ð0ÞN , T̂20 ( þ ½ ~̂H, T̂2(jHFæ ð392Þ

while the set of equations reduces to those originating from the
projections onto the conventional excitation manifold, eqs 389
and 390. However, there still remains one O3V2X scaling term
which in comparison to conventional CCSD causes a factor of
2!3 in each iteration.

The SP ansatz induces only negligible loss in accuracy,
particularly for relative energies, as shown in Table 15. At the

Table 14. Analysis of F12 Contributions for the Total CCSD
Correlation Energy Ec of F2O (limit ! 865.13 mEh) and the
CCSD Correlation Energy Contribution ΔEc to the Reaction
F2O + CF2 f 2 F2 + CO (limit ! 10.9 kJ mol!1)a

Ec/mEh ΔEc/kJ mol!1

order

cc-pVDZ-

F12

cc-pVTZ-

F12

cc-pVDZ-

F12

cc-pVTZ-

F12

conv. !701.02 !803.22 !29.81 !18.96

(F12) terms

μ2 !154.74 !69.27 11.60 5.43

λν !9.27 !3.58 3.47 1.65

λμ2 34.75 22.20 1.58 0.28

λν2 !10.87 !3.85 !0.41 0.59

σμ2 1.50 0.59 !2.12 !0.80

third order (rem.) !0.13 0.01 0.00 !0.02

λ2μ2 6.21 2.66 1.24 0.53

fourth order (rem.) 0.51 0.14 !0.28 !0.17

fifth order (rem.) 0.00 0.00 0.00 0.00

sum conv + (F12) !833.08 !854.32 !14.73 !11.46

beyond (F12)

μ3 (ladder) 39.97 12.34 !3.36 !0.99

μ3 (ring) !46.95 !13.21 4.91 1.47

λ2μ2 1.78 0.52 !0.26 !0.06

Rem. 0.48 0.05 !0.18 !0.03

sum beyond (F12) !4.72 !0.30 1.12 0.38
aAdapted from the data sets underlying ref 438.
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same time, it is numerically significantly more stable and avoids
the geminal basis-set superposition error.448

7.3. CCSD-F12a and CCSD-F12b
Keeping only the leading order F12 corrections and a strict

avoidance of all cost-intensive terms is the basic idea behind the
CCSD-F12x (x = a, b) methods ofWerner and co-workers.427,428

In fact, these authors were the first to demonstrate the potential
of F12 to enhance the accuracy of the underlying methodology
without a significant increase in computation time.

One of the ingredients of their method is the fixed amplitude
approximation (SP ansatz), as described above. As an alternative,
they also considered fixed coefficients ckl

ij determined by a
preceding MP2-F12 step. The energy functional is either

EF12a ¼ ECCSD þ ÆHFj½Φ̂N ,T20 (jHFæ

þ ∑
i>j

ÆijijjΦ̂N þ ½F̂N , T̂20 þ T̂2(jHFæ ð393Þ

which constitutes the CCSD-F12a variant or

EF12b ¼ ECCSD!F12a þ ∑
i>j

ÆijijjQ̂
ð0Þ
12 fð ~ΦN ! Φ̂NÞ

þ ½ ~̂ΦN , T̂2(gjHFæ ð394Þ

which is the CCSD-F12b variant. Here, we used the projector
Q̂ 12

(0) = 1! P̂1P̂2 to indicate two important approximations in the
F12x approach: First, this projector selects only the standard
approximation terms, and second, the V intermediate will be
calculated according to the approximate form, cf. eq 276

Vij
pq ¼ vijpq ! ∑

r>s
rijrsg

rs
pq ð395Þ

which effectively avoids the need to calculate two-electron
repulsion integrals with two virtual and one CABS index. Note
that for the Vkl

ij contributions occurring in eq 393 the above
approximation is not used.

The residual functions for both variants, CCSD-F12a and
CCSD-F12b, are the same. They can be written in short-hand as

0 ¼ Ωμ1, CCSD þ Æμ1j½Φ̂N , Q̂
ð0Þ
12 T̂20 (jHFæ ð396Þ

0 ¼ Ωμ2, CCSD þ Æμ2j½Φ̂N , Q̂
ð0Þ
12 T̂20 ( þ ½½Φ̂N , T̂1(, Q̂ ð0Þ

12 T̂20 (jHFæ

ð397Þ

Comparing with the equations for CCSD(F12), eqs 388!391, it
becomes apparent that CCSD-F12x is a subset of the latter, but

numerical experience shows that these terms indeed have the
biggest effect on improving CCSD toward the basis-set limit.

This is clearly reflected in Table 16: In comparison to the
conventional results, both CCSD-F12a and F12b significantly
reduce the error in, for example, reaction energies. For double-
and triple-ζ basis sets, both methods perform equally
well, whereas for larger basis sets the CCSD-F12a results
deteriorate due to the method’s tendency to overshoot the
basis-set limit.

7.4. CCSD(2)F12
In a series of papers, Valeev and co-workers worked out a

slightly different approach to adding explicitly correlated terms to
coupled-cluster calculations.421,507,508 Instead of extending the
CCSD equations with geminal dependent terms, an a posteriori
correction is formulated, based on a L€owdin partitioning of the
CCSD similarity transformed Hamiltonian. The resulting model
was called CCSD(2)F12 or CCSD(2)F12 if the SP ansatz is used.
If, in addition, a noniterative correction for the effect of con-
nected triples clusters is applied, the naming changes to CCSD-
(T)F12. We note that Valeev uses the names CCSD(2)R12,
CCSD(T)R12, etc., irrespective of the actual correlation factor
in use, but for consistency we prefer to write “F12” whenever
Slater-type correlation factors are employed.

In the derivation of the theory, the similarity transformed
Hamiltonian matrix

H̅μν ¼ Æμje!T̂1 ! T̂2ĤeT̂1 þ T̂2 jνæ ð398Þ

is partitioned by defining an internal and an external space. The
former consists of the reference state and the singles and doubles
excitation manifold, {|HFæ,|μ1æ,|μ2æ}, while the external space
includes only either the geminal doubles {|μ2æ} or the geminal
doubles and some higher excitations if, for example, the deriva-
tion of the (T) correction is considered at the same time.421 The
two spaces impose a block structure onH which now is written as
a zeroth- and first-order part

H̅ ¼
H̅PP 0
0 H̅ð0Þ

QQ

 !

þ
0 H̅PQ

H̅QP H̅ð1Þ
QQ

0

@

1

A ð399Þ

The zeroth-order part of the external block is HQQ
(0) =

Æμ20|F̂N + E(0)|μ20æ, where E(0) the zeroth-order energy
which equals the CCSD energy. Perturbation theory gives the
first nonvanishing energy correction at second order according to

Eð2Þ ¼ !Λð0Þ
P H̅PQ ðĤð0Þ

QQ ! Eð0ÞSQQ Þ!1H̅QPR
ð0Þ
P ð400Þ

The E(0)SQQ term in the denominator cancels the respective
energy shift in the definition of HQQ

(0) , and we are hence left
with determining the inverse of Bmn

kl ! (εi + εj)Xmn
kl just like

in MP2-F12 theory. On expanding the zeroth-order left and
right eigenvectors Λ(0) and R(0) one obtains ΛP

(0)HPQ =
ÆHF|H|μ20æ + ÆΛ|H|μ20æ and HQPRP

(0) = Æμ20|H|HFæ. In
addition, a number of further approximations are made: In
particular, only the standard approximation terms are re-
tained, including the extended Brillouin condition, eq 259.
The necessary F12 intermediates, however, are evaluated
fully for ansatz 2, including all CABS contributions (at
variance to the approach taken for CCSD-F12x). All singles
contributions are neglected, and the Lagrange multipliers Λ
are approximated by the T amplitudes. In a recent modifica-
tion of the approach349 the use of the EBC was abandoned,

Table 15. Basis Set Error Statistics for the CCSD Correlation
Contribution to Reaction Energies over a Set of 53 Reactions
(kJ mol!1 per valence electron)a

conv. (F12) (F12)-SP

basis mean σ basis mean σ mean σ

cc-pVDZ !0.95 0.86

cc-pVTZ !0.26 0.29 cc-pVDZ-F12 !0.07 0.09 !0.10 0.08

cc-pVQZ !0.07 0.10 cc-pVTZ-F12 !0.01 0.02 !0.01 0.01

cc-pV5Z !0.03 0.05 cc-pVQZ-F12 0.00 0.00 0.00 0.00
aAdapted from ref 425.
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resulting in significantly improved results (see also refs 427
and 509). The final energy expression is

Eð2ÞF12 ¼ ! ∑
μ20ν20

ÆHFjð1 þ T̂†
2ÞΦ̂jμ20 æÆμ20 jF̂N jν20æ!1

)Æν20 jΦð1 þ T̂2ÞjHFæ ð401Þ
Equivalently, the energy can be obtained from minimizing
the modified Hylleraas functional

Hð2ÞF12 ¼ ∑
i>j
x>y

c̅ xyij Æxyij j½F̂, T̂20 (jHFæ þ 2 ∑
i>j
x>y

c̅ xyij ÆijxyjΦ̂ þ ½Φ̂, T̂2(jHFæ

ð402Þ

This also encompasses the possibility to use the SP ansatz, which
defines the CCSD(2)F12 method. This form also reveals a close
relation to the CCSD-F12b method (see section 7.6).

7.5. CCSD[F12] and CCSD(F12*)
Inspired by the success of the CCSD-F12x methods, H€attig

and co-workers509 recently reinvestigated the CCSD(F12)meth-
od. A term-by-term analysis, as discussed in section 7.1, revealed
that basically all computationally demanding terms can either be
precomputed (within the SP ansatz) or give negligible contribu-
tions. Two approximations were considered: In a first approx-
imation, called CCSD[F12], a strict truncation at third order is
applied. In comparison to CCSD(F12)-SP, this changes the
energy expression to

ECCSD½F12( ¼ ECCSD þ ÆHFj½ΦN , T̂20 (jHFæ

þ ∑
i>j

ÆijijjΦ̂ þ ½F̂ð0ÞN , T̂20 ( þ ½Ĥ, T̂1 þ T̂2(jHFæ ð403Þ

and the residual equations become

0 ¼ Ωμ1, CCSD þ Æμ1j½Ĥ, T̂20 (jHFæ ð404Þ

0 ¼ Ωμ2, CCSD þ Æμ2j½Ĥ, T̂20 (jHFæ ð405Þ

Numerical experience shows that this method is nearly as
accurate as CCSD(F12) while causing only negligible computa-
tional overhead in the residual equations. For systems with
strong correlation effects, however, some noticeable deviations
from CCSD(F12) occur which can be traced down to terms
nonlinear in the cluster operator (see section 7.6). It thus seemed
necessary to include selected higher-order terms. As implied by

the above numerical analysis, the most important higher-order
terms are those which remain under the standard approximation.
The resulting method was termed CCSD(F12*).

Using again the modified projector Q̂ 12
(0) to indicate the selection

of the standard approximation terms, the energy expression can be
written as

ECCSDðF12&Þ ¼ ECCSD½F12( þ ∑
i>j

ÆijijjQ̂
ð0Þ
12
1
2
½½Ĥ, T̂1(, T̂1(jHFæ

ð406Þ
and the residuals read

0 ¼ Ωμ1, CCSD½F12( þ Æμ1j½½Ĥ, T̂1(, Q̂ ð0Þ
12 T̂20 (jHFæ ð407Þ

0 ¼ Ωμ2, CCSD½F12( þ Æμ2j½½Ĥ, T̂1 þ T̂2(, Q̂ ð0Þ
12 T̂20 (jHFæ

þ Æμ2j
1
2
½½½Ĥ, T̂1(, T̂1(, Q̂ ð0Þ

12 T̂20 (jHFæ ð408Þ

The onlymatrix element containing the correlation factor that arises
from the extra terms in eqs 406!408 is aV-type intermediate. In the
evaluation of this intermediate, in contrast to the CCSD-F12x
methods, the projector Q̂ 12

(0) is replaced by the original ansatz 2
projector, as defined in eq 246.

Numerically, CCSD(F12*) leads to essentially the same
results as CCSD(F12). The additional terms, in comparison to
CCSD[F12], do not cause any further iterative overhead, as will
be apparent from the explicit expressions in the next section.

7.6. Synopsis of Approximate CCSD-F12 Methods
All methods from the last three sections are closely related to

each other, as a comparison of the working equations reveals. A
closer look at the explicit expressions also shows why, compared
to a conventional implementation, only little computational
overhead is caused by the additional terms, once the extra work
for evaluating the integrals is done.

All methods that we consider in this section employ the SP
ansatz cxy

ij = δx
i δy

j ! δx
jδy

i . We will use the matrix elementsVpq
ij and

Cab
ij as defined in eqs 263 and 266 and in addition the effective

one-body intermediates

Vi
p ¼ ∑

k
V ik
pk ð409Þ

Ci
a ¼ ∑

kc0
f c

0

k r
ik
ac0 ð410Þ

Table 16. RMS Basis Set Errors of CCSD and CCSD-F12x Reaction Energies of Closed-Shell Molecules (REc) and Open-Shell
Molecules (REo) as well as Atomization Energies (AE), Ionization Potentials (IP), and Electron Affinities (EA)a

method basis REc/kJ mol!1 REo/kJ mol!1 AE/kJ mol!1 IP/meV EA/meV

CCSD aVDZ 18.74 51.97 80.49 245.72 177.76

aVTZ 6.80 18.65 24.94 98.10 72.18

aVQZ 2.46 6.71 8.84 40.10 28.00

aV5Z 1.23 3.09 4.17 20.54 14.64

CCSD-F12a aVDZ 2.68 4.68 7.03 51.96 34.93

aVTZ 1.28 1.29 1.86 9.23 11.76

aVQZ 0.51 1.24 2.17 9.10 11.38

CCSD-F12b aVDZ 2.34 5.00 10.23 70.84 50.22

aVTZ 1.18 1.81 2.14 21.80 14.83

aVQZ 0.59 0.68 0.70 5.20 3.76
aAdapted from ref 427.
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and the one- and two-body U intermediate defined by

Ui
a ¼ ! ∑

j>k, c0
gic

0

jk r
jk
ac0 ð411Þ

Uij
ab ¼ ∑

kc0
ðgic0akr

jk
bc0 þ gjc

0

bkr
ik
ac0Þ ð412Þ

We note that precomputing the above two intermediates is only
possible in the SP approach. Furthermore, we define the “pure
geminal” energy contribution to the MP2-F12 energy

ΔEgeminalMP2-F12 ¼ ∑
i>j

Bijij ! ðεi þ εjÞXij
ij þ 2Vij

ij

' (
ð413Þ

With these definitions we can write down the CCSD(F12*)
equations, which are collected in Table 17. The actual expres-
sions can be obtained by adding the pertinent conventional con-
tributions, i.e., ECCSD,Ωμ1,CCSD, andΩμ2,CCSD. The other methods,
CCSD[F12], CCSD-F12a, and CCSD-F12b, and CCSD(2)F12
use a subset of these terms as indicated by ) in Table 17.

The main difference between CCSD(F12*) and CCSD[F12]
is the neglect of the higher-order terms in the latter. The effect is
well illustrated by the perturbational analysis in Table 14. The
numerically most significant terms that make up the difference
between the twomethods are R2-5 and R2-6, Table 17. These are
on order of λ2μ2, and their contribution in the perturbational
analysis amounts to +2.66 mEh for F2O using a cc-pVTZ-F12
basis set. Indeed, the difference between the self-consistent
results of the CCSD(F12*) calculation (correlation energy
!857.61 mEh) and the CCSD[F12] calculation (! 860.17 mEh)
is +2.56 mEh. The CCSD[F12] value is closer to the basis-set
limit (!865.13 mEh), but for larger basis sets there is a clear

tendency of overshooting the limit, as shown by the inferior
results for atomization energies.509

The CCSD-F12bmethod neglects the R2-5 and R2-6 terms as
well. Out of the other terms neglected in CCSD-F12b, E-6 and
R2-3 are the numerically most significant ones. They are on the
order of λν2, and in the above F2O example their contribution
amounts to !3.85 mEh. Thus, their effect nearly cancels that of
the higher-order terms. Again, the perturbative analysis very well
predicts the difference between CCSD-F12b (!856.535 mEh
using a variant with full evaluation of the V intermediate) and
CCSD(F12*) which is 1.07 mEh.

In CCSD-F12a, particularly, the term E-4 is neglected, which
for F2O gives a huge contribution of +11.10 mEh (note that this is
only one-half of the value listed in Table 14 as R2-2, the
counterpart of E-4, is still included). In effect this lowers the
total CCSD-F12a energy by 11mEh and brings it very close to the
basis-set limit. For larger basis sets, however, CCSD-F12a grossly
overshoots and use of CCSD-F12b has been recommended in
this case.427

CCSD(F12*), on the other hand, is the most complete
method with respect to CCSD(F12) and full CCSD-F12. For
the present F2O example, it differs by only 0.02 mEh from the
CCSD(F12) result and by around 0.3 mEh from full CCSD-F12
(we recall that all calculations are based on the SP ansatz).438

With respect to computational cost, one immediately sees that all
additional terms with respect to conventional CCSD are either
constant contributions to the residual or contractions with ta

i or
tab
ij which have analogous counterparts in the conventional part.
In fact, for CCSD(F12*) as well as for all other methods dis-
cussed in this section implementations are feasible that have no
noticeable additional operation count during the iterative solu-
tion of the coupled-cluster equations (noting that CCSD(2)F12
implies an unmodified CCSD run anyway).510

Table 17. Synopsis of the Working Equations for the Methods Described in Sections 7.3!7.5a

E-1 E-2 E-3 E-4 E-5 E-6 E-7 method

ΔE = ΔEMP2‑F12
geminal +(1/4)[C†]ij

abtab
ij +Vi

ata
i +(1/4)Vij

abtab
ij +Ui

ata
i +(1/4)Uij

abtab
ij +(1/2)Vij

abta
i tb
j (F12*)

) ) ) ) ) ) [F12]

) ) F12a

) ) ) ) ) F12b

) ())b ())c ) (2)F12

R1-1 R1-2 R1-3 R1-4 method

ΔΩa
i = Va

i +Ua
i +Ca

i !Vk
i ta
k (F12*)

) ) ) [F12]

) F12a

) F12b

())c (2)F12

R2-1 R2-2 R2-3 R2-4 R2-5 R2-6 R2-7 method

ΔΩab
ij = Cab

ij +Vab
ij +Uab

ij !P̂abVak
ij tb

k +(1/2)Vkl
ij tab

kl !P̂ijVk
j tab
ik +Vkl

ij ta
ktb
l (F12*)

) ) ) [F12]

) ) ) F12a

) ) ) F12b

())b ) (2)F12
aNote that (2)F12 is not iterated to self-consistency, ratherΔE + ∑μ2

Tμ2

† Ωμ2
is evaluated using the unaltered conventional CCSD amplitudes. For brevity

the Einstein summation convention is used. Due to restricted summations, additional prefactors arise, for example, (1/4)[C†]ij
abtab

ij = ∑
i>j
a>b[C†]ij

abtab
ij . The

effect of P̂ab is P̂abAab
ij = Aab

ij ! Aba
ij and analogous for P̂ij.

bNeglected in the original formulation; see refs 507, 509, and 349. c Included for ROHF
references only.
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The only difference between the methods lies in the non-
iterative step of calculating the various additional integrals and
intermediates, as described in section 6.3. Themajor savings with
CCSD-F12b, as compared to CCSD(F12*), are due to the
approximate calculation of Vab

ij according to eq 395, which effec-
tively avoids computation of integrals of the type gpq

ic0 . For the
usual sizes of auxiliary basis sets this approximately halves the
operation count for formation of V. In principle, however, this
approximate calculation is also compatible with CCSD(F12*).
In addition, CCSD(F12*) requires computation of the U inter-
mediate, which is less problematic as all the involved two-
electron integrals have two occupied orbital indices.

For CCSD-F12a, precomputation of Vab
ij can be avoided

altogether as shown in ref 427, and the method hence is the com-
putationally least demanding one. The perturbative correction of
Valeev, on the other hand, has basically the same operation count
as CCSD(F12*) as it also uses the full Vab

ij intermediate. In a note
of caution, it should be said that the actual runtime of the pro-
grams crucially depends on a number of other factors, e.g., the
efficiency of the integral routines, and hence, the above formal
considerations warrant a dedicated study that is presently not
available in the literature. As a reference point, the overhead for
the noniterative part in the present Turbomole implementation
of CCSD(F12*) amounts to about 3!5 CCSD iterations,
depending on the size of the CABS. Assuming around 10!15
iterations for a sufficiently converged CCSD result, this is an
overhead of around 20!50%. If the calculation is followed by a
calculation of a (T) correction, the overhead is much reduced, as
due to its steeper computational scaling the latter will dominate
the operation count for larger molecules.

With respect to accuracy, H€attig et al.509 find that (F12*) >
(2)F12 > F12b> F12a, where the CCSD basis-set errors for
(F12*) are on average one-half those of F12b. However, for
ground-state energies the differences are small (only a few kJ/
mol) and the discussion mainly reduces to formal consistency
versus fast computation (where we again note that themost time-
saving approximation toV, eq 395, is also compatible with (F12*)
and (2)F12). Considering coupled-cluster response theory, how-
ever, CCSD(F12*) is clearly the preferred choice. A closely
related approximation was already shown to work well,465 while
some preliminary studies show that methods neglecting higher-
order terms, like CCSD[F12], lead to inferior results for excita-
tion energies.

As a general note on the performance of explicitly correlated
coupled-cluster methods, we point out that the range of applica-
tion of the approximate CCSD-F12 methods is not much
different from the range of application of conventional CCSD
calculations. In particular, use of local-correlation techniques (cf.
section 7.8) has paved the way toward large-scale applications at
the CCSD-F12a and -F12b levels (see, for example, refs 426 and
429). Since the domain error of local-correlation methods is
reduced by the explicitly correlated geminals, the local CCSD-
F12a and -F12b seem to be attractive, cost-efficient methods. As
far as CCSD(F12) coupled-cluster calculations with canonical
Hartree!Fock orbitals are concerned, an example from our own
recent work511 with the Turbomole program package is illu-
strated in Figure 16. CCSD(T)/cc-pVDZ and CCSD(F12)/
cc-pVDZ-F12 calculations were performed on the transition-state
structures for the hydrogen-abstraction reactions for a chemical
reaction in which one phenyl radical abstracts a hydrogen atom
from another phenyl radical to form benzene (C6H6) plus benzyne
(C6H4). Depicted are the results for the “singlet” (MS = 0)

transition states, and all calculations were based on (broken-
symmetry) UHF reference determinants. (The geometries and
vibrational zero-point energies were computed at the DFT level.)
The purpose of Figure 16 is to show the kind of calculations that
can be performed at the CCSD(F12) level in an appropriate basis
set (cc-pVDZ-F12), but this figure also nicely illustrates the
Bell!Evans!Polanyi principle: exothermic reactions via lower
barriers release more reaction energy than reactions via higher
barriers.

7.7. Density Fitting
At the MP2-F12 level a large fraction of the additional

computational costs for the explicitly correlated terms arises
from calculation of the additional two-electron integrals. This is,
in particular, the case for the SP approach, which requires only
the diagonal elements of the V, B, and X intermediates. These
can be evaluated with O (N 4) scaling costs once the required
two-electron integrals are available in the MO basis. Computa-
tion of the two-electron integrals scales, however, with O (N 5)
and has a rather high prefactor if they are obtained by four-index
transformations from AO two-electron integrals.

A standard technique to speed up evaluation of two-electron
MO integrals is the density fitting (DF) approximation. Density
fitting is in the literature also known as resolution of the identity
(RI) approximation. However, in the context of F12 theory we
reserve the term RI approximations for expansion of three- and
four-electron integrals as products of two-electron integrals to avoid
confusion. The idea behind the DF approximation is that in large
orbital basis sets the products of orbitals appearing for electrons 1
and 2 in the expressions for four-index two-electron integrals

ðpqĵojrsÞ ¼
Z Z

jpðr1Þjqðr1Þô12jrðr2Þjsðr2Þ dτ1dτ2

ð414Þ

will soon become (numerically) highly linear dependent and can
thus be expanded with good accuracy in a dedicated auxiliary
basis of fitting functions {Q}

jpðrÞjqðrÞ≈ ∑
Q

Q ðrÞcQ , pq ð415Þ

For the Coulomb repulsion r12
!1, which is a positive definite

operator so that the matrix elements define a valid inner product,

Figure 16. Barrier heights and reaction energies for three hydrogen
abstraction reactions of two phenyl radicals toward benzene plus o-, m-,
or p-benzyne. The energies include the vibrational zero-point energy.
The optimized structure of the transition state for the reaction toward
benzene + p-benzyne is also shown. Data taken from ref 511.
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the coefficients can be calculated as

cQ , pq ¼ ∑
Q

½V!1(PQ ðQ jpqÞ ð416Þ

where Vpq = (Q|P) and (Q|pq) are two- and three-index
Coulomb integrals,

ðQ jPÞ ¼
ZZ

Q ðr1Þr!1
12 Pðr2Þdτ1dτ2 ð417Þ

ðQ jpqÞ ¼
ZZ

Q ðr1Þr!1
12 jpðr2Þjqðr2Þdτ1dτ2 ð418Þ

The four-index Coulomb integrals are then computed within the
DF approximation as

ðpqjr!1
12 jrsÞ ≈ ðpqjr!1

12 jrsÞ
DF

¼ ∑
PQ

ðpqjPÞ½V!1(PQ ðQ jrsÞ ¼ ∑
Q

GQ , pqGQ , rs
ð419Þ

with

GQ , pq ¼ ∑
P

½V!1=2(QPðPjpqÞ ð420Þ

Evaluation of the two- and three-index AO integrals and their
transformation to the MO basis is much cheaper than for four-
center AO integrals. The onlyO(N5) scaling step is then the final
contraction to form the target four-index MO integrals. If these
integrals are only needed for a small subset of the whole MO
space, for example, because two or more indices are restricted to
occupied orbitals, as it is the case for the integrals needed for the
intermediates in MP2-F12 calculations, the DF approximation
reduces the computational costs often by more than an order of
magnitude. With optimized auxiliary basis sets the additional
error introduced by the DF approximation can be kept orders of
magnitude smaller than the orbital basis-set error so that the
overall accuracy of a calculation is not affected. Importantly for
the performance of the DF approximation, the error in the
integrals (pq|r12

!1|rs)DF is quadratic in the fitting error for the
orbital products

RpqðrÞ ¼ jpðrÞjqðrÞ !∑
Q
Q ðrÞcQ , pq ð421Þ

as

ðpqjr!1
12 jrsÞ

DF ! ðpqjr!1
12 jrsÞ ¼ ðRpqjr!1

12 jRrsÞ ð422Þ

The same procedure can be used for other positive or negative
definite operators for which inversion of the two-index integral
matrix (Q|ô12|P) is numerically stable.

A generalization of the fitting formula in eq 419 for operators
that are neither positive nor negative definite, which has the
same property that errors in the integrals are quadratic in the fit-
ting error Rpq, is the robust density-fitting formula proposed by
Manby.404 It can be cast into the form

ðpqjô12jrsÞDF ¼ ∑
Q
ðGQ , pqOQ , rs þ OQ , pqGQ , rsÞ ð423Þ

where

OQ , pq ¼ ∑
P

½V!1=2(QP ðPĵo12jpqÞ !
1
2 ∑RS

ðPĵo12jRÞ½V!1(RSðSjpqÞ

 !

ð424Þ

Computation of two-electronMO integrals for general operators
is thus only twice as expensive as for electron repulsion integrals.

Besides the lower operation count, another advantage of the DF
approximation is that, in particular, at theMP2-F12 level, also the
memory and disk requirements can be greatly reduced by
avoiding storage of the various four-index two-electron integrals.

7.8. Local Correlation Methods
The enhanced basis-set convergence of explicitly correlated

methods reduces dramatically the computational costs for accu-
rate correlated wave function calculations. However, just as for
conventional wave function methods, they suffer from a very
steep scaling of the operation count with the system size, which
hinders calculations on large systems. This problem can be alle-
viated by combining F12 theory with a local correlation appro-
ach, as has been shown by Werner and co-workers.407,413,429

Local correlation methods exploit the short-range character of
dynamic electron correlation using a local orbital basis and
restricting for each localized occupied orbital i the excitations
into the virtual space to a subset of projected atomic orbitals
(PAOs) that are spatially close to i. This subset is called the
domain for i and denoted as [i]. For each pair of occupied orbitals
i, j double excitations are restricted to a pair domain [ij] which is
formed as the union of [i] and [j]. Since the size of the domains is
roughly independent of the molecular size and since the set Ps of
so-called strong pairs i, j that contribute significantly to the corre-
lation energy increases for large systems asymptotically only
linearly with the system size, one can achieve with this ansatz a
linear scaling in computational cost.

At the CCSD-F12 level the local correlation variant, LCCSD-
F12, approximates the single- and double-excitation parts of the
cluster operator as429

T̂1 ¼ ∑
i
∑

a ∈ ½i(
tiaa

†
aai ð425Þ

T̂2 ¼ ∑
i>j ∈ Ps

∑
a>b ∈ ½ij(

tijaba
†
aaia

†
baj ð426Þ

T̂20 ¼ ∑
i>j ∈ Ps

∑
x>y

cijxyτ
xy
ij ð427Þ

where in the SP approach cxy
ij = δixδjy ! δiyδjx. Since the

conventional double excitations in eq 426 are restricted to the
pair domains, the strong orthogonality projector for ansatz 2 is
for the local correlationmethods chosen such that it only projects
out these excitations. The pair-specific projector becomes

Q̂ ij
12 ¼ ð1! Ô1Þð1! Ô2Þ 1! ∑

cd ∈ ½ij(
jcdæÆcdj

0

@

1

A ð428Þ

Thereby the excitations into the geminals can compensate for
most of the domain error caused by the restriction of the con-
ventional double excitations into products of virtual or projected
atomic orbitals. Some results which demonstrate how efficiently
the geminal contribution can compensate for the domain errors
at the CCSD level are shown in Table 18.

Recently, alternative approaches to combining F12 and loca-
lization ideas have been explored. Friedrich et al.512 applied
Stoll’s incremental scheme to the CCSD(F12)-SP method using
local occupied orbitals. Here, the CCSD(F12)-SP equations are
solved independently for each domain, each pair of domains,
each triplet of domains, and so on until the incremental expen-
sion of the energy converges. Smaller basis sets can be used for
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the higher-order increments, and the study demonstrated that it
was not necessary to include F12 terms beyond pair domains.

Tew et al.513 very recently combined theMP2-F12-SPmethod
with the pair natural orbital (PNO) approach of Meyer.514!516

PNOs have recently been advocated by Neese517,518 as an attrac-
tive way of reducing steep scaling through locality, without nece-
ssitating the definition of domains. In this aproach the set of
virtuals used to expand each pair correlation function is trans-
formed to PNOs by diagonalizing an approximate first-order pair
density and then truncated on the basis of the occupation number.
Tew et al. showed that these ideas can be used very effectively in
F12 theory to reduce both the number of virtual and the CA
orbitals to an average of only 40 orbitals per pair, without sig-
nificant loss of accuracy.

7.9. Basis Sets
For the accuracy and efficency of calculations with F12

methods it is crucial that the orbital basis and the complementary
auxiliary basis for the RI of the three- and four-electron integrals
are chosen or optimized carefully.
7.9.1. Orbital Basis Sets. As discussed in previous sections,

with basis sets saturated up to Lmax the remaining basis-set error
for conventional correlated wave function methods decreases
only with (Lmax + b)!3. Orbital basis sets which have been
optimized for calculations with these methods reflect the slow
convergence by including already for small cardinal numbers (or
ζ levels) high angular momentum functions, Table 19. Inclusion
of the geminals in the F12 methods enhances the convergence
with the angularmomentumof the basis functions to (Lmax + b)

!7.
A balanced orbital basis for F12 calculations should thus contain
less functions with high angular momenta compared to the
number of functions with small angular momenta. The latter
are also important to keep the basis-set error of the underlying
Hartree!Fock (or, in the multireference case, MCSCF) calcula-
tion small enough so that it does not limit the overall accuracy of
a calculation. Furthermore, the functions with higher angular
momentum need not be as tight in F12 calculations as in standard
orbital expansions.447

Orbital basis sets optimized for explicitly correlated calcula-
tions with F12 methods are (at the time this article has been
written) available for the atoms H, He, Li!Ne, and Na!Ar from
the work of Peterson and co-workers.414,417,519 These cc-pVXZ-F12
basis sets are constructed in a similar manner to the correlation-
consistent basis set for conventional correlated wave functions,
cc-pVXZ, such that the remaining basis-set errors are approxi-
mately the same for each angular momentum. For the first-row
atoms B!Ne this strategy led for the cc-pVDZ-F12 basis sets to
the composition [5s5p2d] and for the triple- and quadruple-ζ

basis sets cc-pVTZ-F12 and cc-pVQZ-F12 to the composition
[6s6p3d2f] and [7s7p4d3f2g], respectively. This is somewhat
less regular than the composition of the basis sets optimized
for conventional correlated calculations. The accuracy achieved
with these basis sets with respect to remaining basis-set errors has
been tested in the literature, in particular, for MP2-F12 and
several approximations to CCSD-F12.520!523

An alternative to the cc-pVXZ-F12 basis-set families is the
correlation-consistent basis sets augmented with diffuse functions,
aug-cc-pVXZ, from the work of Dunning and co-workers.524!527

The remaining basis-set errors are with these basis sets larger
than with the optimized cc-pVXZ-F12 basis sets of the same
cardinal number, but this is partially compensated by the smaller
size of the aug-cc-pVXZ basis sets.521

For calculations with conventional correlated wave function
methods and the correlation-consistent cc-pVXZ basis sets the
remaining basis-set errors in the correlation energy follows in
good approximation the idealized power law EX

corr = Elimit
corr +AX!3

(compare eq 94 in section 3.7.5). This is a consequence of the
building principle of the cc-pVXZ basis sets and the fact that in
conventional (i.e., not explicitly correlated) calculations the
basis-set error is dominated by the error in the pair correlation

Table 18. Correlation Energies (in mH) Obtained with the
cc-pVTZ-F12 Basis Set with Conventional CCSD, in CCSD-
F12a, and Their Local Variants in Comparison to Extrapo-
lated Basis Set Limitsa

molecule CCSD LCCSD CCSD-F12a LCCSD-F12a basis-set limit

C2H4O !611.8 !609.2 !658.0 !658.1 !650.4

CH3CHO !606.1 !603.8 !651.6 !651.7 !643.9

C2H5OH !648.2 !644.3 !697.3 !697.3 !689.1

NH2CONH2 !851.9 !847.6 !918.0 !917.9 !908.2

HCOOCH3 !844.7 !841.1 !911.7 !911.7 !901.7
aAll results adopted from ref 429.

Table 19. Statistical Measures for the Remaining Basis Set
Errors from the Orbital Basis in Frozen Core MP2-F12
Calculations (with optimized amplitudes) from a Benchmark
Study on Set of 106 Small Molecules Containing H, C, N, O,
and Fa

correlation energies mean STD MAD rms max

cc-pVDZ-F12 0.97 0.24 0.97 1.00 1.75

cc-pVTZ-F12 0.26 0.08 0.26 0.27 0.41

cc-pVQZ-F12 0.07 0.02 0.07 0.07 0.10

aug-cc-pVDZ 1.71 0.22 1.71 1.73 2.19

aug-cc-pVTZ 0.63 0.18 0.63 0.65 1.02

aug-cc-pVQZ 0.23 0.07 0.23 0.24 0.04

aug-cc-pV5Z 0.09 0.03 0.09 0.09 0.17

total energies mean STD MAD rms max

cc-pVDZ-F12 1.90 0.30 1.90 1.92 3.00

cc-pVTZ-F12 0.48 0.12 0.48 0.49 0.73

cc-pVQZ-F12 0.10 0.03 0.10 0.10 0.16

aug-cc-pVDZ 2.93 0.36 2.93 2.95 3.90

aug-cc-pVTZ 1.30 0.26 1.30 1.33 1.91

aug-cc-pVQZ 0.39 0.11 0.39 0.41 0.66

aug-cc-pV5Z 0.12 0.04 0.12 0.13 0.22

atomization energies mean STD MAD rms max

cc-pVDZ-F12 !0.33 0.34 0.35 0.47 !1.84

cc-pVTZ-F12 !0.02 0.04 0.03 0.04 !0.18

cc-pVQZ-F12 0.01 0.01 0.01 0.01 !0.03

aug-cc-pVDZ !0.21 0.33 0.29 0.39 !2.10

aug-cc-pVTZ 0.02 0.10 0.08 0.11 !0.64

aug-cc-pVQZ 0.09 0.04 0.10 0.10 !0.16

aug-cc-pV5Z 0.05 0.01 0.05 0.06 0.08
a Listed are the mean error and standard (STD), mean absolute (MAD),
root mean square (RMS), and maximum deviations for the correlation
and total energies as well as for the atomization energies. All values are
adopted from ref 521 and given in kJ mol!1 per valence electron.
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energy due to the poor description of the electronic cusp. This
relation is often employed to correct approximately for the re-
maining basis-set error by extrapolating the basis-set limit from
the results obtained with two different cardinal numbers X and Y
based on eq 95 as

Ecorrlimit ≈ ðEcorrY ! EcorrX Þ Y 3

Y 3 ! X3 ð429Þ

For F12 methods the remaining incompleteness error follows
such a simple power law only with specially constructed basis sets
which, e.g., have been saturated up to a given angular momen-
tum. With the basis-set families cc-pVXZ-F12 and aug-cc-pVXZ
an extrapolation with AX!n, where n is a fixed exponent, does not
efficiently improve the results. The remaining incompleteness
errors have for these sets a more complicated dependence on the
cardinal number. As shown in ref 520 they can, however,
successfully be improved by a Schwenke-type50 extrapolation,
eq 96, with exponents p optimized for the employed basis sets
and cardinal numbers and the variant of F12 theory. Optimized
exponents for MP2-F12/2C calculations with the geminal coeffi-
cients determined variationally or fixed by the s- and p-wave coal-
escence conditions (SP approach, “FIX”) are listed in Table 20
together with some results for the remaining errors.
7.9.2. Complementary Auxiliary Basis Sets. From the

expressions for the V and X intermediates in MP2-F12 calcula-
tions with ansatz 2, eqs 276 and 277, it follows that in a calculation
on an atom, which has occupied orbitals with a maximum angular
momentum Locc, an accurate computation of Vij

kl and Xij
kl requires

that the combined orbital plusCAbasis is saturized up toL= 3Locc.
For higher angular momenta the contributions from the CA basis
functions to

!ð1 þ P̂klij Þ ∑
ma0

Æijjo12jma0æÆma0jf12jklæ ð430Þ

where o12 and f12 are totally symmetric operators, vanish due to
symmetry. However, for the C and B intermediates, which are

calculated (partially) with the more approximate form of the
strong orthogonality projector in eq 256, also higher angular
momentum functions contribute to the resolution of the identity.
Test calculations in refs 415 and 416 on molecules with the first-
and second-row atoms H!Ar showed that CA basis sets with
functions up to LCA = max(3Locc,Lmax) + 1, where Lmax is the
maximum angular momentum of the orbital basis set, are for
these atoms sufficient to achieve very accurate results. Yousaf and
Peterson415,416 and Hill et al.519 optimized such CA basis sets for
the cc-pVXZ-F12, aug-cc-pVXZ, and cc-pCVXZ-F12 basis-set
families by minimizing the functional

ΔRI ¼ ∑
ij

V ij
ij ! Vij, ref

ij

' (

Vij, ref
ij

þ ∑
ij

Bijij ! Bij, refij

' (

Bij, refij

ð431Þ

With these CA basis sets the errors in total and reaction energies
due the resolution of the identity approximation for the three-
and four-electron integrals are about an order of magnitude
smaller than the incompleteness error from the orbital basis.
Table 21 shows some results from MP2-F12/2C calculations
with the cc-pVXZ-F12 basis sets from ref 415 (therein referred to
as “MP2-F12/3C”). For the first-row atomsB!Ne theCAbasis sets
are uncontracted and have the compositions (4s4p4d3f1g) for
cc-pVDZ-F12, (4s4p4d3f2g) for cc-pVTZ-F12, and (4s4p4d3f2g1h)
for cc-pVQZ-F12, while the orbital basis sets have the compo-
sitions (11s7p2d)/[5s5s2d] for cc-pVDZ-F12, (13s7p3d2f)/
[6s6p3d2f] for cc-pVTZ-F12, and (15s9p4d3f2g)/[7s7p4d3f2g]
for cc-pVQZ-F12. Thus, the size of the CA basis increases only
slowly with the size of the orbitals basis set.
7.9.3. Auxiliary Basis Sets for Density Fitting. Several

implementations of F12 methods employ the density-fitting
approximation described in section 7.7 for computation of the
various two-electron integrals that enter in the expressions for the
V, X, B, C, etc. intermediates. This necessitates a further auxiliary
basis set in addition to the orbital and CA basis sets. For integrals
(pi|rs) with at least one occupied MO index i auxiliary basis sets
with functions up to an angular momentum of Lmax + Locc are
sufficient tomake theDF errors insignificantly small. F12methods
employ the DF approximation also for integrals of the type
(p0i|rs), where p0 is a CA basis function. For these calculations the
DF auxiliary basis should include functions up to an angular
momentum of max(Lmax,LCA) + Locc, where LCA is the maximum
angular momentum of the CA basis set.
Not only the angular momenta but also the range of exponents

that needs to be spanned by the DF basis set depend on the

Table 20. Optimized Exponents for Extrapolating MP2-F12
Correlation Energies with Eq 96 from Ref 50a

basis sets exponent MAD STD

MP2-F12/2C

cc-pVDZ-F12/cc-pVTZ-F12 2.75 0.16 0.14

cc-pVTZ-F12/cc-pVQZ-F12 4.07 0.04 0.04

aug-cc-pVDZ/aug-cc-pVTZ 2.08 0.37 0.30

aug-cc-pVTZ/aug-cc-pVQZ 2.98 0.20 0.16

aug-cc-pVQZ/aug-cc-pV5Z 4.11 0.05 0.04

MP2-F12/2C(FIX)

cc-pVDZ-F12/cc-pVTZ-F12 3.09 0.38 0.30

cc-pVTZ-F12/cc-pVQZ-F12 4.35 0.13 0.27

aug-cc-pVDZ/aug-cc-pVTZ 2.30 0.70 0.54

aug-cc-pVTZ/aug-cc-pVQZ 3.25 0.40 0.38

aug-cc-pVQZ/aug-cc-pV5Z 4.33 0.07 0.05
aThe listed values refer to approximation 2C (in ref 50, denoted as
“3C’’) with geminal coefficients determined by minimization of the
Hylleraas functional (MP2-F12/2C) or from the s- and p-wave coales-
cence conditions at the interelectronic cusp (MP2-F12/2C(FIX)). The
results for the mean absolute and standard deviations have been
determined for set of 14 small molecules containing first- and second-
row main-group elements.

Table 21. Basis Set Errors in MP2-F12/2C Correlation En-
ergies Due to Truncation of the Orbital and Complementary
Auxiliary Basis Sets (in kcal/mol) for a Test Set of 42
Molecules with First- and Second-Row Atomsa

orbital basis CA basis
MAD STD MAX MAD STD MAX

cc-pVDZ-F12 0.71 0.80 3.84 0.05 0.07 0.31

cc-pVTZ-F12 0.24 0.24 0.99 0.01 0.02 0.09

cc-pVQZ-F12 0.15 0.12 0.47 0.004 0.005 0.03
aAll values have been adopted from ref 415 (therein referred to as MP2-
F12/3C). Listed are mean absolute deviations (MAD), standard devia-
tions (STD), and maximum deviations from reference results obtained
with large reference basis sets.
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orbital products that are fitted. Auxiliary basis sets optimized for
RI-MP2 calculations are tuned to accurately fit products of
occupied and virtual orbitals jaji. For integrals with products
of two occupied orbitals jijj the fitting basis should contain
somewhat tighter (i.e., larger) exponents, while the maximum
angular momentum could be restricted to 2Locc. This led to devel-
opment of method-specific auxiliary basis sets, for instance, the
RI-J basis sets for fitting the Coulombmatrix in DFT calculations
with functionals without exact exchange contribution, the RI-JK
basis sets for a simultaneous fitting of the Coulomb and exchange
matrices in DFT (with hybrid functionals) or Hartree!Fock
calculations, or the RI-C basis sets for fitting (p0i|rs) integrals in
calculations with correlated wave function methods.
For F12 calculations the cc-pVXZ-F12 and aug-cc-pVQZ

orbital basis sets with the respective optimized CA basis sets
from Peterson and co-workers414!416,519 can be combined with
the aug-cc-pwCV(X+1)Z auxiliary RI-C basis sets from refs 528
and 529 for the DF of the integrals for V, X, B, C, etc. inter-
mediates and the RI-JK basis sets cc-pV(X+1)Z from ref 530 for
the DF in the computation of the Fock matrix elements Fpq0 and
Fp0q0. The tight core!valence functions in the aug-cc-pwCV-
(X+1)Z RI-C basis sets are included to accurately fit products of
two occupied orbitals in the integrals for the F12 intermediates.
With these basis sets the errors from the DF approximation in the
correlation contribution are negligible in comparison to the incom-
pleteness errors from the orbital basis sets. For example, for calcula-
tions in the cc-pVTZ-F12 basis sets the errors due to the DF
approximations are with these auxiliary basis sets on the order of
1!2μEh per valence electron compared to truncation errors on the
order of 4!20 μEh and 100!400 μEh per valence electron from
the CA and orbital basis sets.

8. PROPERTIES AND RESPONSE THEORY

The largest part of the development work in F12 theory has
has been devoted to energy calculations, but as the methodology
develops, other targets such as molecular properties come into
focus. The main questions are as follows. How important are F12
corrections for the prediction of properties? Do the assumptions
behind the approximations used in F12 theory carry over to the
expressions to be evaluated for the calculation of properties?

One obvious next step is exploration of the Born!Oppenheimer
potential energy surface (PES), in particular, in order to obtain
equilibrium structures and vibrational frequencies. While for
2!4 atoms this stillmight be feasible by calculating thePESon a grid,
for any larger system, the implementationof analytical geometric deri-
vatives is required. Analytical derivatives of the energy not only
give access to geometric gradients on the PES, but also provide
access tomolecular properties via generalization of theHellmann!
Feynman theorem to approximate wave functions.

Higher-order derivatives of the energy then give rise to non-
linear response properties such as polarizabilities (or, more general,
susceptibilities). The time-dependent or frequency-dependent
generalization of response theory can also be used to consistently
derive equations for electronically excited states in the case of
theories like coupled-cluster theory, which originally is a ground-
state theory only.

We note that for Hy-CI, ECG-type calculations, and similar
methods a rich literature on molecular property calculations
exists (see, for example, ref 531). Here, we will only point to
some recent results for the biggest systems that presently are in
reach for these methods. Potential energy curves were reported

for LiH (ground and excited states) using the free complement
local Schr€odinger equation approach (FC LSE)176 and with an
ECG expansion.236 Excited states computed with the Hy-CI
method were recently reported for lithium,135 and with an ECG
expansion beryllium165,532 and boron167 have been feasible.
Dynamic dipole polarizabilities (up to second hyperpolarizabilities)
have been computed for Be and Be-like ions with the ECG
method.533,534 Furthermore, nonadiabatic effects as well as
relativistic and quantum electrodynamic effects were calculated
for several systems, for example, for He2.

241

For R12 and F12 theory a number of exploratory works exist
that use finite differences for calculation of geometry- or electric-
field-dependent properties, as summarized in section 8.1. The
encouraging results have triggered development of analytical
techniques, like implementation of geometric analytical gradi-
ents, section 8.2, and implementation of response theory for
treatment of excited states, section 8.3, and higher-order res-
ponse properties, section 8.4.

8.1. Finite Difference Approaches
In this section we summarize calculations of molecular proper-

ties using R12 or F12methods which were based on finite differe-
nces or evaluation of a Born!Oppenheimer surface on a grid.

Computing the spectroscopic constants of diatomics is rather
straightforward, and a first example, concerned with N2 at dif-
ferent levels of pair theory, was published by Klopper et al.352 as
early as 1991. Further examples, including Be2, LiH, HF, etc. can
be found in other work, e.g., refs 46, 366, 369, 484, 488, and 491.
One of the first examples for application to a polyatomic mole-
cule is possibly the work on SiH3

! by Aarset et al.,377 which also
includes calculation of the quartic force field at the CCSD(T)-
R12 level.

High-accuracy benchmarks using CCSD(T)-R12 (still in the
standard approximation using large basis sets) have later been
published for evaluation of composite methods for obtaining
structures386 and harmonic vibrational frequencies387 of diatomics
and small polyatomic molecules. More recently, a study of equili-
brium structures and harmonic and anharmonic frequencies of
polyatomics appeared which uses Slater-type correlation factors
within the CCSD(T)-F12a and CCSD(T)-F12b approach.535

The reported examples comprised, for example, CH2NH and
1,2-C2H2F2. Another recent study evaluates equilibrium struc-
tures and force fields up to quartic level using the CCSD(T)F12
approach in comparison to extrapolation schemes.349

With respect to electric properties the literature becomes
rather sparse. Magnetic properties have, to our knowledge, not
been considered to date. A first finite-difference-based study of
the dipole polarizability and second hyperpolarizability of the
beryllium atom was published by Tunega et al.536 in 1997. A
number of R12 augmented coupled-cluster methods have been
employed, including CCSD(T)-R12. The study was followed by
work on LiH, which included up to the static second dipole
hyperpolarizability and the quadrupole hyperpolarizability.537 As
at most basis sets with f functions were feasible at that time, very
little improvement with the linear correlation factor was seen.
CCSD(T)-R12 was also used as a benchmark for a basis-set con-
vergence study of the BH and HF molecular dipole moment.538

Other work based on CCSD(T)-R12 in the standard approx-
imation scheme and finite difference calculations includes in-
vestigation of interaction-induced changes in the dipole polari-
zability of helium539 and a study of static electrical response
properties of F!, Ne, and HF.456 The latter included the static
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dipole polarizability and second hyperpolarizability; for HF also
the static dipolemoment and the hyperpolarizability were reported.

8.2. Analytical Gradients
Analytical first derivatives are the essential ingredient for

efficient determination of equilibrium structures and transition-
state structures of polyatomic molecules. As compared to con-
ventional orbital expansions, the main complication in F12 theory
arises from the larger number of two-particle integrals for which
effective two-particle densities and integral derivatives need to be
calculated. Development of methods is still in its beginnings;
analytical gradient codes have so far been reported for MP2-
R12540,541 using conventional four-index integrals and MP2-
F12542,543 using density fitting. In both works approximation A
was used for the B matrix (see section 6.3) which reduces the
number of necessary integral derivatives to a minimum. Accord-
ingly, we will restrict the following discussion to this case, as this
suffices to show the basic principles.

The starting point is a stationary Lagrange functional. To this
end, theMP2-Hylleraas functional, eq 300, is augmented with the
constraints for fulfillment of the Brillouin condition, fi

a = fa
i = 0,

and canonical frozen orbitals, fJ
i = fi

J = 0, where for J runs over all
core orbitals that are excluded from the correlation treatment.
The Lagrange functional thus reads

L ¼ HMP2-F12 þ ∑
ai

zai f
i
a þ ∑

iJ
zJi f

i
J !

1
2 ∑rs

xsrðS
r
s ! δrsÞ ð432Þ

where the last term stems from the orthonormality condition, Ss
r

being the overlap matrix of the orbitals.
The Lagrangemultiplier zi

a can be calculated by solving a set of
coupled-perturbed Hartree!Fock equations, also known as z-
vector equations.544 As compared to the conventional case, the
right-hand side of these equations has a few additional terms that
originate from the orbital gradient of the F12 contributions.
Once zi

a is determined, the multipliers zi
J and xr

s can be calculated
directly from the pertinent expressions, again with corresponding
additional F12 terms.

The first derivative with respect to a geometric distortion ξ,
expressed in the AO basis, has the general structure

dEMP2-F12

dξ
¼ ∂L

∂ξ
¼ ∑

μν
Drel
μν
∂hμν
∂ξ

! ∑
μν

Xμν
∂Sμν
∂ξ

þ ∑
K
∑
μνkλ

dKμνkλ
∂ÆμνjÔK

12 jkλæ
∂ξ

ð433Þ

The derivatives of the one-electron Hamiltonian (∂/∂ξ)hμν
are associated with the relaxed density Dμν

rel , into which the

contributions from zi
a and zi

J have been absorbed. The overlap
matrix derivatives (∂/∂ξ)Sμν come along with the Lagrange
multipliers Xμν which are the AO representation of xr

s. The index
K runs over all two-electron operators Ô12

K . In the case of MP2-
F12/A this comprises r12

!1, f(r12), f(r12)r12
!1, and |31f(r12)|

2. All
these integral derivatives are joined with the respective two-
electron density matrices.

In the MO representation these density matrices possess two
occupied and two general indices (including frozen and CABS
orbitals). Storage of these matrices and their subsequent back-
transformation and contraction with integral derivatives is likely
to pose a severe bottleneck, in particular, as for certain integral
types up to two indices will also include the CABS. This problem
is removed when using density fitting (see section 7.7). This
approximation replaces the terms with four-index integral deri-
vatives by terms involving three-index and two-index integrals
and corresponding density matrices

∑
μνkλ

dKμνkλ
∂ÆμνjÔK

12 jkλæ
∂ξ

f ∑
μkP

ΔK
P, μk

∂ðμkjÔK
12 jPÞ

∂ξ

þ ∑
PQ

γKPQ
∂ðPjÔK

12 jQ Þ
∂ξ

ð434Þ

As in section 7.7 the indices P and Q run over the auxiliary basis
employed for density fitting. The quantities 4P,μk

K and γP,Q
K are

the effective three- and two-index two-particle density matrices.
An example application is shown inTable 22 for the ammonia!

water complex. Using MP2-F12 in the structure determination,
for both the intermolecular distance and the resulting interaction
energy basically converged results are obtained at the triple-ζ
level, and even using a double-ζ basis set only little deviation
from the putative basis-set limit is found. In contrast, conven-
tional calculations are plagued by basis-set superposition errors,
which in the present case fortuitously compensate for the basis-
set error in the correlation contribution. The results including the
counterpoise correction545 reveal a much larger uncertainty in
the conventional results, for example, for the hydrogen bond
which is 6 pm longer for the counterpoise-corrected double-ζ
calculation (see also ref 546).

8.3. Excited States
Multireference approaches (section 6.9) can treat excited

states rather naturally. Nevertheless, only the most recent works
have actually moved beyond the ground state, for example,
different low-lying states of methylene were considered by Flores
and Gdanitz493 using the MRACPF-R12 approach. Similarly,

Table 22. Intermolecular Distance and Binding Energy of the Ammonia!Water Complex Calculated at the MP2 Level (with
density fitting)a

MP2-F12 + CABS singles MP2 MP2 + CP correctionb

basis r(N 3 3 3H)
c ΔEd r(N 3 3 3H)

c ΔEd r(N 3 3 3H)
c ΔEc

aug-cc-pVDZ 196.56 !10.10 196.78 !11.07 201.98 !9.31

aug-cc-pVTZ 195.96 !10.40 195.74 !10.69

aug-cc-pVQZ 196.07 !10.41 195.83 !10.55

aug-cc-pV5Z 196.09 !10.40 196.01 !10.45 196.74 !10.26

aug-cc-pV6Z 196.03 !10.42
aAll values taken from ref 543. bCounterpoise-corrected results. c Intermolecular distance in pm. dBinding energy in mEh.
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in his initial work on F12 corrections for MR-MP2 Ten-no430

applied his method to the excited states of carbon atom and silane.
Shiozaki and Werner reported CASPT2-F12 excitation energies
for pyrrole431 and MRCI-F12 excited-state potential energy
curves for LiF, O3, and the H2 + OH reaction.433 In all cases
the correlation factors significantly improve the convergence of
excitation energies toward the basis-set limit, as expected from
the good performance for ground-state energies.

Single-reference theories, as coupled-cluster theory, are also
capable of describing excited states, for example, by use of
response theory.547 The basic principle of this approach is as
follows: Formulate the time-dependent coupled-cluster equa-
tions and obtain the response functions and equations. In this
procedure it is important to take care of a physically correct pole
structure of the response functions. If this is the case, one may
identify the position of the poles as excitation energies and devise
equations to directly calculate these. In the case of coupled
cluster, one finds that the excitation energies can be obtained as
the eigenvalues of the Jacobian A which is the first derivative of
the coupled-cluster residualΩμ = Æμ|e!THeT|HFæ (cf. section 6.5)
with respect to the cluster amplitudes

Aμν ¼
∂Ωμ

∂tν
¼ Æμje!T̂ ½Ĥ, τ̂ν(eT̂ jHFæ ð435Þ

For excitation energies, the procedure turns out to be equivalent
to the equation of motion coupled-cluster (EOM-CC) method.
Some differences, however, occur for calculation of transition
moments and excited-state properties, which only for response
theory are strictly size consistent. The particular appeal of res-
ponse theory is the fact that any (approximate) method can be
fully defined by its ground-state energy Lagrange functional.
All other equations can be derived from that by the response
formalism.

A straightforward application of response theory to CC2-R12
was reported in Fliegl et al.457 CC2 is a simplification of CCSD
which truncates the doubles equations such that excitation energies
remain correct through second order in the fluctuation potential.548

Fliegl et al. obtained a general eigenvalue problem of the form

AE ¼ SEω ð436Þ

where S is the metric matrix with elements

Sμν ¼ Æμjτ̂νjHFæ ð437Þ

The geminal!geminal block Sμ20ν20 is equivalent to the X inter-
mediate, eq 268, while for conventional excitations the metric is
unity. Analogous to the cluster amplitudes, the vectorE consists of a
singles, E1, doubles, E2, and geminal part, E20.

Contrary to initial expectations, the excitation energies were
not found to improve by including the correlation factor in CC2-
R12. On the contrary, for certain cases a significantly worse con-
vergence was observed.457 It was found that this problem is
caused by the ansatz for the geminal contribution which is inhere-
ntly biased toward the ground state. The geminal contribution to
the excited state can be written as the operator

E20 ¼ ∑
i>j
a>b

E ij
kl ∑
α>β

wkl
αβa

αβ
ij ð438Þ

The Ekl
ij amplitudes just include occupied indices, and the

correlation factor effectively only contains basis functions of
the type f(r12)|ijæ. Hence, the expansion misses contributions

from the virtual orbitals. Even worse, in certain cases it might even
not contain any geminal contributions. This happens if no
occupied orbitals of the appropriate symmetry are present. Consider,
for example, the P state of the Be atom, whose ground state features
occupied s-type orbitals only. This is illustrated by Figure 17: The
ground-state converges quickly with CC2-R12, but the excited
state remains nearly unaffected by the correlation factor.

The finding is supported by a numerical analysis457,458 which
indicates that the geminal fails to describe excited-state correla-
tion effects. It was therefore suggested to extend the generat-
ing space of the geminal to include virtual orbitals458 (see also
section 6.6.4). Computational feasibility and numerical stability
demands, however, restricting these additional orbitals to a
minimal set. Neiss et al.458 therefore performed a selection based
on MP2 natural orbitals. The approach, termed R12+, indeed
leads to the expected improvements, as indicated in Figure 17.

Yang andH€attig460 later generalized the approach to F12 correla-
tion factors. However, they adhered to the original geminal factor
with occupied orbitals only but found that excited-state structures
and vibrational frequencies are nevertheless well described.

A different route was taken by K€ohn463 with the intention of
combining response theory and the SP ansatz. As a pure fixed-
amplitude geminal does not contribute to the response, an exten-
sion is needed. The extended SP (XSP) ansatz, as described in
section 6.6.4, leads to the desired amplitudes, which are obtained
as the response of [R̂(hp),T̂1]

Ê20 ¼ R̂ðhpÞ, ~̂E1

h i
¼ ∑

i>j
α>β

∑
c

~E i
cw

cj
αβ þ ∑

c

~E j
cw

ic
αβ

 !

aαβij

ð439Þ

Clearly, this ansatz incorporates geminals of the type f(r12)|iaæ, that
is, a correlation factor times a singly excited determinant. Two choices
are possible for the above parametrization: One can either fixÊ1=Ê1
(as it naturally results from the expansion, eq 339, where [R̂(hp), T̂1]
appears) or allow ~E1 as an additional free parameter. The first choice
is numerically more stable, but a small bias toward the ground state
remains. Better results for excitation energies are obtained with the
second choice; for excited-state structures and vibrational frequencies,
however, both choices work equally well.463

Figure 17. Partial wave expansion of the ground- and 1P excited-state
energy of the Be atom using CC2 and a 20s17p14d11f8g5h basis and
subsets thereof. R12 denotes the usual ansatz for the linear correlation
factor, the extended ansatz (R12+) includes virtual p orbitals in the
generating space of the geminal. Figure based on the values from ref 458.
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Closely related to this approach is the work of Bokhan and
Ten-no, who recently showed that ionization potentials can be
accurately calculated within the SP approach.549 In this case, one
electron is removed upon excitation, and hence, no extension of
the generating space for the geminal is required.

8.4. Analytical Calculation of Higher-Order Response
Properties

Response theory not only provides a framework for calculating
excited states, as discussed in the previous section, but also gives
access to linear and nonlinear optical properties. Except for the
static limit, calculation of coupled-cluster response properties is not
compatible with including the response of the SCF orbitals (also
known as “relaxed properties”). The reason for that is the occurrence
of additional poles due to the response of the SCF wave function.547

Instead, one relies on the capability of the coupled-cluster wave func-
tion to approximately treat orbital relaxation through the T̂1 opera-
tors. Often the term “unrelaxed properties” is used in this context, but
it should be understood that the term unrelaxed merely refers to the
absence of SCF contributions to the response.

For R12 and F12 wave functions the issue of orbital relaxation
leads again to the question of an appropriate ansatz for the
geminal. In all studies that include orbital relaxation contribu-
tions, the geminal generating space is adapted to the perturbation,
and hence, no problems occur. This holds for all finite-difference
studies mentioned in section 8.1 and the analytical relaxed first-
order properties discussed in refs 540 and 542.

In the orbital-unrelaxed ansatz the geminal generating space is
not adapted to the perturbation, as T̂1 does not directly modify
T20. Neiss and H€attig459 derived and implemented analytical
response properties up to second hyperpolarizabilities for the
CCSD(R12) approach. In most cases, the response of the ckl

ij was
found to be sufficiently flexible, and an improved basis-set con-
vergence of the calculated properties was observed. In addition to
static properties, also the dispersion of the electric-field-induced
second-harmonic generation (ESHG) hyperpolarizability of N2
was presented. For cases analogous to those giving problems for
excitation energies, however, a slowed-down convergence was
found, for example, for the polarizability of BH perpendicular to
themolecular axis. In this case, the extendedR12+ ansatz is needed.
Yang and H€attig461,462 recently extended the work to Slater-type
correlation factors.

Hanauer and K€ohn465 investigated the SP and XSP ansatz; see
section 8.3 for a definition. They found best results for the XSP
ansatz with optimized expansion coefficients in the geminal. In
addition, they also considered a simplified method which is
analogous to CCSD(F12*) and a correction for the error in

one-electron contributions which is an iterative extension of the
(S2) correction discussed in section 6.7. Apart from static
nonlinear response properties of BH, LiF, and N2, they also
investigated the frequency dispersion of ESHG second hyperpo-
larizabilities of N2 and the optical rotation of H2O2 at fixed values
for the dihedral angle.

In Table 23 we compare the results for the dynamic ESHG
hyperpolarizability of N2 obtained with the different approaches
that were presented in this section. The results clearly indicate
that using Slater-type correlation factors converged results can
already be obtained at the triple-ζ level, that is, with at most
f functions in the basis set, while a conventional calculation must
use i functions, and higher, in order to achieve this accuracy.550

This is particularly important as properties like γ are relatively
demanding with respect to the convergence of the one-electron
basis set, requiring three sets of diffuse functions in the present
example. In other words, in conventional calculations the choice
of the basis is largely dictated by the interelectronic cusp rather
than by the property under consideration. F12 methods relax the
requirement to include high-angular momentum and allow
adding those functions to the basis set which really are needed
for accurate prediction of the property.

As a final remark, we note that the developments reported in
the last two sections are restricted to CCSD theory. Quantitative
comparison with the experiment requires inclusion of connected
triply excited clusters. Work on this issue is in progress but not
yet documented in the literature.

9. SUMMARY AND OUTLOOK

In the present review we have presented the basics and historical
background of present-day R12 and F12 theories for nonrelati-
vistic electronic wave functions. Fundamental properties of
correlated electronic wave functions have been discussed as well
as the explicitly correlated wave functions for few-electron atoms
and molecules that were developed in the early days of quantum
mechanics. Hylleraas-type and Hy-CI wave functions including
variants for linear molecules (James!Coolidge- and Kozos!
Wolniewicz-type wave functions) have proven to be very useful
for accurate electronic-structure calculations ever since their
conception in the 1920s and 1930s. The corresponding compu-
tational methods remain highly relevant to contempory numer-
ical quantum chemistry and physics today, for example, for
calculation of non-Born!Oppenheimer corrections, of various rela-
tivistic effects including those described by quantum electrodyna-
mics, and of electronically excited states and for calculation ofmole-
cular properties such as rovibrational energy levels (e.g., for H3

+).

Table 23. Comparison of the CCSD Values for the Frequency-Dependent ESHG Hyperpolarizabilities γ||(ω) of N2 (in atomic
units) Using Conventional CCSD and Different Explicitly Correlated Variantsa

CCSDb CCSD(R12)b CCSD(F12)c CCSD(F120)-XSPd

λ/nm TZ QZ TZ QZ est. limite TZ TZ QZ

∞ 903.0 882.7 882.4 872.7 864.5 872.4 864.3 865.2

1055.0 959.2 936.9 936.7 925.9 917.2 918.2ee 916.9 917.7

694.3 1041.1 1015.6 1015.7 1003.2 993.8 995.6e 993.4 993.9

457.9 1273.4 1238.1 1239.1 1221.5 1210.0 1214.0e 1208.9 1209.0
aThe t-aug-cc-pVXZ basis sets have been used in all calculations, unless indicated otherwise. bValues from ref 459. cValues from ref 461. dValues from ref
465. e λ =∞: CCSD(R12)/t-aug-cc-pV6Z value, for nonzero frequency estimated as γ(ω) = γ(R12)/QZ(ω) ) γ(R12)/6Z(0)/γ(R12)/QZ(0).

fObtained
with the d-aug-cc-pVTZ basis set.
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Gaussian functions are very well suited to the represention
of electronic wave functions of atoms and molecules with very
high accuracy, despite their inability to satisfy the electronic
cusp conditions. Exponentially correlated Gaussians have
been used in variational calculations on systems with up to
six electrons such as the carbon atom but as is also true for the
Hylleraas-type and Hy-CI wave functions, progress toward
more-electron systems is slow due to the very high computa-
tional costs involved. Gaussian geminals are exponentially
correlated Gaussians for two electrons, either for a two-
electron system or for the two-electron pair functions in pair
theories for description of electron correlation, and they have
been used successfully in the framework of second-order
perturbation theory as well as coupled-cluster theory. How-
ever, due to the occurrence of six-center three-electron
integrals, their range of application has remained rather
limited. Nevertheless, when applied to few-electron systems,
impressive results can be obtained, which was, for example,
achieved for the four-electron problem of the helium pair
potential.

R12 theories were introduced to quantum chemistry in
1985, and they have been actively developed ever since. Before
2004 linear r12 terms were used in the electronic wave
functions, but thereafter, more general functions f(r12) of
the interelectronic distance have been considered. For this
reason the newer methods are today known as F12 methods.
Development of the R12 and F12 methods has been a break-
through in explicitly correlated theories for general many-
electron, polyatomic molecules, because the very challenging
calculations of many-electron integrals (more than two) is
entirely avoided. This was achieved by insertion of a resolu-
tion of the identity (also know as completeness relation) into
the many-electron integrals such that only products of two-
electron integrals remained. In particular, after it was pro-
posed to use an auxiliary basis set for the completeness
relation in 2002 and after the change to the functions f(r12),
that is, Slater-type geminals, further development of the R12/
F12 methods has been vary rapid. These methods have now
reached a high level of maturity, and they have been imple-
mented in a number of noncommercial as well as commercial
program packages of numerical quantum chemistry.

In this review we have provided many details of F12 theory
and many convincing arguments in favor of the applicability of
F12 methods for obtaining reliable and accurate results in a
cost-efficient manner. However, it is undeniably true that “all
the proof of the pudding is in the eating”. In other words, to
actually find out how well they work the methods should be
applied to chemical problems of current interest, where it is
important to describe electron-correlation effects near the limit of a
complete one-particle basis set. In our own work at the CCSD-
(F12) level, for example, we recently computed the enthalpies
of formation of the radicals HOSO2

551 and HOSO4,
552 we studied

the thermochemistry of theHOSO2 +O2 association reaction,
552

and we used the CCSD(F12) model to compute accurate reaction
rate constants for two reactions between the CH4 molecule and
the CH3 radical.

553 F12 methods are particularly useful for bench-
marking, as shown in ref 554, where the hydrogenation of
benzene and naphthalene was carefully studied by means of
F12 methods to test more approximate methods for calculation
of the hydrogenation products of fullerenes. These applica-
tions show the potential of the explicitly correlated methods in
the field of computational thermochemistry.522 With regard to

larger systems, we refer to our own large-scale MP2-F12
calculations on the trimerization of the pyrazine (C4H4N2)-
molecule555 or the recent study of complexes of argon with
n-propanol.556

Feller et al.557 performed a calibration study of the CCSD(T)-
F12a/b methods for C2 and small hydrocarbons, and Lane and
others444,558!560 assessed the performance of F12 with respect to
weak intermolecular interaction (e.g., hydrogen bonds). Patkowski
and Szalewicz561 investigated the CCSD(T)-F12a/bmethods on
the Ar pair potential, but these authors note that “the CCSD-F12
method cannot yet compete with the orbital basis calculations and
extrapolations.” In this regard, we note that first and foremost the
F12 methods have been developed to accomplish a rapid con-
vergence toward the limit of a complete basis and to get a very
good answer very quickly, but it appears that for extreme accuracy
at the limits of what is technically feasible still more experience
must be gained with the various approximations—F12/a or F12/
b or (F12*)—and (auxiliary) basis sets in such calculations.

In a series of papers Botschwina and co-workers562!567

performed explicitly correlated coupled-cluster calculations on
astrochemically relevant molecules such as polyynes, their an-
ions, the propargyl radical (H2C3H), etc. In particular, in the field
of high-resolution spectroscopy and also for the study of
molecular reaction dynamics, use of explicitly correlated coupled-
clustermethodsmay be advantageous for the accurate calculation
of the necessary potential energy hypersurfaces (see, for example,
refs 535, 568, and 569).

Concerning larger systems or even solids, we note that the
explicitly correlated MP2 and coupled-cluster theories not
only have been implemented in terms of the local-correlation
methods but also can be applied in the framework of Stoll’s
incremental scheme512,570 or in the framework of quantum
mechanics/molecular mechanics (QM/MM) strategies.571,572

Preliminary results have been obtained for MP2-F12 calcula-
tions on systems with periodic boundary conditions,573 where
Slater-type geminals may be particularly important: in solids,
the large one-particle basis sets required for accurate electron-
correlation calculations can often not be used due to near
linear dependencies, and explicit correlation may solve this
problem.

Concerning heavy-element computational chemistry, we note
that scalar relativistic corrections and scalar relativistic effective
core potentials have been implemented437,442,574 and that a two-
component MP2-F12 theory with spin orbit relativistic effective
core potentials has been developed.442,575 However, with res-
pect to applying F12 methods in four-component methods, for
example, on the basis of the Dirac!Coulomb many-electron
Hamiltonian, we note that the problems related to the Brown!
Ravenhall576 disease become rather subtle and difficult. Since
fully relativistic calculations are beyond the scope of the present
review, we refer the interested reader to very recent work by
Pestka and co-workers.577!580

We expect that in the near future explicitly correlated
coupled-cluster calculations in small basis sets will replace
conventional coupled-cluster calculations in very large one-
electron basis sets, because the explicitly correlated calcula-
tions will be more economical. The computer programs will be
developed further toward including explicitly correlated high-
er excitations, methods for excited states, multireference
methods, and analytical derivatives. These programs will then
have the potential to become very useful tools for numerical
quantum chemistry with a broad range of applicability.
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