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1. INTRODUCTION

One of the central challenges of computational molecular inves-
tigation is the solution of the time-independent, nonrelativistic Born—
Oppenheimer electronic Schrodinger equation. For a system of n
electrons and N nuclei with atomic numbers Z; and interparticle
separations r;; and ry, the eigenvalue equation in atomic units is

9

Accurate approximations to the eigenfunctions and energies
provide valuable information for spectroscopy, thermochemistry,
and kinetics and form the basis of computational molecular
dynamics. They often also are the first step in more accurate
treatments that account for nonadiabatic and relativistic effects.
The challenge researchers face is to devise numerical methods
that are sufficiently accurate to provide reliable predictions while
at the same time requiring modest computational resources such
that chemically relevant systems can be investigated.

Today, much research is being carried out in the field of
quantum chemical methods that make use of explicitly correlated
electronic wave functions. Efficient computer codes have re-
cently been developed in the framework of large (commercial)
quantum chemical program packages, and the number of appli-
cations of these codes is increasing rapidly. By using explicitly
correlated electronic wave functions, electronic correlation ener-
gies of molecular ground and excited states can be computed
close to the limit of a complete basis set at high levels of, for
example, coupled-cluster theory. Methods based on a single
Slater determinant as a reference wave function have been
developed toward practical tools for all kinds of applications,
and methods for multireference problems are currently being
developed as well as methods for analytical computation of
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nuclear gradients and (response) properties for ground and
excited states.

In this manuscript, we present a comprehensive review of
explicitly correlated approaches, beginning with the early ideas
and methods and progressing to the state of the art of the field.
We give particular prominence to the F12 approach that has
received a surge of impetus over the past decade and become a
useful tool for routine chemical investigations. Before discussing
explicit correlation, however, we first review exact and approx-
imate wave functions from a more general perspective.

2. CORRELATION IN ELECTRONIC WAVE FUNCTIONS

To successfully construct accurate trial electronic wave func-
tions it is important to have a clear understanding of the nature of
electronic correlation, where it is, and where it is not represented
in common approximate wave function forms. In the following
sections, we present a systematic discourse that we hope fulfills
this aim and is somewhat pedagogical in nature. Related dis-
courses on this topic can be found in refs 1 and 2.

2.1. Statistical Correlation

The motion of two particles is said to be statistically uncorre-
lated if the pair probability distribution function factorizes into a
product of distribution functions for the individual particles

Ppy(x1,%,) = Pi(x1)P2(x2) (2)
Equivalently, this can be expressed in terms of the conditional
electron density P, (x; |x2),3 the probability distribution function for

particle 1 when particle 2 is at x,. If the particles are statistically
uncorrelated, Py,(x;|x,) is independent of the position of particle 2

Py (x1,%2)
P 2 (Xz )
Whenever the above identities do not hold, the particles are said
to be statistically correlated. If the particles are distinguishable, then
P, (x) and P,(x) may be different from each other and P}, (x;,x,) can

be different for every particle pair. Electrons, however, are indis-
tinguishable, and therefore, for every electron pair

Pi(x) = Py(x) = ~p(x) @

Pi(xilx) = = Pi(x1) (3)

= ) (s

Py (x1,%2)

where p(x) is the electron density and p,(x;,x,) is the pair density

o(x) = n/ dxz.l./ e, U (x5, oo %) P (30, k) (6)

P, (x1,%2) = n(n— 1)/ dx;/ dx, W*(x1, %2, .y X, )W (X1, X2, ..y X))

(7)
p2(x1,%,) is the probability of finding an electron at position x; at the

same time as finding another electron at position x,. Since the elec-
trons are countable, if there is an electron at x; then there can only be
n — 1 electrons at x, and p, integrates to n(n — 1) (some authors
normalize o, to (1/2)n(n — 1) so that V,, = fdxlfdxzrlepz(xl,xz)).
Thus, the electrons in an n-electron system are statistically uncorre-

lated if *

n—1

p(x1)p(x) (8)

Py (x1, %) =

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74
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Note that x is a composite space and spin coordinate x = (r,1,7,5).
The nonrelativistic Hamiltonian is spin free, and in the nonrelativistic
limit, the electron repulsion energy only depends on the distribution
of the electrons in space. In this respect we are primarily interested in
the spatial probability distributions. These are obtained by simply
integrating over all the spin coordinates in p(x) and p,(x;,%,) to give
p(r) and py(ry,r,).
Correlation between electrons has two independent sources.
o Fermi correlation: electrons are countable but indistinguish-
able particles that obey Fermi statistics, which requires that
the wave function is antisymmetric with respect to exchange
of configurations x; and x, for any pair of electrons.
e Coulomb correlation: electrons interact through a repulsive
Coulomb force ¢*/(47meyry,), where ry, is the distance
between the electrons.

In terms of approximate representations for electronic wave
functions, Fermi correlation has two distinct consequences. The
first is that any expansion of the wave function has exactly zero
contribution from n-electron orbital product wave functions
where two or more electrons occupy the same spin orbital. We
shall see that this gives rise to correlation between electrons in
the statistical sense. The second consequence of Fermi correla-
tion is that the antisymmetry requirement introduces additional
correlation, which is referred to as exchange.

In the following sections we illustrate the consequences of the
intrinsic entanglement of electrons through Fermi and Coulomb
correlation using the simple two-electron systems of helium and
molecular hydrogen. However, first, it is instructive to contrast
the language used in wave function theory with that used in
density functional theory (DFT).

2.1.1. Exchange-Correlation Hole in Density Functional
Theory. In density functional theory a pair correlation function
h(x,,x,) is defined through

py(x1,%2) = p(x1)p(x2)(1 + h(x1, %)) (9)
The exchange-correlation hole for an electron at x; is defined as
Prc(x1,%2) = p(x2)h(x1,%2) (10)

and serves to separate the total electronic interaction energy into
a classical interaction calculated from an uncorrelated probability
distribution, p(x;)p(x,), and a “nonclassical” contribution

1 1
Vee = 7/ dxldxlipz (XIJXZ)
2 12
1/ 1 1 1
= —/ dx; dx,—p(x1) p(x2) + —/ dx; dx—p(x1) oy (%1, %2)
2 12 2 2
(1)

The pair correlation function, (x,,x,), is symmetric and contains
both Fermi and Coulomb correlation and also a contribution
removing the self-interaction of the electrons. The exchange-
correlation hole is related to the conditional electron density

through

Puc(X1,%2) = (n— 1)Pia(x2]x1) — p(x2) (12)
and therefore
/dxszc(xbxz) = -1 (13)

This results from the contribution that eliminates self-interaction.
The exchange-correlation hole can be partitioned into exchange

and (Coulomb) correlation parts, where the exchange part is

defined as

Px(x1,%2) = p(x2)hur (x1,%2) (14)

and hyp(xy,X,) is the pair correlation function for the Hartree—
Fock pair density. p,(x;,x,) contains contributions from both
Fermi correlation and the self-interaction correction and thus
also satisfies eq 13.

2.1.2. Exchange and Coulomb Holes in Wave Function
Theory. In wave function methods the key object of interest is
the wave function rather than the density. The Hartree—Fock
wave function Wy forms the basis for almost all approximate
methods and accounts for Fermi correlation (see below). It is
therefore convenient to define a Coulomb hole as

he = W — Wy (15)

This is the function that must be modeled successfully to obtain
accurate solutions to the Schrodinger equation. The (Coulomb)
correlation energy is defined similarly®

Ecorr = Eexact — Enr (16)

In fact, such is the importance of Coulomb correlation that
this energy is referred to simply as the correlation energy, even
though Eyp contains the effects of Fermi correlation. Note that
we assumed Lowdin’s definition, eq 16, of the correlation energy,
which is based on a restricted Hartree—Fock (RHF) wave func-
tion. Pople and Binkley® have given a definition based on an un-
restricted Hartree—Fock wave function, but spin contamination
makes the separation of Fermi and Coulomb correlation much
less well-defined (see also ref 7).

2.1.3. Radial, Angular, and Left—Right Correlation.
When visualizing and discussing electron correlation in molecules,
it is commonplace to speak of three possibilities.

¢ Radial correlation: if an electron is close to a nucleus it is
more probable for the other electrons to be far out from that
nucleus.

e Angular correlation: if an electron is on one side of a nucleus
it is more probable for the other electrons to be on the opposite
side of that nucleus.

e Left—right correlation: if an electron is close to a nucleus on
the left side of a chemical bond it is more probable for the
other electrons to be close to the nucleus on the right.

Radial and angular correlation are separable when using a
nucleus as the origin and convenient descriptors of correlation in
atoms or for correlation close to each nucleus in a molecule.
Left—right correlation is convenient for describing correlation in
regions between atoms in a molecule. These descriptors are not
specific to Fermi or Coulomb correlation and simply refer to the
correlation in two-particle probability distribution functions.

2.2. Fermi Correlation: Shell Structure
A Hartree product wave function for an n-electron system has
the general form® '

W%, %) = 116 (x) (17)

where ¢, are orthonormal spin orbitals. The Hartree product
wave function may be criticized on several fronts. Although the
wave function is an eigenfunction of S,, it is not in general an
eigenfunction of $2. More importantly, however, assigning elec-
tron | to occupied orbital ¢y, electron 2 to ¢, and so on, makes

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74
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the implicit assumption that the electrons are distinguishable.
Consequently, every pair of electrons i,j has a different set of one-
and two-particle probability distribution functions

P(x) = o (x)0, (x) (18)
Bi(x) = oy (), (x) (19)
Py(x,%) = Pi(x,)P(x) (20)

Since for every pair the two-particle probability distribution
function factorizes into a product of one-particle distribution
functions one may be tempted to say that the electrons are
statistically uncorrelated. This is only true if the electronic coor-
dinates are treated as distinguishable. However, because electrons
are in fact indistinguishable the correct measure for statistical
correlation between electrons is eq 8. For the Hartree product
wave function

n

p(x1) = Y Pi(x1) (21)

i=1

Z Pl] XIJXZ) (22)

Lj=1
7

P2 (XI: XZ

and therefore

Z P;(x;)P (23)

i=1

Pz(Xth) = p(x1)p

Thus, the electron pair probability distribution derived from a
Hartree product wave function is statistically correlated. To
appreciate the nature of this correlation it is perhaps helpful to
consider a Hartree product wave function for certain bosonic
states where all indistinguishable particles occupy the same
orbitals. For such a wave function

Vi=1ln (24)

pa(x %) = plx)plx2) — (1 )olx2) (25)

and the particles are statistically uncorrelated.

For an electronic Hartree product wave function the prob-
ability distribution reflects the shell structure of the electronic
distribution where, in accordance with the Pauli exclusion
principle, every spin orbital in the Hartree product is different.
This is by far the largest correlation between electrons and has
the largest impact on the electronic energy.

2.3. Fermi Correlation: Exchange
A Slater determinant wave function for an n-electron system
has the general form''
W(xy, %, .0%,) = Vil [] ¢ (x) = |@x) (26)
i=1
where ¢ are a set of orthonormal spin orbitals and |®) denotes

a Slater determinant of orbitals k;. ¢ projects onto the antisym-
metric irreducible representation of the symmetric group

Z &P, (27)

u*l

where ¢, is the parity of a permutation P,. The fundamental
deficiency of the Hartree product representation has been
remedied: The Slater determinant is antisymmetric with
respect to exchange of any two electrons, as appropriate for
fermionic indistinguishable particles. A Slater determinant
wave function is an eigenfunction of S,, but it is only an
eigenfunction of §* for electronic states with closed-shell or
high-spin open-shell configurations. For low-spin open-shell
configurations, a wave function that is an eigenfunction
of both S, and §” can be constructed from a linear combination
of Slater determinants

IPS’MS(Xth;m;Xn) = 2 x| Px) (28)

K

These are configuration state functions (CSFs). The deter-
minants | Py that enter the sum are those with the same spatial
occupation, but differing spin occupations with S, eigenvalue
M and the coefficients cx are determined by group theoretical
considerations.

Antisymmetric wave functions correlate electrons over and
above the correlation present in a Hartree product description.
For a single Slater determinant the one-electron probability
distribution is

Pi(x) = ~p(x) (29)

n

p(x) = Y, % (x)¢y, (x) (30)

i=1

The pair density is given by

p(xu%) = p(x)p(x) — Y 431:(X1)¢k,(X1)¢;:(X2)¢k,(xz)

ij=1
(31)

The additional correlation that arises from antisymmetry is given
by the difference between eqs 31 and 23 and is the exchange com-
ponent of Fermi correlation

— 3 4 G () (x2)6 () 32)

ij=1
i#j

Integrating over the spin coordinates we see that exchange lowers
the probability of like-spin electrons being close in space, but has
no effect on opposite spin electron pairs. In fact, p5(x;,x;) = 0,
that is, there is identically zero probability of finding two
electrons with the same spin at the same point in space. This is
the exchange hole.

For a single Slater determinant the correlation arising
from exchange is always negative. For low-spin open-shell
configurations, however, the CSFs are linear combinations
of Slater determinants and the antisymmetry requirement
can also lead to positive correlation, which is known as a
“Fermi heap”.

2.3.1. Case Study: He Atom. Let us now illustrate these
concepts through a consideration of the three lowest lying energy
electronic states of the helium atom. The CSF for the (1s*) con-
figuration is

‘P‘fl‘é = @1 (0) 1 (1) [al(s1)B(s2) — Blsi)a(sy)]2 7/

(33)

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74
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Figure 1. Fermi correlation depicted through the two-electron radial densities in the helium atom for (clockwise from the top left) the 1'S ground state,
the 2°Sand 2'S singly excited states, and the (25*)'S doubly excited state. The 1s and 2s orbitals used for the excited states were obtained by a variational
minimization of the 2°$ state. Reprinted with permission from ref 2. Copyright 2007 John Wiley and Sons.

and for the (1s2s) configuration we get four CSFs: The three
components of the triplet-adapted CSF

Wht = [0, (r1)0a (1) — @ (1) @y ()27 2a(s1)a(s)  (34)

Woo = [01.(r1) P2 (12) — @y (11) @1 (r2)12 7 ar(s1)B(s2)
+B(s1)a(s)2 ' (33)

qj;%s_l = [01, (1) @5, (12) = Pr(11) @1, (12)]272B(51)B(s2)
(36)
and a singlet-adapted CSF

0L = (01590 (2) + 05191, (2)]27 " als1)B(s2)
—Blsi)als)]27? (37)

The 1'S state and the M, = 1,—1 components of the triplet state
are single Slater determinants. The M = 0 component of the
triplet state and the open-shell singlet state 2'S are plus and
minus linear combinations of two Slater determinants

WL = (J1sa2sp) + |1sPasa)2? (38)
WO = (|1s02sB) — [1sB2say)2 '/ (39)

The extent of electron correlation is very different in the three
states 1'S, 2°S, and 2'S. Figure 1 is a plot of the two-particle
radial densities P,(ry,r,) = 167°11r5p5(r1,r,) for the low-lying
states of helium (note that since only s orbitals are occupied,

p, does not depend on the angular coordinates of the electrons).
Consider first the 1'S ground state in Figure la

p(r) = 20,,(r) s (r) (40)
py(r1,12) = %p(rl)p(rz) (41)

The spatial probability distribution is therefore statistically un-
correlated. In Figure 1 this is seen by noting that the shape of
P,(r1,r,) as a function of r; does not depend on r»; it is only scaled
by P(r,). The same is true for the (2s”)'S doubly excited state in
Figure Ic, but it should be realized that these uncorrelated states
only exist for two-electron systems, and the electrons are spatially
statistically uncorrelated but remain correlated in space-spin
configuration space.

Now let us consider the singly excited states 2°S and 2'S. The
Hartree product wave functions for these two states are degen-
erate in energy because they have the same spatial probability
distributions

p(r) = @ ()P (r) + @3 (1) s (1) (42)
py(r1,12) = q’l(fl)<Pls(f1)(/’:s(r2)(/’zs(r2)
+ 05 (1) 9 (11) 1 (12) 1 (12) (43)

Note the shell structure: when an electron is in the 1s orbital the
other electron is in the 2s orbital. In contrast to the Hartree
products, the CSFs for the 2°S and 2'S states have different two-
particle spin-free densities due to the coupling of space and spin

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74
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Table 1. Calculated and Experimental IPs and Energy Dif-
ferences of Helium (in eV)*

Hartree” CSF* Hylleraas” Exp.‘
IP (1'S) 23447 23447 24.591 24.587
IP (2%) 4359 4742 4768 4767
P (2'S) 4359 3.976 3972 3972
AE(2S) — 1'S 19.088 18.706 19.823 19.820
AE (2') — 2°S 0.000 0.766 0.796 0.796

“The orbitals for the excited-state Hartree products and CSFs are those
that variationally minimise the 2S state. * From ref 2. * From ref 12.

coordinates through the antisymmetry requirement

30, (r1,12) = @1 (1)1, (r1) @3, (12) 93 (r2)

+ P (11) 3, (1) 7, (12) 01 (12)
=205, (11) @15 (1) @7 (12) P15 (12) (44)

lpz(rl;fz) = (P;(rl)(Pls(rl)(P;s(rz)(PZS(rz)
+ (P;(fl)(st(fl)(PL(Q)(PH(Q)
205, (11) 91 (11) @1, (12) o (12) (45)

In the triplet state there is a Fermi hole, where the exchange term
reduces the probability of the two electrons being close together.
In Figure 1b this can be seen through the node in P,(r},r,) along
the line r; = r,. In the singlet state there is a Fermi heap. In this
case the exchange term increases the probability of the two
electrons being in the same region of space. This can be seen in
Figure 1d, where there is a local maximum in P,(r},r,) when
ry =1y = 0.5 a.

The energetic consequences of the exchange term (the Fermi
hole and Fermi heap) is to lower the energy of the triplet and
raise the energy of the singlet state, leading to a singlet—triplet
splitting in the ionization potentials. Table 1 lists the computed
ionization potentials (IPs) using Hartree product and CSF wave
function descriptions for the three lowest states of helium. Note
that in these illustrative calculations the orbitals for the excited
states are taken as those that variationally minimize the 2°S state.
Consequently, the 1'Sand 2'S states are not orthogonal and the com-
puted IPs for the 2'S state do not obey the variational principle; the
method of Hylleraas will be discussed in section 4.1.1.

2.4. Coulomb Correlation

The IPs computed from CSFs in Table 1 deviate significantly
from the experimental values. The primary source of error in
these energy differences is that the pair distribution functions do
not account for the effects of the Coulombic repulsion between
the electrons. The missing correlation is Coulomb correlation.
For the ground-state Coulomb correlation is always negative,
that is, it always acts to reduce the probability of two electrons
being found in the same region of space.

In a Slater determinant or CSF wave function the only
variational parameters are the orbital functions. The coefficient
of each Hartree product function is determined by antisymmetry,
and the wave function does not have sufficient flexibility to
account for Coulomb correlation. In Hartree—Fock theory
the orbitals are optimized to minimize the energy expectation
value and is therefore a mean-field theory, where the Coulomb

repulsion between the electrons only influcences the wave
function through an effective potential.

One systematically improvable route toward the exact solution
to the nonrelativistic Born—Oppenheimer Schrodinger equa-
tion, where Coulomb correlation is fully included, is to expand
the wave function as a linear combination of Slater determinants
with varying electronic configurations. Such a configuration inter-
action (CI) wave function has the form

¥ = ; CKl(DK> (46)

where in general all possible determinants enter the sum. The
way in which the coeflicients cx are determined defines a class of
trial wave functions, including Moller—Plesset, coupled-cluster,
and full CI wave functions. The convergence properties of eq 46
are discussed in section 3.7.

In Figure 2 we illustrate the way in which a CI wave function
accounts for Coulomb correlation between electrons by taking
the 1'S ground state of helium as an example using the set of
configurations 1s%, 1s2s, 2s% and 2p2. The coeflicients ci have
been determined variationally using the Rayleigh—Ritz method.
The single 1s> configuration has a statistically uncorrelated spin-
free pair density. In Figure 2b we see that the 1s2s and 2s> con-
figurations, which contain a radial node through the 2s orbital,
introduce radial correlation. The contribution from the 2s con-
figurations acts to decrease the wave function in the region where
11 A r,, lowering the probability of finding the two electrons close
together. In Figure 2c we see that the 2p> configurations intro-
duce angular correlation. The combined effect, resulting in the
correlation hole of this simple trial wave function, is in Figure 2d.
In Figure 2a we see that Coulomb correlation is a very small per-
turbation to the Hartree—Fock wave function for helium.

2.4.1. Static and Dynamic Correlation. In the case of
helium the fully correlated two-particle density matrix is qualita-
tively similar to that obtained through a Hartree—Fock description,
and Coulomb correlation can thus be considered as a relatively
small perturbation of the Hartree—Fock state. The difference
purely arises from the fact that the electrons are aware of the
instantaneous interactions with the other electrons (in contrast
to the mean-field interaction in the Hartree—Fock state), and
hence, one usually speaks of dynamic correlation.

At variance to this, there are cases in which more than one
Slater determinant (or CSF) leads to a low-lying solution of the
Hartree—Fock equation and a qualitatively correct zeroth-order
description of the system requires one to include all these
configurations. A prominent example is the homolytic cleavage
of a bond (cf. the example in section 2.4.2). At least two con-
figurations are necessary to properly describe this process, and
the physical interpretation of the wave function suggests a strong
right—left correlation of the two electrons involved in the bond.
From this picture the notion “static correlation” has emerged.
Note, however, that a strict distinction of static and dynamic
correlation is not possible in general.

2.4.2. Case Study: Molecular Hydrogen. Molecular hydro-
gen serves as an excellent example for the various kinds of Fermi
and Coulomb correlation discussed in the previous sections.
Consider a minimal basis CI calculation for the low-energy states.
The set of CSFs that enter this simple CI calculation are

‘P?’g(:+ = @10, (r1) @15, (r2)[a(s1)(s2) —Bls1)a(s))2?
(47)

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74
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Figure 2. Coulomb correlation in the 1'S state of the He atom. The He wave function and contributions to it plotted with one electron fixed at 0.65 a,
from the nucleus, plotted in a plane containing the nucleus and the two electrons (note different scales): (a) the CI wave function calculated from 1s, 2s,
and 2p; (b) contribution to the correlation hole from the 2s orbital; (c) contribution to the correlation hole from the 2p orbitals; (d) correlation hole
from 2s and 2p. Reprinted with permission from ref 2. Copyright 2007 John Wiley and Sons.

which corresponds to the (loé) configuration

WL = (010 (11) P10, (12) = P10, (1) 10 (12) 27051 (s2)
(48)

WL = (010 (0910, (12) = P10 (11) P15 (12)]27[t(s1)B(52)
+Bls)als))2 (49)

WL = [010g (1010, (12) = @10, (1) @15 (12)127B(s1)B(52)
(50)

lp?'g(} = [@1o4(1) @10, (r2) + QDMu(rl)(ng(rz)pfl/z[a(sl)ﬁ(sz)

—Bls)als))2 (s1)

which are the three components of the triplet-adapted CSF and
the singlet-adapted CSF corresponding to the configuration
(1o,10,) and

WL = 10, (1) 010, 52)[a(51)Bs2) — Bls)als)2
(52)

which is the CSF for the (107) configuration. These states are
analogous to those of helium, except with the atomic orbitals 1s
and 2s replaced by molecular bonding and antibonding orbitals
1o, and 10, respectively. In Figure 3 we plot the spin-free pair
probability distribution functions for the four states obtained by
variationally minimizing the energy with respect to the coeffi-
cients in the CI expansion eq 46. For each of these states, the

10

projection of the spin-free pair probability distribution function
Py5(ry,r,) on the molecular axis (z) is plotted.

In the CI calculation the *3; and 'Y CSFs do not mix with the
other states, and these CSFs are plotted in Figure 3b and 3d,
respectively. Correlation in these states is purely Fermi type, and
the impact of exchange is to completely alter the pair probability
distribution. In the triplet state there is a Fermi hole around the
Fermi node at z, = z,, and if an electron is close to one nucleus,
the other electron is much more likely to be found at the other
nucleus (strongly negative left—right correlation). For the singlet
state (Figure 3d) there is a Fermi heap at z, = z, resulting in
strongly positive left—right correlation. It is much more pro-
bable to find the two electrons on the same nucleus than on dif-
ferent nuclei.

In the CI calculation the lofg and 107 states mix, which intro-
duces Coulomb correlation. The ground state is statistically
uncorrelated at the Hartree—Fock level of theory, but the
probability distribution resulting from the CI calculation in
Figure 3a is statistically correlated. In this state there is negative
left—right correlation, reducing the probability of the two elec-
trons being found close in space. This correlation is entirely due
to the instantaneous Coulombic repulsion force between the
electrons.

The energetic consequences of Fermi correlation and the
strength of mixing of states due to Coulombic interactions both
depend heavily on the internuclear separation. In Figure 4 we
plot the potential energy curves of the four states. In Figure 4a we
see that the open-shell Hartree product functions are degenerate
at all bond lengths, the dotted line. Fermi correlation lifts this
degeneracy, and the energetic consequences of the antisymmetry

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74
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Figure 3. Electron correlation in the hydrogen molecule depicted through axial probability distribution functions for (clockwise from the top left) the
12; ground state, the 3y and 'y} singly excited states, and the (10%)12; doubly excited state. The hydrogen nuclei are located at 0.7 ag and —0.7 ao, and
the states have been determined from a CI calculation. Reprinted with permission from ref 2. Copyright 2007 John Wiley and Sons.

requirement (the exchange energy) increases as the bond length-
ens due to the increasing energy difference between the two
electrons being close together or far apart. Figure 4b illustrates
that the closed-shell 10, and 10> CSFs become degenerate at
infinite nuclear separation. The pair probability distributions for
these states differ only in the probability of the two electrons
being found between the nuclei as opposed to close to the nuclei,
and neither distribution is left—right correlated (they are both
statistically uncorrelated). At short nuclear separations the left—
right correlation is weak and the Slater determinants are qualita-
tively correct. At long bond lengths the energetic consequences
of Coulomb correlation are large and the negative left—right
correlation fundamentally alters the probability distributions,
lifting the degeneracy of the two states. At short separation we
speak of dynamic Coulomb correlation, and at large separation
we speak of static Coulomb correlation.

3. CUSP CONDITIONS AND ENERGY CONVERGENCE

With the objective of constructing accurate trial wave func-
tions any a priori knowledge of the exact wave function gains
importance. As we have seen, the Fermi structure of the electronic
wave function is by far the most important aspect to include in
wave function approximations. This is elegantly achieved using
Slater-determinant-based expansions. In addition to the fermionic
nature of electrons, the Coulombic nature of the interactions
between the quantum particles additionally dictates the form of
the wave function at short interparticle separations. In particular,
sharp features appear in the wave function at electron—nucleus
and electron—electron coalescence points. These cusps have

important ramifications for the choice of basis function used in
wave function approximation and have been the driving force
behind development of explicitly correlated approaches to electro-
nic structure theory. In the following we review the state of
the current knowledge of the exact wave function and the impact
on the rate of energy convergence in Cl-type wave function
approximations.

3.1. Regularity Conditions

In 1957 Kato proved that all eigenfunctions of the nonrelati-
vistic Hamiltonian are continuous throughout configuration
space, and they have partial derivatives of first order, except at the
Coulomb-type singular points on the potential."® In other words,
W is locally Lipschitz. This important result was the foundation
for Kato’s famous characterization of the first-order derivative
discontinuity at the Coulomb-type singularity: Kato’s cusp con-
dition." In 2005, Kato’s proof of regularity was sharpened by
Fournais et al.,'* who found that electronic wave functions of
atoms and molecules have a representation W = F®, where F is
an explicit universal factor, locally Lipschitz, and independent of
the eigenvalue and the solution W itself and @ has first-order
partial derivatives in all configuration space and second-order
partial derivatives, except at the Coulomb-type singular points.
The explicit form of F is (in atomic units)

N =n 1 n
F=- Y Szm+) 3o

I=1i=1 i<j=1

N n
+ Co Z 2 ZIriI-rjlln(riZI + '}21) (53)

I=1li<j=1
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where Cy = (2 — 7)/6t and I runs over the N nuclei, with
charge Z; and i,j run over the n electrons. F embodies three
types of coalescence conditions, which we now consider
individually in detail using the analysis of Pack and Byers
Brown."

3.2. Nuclear Cusp Conditions

In the region of configuration space where an electron is
close to a clamped nucleus I and all other particles are well
separated, we may expand the spatial component of the exact
Born—Oppenheimer, nonrelativistic wave function as a Taylor
series in r, the electron—nucleus separation, centered at the
nucleus

1 v
Z Z rl+ t llfn(rz; ceny rn)Ylm(Or QD)
m= —1k=0

w(r, Iy, ..., rn) = Z
1=0

+ O (54)

The coeflicients in the series expansion depend parametrically
on the positions of the other particles in the system. It is worth
noting that an expansion of this kind is possible because of
Kato’s regularity result. Inserting this wave function expansion
into the Schrodinger equation and equating powers of r one
finds that the angular coordinates are uncoupled up to ()
in the wave function, where I, is the lowest | with nonzero

f 9 and that for this

Z
fin

fmn =

(I+1) (55)

This relationship results from the requirement that the singularity in
the Coulomb potential —Z;/r is exactly canceled by a singularity
in the kinetic energy. The better known version of this derivative
discontinuity condition is the one given by Kato for [ = 0, which is
equivalent to

a’groo — —Zw(r = 0) (56)
Y =0-=2Zr)Yr=0) + ar+ O®F) (57)

where the tilde with superscript 00 denotes projection onto the
spherical harmonic Y. The ramifications of eq 55 for the wave
function can be understood from a consideration of the hydrogen

12

atom. Figures 5b and Sd contain plots of the 1s and 2p, wave
functions, respectively. For the 1s wave function eq 57 applies
and manifests as a cusp in the wave function at the electron—
nucleus coalescence point

1/)(1’) =N exp( - r) = N(l - r) + @(72) (58)

In the limit of r — 0 the wave function depends linearly on r and
the second term in eq 57 is absent because only I = 0 terms
contribute to eq 54 for the 1s orbital. Equation 57 does not apply
to the 2p states because the wave function is zero at the nucleus
and only ] = 1 terms enter the expansion in eq $54. Consequently,
there is no cusp in the wave function and the derivative dis-
continuity eq S5 is at second order, which is expressed by the
coalescence condition

a?,wlm é\u/)lm
or? =4 or (59)
r=0 r=0
oY 1 B
Y = T I—EZIr + rber + OF) (60)
! r=0

The tilde with superscript 1m denotes projection onto the
spherical harmonic Y},,, and b is a traceless tensor. Electronic
states of many-electron systems where the wave function is
zero at a nucleus are rare, but for such states with | | symmetry,
eq 60 applies. For states with A symmetry, the derivative
discontinuity enters at third order and so on. The result eq 55
was first obtained by Pack and Byers Brown,"® who’s analysis
went beyond the Born—Oppenheimer approximation using
center of mass and relative coordinates, which results in only
a minor modification to eq S5. The behavior of the wave
function at the nucleus has important consequences for
the choice of orbital basis set, which we expand upon in
section 3.7.1.

3.3. Electron Coalescence Conditions

The conditions on the wave function at electron—electron
coalescence are analogous to those for electron—nucleus
coalescence. Pack and Byers Brown’s analysis is general to
both cases and proceeds in this case by considering the
region of configuration space where two electrons are close
together and all other particles are well separated. Trans-
forming to the center of mass s and relative r coordinates of

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74
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Figure 5. (a) Wave function for the 1'S helium ground state with an electron fixed at a distance of 0.5 o on the z axis with the nucleus
at the origin. (b) 1s wave function of hydrogen. (c) Wave function for the 23S helium state with an electron fixed at a distance 0.5 g, on the
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and Sons.

two coalescing electrons

(r; + 1‘2)/2 (61)

s —

(62)

r =1 —1I

the spatial component of the exact wave function is expanded as a
Taylor series centered at r = 0

oo 1 L4
Y Y Y A (5,1, 1) Vi (6, 0)

(63)

1/1(r, s,r3,...,r,,) =

Inserting this wave function expansion into the Schrodinger
equation and equating powers of r one finds that just as for the
electron—nucleus case the angular coordinates are uncoupled
up to @(r*?) in the wave function, where I, is the lowest
with nonzero f 9 The electron—electron derivative disconti-
nuity condition for this [ is

1

Jim = W+ 1) (64)

S
Note that the —Z; in eq 55 has been replaced by 1/2. In fact,
the general form is with Z,Z,u/(I + 1), where u is the reduced
mass of the coalescing particles with charges Z;, Z,. For
electron—electron coalescence the lowest | with nonzero
f i depends on the space and spin coupling of the coalescing
electrons. The following three situations have been identified
in the literature.
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3.3.1. Singlet Coalescence. Antisymmetry dictates that
W (x,%5%,) = — P (xpxy,...X,,). Therefore, for singlet coupled
electrons, W(ry,1,..,r,) = W (ra,ry,...1,,) and only terms with even
| enter in eq 63. For states without special restriction on the
spatial symmetry the lowest | with nonzero f}, in eq 63 is [ = 0. In
this case the derivative discontinuity eq 64 is equivalent to Kato’s
famous cusp condition

np 1
. . = 51/)(7 =0) (65)
Y = <1 + %r)l/)(r =0) + O (66)

This is often referred to as the s-wave coalescence condition, and
the electrons are said to have natural spatial parity. Figure Sa is
a plot of the exact and Hartree—Fock wave functions for the
1'S ground state of the helium atom. We plot the radial cut where
one electron is located at 0.5 g, from the nucleus and the other
electron moves along the z axis through the two particles.
The nuclear cusp at z; = 0 is the most obvious feature. The
electron—electron cusp is at z; = 0.5 and characterized by linear
dependence on the interelectronic separation. The positive
coefficient reflects that Coulomb correlation is always negative
and there is a Coulomb hole at electron coalescence. The Hartree—
Fock wave function does not possess an electron—electron cusp
since it does not contain Coulomb correlation.

3.3.2. Triplet Coalescence. For electrons that are triplet
coupled the antisymmetry requirement of the exact wave

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74
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function dictates that only terms with odd [ enter eq 63. In this
case, the lowest [ with nonzero f7,, is I = 1 and the derivative dis-
continuity is at second order

821/)1”‘ 1 é;//)lm
or? 2 o (67)
r=0 r=0
Y = r-a—w (1 + lr> + O0(r) (68)
or _ 4

This is referred to as the p-wave coalescence condition and is
analogous to the nuclear derivative discontinuity in the 2p state
of hydrogen. Figure 5d is a plot of a radial cut through the exact
and Hartree—Fock wave functions for the 2°S state of the helium
atom. As a result of the antisymmetry requirement both exhibit
an exchange hole at r; = r,, where the wave function is zero.
There is no cusp at this point; rather the discontinuity is in the
second derivative. As for the singlet case, the Hartree—Fock wave
function does not have any derivative discontinuities at the electron
coalescence point.

3.3.3. Unnatural Parity Singlet Coalescence. One further
possibility was found by Kutzelnigg and Morgan,'® which results
from additional spatial symmetry requirements, in particular the
gerade or ungerade parity of the spatial function upon inversion
W(r,s) =+ W(—r, —s). The singlet and triplet conditions above
apply to their natural parity states, gerade and ungerade, respec-
tively. For ungerade singlet states (unnatural parity), such as the
'P, state from a 2p3p configuration, the coupling of space and
spin symmetries dictates that the lowest I for which 7, is nonzero
is [ = 2. Therefore, the derivative discontinuity is at third order

%Zm 1 E;Z\,l/;Zm
= - 6
or3 2 or? (69)
r=0 r=0
o’y 1 s
Y = e T 1+ i + O(r") (70)

where the overline is used to denote that the trace has been
subtracted. Note that the exchange hole for this case vanishes
quadratically with the interelectronic distance, as opposed to
linearly for triplet exchange holes. This wide exchange hole
makes unnatural parity singlet states energetically favorable over
triplet states, and this has been used in a more rigorous general-
ization of Hund’s rules."” "

3.4. Three-Particle Coalescence Conditions

The Jastrow® function F in eq 33 accounts for the s-wave
electron—nucleus and electron—electron derivative discontinu-
ities, and therefore, @ is free from all cusps at two-particle coal-
escence. Equation 53 also contains a contribution for the three-
particle cusp where two singlet coupled electrons coalesce at a
nucleus. In this region the wave function depends on the logari-
thm of %7 + r5;, with a prefactor that depends on the angle between
the paths of convergence between the electrons. The necessity for
log terms to satisfy the three-particle coalescence in helium and to
ensure completeness in an analytic expansion for the ground state
of helium had been shown by Fock in 19582

Very little is known about the coalescence conditions for
triplet spin-coupled electrons coalescing at a nucleus. The wave
function is zero at coalescence, and by analogy one expects that
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any derivative discontinuities must appear at second order. Just as
little is known about three-electron coalescence. The most we
can presently say is that the wave function vanishes at coales-
cence due to the Fermi hole, and therefore, derivative disconti-
nuities can be second order at worst. Hoffmann-Ostenhof et al.>*
give a general analysis of N-particle coalescence for fermions in
terms of the hyper-radius 7 of an N-dimensional sphere. Accord-
ing to their work, the wave function goes asymptotically with 7>
for ¥ — 0, which coincides with the behavior of the wave function
in the case of the two-electron triplet cusp, in line with the
previous argument.

3.5. Second-Order Coalescence Conditions

Recently, a number of authors have probed deeper into the
structure of the wave function at two-particle coalescence, extend-
ing the analysis of Pack and Byers Brown.”* > Upon closer inspec-
tion of the Schrodinger equation at short-range interparticle
separation r with all other particles well separated one finds that the
Y}, are uncoupled up to (+**) and even @ (+"**) for coales-
cence of identical particles. This leads to the following relations

1)+§E>fl?n

S = (71)

uy(3l + 4) v A 0
31+ 1)(2 + 3)(I + 2) (ﬂ(?)l + 4) + S_E>f""

(72)

3
flm*

where y = Z, Z,ut and Sis the part of the Hamiltonian that is order
1°. Equation 72 holds only for identical particle coalescence.
These second-order and third-order coalescence conditions can
be formulated as

é_l\,(;lm
or!

o i (1 + K)! A
r=0

(73)

r=0

with k = 2 and 3 and where |, m, and k relate to eq 63. The
coefficients bf and ¢} are universal, depending only on the nature
of the coalescing particles. However, because of the presence of
S —E, the @(+*) and @(+"*®) terms in eqs 54 and 63 depend on
the molecule and state and vary throughout configuration space.

3.6. Coalescence Conditions and Approximate Wave Functions

Pack and Byers Brown’s analysis may be applied to the
Hartree—Fock equations for the orbitals in a Slater determinant
wave function. One finds that the electron—nucleus coalescence
conditions apply to each orbital individually. The same is also
true for the Kohn—Sham orbitals in density functional theory.*”
Provided that each orbital in a CI wave function (or in an ap-
proximate density in DFT) satisfies the coalescence conditions
the trial wave function (and density) also satisfies the coalescence
conditions.

Expansions similar to eq 63 may also be inserted into the
equations in correlated wave function approximations. For example,
in the spin-adapted equations for the first-order pair functions in
second-order Moller—Plesset (MP2) theory

. . A1
(Fl + F, — & — EJ)M; + QIZ_(I)IS.j =0
2

(74)

where F and ¢, are the Hartree—Fock operator and orbital
eigenvalues, respectively, and Qj, is the strong-orthogonality
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operator that projects out the one-particle excitations from 1/r,
(these are contained in F). Expanding both the Hartree—Fock
pair functions ®;; and the first-order pair functions uj; results
in the (natural parity) singlet and triplet MP2 coalescence
conditions

oul 1

Xy =~ ®(r, = 0) (75)
87’12 2 )

rn=0
1 )

ug = (l + Eﬁz) q)g(VIZ = 0) + 0 (rfz) (76>
2 11lm r\(/)lm

9 il _ 1% (77)

oy, o 2 Orp 0
_ 8%, ! o

ty = g By 1+ et + O(r) (78)

These s- and p-wave coalescence conditions for the first-order
pair functions have gained significant importance in explicitly
correlated MP2 and coupled-cluster methods.

Formation of spin-adapted pair functions uj; and @} is only
possible when the MP2 theory uses a closed-shell reference state.
To generalize to the open-shell case it is possible to apply the
wave function expansion to spin—orbital pairs.”® As first under-
stood by Bokhan et al.”” in this case both the s-wave and the
p-wave coalescence conditions apply.

3.7. Convergence Properties of Cl Wave Functions

Now let us turn to the convergence properties of Cl-type
expansions. We shall see that the rate of convergence is strongly
linked to the behavior of the basis functions at the singularities.

The full CI method proceeds by selecting a set of N one-
electron basis functions, which define the extent of the set of
orbitals from which (%)) n-electron Slater determinant basis func-
tions can be formed. The coeflicients c in eq 46 are determined
by the Rayleigh—Ritz method, where the energy is made sta-
tionary with respect to variations in the CI coeflicients. This leads
to the matrix eigenvalue problem

Y Hieo = E Y, Sxicr (79)
L L

where the Hamiltonian and overlap matrix elements are the
expectation values

Hi = (Pk|H|DL) (80)

S = (P |Pr) (81)
In 1977 Klahn and Bingel*™*" proved that the eigenvalues of the
matrix eigenvalue problem converge with increasing N to the
eigenvalues of the nonrelativistic, Born—Oppenheimer Schrodinger
equation, subject to certain completeness conditions on the set of
one-electron basis functions. Specifically, this requires complete-
ness in the first Sobolev space, that is, the space of functions where
both the function itself and its derivative are square integrable.
Completeness here has the meaning that the error can be made
arbitrarily small by increasing the number of functions in the
expansion.
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The vast majority of molecular electronic structure programs
use Gaussian atomic orbital basis functions.** Gaussian functions
satisfy the required completeness relations, and the energies
from a full CI calculation are guaranteed to converge to the exact
nonrelativistic Born—Oppenheimer electronic energies. How-
ever, this does not guarantee that the convergence will be rapid.
The basis-set convergence of both the Hartree—Fock and CI
energies have been studied extensively by many authors, both
numerically and analytically.'®**7%® The rates of convergence
depend critically on the choice of basis functions and are largely
understood.

3.7.1. One-Electron Convergence. The important aspects
of one-electron basis-set convergence may be understood by exam-
ining the rate of convergence of the energy expectation value of the
hydrogen atom using three choices of Gaussian basis functions®”

Yo = Nr" 7 lefn’yzl’}m(ﬁ,q)); n>Iln—1=135..

(82)
Yo = N LeY,(0,0); n>Ln—1=1,23..

(83)
Vim = Nre Y, (6, ) (84)

Applying arguments similar to the theory of Fourier series, Klahn
and Morgan®* were able to demonstrate that the error in the
energy expectation value using basis functions eq 82, which is
equivalent to a set of Hermite functions, goes as ~n 32, By
including odd powers of r the convergence becomes exponential.
The source of the slow convergence of basis functions eq 82 is the
inability to describe the wave function in the vicinity of the
singularities of the function being expanded, namely, near the
nuclear cusps.>> *>*” Modern Gaussian-based electronic struc-
ture codes use basis functions of type eq 84, which, although they
do not contain any derivative discontinuities, can reproduce the
cusp to arbitrary precision through ever tighter exponents. In
1986 Klopper and Kutzelnigg36 studied the hydrogen energy
error € with these basis functions and Huzinaga’s set of expo-
nents>® and found an excellent numerical fit of the form

¢ = Aexp(—by/n)

Subsequently, Kutzelnigg was able to derive this result analyti-
cally for even tempered basis sets.>” Extrapolation based on eq 85
appears to be useful for many-electron systems.>” Many researches
use a slighly different extrapolation formula, which has a some-
what more empirical justification®

(85)

EY" ~ EY. + Aexp(— BX) (86)
gr o~ BB o BITRL (g)

1—b CEF L -EF,
where X is the cardinal number of the basis set (see section 3.7.5).
Note that both extrapolation methods require three computed
energies to determine the basis-set limit estimate.

Some authors debate the relative merits of choosing Slater-
type basis functions over Gaussian basis functions.®’ In particu-
lar, Slater-type orbitals have a derivative discontinuity at the
nucleus and decay more slowly than Gaussians, although neither
Gaussians nor Slater functions have the correct long-range
behavior. The incorrect asymptotic behavior of the basis

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74
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Figure 6. (a) Cut of the Coulomb hole h,(x;,y,0.5,0) for helium in its
ground 1'S state. The nucleus is at the origin. (b) Jastrow function
](xlryl) Where hc(xlry1)0~5;0) = ](xlryl)(/)ls(rl)(pls(rz)~

functions at large electron—nucleus distances does not appear to
limit the energy convergence rate, at least in the regime of
accuracy presently attainable. The situation may, however, be
different for properties such as hyperpolarizibilities that depend
critically on the fringes of the electron cloud.

3.7.2. Two-Electron Convergence. In Figure 6 we plot
the correlation hole (eq 15) for helium in its ground 1'S state.
The correlation cusp is clearly visible at the coalescence point of
the two electrons at the bottom of the hole. Contrasting this
numerically exact correlation hole with that of the small CI
calculation in Figure 2d we see that the only sharp feature in the
approximate hole is, erroneously, at the nucleus. This is a result of
the very restricted set of configurations adopted in the illustrative
CI calculation of section 2.4. Increasing the one-electron basis by
increasing the maximum principal quantum number of the atomic
orbitals improves the correlation description, and the conver-
gence toward the exact wave function is plotted in Figure 7.

In contrast to the exponential one-electron convergence it is
clear that the two-electron convergence is extremely slow. This is
true independently of the choice of one-electron basis functions.
Away from the nucleus, the only possibility for a function of
the smooth atomic orbitals to describe the correlation hole is
through a tighter and tighter mesh of radial and angular nodes,
which necessitates very large basis sets. It is worth emphasizing
that because the cusp itself has zero volume the fact that the
smooth basis functions can never reproduce it exactly is not itself
a problem. Rather, it is the linear-r;, form of the wave function
around the cusp that is at the heart of the slow energy
convergence. The correlation cusp at electronic coalescence arises
as a consequence of their Coulombic interactions. This has two
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Figure 7. Helium ground-state wave function with both electrons on
the same circle of radius 0.5 ay computed with the CI approach using
increasing basis size with maximum principal quantum number #,,,.
Reprinted with permission from ref 2. Copyright 2007 John Wiley
and Sons.

ramifications: the correlation cusp is present in all electronic wave
functions, and consequently, all CI-type correlated wave functions
suffer from this convergence problem. However, the universal
nature and particular functional form of the correlation cusp means
that the convergence with basis size is both smooth and predict-
able, which makes possible extrapolation.

3.7.3. Partial Wave Expansion. Schwartz analyzed the rate
of convergence of the second-order helium energy in a 1/Z
expansion,® where the zeroth-order Hamiltonian is the bare-
nucleus Hamiltonian. He found that (in atomic units) the partial-
wave contributions to the second-order energy have the analytic
form

(88)

—4 -6
@) 45 1 225 1

E) = ——(1+=) -1+
! 256( ) o\ t2) T

The (I + 1/2)~* convergence is very slow and results directly
from the fact that the CI expansion corresponds to a partial wave
expansion of the Coulomb singularity. Following the work of
Klahn and Morgan,>* Hill analyzed the partial wave expansion of
the variationally optimized CI energy expectation value.>® Hill
found that

0
E= Y E
I=0

N4 NS
-3C, <l + 2) 4C2(l + 2) + . (91)

where C; = ZJEZISOLII’(r,r,O)PVS dr & 0.024742 and C, =
(127/5) [ [W (r,1,0)|*° dr ~ 0.007747. As for the second-order
energy the convergence goes as (I + 1/2)* with increasing I,
but the coefficient is different. This is an example of the
interference between correlation model and basis-set effects
resulting in differing rates of convergence.44’48’62764 The fact
that odd powers of (I + 1/2) appear as a result of correlation

(89)

(90)

E =
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effects begrond second order was verified by Kutzelnigg and
Morgan.'® Moreover, they were able to show that in many-
electron systems different pair contributions converge at differ-
ent rates. Natural parity singlet pairs converge as (I + 1/2) %,
which results from the partial wave expansion of the s-wave corre-
lation cusp. Natural parity triplet pairs converge as (I + 1/2) %,
which results from a partial wave expansion of the second-order
derivative discontinuity at p-wave coalescence. Unnatural parity
singlet states converge as (I + 1/2)°, which results from the
third-order derivative discontinuity at d-wave coalescence.

3.7.4. Principal Expansion. Using natural orbitals, which
have the same nodal structure as hydrogenic and Laguerre
functions, Carroll et al.>® demonstrated numerically for the 1'S
helium state that, to a good approximation, each orbital provides
an energy contribution proportional to

1 —6
Enlm R —ap n—i

For I = 0, ¢ & 0.29. For | > 0, a; & 0.22, and the energy
contribution from each orbital depends only on its principal
quantum number. Consequently, partial wave expansions are
rarely used in quantum chemistry, and instead, basis sets are
chosen according to a principal expansion where basis sets are
increased by including all ~n” functions in the next shell. Each
shell contributes an amount of energy proportional to n~*. The
correlation-consistent basis sets cc-pVXZ of Dunning, Peterson,
Woon, and co-workers® are constructed on this principle. A basis
is expanded by including the set of functions that have approxi-
mately equal energy contributions while simultaneously optimiz-
ing the exponents and Slater-type-Gaussian contraction coeffi-
cients to minimize both the Hartree—Fock and the correlation
energies.

3.7.5. Extrapolation. It has been observed numerically that
energy convergence both for partial wave expansions and for
principal expansions goes as (L + 1) >, where L is the highest
angular momentum function present in the one-electron basis.*>*"
For the partial wave expansion of ground-state helium, this may
be explained through the following argument. In a CI calculation,
the error in the energy due to omitting all terms [ > L is AE; =
E — Y¥_ o and can be estimated by summing over the leading
term of the contribution from each omitted partial wave

0 1 —4
AE, =3C; Y <l+i)

I=L+1

(92)

0 1 w4 3
~ - = L 1
3G /L+1/2 <l + 2) d=G(L +1) (93)

Kutzelnigg recently re-examined the second-order 1/Z expan-
sion for two-electron atoms in natural orbitals and confirmed that
each shell contributes an amount of energy proportional to n™*,
where  is the principal quantum number of the expansion.>® The
cardinal number of the correlation-consistent basis sets X may
be identified with both n and L + 1, which concurs with the
power law error estimate observed by Helgaker et al.*>*" This
provides a simple two-point extrapolation procedure to eliminate
the leading basis-set errors

EQ"~ B + AX 7 4+ O(X7Y) (94)
Y3 s
B MBS + (B B s + (X (95)
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Figure 8. Basis-set errors for the singlet () and triplet (@) pair energy
contributions to the CCSD correlation energy of neon computed using
the cc-pVXZ basis sets.”’

In pair theories such as MP2 and coupled-cluster singles and
doubles (CCSD) the total correlation energy convergence is
determined by the natural parity singlet pairs. For triplet pairs,
the appropriate power law is X ° and basis-set limit estimation
can be improved by extrapolating singlet and triplet pairs sep-
arately.® The different convergence behavior of singlet and
triplet pairs is illustrated in Figure 8, which plots the basis-set
errors for the singlet and triplet pair energy contributions to the
CCSD energy of neon. The power law extrapolations work well
because of the systematic way the correlation-consistent basis
sets are constructed, but they are somewhat idealized. Many
alternative extrapolation formulas have appeared in the literature,
and one of particular note is the Schwenke-type extrapolation®’

Y?P

peorr
Yr — Xr

o MERT (B — B (96)

3.7.6. Explicit Correlation. Atom-centered basis functions
are ill suited to describe the electron-centered features of the
correlation hole. In particular, the linear dependence of the wave
function on the interelectron separation ry, in the region of elec-
tron coalescence leads to very slow convergence of the electronic
energy with basis size in CI-type expansions of Slater determi-
nants. Although this can be ameliorated by exploiting the smooth
and systematic nature of the convergence through extrapolation,
large basis sets are still required for high accuracy, which limits
the size of systems that can be subject to reliable computational
investigation. This review is concerned with an alternative
strategy, where basis functions that depend explicitly on r;, are
incorporated into the wave function expansion. While such expan-
sions converge very rapidly with basis size, n-electron Hamiltonian
matrix elements no longer factorize into products of one- and
two-electron integrals and several alternative strategies have been
developed. The focus of this review is on the R12 and F12
methods, which have evolved into practical tools for quantum
chemistry. In the next sections we review the alternatives to F12
before giving the established details and latest developments in
F12 methodology.

4. N-ELECTRON EXPANSIONS

The most widely used numerical approaches of quantum
chemistry are based on expansions in terms of (antisymmetrized)
products of orthonormalized one-electron functions, the molecular
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orbitals (MOs). Such MOs are obtained from a mean-field
or self-consistent field (SCF) calculation, for example, from
a Hartree—Fock calculation, but also Kohn—Sham or other
approaches may be employed to generate a set of MOs. In the
mean-fleld approach, the electronic state is represented by a
subset of the MOs, the occupied MOs. In terms of spin orbitals
¢r(x), where x indicates both spatial and spin coordinates, there
are as many occupied spin orbitals as there are electrons, and the
antisymmetrized product of the occupied spin orbitals is known
as a Slater determinant. Correspondingly, this mean-field descrip-
tion is known as a one-determinantal approximation. The orbital—
product approaches are also known as the algebraic approximation
to quantum chemistry, since the resulting equations can all be
formulated in terms of matrix operations.

Having this in mind, let us start our description of the elec-
tronic system by performing a Hartree—Fock calculation without
any spin restrictions, that is, in an unrestricted Hartree—Fock
(UHF) manner, in which the occupied spin orbitals are those
orbitals ¢y that build the determinant

e = \/EJ{¢1¢2¢3...¢,1 (97)
which minimizes the expectation value
Eur = (HF|H|HF) = ngn<cI>|H|cI>> (98)

with respect to orthonormal transformations among all of the
orthonormalized MOs (occupied and others). The Hartree—
Fock level is often (erroneously) denoted as the “uncorrelated”
level, because it does not account for the effects of Coulomb corre-
lation. However, as discussed in sections 2.1—2.3 the Hartree—
Fock wave function is highly correlated due to Fermi correlation.
The remaining Coulomb correlation (cf. section 2.4) is obtained
when the wave function is approximated as a linear combina-
tion of determinants, as in the configuration-interaction (CI)
method

ICD) = (1 + T)|HF) = [HE) + Y ¢,7,|HF)
u

(99)

In eq 99 the excitation operator ‘i’# generates a new Slater deter-
minant by replacing one or more MOs occupied in the reference
determinant |HF) by one or more other orbitals, which are not
contained in [HF). The latter are denoted as virtual orbitals.
In the following we shall denote occupied MOs with the indices
iy j, k..., and the virtual orbitals with 4, b, ,... Together, the occupied
and virtual orbitals form a finite basis set of MOs, which are denoted
with the indices p, g, r,... Furthermore, we note that the CI wave
function in eq 99 is written in intermediate normalization, that is

(HF[CI) = 1 (100)

When the exc1tat10n operator 7, replaces one orbital it may be
wr1tten as 7{ = a'a, when two orbitals are replaced as T ab —
alaala ;, when three are replaced as ‘L',Ji =ala aba]a*ak, and so on.
The creation (a}) and annihilation (a,) operators satisfy the
anticommutator relatlon [ap,aq] Opg and we note that the
excitation operators ‘L‘ mutually commute, K3 ,‘L’,,] = 0. When
only 7{ is included the CI approach only contains single excita-
tions and the method is denoted as a conﬁguratlon -interaction
singles (CIS) method. With the operators 77 and 7 i ® we obtain
the conﬁguratlon -interaction singles and doubles (CISD) method
with r,]k the configuration-interaction singles, doubles, and
triples (CISDT) method, and so forth.

18

Because the CI approach is not size extensive it is not used
much any more in modern wave function-based quantum chem-
istry. Rather, the coupled-cluster (CC) approach has become the
method of choice for such calculations. The CC approach is size
extensive, which means that the energy scales correctly with the
number of electrons in the system. The size extensivity is acco-
mplished by choosing an exponential ansatz for the coupled-
cluster wave function

CC) = exp(T)[HE); (101)

= X tulu

u
Hence, the cluster operator T is a linear combination of excita-
tion operators %ﬂ, each multiplied by a cluster amplitude ¢,.
These are determined by multiplying the Schrodinger equation
from the left with exp(—T) and projecting onto the excited states

(u| = (HF|1},
(u exp(—

Similarly, the CC energy is obtained from the corresponding
projection onto the Hartree—Fock state

Ecc = (HF| exp( — T)H exp(T)|HF)

There are as many nonlinear amplitude equations, eq 102, as
there are amplitudes t,.

As in the case of the CI wave function, the cluster operator T
can be written as a sum of single (T,), double (T), triple (T5)
excitations, and so forth. Hence

T)H exp(T)|HF) = 0 (102)

(103)

T:T1+T2+T3+

_ abx ub abc 2 abc
_Zt + Zt +_Ztt;krt;k+
ia z/ub z;kabc

(104)

With all excitation operators included up to the level of the
n-excitation operator T, for a n-electron system the CC wave
function is equivalent with the full configuration interaction
(FCI) treatment in the given one-electron basis (MOs). In
common applications, however, the wave function is restricted
to single excitations (CCS, coupled-cluster singles method),
single and double excitations (CCSD, coupled-cluster singles
and doubles method), single, double, and triple excitations
(CCSDT, coupled-cluster singles, doubles, and triples method),
and so on.

It is not the purpose of the present review to discuss the details
of standard present-day coupled-cluster theory such as the appro-
ximate treatment of triple excitations, CCSD(T), nor to discuss
related approaches such as quadratic configuration interaction
with singles and doubles (QCISD) or Brueckner doubles theory
(BD). For details of coupled-cluster theory we refer to textbooks
or other review articles, for example, refs 68—71.

There are two points that we want to make here. First, we note
that the second order of Moller—Plesset perturbation theory
(MP2), which will be discussed in more detail later in this review,
is readily obtained by 1nsert1ng the correspondlng Perturbatlon
expansions T=TW4+T® 4+ and H = H + HY into the
above-mentioned CC equatlons and collecting all terms up to
first order in the amplitudes and second order in the energy

0 = (ulHY + [H'

0, 7(]|HE) (105)

EMPZ = EHartreefFock + <HF|[I:I(1) (1)]|HF> (106)
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where we used that (u;|H (0)|HF> =0 for k = 1 by construction
of H.

Second, the n-electron expansions (CI, CC, Moller—Plesset
theory) discussed in this section are all based on expanding the
n-electron wave function in a basis of Slater determinants. Such
expansions are not able to satisfy the electronic cusp conditions
and consequently it is very difficult (basically impossible, except for
very large one-electron basis sets) to accurately describe the Coulomb
holes in the wave function (see section 2.4). As a result, the con-
vergence of the CI, CC, and MP2 energjes toward their respective
basis-set limits (E,) is extremely slow. It can be represented as”

Ey = E + aN ™! (107)
01‘40
Ex = By + X3 (108)

where N is the number of basis functions in a principal-expansion (i.e.,
correlation-consistent) basis set with cardinal number X (see also
section 3.7).

To improve the slow convergence significantly we must go
beyond expanding the wave function using determinants, that is,
antisymmetrized products of one-electron functions, eq 97.
Obviously, the next step beyond products of one-electron func-
tions (orbitals) is to include two-particle functions (geminals),
for example, in terms of the n-electron basis functions

W= \/H“{f(xhX2)¢k(x3)'“¢m(xn)

In the following subsections, several examples of expansions
beyond (antisymmetrized) products of one-electron functions
will be discussed. The corresponding expansions are referred to
as “explicitly correlated wave functions”. See also refs 73—75.

(109)

4.1. Hylleraas-Type Wave Functions

4.1.1. He Atom. The first successful electronic-structure
computation using an explicitly correlated wave function was
the calculation on the He ground state by Hylleraas in 1929.”° In
his classical paper’® Hylleraas carried out a calculation on the 1'S
ground state of the He atom using the coordinates

s=r + 125 t =1 —1; u = rn (110)

where r, is the distance of electron 1 from the nucleus, r, is the
distance of electron 2 from the nucleus, and r;, the distance
between the two electrons. In the Hylleraas expansion the spatial
part of the He ground-state wave function is written as

N
Wy = exp(—&s) Y auste™u™ (111)
k=1

Only even powers of t contribute to singlet states, which have a

symmetric spatial part and an antisymmetric spin function. With
only 3 terms, that is, with the spatial wave function

Wy = exp(—&s)(c1 + au + ot?) (112)

Hylleraas obtained the energy E = —2.90243 Ey,, after variation-
ally optimizing both the linear parameters ¢, and the nonlinear
parameter  (which was determined to & = 1.82 a5 ).

It is interesting to note”” that prior to using an explicitly correlated
wave function Hylleraas had tried to solve the He ground-state
problem using a conventional CI expansion. This expansion was
found to converge unacceptably slowly, however. Hylleraas was
thus one of the first researchers to suffer from the slow con-
vergence of the conventional CI expansion. This convergence

19

problem was solved using an explicitly correlated wave function.
Hylleraas’ choice was, however, not motivated by a consideration
of the singularities of the Hamiltonian and the related electron—
electron cusp. This was done by Slater in 1928.”% This author
analyzed the properties of the He wave function and found that
the Coulomb singularity in the Hamiltonian imposes a certain
behavior on the wave function at the electron—electron coales-
cence point. Slater therefore suggested that the wave function
should be multiplied by a factor of exp(r,/2) in order to model
the behavior at the coalescence point. In Slater’s work”® it
is noted that “It can be easily shown, however, that the correct
wave function for the S states should approach e *(*2)*1/2 gt
small ¥'s; when [the Hamiltonian] H operates on this, the result is in
terms of zero order in the r's.”

Indeed, Slater’s function W = e
cusp condition

2 2
(m4)4712/2 gatisfies Kato’s

oW 1
= = W(r, =0
81'12 2 (7'12 )

r2=0

(113)

where the wide tilde indicates spherical averaging. Furthermore,
a Taylor expansion of Slater’s r;,-dependent wave function factor
yields exp(r15/2) = 1 + (1/2)r15 + ('(r1,), and thus, the correct
linear dependence on the interelectronic coordinate for small 15,
as is the case in present-day R12 methods that use wave functions
with linear r{, terms.

Hence, both Slater and Hylleraas may be seen as the persons
who introduced explicitly correlated wave functions to electronic
structure theory. Slater’s function ¢~ (""" yag proposed in
1928, but the first computations with explicitly correlated wave
functions were carried out by Hylleraas in 1929 (in fact, Hylleraas
also studied a function of the type e_é(r‘HZ)ﬂ”“). Concerning
Slater’s function e 2U™*"2*"2/2 yye note that the correlation
function y(r;,) = exp(ri,/2) seemed physically unreasonable
to Hartree and Ingman.79 These authors argued that the function
%(r12) should approach a constant value for 7, — o0 and that it
should decrease to a smaller value for r;, — 0. They therefore
suggested to use the trial wave function

exp( —E[r + nl)[l — cexp(— yr)]

with § > 0 and y> 0. As will become clear later in the present
review, this 1933 wave function of Hartree and Ingman contains
the correlation factor that is used in modern F12 methods. Today,
these factors are referred to as Slater-type geminals (STG). It
seems appropriate to relate this factor to the work by Slater.
Keeping  fixed, Hylleraas found that the 6-term function

(114)

We = exp( — 1.825)(c; + cu + c3t® + s

+ o5t + céuz) (115)

yields the energy E = —2.90324 E;,.”° For this 6-term function,
however, it was found later that the variationally optimal non-
linear parameter is § = 1.76 ay ", and with this value, the energy
becomes E = —2.90333 E;,.*°~ % Furthermore, with another
6-term Hylleraas expansion

W = exp(— &) (a1 + qu + cst® + cstu

+ cssPu + cou?) (116)

a still lower energy of E = —2.90345 Ej, can be obtained (§ =
1.86 a5 ').¥ In a systematic approach the He ground-state
energy can be computed from an N-term Hylleraas expansion
with all terms that satisfy I, + 2my + np < Lo With L, = 6,
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a 50-term Hylleraas expansion and microhartree accuracy in the
ground-state energy is obtained; with L., = 13, a 308-term
Hylleraas expansion yielding nanohartree accuracy is obtained.*

Much progress was achieved in the decade from 1955 to
1965.%° Pekeris®®~*® succeeded to perform large-scale Hylleraas
calculations using Laguerre polynomials multiplied by an expo-
nential using perimetric coordinates of the form x = (1/2)(u +t),
y=(1/2)(u — t), and z = s — u as variables, and several authors
have suggested to extend and/or modify the original Hylleraas
expansion. For example, Kinoshita suggested to allow for nega-
tive powerssg’go

N
Wy = exp(—&s) Y, cus(/u)™™ (u/s)™ (117)
k=1
H. M. Schwartz proposed using half-integer powers’"*>
N
Wy = exp(—&s) Y, e (118)
k=1

C. Schwartz”® suggested using half-integer powers of s only

N
Wy = exp(—&s) Z cksl"/ztzmku”"
k=1

(119)

He performed calculations with all terms up to [/2 + 2my +
ne < 8(1/2).

Motivated by the Fock expansion, several researchers
included logarithmic terms into the Hylleraas wave functions.
Such logarithmic terms are needed to describe the wave function
at the point of coalescence of three particles (i.e., in He, both
electrons at the nucleus).96 In 1966, for example, the calculations
by Frankowski and Pekeris”” were carried out using terms such as
In's, (In 5)% and (s* + £*)"/? in expansions of the type

21,22,94,95

N . .
Wy = exp(—&s) Y asht™u™ (s + )%/ (In s)*
k=1
(120)

yielding the He ground-state energy E = —2.9037243770326 E;,
from a 1078-term wave function. Logarithmic terms were again
investigated some 20—25 years later (ca. 1986—1990) 810 but
it was also found at the same time that similarly accurate results
can be obtained from a Hylleraas expansion, not with logarithmic
terms but with a “double basis set” instead.'> ' The “double
basis set” consists of the basis functions

{q)O; (I)ijk(aA;ﬁA)J (I)ijk(aB;ﬂB)} (121>

(0, f) = (1 + Pro)riryrt, exp( — ar, — Bry)

where P, permutes r; and r,. Of course, this concept of “double
basis set” can be extended to that of a “triple basis set”, and so
forth, and with a “triple basis set”, Drake and co-workers have
been able to compute the He 6ground—state energy with about
20-significant-digits accuracy."°® Note that this result was obtain-
ed without logarithmic terms. Even more accurate calculations
are possible for He, however, with %p to 40-significant-digits
accuracy. For example, C. Schwartz'®” obtained an accuracy of
about 35 decimal places using the original scheme of Hylleraas
plus a combination of negative powers and a logarithm of the
Hylleraas coordinate s. A 25-significant-digits accuracy was obtain-
ed by Korobov'® using an expansion in terms of Slater-type

(122)

20

Table 2. Nonrelativistic Born—Oppenheimer (i.e., infinite
nuclear mass) Ground-State Energy of Helium

system K E/E, function ref
He 600 —2.903724377022 ECG 110
600 —2.903724377033 LECG® 110
616 —2.903724377034073 Hylleraas® 102
308 —2.9037243770341144 Hylleraas? 111, 112
2114 —2.90372437703411959582 Hylleraas® 105
4648 —2.9037243770341195982999 Hy-CI 113
2358 —2.903724377034119598305 Hylleraas® 106
5200  —2.903724377034119592311587 STG' 108, 114
10257  —2.903724377034119598311592  Hylleraas® 107
2451944044400495
22709  —2.903724377034119598311592  free ICI" 109, 115
2451944044466969

“ Number of terms in the expansion. "ECG expansion plus terms linear
in ry, 1, or r15. “ Hylleraas wave function (double basis set). d Hylleraas
wave function (fractional and negative powers of s and u). “ Hylleraas
wave function (triple basis set)./ Slater-type geminals. ¢ Hylleraas wave
function with negative powers and In(s). " Free iterative-complement-
interaction method; Hylleraas type with In(s + ).

geminals (®;)

N/2
Wy = Y {aR(P) + dI(Po)};
k=1

D, = exp(— ar1 — Pira — Vira) (123)

where ay, 3}, and 7y are complex parameters. Forty si%niﬁcant
digits were finally obtained by Nakashima and Nakatsuji' ° using
the free iterative complement interaction (ICI) method. For the
He atom, this method is similar to a Hylleraas-type expansion.
Consider, for example, the functions

)" = exp(—);
q);o) = exp( — C(())s)ln(s + u);
g=(>—1)/(4s2) + u (124)

where Z is the atomic number. In free ICI calculations, at each
order n, new basis functions are generated by applying both g and
gﬁ to all k basis functions ® ,(C"7 of order n—1, and the energy is
obtained from an expansion in this new basis

M,
po = Y oy (129)
k=1

by variationally optimizing the c{"’s as well as the exponent .
This procedure leads to an ultimate wave function expansion of
the form

M, )
1p(n) — exp( _ é(n)s) Z C]((n>slkt2mkunk [ln(s + u)]lk
k=1

(126)

at free-ICI order n, where I, € Z, m; € N, n € N, and ji € {0,1}.
Table 2 provides an overview of some of the most recent and
most accurate calculations of the ground state of the He atom.
The purpose of this table is not to provide a complete overview of
explicitly correlated calculations on He but rather to give a few
examples from the recent literature.

Of course, all of the approaches just mentioned can not only be
applied to the 1'S ground state of He but also and equally well to
electronically excited states as well as to all He-like ions such as
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H, Li*, and so on. However, since such computations do not
add much (there may be some symmetry issues) to the topic of
the present review, we here focus on the He ground state. Besides
electronically excited states, He-like ions, their properties, and so
forth, the more interesting question is how Hylleraas-type trial
wave functions may be designed for many-electron systems such
as Li, Be, B, C, and so on. A further important question is how a
compact trial wave function may be designed that is suitable for
generalizations toward electronic-structure computations on
polyatomic molecules.

Concerning the latter question we note that there is a very rich
early literature on various compact wave functions for two-electron
systems in which, for example, functions such as''®~'**

W= exp(—2[n + r])x(r2) (127)
W = exp(— Ll + ral)expl — yriz) (128)
W = exp(—Eln + n])(1 + o) (129)
W = exp(—E[n + r])(1—cexp[—yri)) (130)
W = o(r)e(n)(1 + cn) (131)
W = o(r)p(r)x(rn) (132)
W= [p(r)¢(r2) + ¢(r))o(r2)]x(r12) (133)
W=+ Cﬁz)pz,qcpq[%(l)%(il)

+ 0,(1)9,(2)] (134)
W= (1—cexp[— Vﬁz])pz,qcpq[wp(l)fﬂq&)

+ 0,(1)9,(2)] (135)

have been studied. Equations 134 and 135 contain CI expansions
that are multiplied by a correlation factor. With respect to the
other functions, the orbitals ¢(r), ¢(r), and/or the correlation
factor y(ry,) are obtained numerically by solving the appropriate
differential equations or expanded in one-electron and/or two-
electron basis sets, respectively. Later in this review we shall see
that today functions of these types are indeed used for calcula-
tions on polyatomic molecules (e.g., with terms such as (1 + cry,)
or (1 — cexp[—yra])).

Let us first consider many-electron atoms. Obviously, Hyller-
aas’ ansatz could be extended in a straightforward manner toward
many-electron atoms by including not only the coordinate r;, but
also the other interelectronic coordinates 3, 73, 14, 24, 34, and
so forth, into the many-electron wave function. In the most
general Hylleraas wave function products such as 11,713, r12t1314,
and so on, occur. In the following we will refer to the correspond-
ing computations as Hyleraas-type calculations. One can, how-
ever, make the restriction that no products of interelectronic
coordinates shall occur, only individual linear terms. This was,
presumably for the first time, done in the landmark paper by
James and Coolidge on the Li atom from 1936,'>* and this is the
essence of the Hylleraas-configuration-interaction (Hy-CI) method.
Let us consider the Li atom, for which a general Hylleraas-type
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. . 126132
expansion can be written as

vy = Z cu A

D) (136)

where . is the (three-electron) antisymmetrizer and ®,, is a
spatial basis function of the type

"1(1 ”527’13(3”]1(3”’;;’12% exp( — &y — G — &), / (112)/ 12,/ (r1,12,13)
(137)

where
% = afa—paa (138)

is a spin function with spin angular momentum 1/2 (doublet). It
was shown that inclusion of the second linearly independent spin
function

afa — faa

is not necessary to obtain the correct basis-set limit for the energy.
Y 5\4/2 Vit , (r1,1r2,13) is a vector-coupled product of spherical
armonics for the three electrons formlng a state of total angular
momentum L."”” Not only the 15*2s *S ground state but also excited
states such as 1s*2p *P and 1s*3d *D can be treated in this manner.
Multiple basis sets are constructed by replication of the basis
functions, eq 137, with different exponents &1,&5,85.">°
The Hylleraas-configuration-interaction (Hy-CI) method'*>"**
(for an n-electron atom) is defined as follows

(139)
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A, = 2000 —

K

w= 3

m=1

Cmo( ) (X,”lz H(P,m (140)

where O(L*) is an idempotent orbital angular momentum
projection operator, . the usual n-electron antisymmetrizer,
X; an n-electron spin function (e.g,, such as y; of eq 138 or y, of
eq 139), and ¢,,, a one-electron spatial orbital (Slater-type orbital,
STO). Configurations without (v,, = 0) and with (v,, = 1) the
Hylleraas coordinate ry, are included.

The advantage of the Hy-CI method in comparison with
methods that use general Hylleraas-type wave functions of the
form eq 137 is that in the Hy-CI method the types of integrals are
restricted to one-, two-, three-, and four-electron integrals. Thus,
the Hy-CI method may have some potential to be applied to
atoms with more than three or four electrons. The complexity of
the integrals will not increase when the number of electrons
becomes larger. In contrast, using a general Hylleraas-type wave
function would require one to compute four-electron integrals
for a four-electron atom, five-electron integrals for a five-electron
atom, and so on. Furthermore, high accuracy can be obtained
with only one r, term per configuration in addition to terms
without 7, dependence. Products such as rj,r;323... seem not
absolutely necessary, at least not for the Li atom. In recent work,
Sims and Hagstrom note that when accurate wave functions are
considered products of odd powers of r; contribute only at the
subnanohartree level.'* A similar conclusion was drawn by
Thakkar and co-workers,"*® who in their study on the lithium iso-
electronic series noted that compact and accurate results may
possibly be obtained from wave functions in which the restriction is
imposed that no term has more than one of the powers of the
interelectronic distances.

We note in passing that it is also possible to design approaches
in between the general Hylleraas scheme and the Hy-CI method.
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Table 3. Nonrelativistic Born—Oppenheimer Ground-State
Energies of Three-, Four-, Five-, and Six-Electron Atoms

system K” E/E, function ref
Li 10000 —7.4780603238 ECG 163
16764 —7.4780603234519 Hy-CI 13§
9576 —7.4780603238897 Hyllera.a.sl7 131
9577 —7.4780603238924 Hylleraasb 130
13944 —7.478060323909560 Hylleraasb 132
Be 5306 —14.6673547 Hylleraas*® 139
41871 —14.667356411 Hy-CI 164
10000 —14.667356486 ECG 165, 166
B 5100 —24.65386608(250) ECG 167
C 500 —37.84012879 ECG 168

“Number of terms in the expansion. ’ Generalized Hylleraas wave
function. ‘ Double-linked Hylleraas wave function.

For example, Kleindienst and Liichow'*” proposed a Hylleraas-
type method with linear terms r;; and “double-linked” terms 7;ry.
The many-electron integrals'>® were implemented for this
“double-linked” Hylleraas-configuration-interaction expansion,
and calculations were performed on the Be atom."*’

In any case, already for the Hy-CI methods many-electron
integrals up to the level of four-electron integrals are needed.
Two- and three-electron integrals occur over the following
operators (where k is 1 or 2)

. k. . k .
ey i mars ry/rey rons/ma (141)
together with four-electron integrals over the operators
rora/res rons/ras rora/ns (142)

Further integrals are required for the kinetic energy and nuclear
attraction parts of the Hamiltonian. Progress on evaluatinlg all of
these integrals has been reported over a long period of time."** ¢
In particular, the “fully linked” three-electon integral r,r13/723
requires special attention, and important progress toward its
analytical and eflicient evaluation has been reported in the last
few decades.'*071#13%158 Degpite the progress in (atomic)
many-electron integral evaluation, benchmark calculations using
Hylleraas-type wave functions or the Hy-CI method have thus far
been restricted to atoms not larger than Be (Clary and Handy'®
performed Hy-ClI calculations on the Ne atom in 1976, but they
obtained only ca. 73.5% of the correlation energy due to com-
putational constraints). Results for the atoms Li and Be are
shown in Table 3. Boron and larger atoms seem to remain a com-
putational challenge. Very accurate results from the ECG method
(exponentionally correlated Gaussians, section 4.2.1) have been
reported, however, for boron.'®” In ref 168 the value for the C
atom was obtained from a rather short expansion with only 500
terms, and the total energy has not yet converged to within one
millihartree of the basis-set limit.

Despite the limited range of applications we note that relati-
vistic and finite-mass effects, including corrections due to quan-
tum electrodynamics (QED), have been computed for the small
atoms with unprecedented accuracy for ground and excited
states. In the present review, however, we focus on the general
aspects of nonrelativistic wave function expansions that depend
on the interelectronic coordinates ;; and are less interested in the
numerous and more specialized applications of Hylleraas-type
wave functions.
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Table 4. Nonrelativistic Born—Oppenheimer Ground-State
Energies (in Ey,) of the Atoms H—Ne, Including Their Cations
and Anions, As Obtained in Ref 172

X Ex. refs 170, 171 Ex refs 170,171. Ex-
Hartree—Fock (ROHF) energy

H —0.499995 —0.487901
He —1.999943 —2.861627
Li —7.236411 —7.432723  —7.432727 —7.428219
Be —14.277372 —14.27739S —14.573013 —14.573023
B —24237547 —24.237575 —24.529037 —24.529061 —24.519187
C —37.292175 —37.292224 —37.688574 —37.688619 —37.708800
N  —53.887924 —53.888005 —54.400857 —54.400934
O  —74.372458 —74.372606 —74.809265 —74.809398 —74.789624
F  —98.831501 —98.831720 —99.409140 —99.409349 —99.459263
Ne —127.817494 —127.817814 —128.546789 —128.547098

correlation energy
H —0.039822
He —0.042041
Li —0.043500 —0.045336  —0.04533  —0.072542
Be  —0.047364 —0.04737 —0.094321  —0.09434
B —0.111260 —0.11134 —0.124779  —0.12485  —0.14498S
C —0.138590 —0.13880 —0.156231 —0.15640 —0.182637
N —0.166193  —0.16661 —0.188061 —0.18831
(¢] —0.193991  —0.19423 —0.257627 —0.25794  —0.331258
EF —0.260984 —0.26109 —0.324284  —0.32453  —0.400123
Ne —0.325389  —0.32529 —0.390485  —0.39047

total energy

H —0.499995 —0.527723
He —1.999943 —2.903668
Li —7.279911 —7.478058 —7.500761
Be —14.324736 —14.667334
B —24.348807 —24.653816 —24.664172
C  —37.430765 —37.844805 —37.891437
N  —54.054116 —54.588917
O  —74.566449 —75.066892 —75.120882
F  —99.092485 —99.733424 —99.859386
Ne —128.142884 —128.937274

The Hylleraas, Hy-CI, and ECG methods aim at reaching
ultimate accuracy for few-electron atoms and small molecules. In
contrast, as we shall see further below in this review, the much
more economical R12 and F12 methods aim at reaching reason-
ably high accuracy at low costs for larger systems. In Table 4,
therefore, we list the total correlation energies of the atoms,
cations, and anions of H through Ne. These total correlation
energies are compared with the estimated basis-set limits of
Davidson and co-workers.'”>'”" We observe that the correlation
energies obtained at the F12 level'”> agree to within a few tenths
of a millihartree with those of Davidson and co-workers."”*'”*
While Hylleraas, Hy-CI, and ECG calculations are able to
provide much more accurate correlation energies for atomic sys-
tems with up to 4 (Be) or 5 (B) electrons than the F12 approach,
the F12 total energies are probably the most accurate “directly
computed” ground-state energies for the atoms C—Ne. Neither ex-
trapolation techniques nor empirical corrections have been used
in the F12 calculations, but explicitly correlated calculations were
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combined with conventional CI-type calculations. The F12
total energy for B from Table 4 (—24.653816 Ey,) is almost as
accurate as the ECG value from Table 3 (—24.653866 Ey),
which is remarkable in view of the fact that already the error in
the Hartree—Fock energy, which is part of the F12 total
energy, amounts to 24 uE,. From the energies reported
in Table 4, ionization energies and electron affinities are
obtained that compare well (within a few tenths of a meV)
with the corresponding experimental values and earlier bench-
mark calculations.'”>'”*

In the next section we shall have a look at Hylleraas- and Hy-
Cl-type expansions for linear (e.g., H,) and nonlinear (e.g, Hy"
as simplest example) molecules. Hy-CI calculations have also
been reported for LiH, He,", and He,, but these calculations
were done in 1977 and were not as accurate as would be possible
today.'”*'”> Also, more recently, Hylleraas-type wave functions
have been applied to molecules such as the LiH molecule, but the
required integrals were not computed analytically but rather by
means of Monte Carlo numerical integration techniques. See, for
example, ref 176.

4.1.2. H, and Hz™ Molecules. The first explicitly correlated
wave function for a molecule, that is, the hydrogen molecule, was
proposed by James and Coolidge in 1933."””'”® Millihartree
accuracy (E =— 1.173559 E}) at R = 1.4 a, was obtained using a
compact 13-term expansion.'”'*® The James—Coolidge ansatz
was employed by Kotos and Wolniewicz in their landmark papers
of 1964/65."*""% In the James—Coolidge calculations, elliptic
coordinates and wave functions of the type

& = (riA + ViB)/R§ N = (riA _"iB)/R;

exp( — a&, — BE)EMEmr, (143)
were used, where R is the internuclear distance and where ;4
and ;3 denote the distances of electron i from the two nuclei
(A and B). Kotos and Wolniewicz'®® extended the ansatz of
James and Coolidge to enable a proper dissociation of the
molecule. Recent results for the ground state of the hydrogen
molecule are presented in Table S, including not only the
James—Coolidge and Kolos—Wolniewicz ansatze but also
energies obtained from the free ICI'**'** and ECG'#%'¥7
methods. It is seen that the difference in accuracy is small
between wave functions using Hylleraas-/James— Coolidge-type
basis functions and exponentially correlated Gaussians (con-
cerning H, (see also ref 188)). Both methods can probably be
pushed further to even more accurate variational ground-state
energies. Finally, as for the atomic systems, we note that not
only the ground-state energy has been of interest, of course.
Non-Born—Oppenheimer and relativistic effects, excited
states, H,-like ions such as HeH" and so on, have also been
studied.

Concerning H;", pioneering work on the Hy-CI method was
done by Preiskorn, Clementi, and co-workers'® 7'?% in the de-
cade 1982—1992, computing all of the integrals analytically that
are needed in calculations with basis sets of Gaussian atomic
orbitals.'** Their Hy-CI energy for H;" is given in Table 5. More
recently, potential energy hypersurfaces have also been com-
puted using the CISD-R12 method as well as using exponentially
correlated Gaussians, and an overview of the corresponding
results, including rovibrational levels, is presented in ref 195.

In terms of a set of spin orbitals {¢; }, the antisymmetrized
Hy-CI wave function for a general n-electron polyatomic
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Table 5. Nonrelativistic Born—Oppenheimer Ground-State
Energies of H, (R = 1.4011 a,) and H3" (R = 1.65 a,)

system K* E/E, function ref

H, 883 —1.174475930742 KwW? 196
1200 —1.174475931211 ECG 186
7034 —1.174475931399840 jc* 197
6776 —1.174475931400027 free ICI* 184, 185
4800 —1.174475931400135 ECG 187
22363 —1.17447593140021599  JC* 198

Hs" 700 —1.3438220 ECG 199
e —1.3438279 Hy-CI 192
f —1.3438341 CISD-R12 200, 201
g —1.34383509 CISD-R12 200, 202
600 —1.343835624 ECG 203—-205
1000 —1.3438356250187 ECG 206, 207

“ Number of terms in the expansion. ” Kolos—Wolniewicz wave func-
tion. ‘James—Coolidge wave function. “Free iterative-complement-
interaction method. ¢ 13s5p3d atomic orbital basis.” CISD-R12 calcula-
tion in a 10s8p6d4f atomic orbital basis. ¢ CISD-R12 calculation in a
30s20p12d9f atomic orbital basis.

molecule can be written as

K n
lIIH},_CI = Z th/(flllé I_II ¢ik (X,) (144)
k=1 i=

with g being either 0 or 1. Only two-electron integrals are re-
quired for computations on the H;" molecule, of course, and in
general the complexity of the Hy-CI method is restricted to
(eight-center) four-electron integrals.

Kutzelnigg’s CISD-R12 ansatz*® for two-electron systems
may be regarded as a special case of the Hy-CI ansatz with only
one two-electron basis function that depends on ry,

K—1
Weisn(L,2) = crn®o(1,2) + Y a®@i(1,2) (145)
k=1

where ®((1,2) is a two-electron reference determinant built
from a doubly occupied molecular orbital (obtained from either
the bare-nuclear-Hamiltonian problem or a Hartree—Fock
calculation) and where ®;(1,2) are all of the two-electron
determinants that can be built from a given one-electron basis.

Table S shows Hy-CI and CISD-R12 energies for H;", but note
that the one-electron basis used in the CISD-R12 calculation is
much larger than in the Hy-CI calculation. Furthermore, the
CISD-R12 energy is not strictly variational, because the following
approximation was made when evaluating the matrix elements of
the Hamiltonian

<¢k|ﬁ0712‘q)0> ~ (q)kHI:Io; r12) | Po) + Eo{ Di|ri2|Po)
(146)

where Ho = h(1) + h(2) and E, is the energy of the reference
determinant. In the H;" molecule the reference determinant is
not an exact eigenfunction of H,.

It is noteworthy that the early 1993 work on the CISD-R12
approach already contained an approximation to the Hamiltonian
matrix elements (between the explicitly correlated function
and the conventional determinants) that is reminiscent of the
“approximation C” that is used in modern explicitly correlated
F12 theory. We shall come back to this point in section 4.5.
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4.2. Gaussians

Since 1960, when Boys”” and Singer introduced
Gaussian basis functions including electron—nucleus dis-
tances as well as interelectronic distances (“functions with
direct correlation”) to quantum chemistry for calculations on
polyatomic molecules, numerous applications of these many-
electron Gaussian functions have been published. For exam-
ple, Lester and Krauss*'**'* applied two-electron Gaussians
(Gaussian geminals) in calculations on two-electron systems
such as He, H,, and H;". They also gresented the general
formulas for the necessary integrals.”'* Important theorems
concerning the completeness of the correlated Gaussian basis
set were given by King.>'® The calculations on two-electron
systems were encouraging, and it became clear that Gaussian
geminals are well suited to describe the overall shape of the
Coulomb hole well, despite the fact that they have no cusps at
the points of electron—electron coalescence.”'” Also, Salmon
and Poshusta employed Gaussian geminals in their calcula-
tions on the H;" ion,”'® and Karunakaran and Christoffersen
performed variational calculations on the LiH molecule with
Gaussian geminals.”"’

It is perhaps interesting to note that Boys not only
introduced the well-known Gaussian-type orbitals (GTO) to
quantum chemistry, which are one-electron functions, but also
Gaussian-type geminals (GTG), which are two-electron func-
tions. Boys also pointed out how to compute the integrals.”*’
Usually, in the literature, Boys’ work is cited with respect to
use of GTOs.>

A GTG has the following general form

210—-213

Gﬁ(rl,rz) = exp( — a/t”fp,( _ﬂ/,(r%Qu - V//%z) (147)
with
rp, = =Pyl g, = |n—Qu, m = |rn—mn
(148)

r1p, and rq, are the distances of the electrons 1 and 2 from the
centers P, and Q, respectively, which may be chosen indivi-
dually and freely for each basis function Gg (floating lobe
functions). Furthermore, ry, is the interelectronic distance and
@ By, and y,, are Gaussian exponents, which are allowed to be
negative as long as the GTG is square integrable. Hence, each
two-electron GTG basis function contains 9 nonlinear param-
eters (3 Gaussian exponents and 6 coordinates).

The GTGs can also be used with Cartesian prefactors, that is,
in the form

Fue Ky Ko Lo by L 2 2 2
Gu(ryrs) = *1p,Y1P,%1P,%2Q,)2Q,%2Q. exp( — QuTip, — ﬁ,ueru = V)

(149)

and obviously, wave functions for two-electron systems can
directly be expanded in terms of such Cartesian GTGs

lP(XI,Xz) = u/’[{GS‘MS(Ul,Gz),@R[ Z C//,G‘u(l'l,l'z)}} (150)
u=1

where x = {r,0} contains spatial and spin coordinates, . is the
usual antisymmetrizer, ©(0,,0,) a proper spin function corres-
ponding to the quantum numbers S and Mg, and j the
symmetry projector accounting for symmetry adaptation
(projector onto the relevant irreducible representation R of the
symmetry group of the molecule). The ¢, are linear parameters.
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Of course, it is also possible to expand the two-electron wave
function in terms of the Gaussian-lobe geminals Gy,

When many-electron methods such as Moller—Plesset per-
turbation theory through second (MP2) and third (MP3) order—
and so forth—or coupled-cluster theory with double (CCD)
or coupled-cluster theory with single and double excitations
(CCSD) are formulated (in first quantized form) in terms of pair
functions that describe the correlation between electrons in two
occupied Hartree—Fock orbitals, then eq 150 can be used to
expand these pair functions. Such methods have been devel-
oped for calculations on many-electron atoms and molecules for
about 30 years,”*°”** including calculations in the framework of
symmetry-adapted perturbation theory for treating intermolecular
correlation energies.né*229 In 1982, Szalewicz and co-workers?*°
proposed using a special functional for such calculations. We
shall discuss the corresponding GTG pair theories further below,
but first, we shall be concerned with variational calculations using
GTGs or products of those. The corresponding methods are
today known as methods using exponentionally correlated
Gaussians (ECG).

4.2.1. ECGs: Exponentionally Correlated Gaussians. For
a two-electron system, ECG calculations are variational methods**'
with eq 150 as a two-electron wave function. Hence, the linear
variational parameters are optimized by minimizing the expecta-
tion value

Egcg = <q’(X1;Xz)|H|1P(X1;X2)>/<1P(X1;X2)|1P(X11X2)> = min
(151)

where H is the Hamiltonian of the atom or molecule.

ECG calculations have, for example, been performed on the
singlet ground states of He, H,, and H;". In these cases, the spin
function takes the form

@0'0(01, 02)

(01)p(02) = plor)alar)}  (152)

1
=—{a
V2
Tables 2 and 5 show a few selected ECG results for two-electron
systems in comparison with those obtained from (extended)
Hylleraas- and James— Coolidge-type wave functions. The ground
state of the He atom can virtually be computed with arbitrary
accuracy, which becomes clear from the work of Nakashima and
co-workers,'*""* who report the ground-state energy of He with
ca. 40 digits. With a 600-term ECG expansion, the error in the He
ground-state energy is only about 0.01 nanohartree. Interest-
ingly, already for the H, molecule, the 4800-term ECG wave
function of Cencek and Szalewicz'®’ is competitive with the
Hylleraas- and James—Coolidge-type wave functions, and for the
H;" molecule-ion the ECG method is certainly the method of
choice to compute an accurate potential energy hypersurface.”*®
The above also applies to other two-electron systems such as

HeH'* 22

Calculations on atomic systems with up to 3 electrons can
accurately be carried out using Hylleraas-type wave functions,
but beyond 3 electrons the most accurate ground- and excited-
state energies to date are obtained by the ECG ansatz, which is
applicable to molecules with 3 electrons (such as H;)***** and
in general to systems with 4—6 electrons. These systems include
molecules such as LiH,>>>**¢ LiH >’ BH,>*® the H,** and
He dimers,"¥"**** and the atoms beryllium,Mz’243 boron,w7 and
carbon.'*®

In the ECG approach, the spatial part of the electronic wave
function of an n-electron system is represented by the linear
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combination
r) = i e Pr(r) (153)
k=1
D (r) = exp[ — (r—s) (Ax ® L)(r — s)] (154)

where r is a 3n-dimensional vector formed by the vectors ry, r,,
I3, .., I, stacked on top of each other, A; a symmetric n X n
matrix, I3 the 3 X 3 identity matrix, and ® is the Kronecker
product symbol. The 3n-dimensional vector s, is a “shift vector”
that generates floating centers of the Gaussians. The matrix Ay is
a positive definite matrix and is therefore best represented in the
Cholesky-decomposed form A = LiL,", where L is a lower
triangular matrix and L{ its transpose. The basis functions in
eq 154 may be multiplied by Cartesian factors such as x;, and so
on, to facilitate the description of atomic P states, dlatomlc T
states, and the like. Also, prefactors such as ry, r1,, and 2, have
been investigated. 110,166 The elements of A, and s; constitute a
large number of nonlinear variational parameters that must be
optimized very carefully in order to obtain highly accurate results.

To conclude this subsection, we note that the form in eq 154 is
equivalent with the notation chosen by Cencek and Rychlewski***
in their pioneering work on the ECG method. In that work, the
ECG wave function was written as

K
W= Y ady (155)
k=1

} (156)

where g;(r;) is a usual Cartesian Gaussian basis function (i.e.,
one-electron basis function), . the n-electron antisymmetrizer,
g the symmetry projector onto the irreducible representation
R of the molecular point group, and ) an appropriate n-electron
spin function. In the same manner that the Hy-CI method is a sim-
plification of the full Hylleraas approach, Cencek and Rychlewski***
investigated the “single” exponentionally correlated Gaussian
(SECG) model in which only one Gaussian geminal is considered

at a time
A {X-@R

The advantage of the SECG method is that the complexity of the
many-electron integrals in a Rayleigh—Ritz variational calcula-
tion is limited to the level of four-electron integrals.

Finally, we note that since 1991/1992 Kozlowski and
Adamowicz>* ™% utilized ECG-type basis functions for gener-
ating nonadiabatic many-body wave functions.

4.2.2. GTGs: Gaussian-Type Geminals. In 1970—72 Pan
and King*****' proposed using Gaussian geminals for electron-
pair correlation, that is, for the expansion of the pair functions of
the first-order wave function of Meller—Plesset perturbation theory.
Already in these early works ca. 87—88% of the all-electron MP2
correlation energy of the Ne atom was obtained in this manner.

In 1982 Szalewicz, Jeziorski, and Monkhorst proposed a new
functional for variational calculations of atomic and molecular
second-order (MP2) correlation energies using Gaussian gem-
inals: the weak-orthogonality (WO) functional. 230 1n a series of

2 ﬂl] kr;, H gtk I',

l<]

q)k = k/{{x(ﬂR exp

O, = (157)

exp( — ﬂk’fz) lljl i (ri)] }
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papers”' > this new approach was applied to the systems He,
Be, H,, and LiH, not only at the level of second-order perturba-
tion theory but also at the third-order perturbation theory>>* and
coupled-cluster levels.”>

For a discussion of this WO functional consider the following
pair equation for the first- and higher-order (coupled-cluster)
pair functions 7;

(Fy + F, — & — Sj)%ij = Rij(%) (158)
where F, and F, are the Fock operators of electrons 1 and 2 and
where ¢&; and ¢; are the orbital energies of the occupied orbitals i
and j. This pair equation must be satisfied together with the
strong-orthogonality requirements

(1-01)(1

—00)7y = 7y (159)

=

(1= 0,)(1— 0y)Ry(7) = Ry(7) (160)

O is the projection operator onto the space of occupied spin
orbitals, O = ¥,i) (i|. When these strong-orthogonality require-
ments are satisfied, the pair functions 7; may be obtained by
minimizing the functional

SOL(Tu) - <T |F1 + FZ £j|rij> - 2<T1‘}'|Rij(r)> (161)
This functional, introduced by Sinanoglu,zsa257 shall be referred
to as the strong-orthogonality (SO) functional in the following.
(In passing, we note that it was recognized by Sinanoglu already
in the original work that this functional facilitates introduction of
r1,-dependent functions into many-electron systems.)

At the MP2 level, the right-hand-side R,}(T) is simply — (1 — O,)-
(1 — O)r |if), where |ij) = |¢;¢;| is the two-electron Slater
determinant built from the two spin orbitals i and j. At higher
levels, R;;(7) is a function of the (strongly orthogonal) pair
functlons Tin

Let us now consider the pair function 7;;, which is expanded in
a basis of Gaussian geminals G,, as in eq 150, that is, T Zu 1CZG
This pair function 7 is not strongly orthogonal to the Har-
tree—Fock reference determinant, that is, it does not satisfy the
strong-orthogonality requirement in eq 160. Of course, acting
with the projection operator (1 — O,)(1 — 0,) onto the gemmals
expansion 7;; would yield a strongly orthogonal pair function 7;
1- 1)(1 — OZ)T,], but inserting this pair function into eq 161
would give rise to up to four-electron integrals already at the MP2
level (due to the Fock matrix elements (‘E,]|F L+ F2|t,])) There-
fore, Szalewicz et al. suggested minimizing the WO functional

WOL(T,‘]') = <Tij ‘Fl —+ F2 — & — €}|T,]> — 2<Tt;‘R1](T)>

(162)

with

b uid

1

Ai;' = E(Si + 51) —é& + n (163)
&1 is the smallest orbital energy, and 77 is a positive parameter. At
the MP2 level, eq 162 becomes

"OL(t) = (tylF, + F, — & — glvy) — 27|y |y (164)
No SO projection operator is applied in the first term on the
right-hand side, that is, only the raw geminals expansion 7; is
inserted here. By this means, four-electron integrals are avoided.

The SO projection operator is still present in the second term on
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the right-hand side of eq 164, but this only gives rise to three-
electron integrals. At higher orders of perturbation theory or at
the level of coupled-cluster theory, however, the SO projection
operators in the term (7;|R;j(7)) would give rise to four-electron
(at the third order) and five-electron integrals (at the fourth
order) if it were evaluated without further approximations.”**
Obviously, significant simplifications are obtained by computing
R, not from the strongly orthogonal pair functions 7;;= (1 — O)-
(1 — 0,)7;; but rather from some functions y; that are obtained
by expanding 7;; in the basis set of Gaussian geminals, that is

K
Xy = X diGui
u=1

Y, (Gul G} = (Gu|(1 = 01)(1 = Ox)zy), V. (165)

v=1

This approach is referred to as the weak orthogonality with
projection (WOP) approach.”>* The corresponding functional
may be sketched as

WOPL(T,‘]‘) = <T,‘j ‘ﬁl =+ 152 — & — €j|T,‘I‘> — 2<%IJ|RIJ(X)>
(166)

The WOP functional produces accurate third- and higher-
order energies, but evaluation of the term (7;|R;())) is very
time consuming due to the larger number of three-electron
integrals that occur in such a calculation. When we rewrite the
SO projection operator that is contained in 7; in eq 166 in the
form

(1-0)(1-0,) =1—-0,0,—0,(1—0,) —(1—-0,)0,
(167)

we find that the last two terms give rise to the three-electron
integrals. Hence, these can easily be avoided when the super weak
orthogonality (SWO) approach is applied, that is, when the terms
with O;(1 — O,) and (1 — O;)0, are neglected. In combination
with the projection of the WOP approach, this yields the SWOP
method (super weak orthogonality with projection)

WOPL (1) = (tylF, + F, — & — g|t5) — 2z (1 — 0102)Ry(x))
(168)

The above discussion of the approaches WO, SWO, WOP, and
SWOP is only meant to provide a rough sketch of the ideas that
have been developed for using Gaussian geminals in pair theories.
For details, we refer the reader to the original literature>>* as well
as to recent reviews ~>>® because the theory is, in fact, a little
more complex than indicated here. For example, the SWO func-
tional used at the coupled-cluster level is not fully comparable
with the one shown above, which applies to the MP2 level. The
bottom line is that four- and five-electron integrals can entirely be
avoided at the coupled-cluster level when the model is limited to
the factorizable coupled-cluster-doubles level (FCCD). If the
nonfactorizable contributions to R;; shall be computed, then four-
electron integrals must be evaluated. Their number is Ny K3,
where Ny, is the number of one-electron (Hartree—Fock) basis
functions and K the number of geminals. Inclusion of single
excitations was worked out by Bukowski et al.,**” and it was
found that neither the difference between CCD and FCCD
nor the difference between CCSD and CCD is sensitive to the
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electron—electron cusp, and thus, these differences are not dif-
ficult to converge in a conventional orbital—product expansion.
Hence, a cost-efficient and accurate approach consists of com-
puting FCCD energies using GTGs and full CCSD energies
using orbital —product expansions.>**>¢"

Gaussian-type geminal basis sets for correlation-energy cal-
culations are usually obtained by optimization of the second-
order energy functional. For a discussion of the optimization
of the nonlinear parameters see ref 262. More recently, an
IEPA-like functional (independent electron-pair approximation
functional) has been investigated for the purpose of optimiz-
ing the nonlinear parameters for subsequent coupled-cluster
applications.*

Thus far, GTG calculations have been restricted to systems not
larger than 10 electrons. At the MP2 level, for example, the H,O
molecule was computed,”** and at the coupled-cluster level, the
Ne atom was treated.”** The GTG approach was also used to com-
pute a very accurate He- + - He pair potential in 1996/97.26%%%
At the internuclear distance of R = 5.6 a,, the currently most
accurate and reliable values for the electronic dissociation
energy are D,/ky = —10.9996(105),>*” —11.0037(31),>%'
and —11.0006(2) K.'*"

We conclude this subsection by noting that the analytical
calculation of first-order properties has been developed for
GTG basis sets (see also section 8.2). The analytical approach
was applied to calculation of the second- and third-order corre-
lation corrections to the lowest multipole moments of the mole-
cules H, and LiH.>%®

4.2.3. GGn Methods: GTGs Combined with Orbital
Expansions. Motivated by the success of the R12 methods
(cf. section 4.5), Persson and Tei}rlor269 suggested combining
GTG and orbital expansions in 1991. The idea was to replace
the linear rj, term of the RI12 theories by a short linear
combination of Gaussian geminals. It appeared to be possible
to fit the electron—electron distance r;, with only a few (6—9)
Gaussian functions with good accuracy, although the electron
cusp, of course, is not satisfied. Nevertheless, it was known
that it should be possible to achieve high accuracy and rapid
basis-set convergence with Gaussian geminals. The overall
shape of the Coulomb hole for a wide range of electron—
electron distances (which can be represented well with
Gaussian geminals) seemed to be much more important than
the electron cusp itself.”!” One can rationalize the rapid basis-
set convergence with Gaussian geminals by noting that the
cusp at rjp = O should to be of minor importance for
calculation of the electronic energy because the volume
element 4717, suppresses contributions for very short r,,
but Kutzelnigg'®® argues that “the smallness of the domain in
which the singularity really matters does not affect the rate of
convergence of a Fourier-type expansion”.

At the level of Moller—Plesset second-order (MP2) theory,
the Persson—Taylor ansatz for the pair function 7; with a
contracted GTG is

T = (1— f/lf/'z)g(rlz) Z c$y|xy> + 2 c3b|ab> (169)
xy ab
with
MGTG 2
g(m) = Z b[1 — exp( = 7,,11,)] (170)
m=1
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The coefficients ¢’ and cfjb are obtained by minimizing the weak-
orthogonality (WO) functional

WOL(TiI') = <Tij|ﬁ1 + 1:72 — &= 8j|rij>
+ 27yl (1= 01)(1 = 02)ryy' i)

+ Agr;|01 + Oofry) = B (171)

where the factor Aj; of the last term, which may be interpreted as
a “penalty” term, is a level shift defined by A;; = (1/2)(&; + ¢;) —
&, + 1 with &; < & Vkand 57 = 0. The projection operators in
eqs 169 and 171 are

0= X |iXil; V=% laXal (172)
Typically, the sets of exponents y,, in the correlation factor are
chosen to be even-tempered series of the type y,, = a8™ ' with
B = 3. For example, for mgrg =3, 6,9, or 12 one may choose o =
1/3, 1/9, 1/27, or 1/243, respectively. In the approach with
contracted GTGs, the (contraction) coefficients b,, were obtain-
ed by the least-squares minimization

MGTG

= [T Y b(-e R (173)
0 m=1

where the fitting range was chosen as x;,,,, = 2, 5, or 10 ao. It
was soon realized,”®® however, that an obvious way to
improve the results is to optimize the coeflicients of the
Gaussians, for example, by means of the variational principle,
rather than constraining them by the fit. This leads to
the Persson—Taylor ansatz for the pair function 7; with
uncontracted GTGs

‘7 Y7 & xy;m
T = (1=ViV) Y, exp(—7,m0) Y, 6" %)
m=1 xy

ab
+ Zb ¢;’lab) (174)
Note that the projection operator (1 — V;V,) is introduced
here to minimize the couplings between the conventional and
the explicitly correlated parts of the pair function without
having any effect on the final pair function or energy.

One major advantage of this approach is that all variational
parameters are linear. No tedious and time-consuming opti-
mization of nonlinear parameters, which, for example, may be
determined using methods based upon the random-tempering
approaches developed by Poshusta®’®?”' and Alexander
and co-workers'””*”*7** or using methods based on
Fletcher—Powell or Newton—Raphson procedures,****” are
needed in the Persson—Taylor ansatz. However, as we shall out-
line below, the ansatz may not be sufficiently flexible to reduce the
strong-orthogonality penalty, depending on the choice of xy.

As in the work of Szalewicz and co-workers (cf. section 4.2.2),
the WO functional was used to avoid evaluation of four-electron
integrals. The intention of the Persson-Taylor ansatz was to
develop a method that would provide results similar to the MP2-
R12 method but without the need to insert resolution of the
identity approximations that violate the upper-bound property of
the Hylleraas functional. Even though evaluation of the necessary
three-electron integrals is tedious and time consuming,®’®™*"®
it was argued that in an integral-direct manner this evaluation would
perform favorably on massive parallel computer architectures
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Table 6. GGO All-Electron Second-Order Correlation Energyh
(in mEy) of the Ne Atom in the aug-cc-pCVTZ(spd) Basis of
Ref 2867

GTG basis with 9 primitives

functional contracted uncontracted
SO° —384.3 —385.5¢
10° —369.6
wo' —345.3 —353.9¢

“Data taken from ref 288. ” The most accurate estimate of the basis-set
limit is —388.131 mE;, obtained from FEM-MP2 calculations.”®
¢ Strong-orthogonality functional; computed using RI approximations.
4 Cf. refs 287 and 288. ¢ Intermediate-orthogonality functional of Tew
etal®® (y=0.1E,).” Weak-orthogonality functional (17 = 0.1 E;,). ¢ Cf.
ref 286.

and that due to the short range of the Gaussians exp(—ymrfz)
efficient integral screening, in particular, in the framework
of local-correlation methods,”””~*** would eventually lead to a
method that scales linearly with the size of the system (the scaling
with the size of the one-electron basis would still remain N°, of
course, with N the number of basis functions per atom).

In the original ansatz of Persson and Taylor, the sum over
x,y was restricted to xy = ij. The ansatz can be extended to run
over all occupied orbitals (xy € kI) in the sense of the orbital-
invariant formulation of the MP2-R12 method in ref 28S.
This ansatz is known as kl ansatz or the GGO approach. In the
more flexible GG1 approach, also those GTGs are included,
where either x or y refers to a virtual orbital: xy € {kl,kb,al}.
Finally, all MOs are included in the GG2 approach, with xy €
{kl,kb,al,ab}. Obviously, the GGn performance improves
with increasing geminal level n, but at the same time,
determination of the coefficients ¢"" becomes more diffi-
cult. On one hand, the dimension of the set of linear
equations becomes very large, and on the other hand, these
equations become more prone to (near) linear dependencies
and numerical instabilities.

Unexpectedly, recent results by Dahle et al.™" revealed that
the performance of the GGO method is startlingly poor. In the
aug-cc-pCVDZ basis and using a primitive set of 9 GTGs, the
value of —333.1 mE,, was computed for the all-electron second-
order correlation energy of the Ne atom. The corresponding
MP2-F12 value (see section 6.4) using a single contraction of the
same 9 GTGs is —380.6 mE,. This difference between the two
calculations was highly unexpected because one expects that the
MP2 value will be lowered when a contracted GTG basis is decon-
tracted to a primitive basis. Such energy lowering due to decon-
traction of the GTG basis is indeed observed in the work by
Valeev.”®” Hence, according to common sense, Dahle’s value
(—333.1 mEy,) should have been lower than the corresponding
MP2-F12 value (—380.6 mEy,), but it is not. On the contrary, the
difference is very large (almost SO mEj,) with the wrong sign. The
apparent contradiction is resolved by recognizing that the GGO
expansion is unable to form strongly orthogonal pairs.”*® Hence,
the GGO expansion is not well suited for use with the WO func-
tional. The poor performance of the GGO calculation is not due
to the GGO ansatz itself but rather to its use in conjunction with
the WO functional.

The poor performance of the combination GG0/WO is also
illustrated in Table 6, which shows results for the Ne atom in the
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aug-cc-pCVTZ(spd) basis of ref 286. MP2-F12 calculations
using the same 9 GTGs as in the GGO calculations yield energies
of —384.3 and —385.5 mE;, with a contracted and uncontracted
GTG basis, respectively. Even though it is not much, the energy is
lowered by decontracting the GTG basis, as expected.

As an improvement to the WO functional, Tew and co-
workers su§§ested use of an intermediate-orthogonality (10)
functional.*®*® The result obtained from this functional is also
shown in Table 6. The 10 functional is defined as follows

O(1,) = (t|Pra(By + By — & — &)Praty)
+ 2ty (1= 01) (1 = 02)ryy' i)

+ (1= Py)Oofry) = ES™ (175)
with
Py =1-0,0,—0,V, - V,0;
1
A= E(Ei +&)—e + 1 (176)

Since the one-electron projection operators in 1312 occur in pairs,
no four-electron integrals aris, and for any positive 77 the 10
functional provides a strict upper bound to the MP2 correlation
energy (when using exact Hartree—Fock orbitals and evaluating
the three-electron integrals analytically).

When using the WO functional, the quality of the computed
energy depends on the ability of the chosen geminal basis to form
stron§?7 orthogonal pairs. In the limit of a complete geminal
basis,”****° the pair function satisfies the strong-orthogonality
condition and the exact MP2 energy is obtained, but the GGO
geminal basis is by far not flexible enough to yield high-quality
results. In the IO functional, however, the strong-orthogonality
violating single excitations within the finite MO basis are pro-
jected out. The only strong-orthogonality violating components
of the explicitly correlated geminals that enter the functional are
those that correspond to single excitations outside the finite MO
space. When using the IO functional, the geminal basis needs
only to be flexible enough to zero these terms.

To date, the IO functional has not been used much, but for
future work in the field of GGn methods (or other MP2 methods
in which all integrals are computed exactly and which provide
strict upper bounds) it certainly deserves attention.

As mentioned above, the GGn methods may have some %)oten—
tial especially in combination with local-correlation methods.””” %
Indeed, Polly and co-workers developed a corresponding local
MP2 (LMP2) method with GTGs and the WO functional.**! In
this LMP2-GTG method, the local pair functions for the localized
orbitals i and j are

MGTG

= (1-VV) Y exp(—y,rh) Y Y k)
m=1 k€ Pu(i) e € [i]
+ Y <lab) (177)

ab € [ij]

where kis an localized occupied orbital from the list P,(if), x¢ is an
atomic orbital (basis function), and a and b are projected atomic
orbitals>”***? (PAOs). The summation over s restricted to the
pair domain [ij], and the summation of k is limited to the list
P(ij), which includes all localized occupied MOs k for which
either (ik) or (kj) is a “strong pair”. Roughly, this LMP2-GTG
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Table 7. Valence-Shell Second-Order Pair Energies of C,H,
with Respect to Localized Occupied Orbitals; 77 = 0.5 Ej, in the
Calculations with the WO Functional”

LMP2 best estimate”
pair cc-pVDZ" +9GTG? cc-pVSZ* ref 293
O 1545  —2550 —2524 2677
O’ —2277  —3079  —30.75 —31.59
Ted 2305  —2733 —27.13 ~27.88
Ooc—0Ocn —829  —11.02 —1132 —11.72
Oec—Tee 2011 —37.66 —38.09 —39.40
Ceu—7tce —1391  —1732  —17.98 —1826
Ocu—0c (geminal)  —1043  —1339  —13.77 —13.86
Ocn—0cy (cis) —1.10 —1.31 —1.41 —1.42
Ocy—0 ¢y (trans) —1.17 —1.39 —1.44 —1.38

“Data taken from ref 291. ” Obtained at the MP2-R12 level in the
C:19s14p8d6fag3h2i/H:9s6p4d3f2g basis by adding 60% of the MP2-
RI2/A energy to 40% of the MP2-R12/B energy.””> ‘LMP2 pair
energies obtained in the cc-pVDZ basis. 4LMP2 pair energies obtained
in the cc-pVDZ basis after adding 9 GTGs. ‘LMP2 pair energies
obtained in the cc-pVSZ basis.

method corresponds to the GG1 approach. Two further remarks
are appropriate: first, the factor A;; of the weak-orthogonality
functional is computed from the diagonal Fock matrix elements,
that is, A;; = (12)(f; +f;) — fi1 + 1, such that the upper-bound
property of the WO functional is not strictly valid any more;
second, the projection (1 — \71172) has thus far been carried out
only using canonical virtual orbitals (not PAOs).

In Table 7 LMP2-GTG results for ethene (C,H,) are col-
lected, and pair energies with respect to Pipek-Mezey localized
orbitals®®* are presented. A comparison with the work of Samson
and Klopper™” is made, although these authors used the Boys
localization scheme®”* (only the valence orbitals within the
molecular plane, that is, the o-type orbitals were localized, leaving
the 77-type orbital unchanged). Clearly, adding 9 GTGs to the
correlation-consistent double-§ (cc-pVDZ) basis yields approxi-
mately quintuple-zeta (cc-pVSZ) quality pair energies, but we
note that the LMP2-GTG calculations are very time consuming
(according to ref 291, they were tractable only in the cc-pVDZ
basis). Furthermore, the cc-pVDZ+9GTG and cc-pVSZ results
are still several millihartrees away from the basis-set limit pair
energies.””> Note that the latter add up®®” to a total valence-shell
MP2 correlation energy of —373.6 mE;, which compares well
with the value obtained in ref 295: —373.0 &+ 0.2 mE;, (at a
slightly different geometry).

4.3. Transcorrelated Methods

A different approach, based on a similarity transformation of
the Hamiltonian, was proposed by Hirschfelder in 1963.>°° In his
approach the wave function takes the form 1 = J®, where |
depends on the interelectronic distances. He showed that ® may
be determined using a similarity transformed Hamiltonian H' =
J~'HJ where, if ] is properly chosen, H' is free from Coulomb
singularities, thereby simplifying construction of ®. This method
was pursued by Jankowski,”””*”® and in 1969 Boys and Handy
established a practical method for determination of parameters in
both J and @, which required evaluation of at most three-electron
integrals.”®>*** Boys and Handy chose to use a single Slater
determinant of spin orbitals for @ and a Jastrow factor formed of

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

Table 8. Hamiltonian Commutator Expansion in the Trans-
correlated Method

kinetic energy potential energy

H —(1/2)zv} *ziAZAV;Al"'ijr;l
[H,C] =3,4((1/2)V;C#v,C;-V) 0
(12)[[H,C],C] —(1/2)Z47.Cy V Ci 0
(1/6)llAEClClC] o 0

a product of two-electron correlation functions and 1-electron
orbital relaxation functions

] = H eXP(Z D‘uGy(riyrj) + ;dl[gl(ri) + gﬂ(rj)])
i<j u
(178)

(179)

= exp(C) = exp(Z Ci/‘)

i<j

The original equations for determining the orbitals and the wave
function parameters D, and d; were

(0®|H + [H,C] + %[[H, C),C] — E|®) = 0 (180)
Gl + [B,] + S[[A,C,C]~E®) =0 (18)
(g ®[[H, C||®) = 0 (182)

The significance of the last equation is both to remove the
redundancy between g; and the orbitals and to make the
transcorrelated Hamiltonian as hermitian as possible for orbital
optimization. The energy is evaluated by projection

E = (O|H'|D) (183)

Boys and Handy chose the following one- and two-electron
functions for the Jastrow factor

1 ariy

Gi(r,n) = 2ot (184)
Gulryma) = (Faths + ;;A;JIB);IICZ (185)
riA
gz(rl) = m (186)
r
r = 187
P (187)

The correlation factor is linear at short-range interparticle sep-
arations and satisfies the electron and nucleus cusps. At long-
range interelectronic separations the correlation factor is con-
stant and the wave function tends to an antisymmetrised orbital
product function. Table 8 lists the commutator expansion for the
transcorrelated Hamiltonian. Since C only contains one- and
two-electron functions, the expansion truncates at three-electron
operators.

The transcorrelated method of Boys and Handy was further
refined by Handy, who reduced the problems associated with the
lack of a variational upper bound to the energy for the similarity-
transformed Hamiltonian. He proposed replacing eq 181 with a
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minimization of the transcorrelated variance

U = ({(H - E)®)?) (188)

Handy also replaced the Jastrow factor functions with Gaussian
orbital and geminal functions where the one-, two-, and three-
electron integrals have simple analytic forms. Handy applied his
approach to the ground-state energies of He, H,, LiH, and
H,0.303304

The transcorrelated method has received a moderate level of
renewed interest over the past decade. In 1998 Nooijen and
Bartlett suggested using a frozen similarity transformation in-
stead of optimizing the factor J.>** Ten-no adopted this approach
in his examination of the transcorrelated method in 2000, 7giving
efficient formulas for the three-electron integration.wé’30 Ten-
no chose a coupled-cluster wave function for ® and expanded H’
as F + V, where F is the usual Fock operator and evaluated the
amplitudes in the coupled-cluster wave function using second-
order perturbation theory. His results were intermediate between
basis-set limit MP2 and MP3 quality, indicating that some 3-body
correlation effects have been captured, but he found that a more
flexible one-electron basis is required in comparison with other
explicitly correlated methods. In similar work in 2003 Zweistra
et al.>®® used a Gaussian damped Jastrow factor in combination
with a CI expansion for ®@. Luo and co-workers analyzed the trans-
correlated method from a quantum Monte Carlo perspective,**”
and very recently, Luo introduced a variational formulation of the
transcorrelated method,®'®*"" which amounts to replacing the
nonhermitian equation for the orbital optimization eq 180 with
the hermitian equation

(ODIH + %[[ﬁ, cl, ] — E[®) = o (189)
Luo found that the numerical stability is greatly improved, while
the quality of the wave function is not adversely effected.

4.4. Quantum Monte Carlo Methods

A very different way to deal with high-dimensional or analy-
tically intractable integrals is Monte Carlo integration. In fact,
quantum Monte Carlo (QMC) methods have a close relation to
explicitly correlated methods; a detailed discussion, however, is
not the scope of the present review, and we refer the reader to refs
312—314. The aforementioned relation is most obvious for
variational Monte Carlo methods,*"**'® which try to evaluate
the N-dimensional integral of a trial wave function’s energy
expectation value by stochastic integration. The wave function
ansatz can be, in principle, arbitrarily complex. In particular, it can
take care of the cusp conditions by employing Jastrow factors in
the ansatz, like those of Boys—Hand;f type, eq 178, as used in the
work of Schmidt and Moskowitz,>'” or improved versions there-
of (see, eg, ref 318). Likewise, the free complement local
Schrédin§er ecI{uation (FC LSE) method of Nakatsuji and co-
workers! S T7018HI8S oy be viewed as a special version of
variational Monte Carlo. Jastrow factors are also used for the
guide functions in diffusion Monte Carlo.*"?~%*'

First molecular applications of QMC, on H;", have been
reported by Anderson.**° The method features a favorable N
scaling with system size, and also linear scaling approaches have
been reported.””* However, the better scaling comes along with a
rather huge prefactor as the statistical error decays only with the
inverse square root of the computer time. On the other hand,
very efficient parallel algorithms exist, making possible applica-
tions to large systems, like interactions of DNA base pairs,>**
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excited states of free-base porphyrin,*** the chromophore of
green fluorescent protein,3 3 or retinal.**

In 1985 Kutzelnigg progosed a new explicitly correlated
approach, the R12 method.”*® The key idea of this work was,
as stated in ref 208, that “traditional CI is not really bad, it only has
difficulties to represent the wave function at those regions of config-
uration space where one interelectronic distance r;; approaches zero.”
Hence, the basic idea was to begin the wave function expansion
with just a few (two-electron) basis functions that depend expli-
citly on the interelectronic distances r;; and to continue with add-
ing a conventional CI expansion in terms of antisymmetrized
orbital products. In his 1985 paper®® Kutzelnigg focused on the
He atom, for which numerical results were obtained using the
ansatz

1
Wespriz = (1 + Eﬁz) Dy(1,2)

+ X 6qld,(1)0,(2)] (190)
pq

where ®((1,2) = N, exp{—a(r, + r,)}y with a spin function y
and a normalization constant N,,. For the two-electron system
He, only one single explicitly correlated basis function was added,
and the general idea for many-electron systems was to add one
explicitly correlated basis function for each pair of electrons.
Noting that

. N . a o a—27 a—27 1
H=T +T,———— + + + —
o n 1 ) 12
. a—72 a—Z7Z 1
—Hy + + - (191)
r ) 12

eq 190 is somewhat special in the sense that ®o(1,2) is an exact
eigenfunction of H, the bare-nuclear Hamiltonian, Hy®(1,2) =
Ey®,(1,2). This allows for exact reformulations of the type

I_Alorlzq)o(l,z) = [Ho,rlz](l)()(l, 2) + T]onq)o(l,Z) (192)

The reference function ®(1,2) was optimized by minimization
of the matrix element Hy,

by = (@0(1,2) (14 3 )1 (1 + G ) 01,20/

(193)

So0 = (D1, 2)(1 + ;r12>|<1 + ;ru) ®,(1,2))
(194)

which was denoted as “overhead”. For He, a was optimized to
a = 1.885 ao ' and the corresponding overhead was Hyy =
—2.888718 E,. Hence, about 64% of the correlation energy
was obtained already from the explicitly correlated basis function
(1 + (1/2)r1,) Dy, and the conventional CI expansion was only
needed for the remaining 36%. It was found that the convergence
of this conventional CI expansion for the remainder was rather
fast (microhartree accuracy was already obtained with only up to
h-type functions in the one-electron basis set used for the CI
expansion).

In ref 208 Kutzelnigg not only presents results for He and
He-like ions but also, more importantly, discusses possible
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generalizations toward (molecular) many-electron systems. Such
generalizations are discussed in terms of partial-wave expansions.

Let us regard the conventional CI approach as an approxima-
tion to the CISD-R12 method in which the term r,®, is
expanded in a basis of Slater determinants

ra®o = Y, Gylpa); lpa) = 19,(1)¢,(2)] (195)
pq
Hence,
L= (Do|ry;' [ra®o) = Y, Go{Polry;' pa) (196)

12X

The slow convergence of the conventional CI comes mainly from
the expansion, eq 196, whose [ increments in terms of a partial-
wave expansion go as (I + 1/ 2)7* that is, as the [ increments in
the conventional CI approach. Similarly, the [ increments of

<‘I)0712|7f21|712q)0> = Z 2 quErs<Pq|”f21|”5>
pq s

(197)

goas (I +1/ 2)7°. Concerning many-electron atoms, Kutzelnigg
argued that integrals such as

(Driaryy | P); (D|r1ar5 134| D) (198)
have finite | expansions and that integrals such as
<CI)|7'121‘2_311‘13|(I)> (199)

have an infinite but comparably fast rate of convergence, namely,
(1+1/2) °. Hence, the key idea of Kutzelnigg’s R12 method is to
evaluate slowly convergent but trivial expansions such as eq 196
exactly, that is, as closed sums of partial wave amplitudes, but to
use basis-set expansions for difficult many-electron inte-
grals that are characterized by quickly convergent expansions.

In ref 200 Kutzelnigg’s CISD-R12 ansatz was applied to the H,
and H;" molecules, not only with @, being the (approximate)
eigenfunction of the bare nuclear Hamiltonian but also with @,
being the Hartree—Fock reference determinant. Moreover, two
different approaches were applied to compute the matrix ele-
ments that occur due to the coupling between the reference
determinant @, and the conventional determinants |¢,¢,|. Let
us consider the two approaches in the case of the Hartree—Fock
reference determinant. The Hamiltonian can be written as H = F +
o —j + K, where F, j, and K are two-electron operators (sum of
two one-electron operators). In the first approach, the above-
mentioned matrix elements are evaluated as

(pal(F + r,) =] + K)ria|®@o) & (pg|Po) + 2&1(pq|ri2| Do)
+{pq|[T, ria] | Do) — (pqlri2 (] — K)| Do) (200)

where ¢, is the orbital energy of the doubly occupied orbital ¢;.
In this first approach it is assumed that @ is an exact eigenfunc-
tion of the Fock operator F. The integrals with rlz(f — K) were
computed by inserting a resolution of the identity. In the second
approach the same matrix elements are evaluated as

pgl(F + 5! =T + K)ria|®@o) = (pq| Do)

+ (& + £)pqlriz|Po) — (pq|(J — K)r12| Do)

In this second approach it is assumed that all orbitals ¢, are
eigenfunctions of the Fock operator. In both approaches, the
matrix element Hy, was computed in exactly the same manner
after some reformulations involving the double commutator

(201)
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Table 9. CISD-R12 Energy of H, (R = 1.4 a,) in Hartree,
Obtained from Calculations with Commutator [T,r,,], That
Is, Using eq 200, and from Calculations without Commutator
[T r12), That Is, Using eq 201°

basis eq 200 eq 201 difference
10s —1.173138 —1.172117 0.001021
10s8p —1.174357 —1.174414 —0.000057
10s8p6d —1.174454 —1.174456 —0.000002
10s8p6d4f —1.174467 —1.174468 —0.000001
“ Data taken from ref 200.

[rlz,[T rall = 2, with the kinetic energy operator for the
two electrons, T = T, + T, = —(1/2)(V} + V3). Table 9 shows
results for the H, molecule obtained from the two approaches
using various basis sets. The difference between the two approaches
is small in reasonably large basis sets (10s8p6d and 10s8p6d4f).
In ref 200 it was argued that the “simplifications” due to using
eq 201 are not really important, because calculation of the commu-
tator integrals [T 1] is neither difficult nor time consuming.
Nevertheless, the two-electron integrals over the operator [Tr1]
are often avoided in gresent -day F12 theories, as proposed by
Kedzuch et al. in 2005.%”” In the recent F12 literature, the approach
of ref 327 is sometimes referred to as “approximation C”.

The generalization of Kutzelnigg’s R12 ansatz toward molec-
ular many-electron systems was accomplished at the MP2 level in
1987.%*® At this level the second-order correlation energy E® s
given as a sum of pair energies E;;, which are obtained by mini-
mizing the Hylleraas functional

ijy

L(zy) = (tjlFy + By — & — glty) + §Azylr)lif) = E™
(202)
where F, and F, are the Fock operators for electrons 1 and 2,
respectively, and where |ij) is a two-electron Slater determinant
built from the spin orbitals ¢;and ¢; with orbital energies &;and ¢,
respectively. The MP2-R12 ansatz, as proposed in 1987, is

1 A A
Ty = Ecij(l — 01)(1 = O)rualif) + x5

% = E‘Zc;;"|ab> (203)
where
Ou = X 10,()Xe, ()] = ¥ 1iXil (204)

is the projection operator (for electron x) onto the space of
occupied orbitals.

Interestingly, in Kutzelnigg’s original work it was suggested to
keep the coefficient c;; fixed to ¢; = 1. The numerical results from
this “fixed coeﬂic1ent ansatz were disappointing, however, and
the ¢;s were therefore treated as linear variational parameters in
the 1987 work.**® The results were much improved by optimiz-
ing the ¢;’s by minimizing the Hylleraas functional, but the
drawback of this approach was that the corresponding MP2-R12
method was not invariant with respect to orthogonal transforma-
tions among the occupied orbitals. Thls drawback was remedied
in 1991 by extending the ansatz to*®

1

T = (1 —0)(1=0)m2 Y cf;’\kl> + % (205)
kI
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This is interesting from a historical perspective because in
modern R12 theories the linear term ry, is replaced by the
function®*® (see also section 6.6.1)

f = flr) = %{1—-exp<—— (206)

yria)}

where ¥ is a “length-scale” parameter. When using this function
of r1, it turned out to be advantageous to return to the form

0))(1

and to fix the coefficients c; to the values required to satisfy the
s- and p-wave cusp condltlons (rational generator approach, also
known as SP ansatz).>* Today, eq 207 is often referred to as the
MP2-F12 method (keeping the name MP2-R12 for the correspond-
ing method with the linear ;, term), and it is recommended to use
this method with fixed ¢;. In other words, research has gone in a
circle. If the functions f;,, which are known as Slater-type geminals,
had been considered already in the original work in 1987, then there
would have been no need to treat the coefficients ; as variational
parameters nor to extend the ansatz in the sense of eq 205.
Already in the years 1987—1990°**%*'! the MP2-R12 method
could be applied to molecules such as H,O and the carbocations
C,Hs" and C3;H,". This had become possible because of a
number of assumptions, or rather approximations, that made this
explicitly correlated theory applicable to polyatomic, many-electron
systems. These approximations became later known as “standard
approximations” in a series of articles on the general R12 theories
published in 1991.>**7%** They are as follows: (a) It is assumed
that the occupled MOs ¢; are eigenfunctions of the exact Fock
operator F rather than of its approximation in the finite basis {6p)
used for the calculation. This assumption is today known as
generalized Brillouin condition, GBC. It allows for the reformulation

1 .
Ty =5 (1= — Ox)fualif) + x5 (207)

%{ﬁl + F,—&—gtrli) ~ E[Fl + Fy, ria]if)
:%[Tl + T2,1'12H1]>
—l[Kl + K, ria)ij)

:—lﬂmw—vmw—im

12

2 12

1.4 N
_E[Kl + Ky, rolli)  (208)
where T is the kinetic energy operator and K the exchange
operator. The Coulomb operator ] is local and commutes with
r12. Furthermore, in ref 331 it is recommended to orthogonalize
the explicitly correlated part of the pair function 7; — y;; to all
pairs constructable in the given basis {¢,}, that is, to define

w; = (1-PiP,)(1y P =3 pXpl

p

= Xy); (209)

One then obtains

'L',-]- = ECij(l — Ol — éz + (51132 + 131@2 —Plpz)rull'j) + Xij

(210)

(b) If it is now assumed that an extended Brillouin condition
(EBC) is satisfied, according to which the matrix elements of the
Fock operator F vanish between functions contained in the basis
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and functions not contained in the basis, it is found that the
Hylleraas functional decomposes as

L(zj) ~L(wy) + L(x;) (211)
where L(y;) is just the conventional, finite-basis MP2 functional
and L(w;;) the basis-set incompleteness correction to it. The
decomposition implies that both functionals may be computed
independently.

(c) A resolution of the identity approximation 1 ~ P, (RI
approximation or completeness relation) is inserted into the terms
of L(w;) that arise from the isolated operators O, and O,, which have
no partner projection operator for the other electron. This yields

1—0,—0, + O,P, + P,O, —P\Py~1—PP, (212)
for the corresponding terms.

Concerning approximation (a) above, we note in passing that
orthogonalizing the explicitly correlated part of the pair func-
tion to all pairs constructable in the given basis {¢,}, as done in
ref 331 in 1990, is equivalent to orthogonalizing it to all virtual

pairs {|ab)}

w; = (1=ViVo)(ry—yy); V=Y |aXal (213)
because
(1= 7, 05)(1 = 0)(1 = Os)
= 1—61—62 + (51132 +p162—p1132 (214)

Hence, the particular forms of the explicitly correlated pair
functions chosen by Wind et al,****3® by Valeev,>*” and in the
original work®****! are equivalent.

In the early work on the MP2-R12 method,>3>328331 ~ 334338339
it was noted that, in the ansatz for the pair function 7;, the strong
orthogonality projector (1 — O;)(1 — O,) could be replaced by
the operator (1 — P))(1 — P,) without changing the final work-
ing equations. Consider, for example, the integral (r,-j|rf21|ij>.
According to eq 210, this integral is evaluated as

1) L. P P -
<T,’j|r121|1]> = E Cij<l]|7‘12(1 — 01 — 02 + OIPZ
+ P10y — PiPo)r i) + gyl iy (215)
Then, invoking the RI approximation eq 212 yields
IRV S RS 1)
(Tl lip) = 2 ciijlra(1 = PiPo)r' i) + Cylri' i) (216)
Taking

1 ~ A
rij = E Ct](l —Pl)(l _PZ)rll‘i]) + Xt]

1 A A P
=3 ¢j(1 =Py =Py + PiPy)riolif) + x; (217)

as ansatz for the pair function yields the same final working
equation as when the terms with the isolated operators P; and P,
are evaluated using the RI approximation, that is, by means of
replacing —P, and —P, both by —p,P,

~ 1y r . SN 1.
<Tij|"121|1]> ~ 2 Ci/’<l]|”12(1 - P1P2)r121|1]> + <Xij|r121|l}>
(218)
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The important point to make here is that in the early days of R12
method development, due to the approximations made (GBC,
EBC, and Rl approximation), there was no difference whatsoever
between using a- f’lz(l —D,), (1 —0,)(1 - 0,),0r(1—
ViV,)(1 — 0,)(1 — 0,) as a projection operator. The final
working equations and final results were the same. In modern
R12/F12 theory, however, in which, for example, some three-
electron integrals are evaluated exactly®*>**® or in which an
auxiliary basis set*** is used for the RI approximation, the differ-
ent projection operators are no longer equivalent. They may be
referred to as “ansatz 17 (with P) and “ansatz 2” (with O),
respectively’*” (see section 6.1 for details).

Before turning to CI and CC calculations using R12 terms, let
us have a look at the MP2-R12 working equations of the early
work,*2#33133% i which the total pair energy E;; is a sum of two
terms: the conventional MP% };air energy e; P2 plus the basis-set

. . 1
incompleteness correction €jj

3
et =Y, (ijlra(1 = PiPy)Aif) (219)
k=1
with
A = 1 2 —1
1= | G — E C,-}- 12 (220)
1
A=~ 22V V) (221)
4 12
1, .
Ay = _L—}c}j[K1 + Ky, r12) (222)

If the term A; is ignored (known as “approximation A”) it follows
that

e = (25 — )V + Uy (223)
11 3 1)
Vi =5 =5 X CjlralpaXpalry, ') (224)
2 2p <q
3 1 ; r §
Uy = === ¥ GilralpaXpal— (V1 = V2)[ij) (225)
4 411 <q 12
Optimizing e;; > with respect with c; gives ¢; = V,;//(V; — Uy). In

conventional MP2 theory the partial-wave expansion (in the
atomic case) has energy increments proportional to (I+1/2) 74,
to (I1+1/2) " and so on, for each saturated shell of one-electron
basis functions with angular momentum quantum number . The
slowly convergent (I+ 1/2)* energy increments are canceled by
the term A;; the somewhat faster but still slowly convergent (I +
1/2)°° energy increments are canceled by the terms A, and Aj;.
Thus, increments on the order of (I+ 1/2)® may be expected if
all terms A, A,, and A3 are computed (known as “approximation
B”), which would result in a truncation error on the order of L™’
when the basis set is truncated after the saturated shell of basis
functions with [ = L. For approximation A, the expected trunca-
tion error is on the order of L™°.
In approximation B only the term A3’ in

1 S N 1 . A
A3 = Ag —Ag' = _Z C$(1<1 + Kz)rlz -+ Z C?jrlz(I(l + Kz)
(226)
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needs to be computed,®” because the term A% vanishes due to
the RI approximation. This is reasonable because in the atomic
case the partial wave expansion of A%’ goes as (I + 1/2)® whereas
that of A§ goes as (I +1/2)" 8. The latter can thus be ignored.
Finally, we note that the MP2-R12 method has also been
implemented by Valeev and co-workers within the framework of
the open-source MPQC package 49341739 Eurthermore, as first
noted by Bearpark and Handy,>* the integrals needed for the
MP2-R12 method may be used to define basis-set quality diagno-
stics with respect to basis-set completeness.””**" Such diagnos-
tics are related to the ability of the given one-electron basis set to
describe the Coulomb hole in coupled-cluster calculations.>"
All matrix elements required for a closed-shell CISD, CEPA,
MP2, or MP3 calculation with linear r|, terms were published in
a paper by Kutzelnigg and Klopper in 1991.%** First results at the
CID-R12 and CEPA-R12 levels were also published in that year
(single excitations were included later at the coupled-cluster
level).*** In this work, the CID-R12 wave function was written as

Weprn = @ + - Z Py + — Z tab‘bab
t;ub

(227)

where CD;h = %Z-bq) is a standard doubly substituted determinant
(double excitation) and where

Z (iflrio|aB)rs’ @ — - Z (ijlrialabyri*®  (228)

is the explicitly correlated linear ry, term. As will be detailed later,
the indices @, denote a complete set of virtual orbitals while the
indices a,b denote the finite set of virtual orbitals obtained from
the underlying Hartree—Fock calculation, which was carried out
in a finite set of atomic orbitals (see section 6.1). Concerning
eq 228 we note two things: first, the linear r,, terms are not (ye 2
generalized to the orbital-invariant form of ref 285, that is, as q)

with coefficients cﬁl, and second, the effect of the second term of
the right-hand side of eq 228 is to project out all double
excitations constructable in the given finite basis, that is, equiva-
lent with adding the projection operator (1 — V V). The expli-
citly correlated linear ry, term ®@;; of eq 228 is obtained from the
Hartree—Fock determinant by replacing the spin—orbital pair

i = —=[0,(16,(2) — ¢,(1)4,(2)]

7 (229)

by

1 . n PN
5(1 = 01)(1 = 02)(1 = Vi Va)rialif) (230)
In other words, the ansatz chosen in the early 1991 papers is the
same as in modern F12 theories, in which the projection operator
eq 246 is used. CID-R12 and CEPA-RI12 calculations were
performed on systems such as Ne, Ar, H,0, and N,. 352
Coupled-cluster R12 theories were developed in 1992, shortly
after extension of the MP2-R12 methods toward an orbital-
invariant theory.”® On one hand, the orbital-invariant formula-
tion was an important step forward because it enabled accurate
calculations on extended systems such as Be and Mg clusters, the
benzene—argon potential and other van der Waals com lexes,
HF and H,O clusters, [10]annulene, and ferrocene.”>>>>~ 363
(These calculations had also been made possible by virtue of a newly
developed 1ntegral 3package * and an efficient, Turbomole-based
implementation.>*****) On the other hand, the orbital-invariant
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formulation turned out to facilitate a clear and consistent dia-
grammatic formulation of coupled-cluster R12 theory.”#3¢¢~37°
The explicitly correlated cou 3pled—cluster singles-and- doubles ansatz
(CCSD-R12) is as follows®

Weespria = exp(S)P (231)

S=T+ T+ % « z—ZZ’dR{;Z (232)

o 1 A 1 .

RY = : Y (Kllr|apye)’ - Y (kllria|abyrs (233)
af ab

Hence, the standard double excitations are projected out, as in
the CID-R12 and CEPA-R12 cases. In contrast to the early MP3-
R12, CID-R12, and CEPA-R12 studies, however, the orbital-
invariant formulation is used and single excitations are included.
Moreover, Noga and Kutzelnigg also derived the necessary matrix
elements and integrals for explicitly correlated coupled—cluster
singles, doubles, and triples (CCSDT-R12) calculations.**” Further
developments such as an integral-direct implementation,*®®
a CCSD-RI12 theory for open-shell atoms and molecules,®”"*”*
code parallelization, and improved triple excitations®> followed
quickly thereafter, all within the program package Dirccr12.*”*

The early CCSD-R12 and CCSD(T)-R12 methods were
successfully applied for benchmark calculations on small to
medium-sized molecules using large basis sets.>***”>73* These
benchmark studies include calculations of equilibrium geome-
tries, harmonic vibrational frequencies, and potential energy hyper-
surfaces at (or very close to) the basis-set limit of CCSD(T)
theory.

—

In the Hylleraas-type and ECG methods the wave function
expansions are inserted into a Rayleigh—Ritz variational optimi-
zation. Each resulting Hamiltonian matrix element requires n!
evaluations of n-electron integrals where all n electronic coordi-
nates are coupled through the explicit dependence on all r;;. Even
for the ECG method where each integral has a known analytlc
form and is cheap to evaluate, the exponential scaling of the
method has so far prevented calculations beyond 6-electron sys-
tems. For an explicitly correlated theory to be of practical use in
applications to systems with more than a few electrons it is
essential that the Hamiltonian matrix elements in the working
equations can be evaluated with a low computational cost and in
a way that does not scale exponentially with system size.

Researchers have utilized a variety of ingenious strategies for
overcoming the n-electron integral problem, many of which have
been discussed in the above historical narrative. The n-electron
issue is key to all explicitly correlated approaches, and it is appro-
priate here to provide a concise summary linking and contrasting
the approaches thus far proposed in the literature.

5.1. Restricting the Wave Function Parameter Space
Restricting the n-electron basis functions such that only a few,
m, electronic coordinates are explicitly coupled at a time reduces
the dimension of the nonfactorizable component of the n-elec-
tron electron repulsion integrals to at most min[n,2m]. Varia-
tional flexibility and therefore accuracy is traded for computa-
tional simplification. When combined with the Rayleigh—Ritz
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variational approach, this kind of restriction of the wave function
parameter space breaks size extensivity in the same way that
truncated CI wave functions are not size extensive. The Hy-CI,
SECG, and CISD-R12 methods are all examples of this approach
with m = 2. Note, however, that in the Hy-CI and SECG methods
the wave function can account for n-body electron correlation
through the nonexplicitly correlated part of the wave function,
whereas only 2-body correlation effects are parametrized in the
CISD-R12 method.

5.2. Nonvariational Approaches
Wave function parameter space may be reduced while retaining
size extensivity provided that the wave function has the structure

Y = A exp(Z g;(xi) + ngu(xnxj) + Z g123(xi;xjrxk) + )

i<j i<j<k

(234)

Clearly, even wave functions truncated after g;, contain terms with
all n electronic coordinates explicitly coupled. However, by
abandoning the Rayleigh—Ritz variational approach in favor of
projection methods, the dimension of the nonfactorizable integrals
that enter the working equations can be drastically reduced. One
example is the transcorrelated approach, where no terms beyond
g1 appear. Here, at most three-electron explicitly coupled integrals
are required, independent of the number of electrons in the
system. If g,3 terms were to be included in a transcorrelated
method, then five-electron integrals would be required. In general,
wave function terms explicitly coupling m electronic coordinates
require (2m — 1)-electron integrals.

Explicitly correlated Moller—Plesset and coupled-cluster wave
functions are further important examples of this technique, and
indeed, the CCSD approach differs from the transcorrelated
method primarily in that, in the language of second quantization,
only excitation rather than both excitation and de-excitation
operators enter the wave function parametrization. In the expli-
citly correlated MP2 and CCSD approaches, where no terms
beyond g, appear, up to three-electron integrals are required for
MP2 and up to four-electron integrals for CCSD. This, however,
assumes that g; and g, are strongly orthogonal, which is not in
general the case. Enforcing strong orthogonality through the use
of projection operators introduces additional four-electron inte-
grals in MP2 and five-electron integrals in CCSD. It should be noted
that the accuracy of explicitly correlated CCSD theory is limited
because only 2-body correlation effects are parametrized. Higher-
order correlation effects can be included through triple and higher
excitations either with or without explicitly correlated gj5;... terms.

5.3. Weak Orthogonality

The weak orthogonality functional, discussed in section 4.2.2,
helps to further reduce the dimensionality of the required inte-
grals in explicitly correlated theories. The many-electron integrals
arising from enforcing strong orthogonality (see the previous
section) can be avoided by dropping the strong orthogonality
projectors from the equations and introducing a penalty function
that vanishes when the functions g; and g, satisfy the strong
orthogonality conditions. This is successful provided that the
parametrization of g; and g, has sufficient flexibility for the
functions to become strongly orthogonal through optimization.

5.4. Stochastic Numerical Integration
Stochastic numerical integration is another way to deal with
high-dimensional integrals. It is used in variational Monte Carlo
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and related methods (see section 4.4). The efficient sampling of
the energy integral (W r|H|Wr)/{(Wr|¥r) over a trial wave

function W(x) requires a low variance of the local energy

EL(x) _ HIPT(X)

T (235)

which for the exact wave function is a constant. Use of trial wave
functions that fulfill the cusp conditions avoids singularities and
greatly improves the convergence of the Monte Carlo integra-
tion. Otherwise, the method puts no limit on the complexity of
W as it only requires evaluation of eq 235 at random values of x.

Integrals where m electronic coordinates are explicitly coupled
through pairwise coupling terms can be approximated by succes-
sive insertions of an approximate resolution of the identity (RI)

S N4 (236)
p//

For example

(parlriaryy sty = Y, {palrialsp”Yp"rlry |w) (237)
p//

If the set of orthonormal orbitals p” was complete then the
resolution of the identity would be exact. In practice, use of a
finite set of orbitals results in a residual error in the approximate
integral. The magnitude of the error for each Rl insertion depends
on the rate of convergence of the expansion, which depends on
the particular operators in the integrand. For the atomic case the
RI insertion is equivalent to a partial wave expansion and the
convergence properties are well known. A typical RI error for
the above integral using a standard R basis set is 0.01%.>*° While use
of the RI approximation makes mE,, accuracy difficult to obtain
even for small systems, all three-, four-, and five-electron integrals
in explicitly correlated CCSD theory can be constructed from
two-electron integrals, which ensures that the computational
scaling is reduced to. 17 (see also sections 6.2 and 6.3).

5.6. Numerical Quadrature

Numerical quadrature can be used as an alternative to Rl as a
method for decomposing many-electron integrals into sums of
products of lower-index objects. For example, electron repulsion
integrals can be represented as sums of two- and three-center
objects over grid points®*>3%°

(prirslas) & Y, wlrg)d, ()9, (xg){alry, [s) (238)

where w(r,) is the weight of the quadrature grid point r,. Applied
to three-electron integrals, numerical quadrature yields

(parlryy fuslstu) & ¥ wlrg)d, (rg) b, (rg plrg [sXrlfig u)

g
(239)

(Note that this three-electron integral is over orbital products,
not Slater determinants, and can also be written as ( ps|rf21 |9t|fos)|
ru).) This approach was applied by Ten-no in his early work on
the transcorrelated method>***°” and more recently in MP2-F12
theory>>® and CCSD(F12) theory.>®”

5.7. Two-Electron Integrals
In retrospect, insertion of completeness relations into the
many-electron integrals of the early R12 methods was the main
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clue to success of these methods. By virtue of the completeness
relations, or resolution of the identity approximations, three- and
more-electron integrals could be avoided completely and made
the methods applicable to many-electron polyatomic molecules.
With respect to the R12 methods, in which linear correla-
tion factors of the type ry, are employed, we furthermore note
that the integrals over the electron—nucleus Coulomb attraction
—Zcr12/r1c, where ric is the distance of electron 1 from the
nucleus C with atomic number Z¢ and which would have required
a numerical integration, are also avoided. This was achieved by
introducing the commutator of the bare nuclear Hamiltonian, or
the Fock operator, with the linear r;, term, because the Coulomb
operator commutes with r;,. After this introduction of commu-
tators the remaining integrals are

fle; S f122§ "leflz; [T1 + Tz;flzk
[fi2s [T1 + Tz;fnﬂ = |VL)(12|2 + |szlz|2

which here are given for the general case that the correlation
factor fi, is a function of the interelectronic distance, f, = f(r},).

Integral formulas for the two-electron integrals that arise with
linear r,, terms can be found in refs 194 and 364 (see also refs 338
and 341). The only integral that needs some further considera-
tion is the commutator integral [Tl + Tl, fi2]. In various F12
implementations, this integral is avoided by means of the
“approximation C” of Kedzuch et al.,>*’ but it can in fact easily be
computed from

(240)

(abl[T 1, fia]ed) = %(AA — Ag)(ablfizcd) (241)
where a, b, ¢, and d denote atomic basis functions at the centers A,
B, C, and D. For correlation factors of the type fi, = ry5
exp(—)/r%z) or for correlation factors f;, expanded in a basis of
Gaussian geminals integral formulas are reported in refs 398—400.
Finally, we note that also the necessary integrals that occur with
Slater-type geminals fj, = exp(—yr;,) can be computed
analytically,>*740140>

6. GENERAL F12 THEORY

Today’s F12 methods have emerged during the past decade
from the original R12 methods through several conceptual and
technical developments, which aimed at making these explicitly
correlated approaches applicable to larger polyatomic systems
and further enhance the basis-set convergence. As outlined in
section 4.5, R12 methods augment the conventional excitations
into products of unoccupied one-electron orbitals by excitations
of electron pairs into explicitly correlated pair functions, which
are constructed as lerucp,-q;j, where ry, is the interelectronic
distance and Q ;, is a strong-orthogonality projector (vide infra).
F12 methods employ more flexible pair functions of the form
lefucp,-q;j, where f;, can be any function of ri, of the form
flra) = rp + O(r},). The increased flexibility allows one to
describe a much larger region of the Coulomb correlation hole.
Today, the predominant choice for the correlation factor f;, is a
Slater-type function (cf. discussions in sections 4.1.1 and 6.6.1)

1
f= ;(1 —exp( —yr2)) (242)
The exponent y is a length-scale parameter and accounts for how
strongly the interelectronic interaction is on average screened by
the circumjacent electron density. Slater-type geminal functions
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(STGs) describe very efficiently the correlation hole and alone
recover a large fraction of the dynamic pair correlation energy,
that is, without conventional excitations into orbital products.*”?

A key development has also been introduction of a comple-
mentary auxiliary basis set (CABS) which is used in addition to
the orbital basis for the resolution of the identity (RI) in the fac-
torization of many-electron integrals.*>”** This made it possible
to use medium-sized standard basis sets for R12 and F12 methods,
which reduced the costs of such calculations significantly.

Together with other methodological advances, including robust
density fitting for the additional inte%rals,‘m’414 efficient integral
evaluation techniques, 330400 ~402406:407 sy tematic approxima-
tions, 27240498410 o mbination with local methods, #1413
and specially o;)timized orbital and complementary auxiliary
basis sets,"'*~*"” these developments have converted the original
R12 methods into efficient tools for electronic structure calcula-
tions on polyatomic molecules. They are capable to recover
already with optimized double- basis sets about 98% of the
basis-set limit correlation energy—an accuracy which in con-
ventional calculations is first reached with large quintuple-zeta
basis sets.

Originally developed at the MP2-F12 level, these techniques
have during the last 5—10 years carried over to other correlated
wave function methods such as, for example, several coupled-
cluster models,?®3°7*87429 CASPT2-F12,*%*%! and MRCI-
F12.%%%3 In the following subsections we will describe the
general ansatz of F12 theories and the approximations made to
evaluate or avoid three- and four-electron integrals and briefly
show how the F12 theory can be combined with some standard
correlated wave function methods.

6.1. General Ansatz

Correlated wave function methods are most conveniently
presented using the formalism of second quantization outlined
in section 4. For the following we use again the convention intro-
duced in the latter section that indices i,j,k,],m,n refer to orbitals
occupied in the Hartree—Fock (or reference state), a,b,c,d to
virtual orbitals and p,q,r,s to any orbital within the finite orbital
basis. To represent excitations into the explicitly correlated pair
functions in second quantization, we introduce formally an addi-
tional basis for the complementary space which together with the
orbital basis forms a complete basis for the one-electron Hilbert
space. For functions of the complementary space we use indeces
0.1,(31, while indeces a,( denote any virtual orbitals within or
outside the finite orbital space (see Figure 9). The orbitals in the
complementary auxiliary basis set (CABS) used to improve the
RI span a subspace of the full complementary space and will be
denoted with indeces a/,b’.

The general form of the geminals used today in F12 methods is

|ny> = lef1z§xy\¢x¢y> (243)

where |¢,$,) is a two-electron determinant and the rational
generator S,, ensures that the s- and p-wave coalescence condi-
tions are satisfied

3xy‘/’x<l)§0y(2)ox(l)oy(2)
- (30000 + 50,00, o5
(244

In the last equation ¢, and 0, are, respectively, the spatial and
spin components of a spin orbital ¢,. The set of orbitals x,y, from
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Figure 9. Orbital subspaces used in F12 calculations and their notation.

which the geminals are constructed, is usually chosen as the set of
active occupied orbitals. Within the complete basis for the virtual
space (3, introduced above, double excitations into the geminals
can be expressed as

|wyy) = Z W, 54 aﬁ|vac> (245)

with overlap matrix elements wgjg = (aB|w,,) and the vacaum
state |vac). In the following we will for double excitations also use
the shorthand notation a }ﬂ =ala; a};a

For the strong-orthogonality projector Q.1, there are two
ansatze in use. The choice that leads to the most accurate des-
cription of the correlation hole is referred to as ansatz 2 and

defined as
Qi =(1-0)1-0,)(1-V,V)

where O; ; projects onto the space of (active and frozen) occupied
and V; onto the space of active virtual orbitals

o) E|¢ )Xe:(1)]

(246)

(247)

v, zw

)X, (1] (248)

Some authors denote the choice for
the projector in eq 246 as “ansatz 3” and reserve the notation
“ansatz 2” for projection with (1 — O

The projector
however, to a strong coupling between the two sets of double
excitations and expressions for the geminal contributions to the
wave function that do not vanish in the limit of a complete one-
electron basis set. This is inconvenient as approximations for the
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matrix elements then also affect the basis-set limit. To avoid these
problems modern implementations employ for ansatz 2 the
projector in the form given in eq 246 with the additional ortho-
gonalization onto the space spanned by the double excitations
into orbital products, (1 — V,V>).

An alternative choice for the strong orthogonality projector,
denoted as ansatz 1, is

QY = (1-P)1-P,)

with f’i = Oi + Vi. It restricts the F12 geminals to the space of
| ), that is, in contrast to ansatz 2, also contributions from
pair functions [a/3,) are projected out. This reduces the number
of coupling terms between geminal and conventional excitations
in the equations for the wave function amplitudes and thus to
much simpler working equations but also to a significantly less
accurate description of the Coulomb hole. Therefore, most
modern F12 methods use ansatz 2 for the dominant geminal
contributions, while ansatz 1 is usually only employed for small
higher-order terms.

(249)

In practical calculations, the strong orthogonality projectors
are partially approximated by a resolution of the identity in a
finite basis set

1~ 13// _ Z |p//><p//| (250)
p//

This allows one to avoid calculation of three- and four-electron
AO (atomic orbital) integrals, which for polyatomic molecules
becomes soon prohibitively expensive, by expanding them in
products of two-electron inte %rals (vide infra). The first imple-
mentations of R12 methods?*®5%328,331 7334336337434 ¢e g the
orbital basis set (OBS) for the RI approximations, that is, P = P
With P, ~ P,P,, the strong orthogonality projector for ansatz 1
then takes the simple form

Q=
This approach was (in combination with a few more approxi-
mations) termed “standard approximation” (vide infra). With
a careful choice how the RI approximation is introduced, this
approximation does not infringe the fast convergence with the
angular momentum of the basis functions. It imposes, however,
the requirement that the atomic orbital basis sets are saturated for
the angular momenta included in the basis set. This hindered the
applicability of these methods, since they required specially desi-
gned large one-electron basis sets. Klopper and Samson®*°
showed that this restriction on the orbital basis sets can be lifted
by introducing an auxiliary basis set for the RI approximation, for
example, for ansatz 1

Qi =1
This auxiliary basis-set approximation (ABS) allowed us to use
standard orbital basis sets for R12 calculations. Only the auxiliary
basis {p”} had to be specially designed: for an accurate RI it has
to cover the space of the orbital basis and should be saturated
for angular momenta up to Lyax + 2L o, Where Ly, is the highest
angular momentum of the OBS and L, the highest angular
momentum of the occupied Hartree—Fock orbitals. Valeev*®”
recognized that the numerical accuracy of the RI can be improved

and the computational costs for it reduced if only the projec-
tion onto the orthogonal complement pt = o, |0, Xbq,| is
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approximated with an auxiliary basis set as P~ P’ = 3|6y X¢u|-
This is equivalent to constructing the basis for the RI as the union
of the orbital basis and a complementary auxiliary basis set
(CABS)

1~P+ 7P (253)
The projector for ansatz 1 becomes with this approximation

and the projector for ansatz 2 in eq 246 can—within the CABS
approximation—be rewritten as

le ~ 1— Plpz — Olf’lz — plléz (255)

For some matrix elements, also the contribution of the unit
operator would result in three- or four-electron integrals. In these
cases, the even more approximate form

Qu ~ PP, + V\P, + PV, (256)

of the projector for ansatz 2 is applied to obtain feasible working
equations. The corresponding approximation for ansatz 1 is

QY ~ PP, (257)

With an empty CA basis, that is, if P} and P} vanish, the pro-
jectors for both ansitze in eqs 255 and 254 reduce to Q, =
1 — P,P,, which is the approximation for the strong orthogon-
ality projector used in the standard approximation of the original
R12 methods (cf. section 4.5).

All of the above approximate forms of the projector Q ;5 given
in eqs 251—257 do not eliminate all strong-orthogonality violat-
ing components from the pair functions: even with the CABS
approach the contributions O,R, and R,0, whereR=1— P — P/
remain. Therefore, MP2-R12 and MP2-F12 energies are not
bounded from below, although in practical calculations an over-
estimation of the MP2 correlation energy due to approximations
for the projector has mainly been observed for the original MP2-
R12 method without auxiliary basis set, while with the ABS and
CABS approaches this problem can be avoided using a suffi-
ciently accuracte auxiliary basis.>*’

Augmentation of a conventional correlated wave function
ansatz with excitations into geminals leads to additional matrix
elements over the one- and two-electron parts of the Hamiltonian
and the unit operator (ie., overlap matrix elements). The “standard
approximation” (SA) denotes the set of approximations and
assumptions used in the original R12 methods to evaluate these
matrix elements. The most important assumption has been that
the resolution of the identity can be well represented in the
orbital basis set, that is, Q;, &~ 1 — P,P,. For the evaluation of
matrix elements involving the Fock operator it was further assumed
that the orbital space is closed under the Fock operator, that is,
that the generalized Brillouin condition (GBC)

fia, =0 (258)
and the extended Brillouin condition (EBC)
fra, =0 (259)

are fulfilled. In some variants—indicated by letter codes A, A’,
B, C, etc. (vide infra)—certain terms were neglected. Today, one
avoids (at least for the most important terms) such severe

approximations to keep the demands for the orbital and CA basis
sets as low as possible.

For the following discussion of post-Hartree—Fock methods
it is convenient to partition the Hamiltonian as

AH=F + Y + @ (260)

where F©© and FV are the zeroth- and first-order contributions
to the Fock operator

BO BB = S e+ S ey (6D
ij af

™
|

Zf,-aai*aa + Zfa,-ala,- (262)
i ai

and @ is the electron fluctuation potential, ® = — F.For F12
variants of single-reference pair theories, such as MP2, CCSD,
CISD, or CEPA, the most important additional matrix elements
needed are

VY = (rs|r1_21|wxy) = gxy(rs|rf21(211f12|xy> (263)

Pg = <va|r1_21|wxy> = vagxy<vwlf12Q12r1_21 Q12f12|xy>
(264)

mea = (W, p|(1 — p13)riy + (1= po3)ryst [way, @)

= vagxy<vwrp‘flzé_12((l —17’13)Vf31 + (1 —ﬁza)r{g,l)lef12\xy, 9
(265)

CY = (ab|FO|wy) = Sy(ab|(F + F)Quafialny)
(266)

Bjﬁ, - <va|ﬁ(0)|wxy> = vagxy<vwlflzéll(ﬁ(10) + FQO))QIZ](Hlxy)
(267)

X = <WVW|ny> = vagxy<vwlf12é,lzf12|xy> (268)

In eq 265 the operator p; exchanges two electrons and the
comma indicates that the third index is not antisymmetrized. All
other terms or intermediates involving the geminals can be
evaluated by directly approximating the complementary space
by the CABS using eq 256 or 257, since the correspondinépartial
wave expansions are either rapidly convergent or finite.**”****3

Taking the intermediate V as an example, one sees that if le
were used as defined in eq 246 this would, due to the terms linear
in the one-electron projectors O; and O,, give rise to three-
electron integrals

[ [ 4 0s.0r0d20,0)¢,@rr,
= 3 [ 0] [ e, wan [ oGm0 bo o,
(269)

= Z (rsm| 1’1_21 oz |myx) (270)

where in the last equation (rsm|rf21f23|myx> is an integral over
orbital products, not Slater determinants. Even four-electron
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integrals would be required for evaluation of the intermediates B,
P, and Z. This is avoided by inserting an approximate resolution
of the identity (RI). In the CABS approach the basis set for the RI
is chosen as the union of the orbital basis and a complementary
auxiliary basis, which leads to the expressions in eqs 255 and 256.
The more accurate form in eq 255, where the CABS orbitals are
only used to approximate the contribution from the space
spanned by the functions |ic ), is applied whenever the integrals
for the unity in Q;, do not result in three-electron integrals.
Inserting eq 255 into the expression for the intermediate Vleads to

Y (rslriy [pa)Xpalfiz|ay)

r>q

VY =5, <<VS|’1_21f12|x)’> -

- Z (rslriy [ma"Xmd'|fi |xy)> (271)

A similar expression is obtained for the X intermediate. With the
shorthand notation

gt = (rslriy'[pg) (272)
r? = Syrslfialay) (273)
v = Sy rs|riy fralay) (274)
23, = SuSu(owlfs o) (275)

for the required two-electron integrals, the expressions for the
intermediates V and X become

V== Xk = X P (276)
p>q ma’

e Z ot (277)
r>9

The most involved intermediate is B. Together with V it
determines the leading explicitly correlated contributions to
the wave function and the energy and must therefore be evalua-
ted with high accuracy. The most important terms arise from
the kinetic energy operator since these should balance, in the
Schrodinger equation, the contribution from the Coulomb
interaction 1, at the interelectronic cusp. However, due to the
Coulomb and exchange parts of the Fock operator, already the
contributions from the unity in Qu give rise to three-electron
integrals. This dilemma is partially solved by splitting the Fock
operator into its contributions

F=T+V+]-K (278)
where Tis the kinetic energy operator, V is the nuclear potential,
and ] and K are, respectively, the Coulomb and exchange
operators and applying different approximations for the different
contributions. For the unity in Q, as many contributions as
possible should be evaluated without inserting a resolution of the
identity. This can be achieved by rewriting this part as

<VW|f12(ﬁ'l + Fz)flz|xy> = % (vwl[f12, [131 + ﬁz;flz]”x)’)

+%(vw\(f31 4B + %@wwz(ﬁl LBy (279)

38

The nested commutator in the first term on the rlght hand side
vanishes for the multiplicative operators in F (i.e,, V and J), while
for T the following identity holds

Vil (280)

1 A -

E[flz; [T + Ty fu]] =
The matrix element in eq 279 can thus be rewritten as

(wlfia(Br + Eo)falxy) = (owl |V ifial* )

2 il [y + Ko fulllo) + 3 (wl(Er + Ba)f )

+ 2wl (B + By

5 (281)

The integrals of |VLf12|2 can, with the common correlation
factors, be calculated analytically with costs not much hlgher
than for the integrals of f;, itself. For the R12 methods, |V1r12| =
1, and for the exponential correlation factor (1/y)(1 — e 7"2)
one obtains |Vlf12|2 =e 2”2, This allows one to evaluate the first
(and most important) contribution in eq 281 with high accuracy
and to insert approximate resolutions of the identity in finite basis
sets only for those parts that necessarily lead to three-electron
integrals. The particular way in which the remaining con-
tributions to B are evaluated, which approximations are used
and whether or not certain terms are neglected, has led to a
bewildering array of acronyms for MP2-R12 and MP2-F12
theories, such as the so-called approximations A, A’, B, and C,
sometimes combined with additional approximations indi-
cated with asterisks, etc. For the details, we refer the inter-
ested reader to the literature,?27/33%340408,410,436,437

In the approximations A and A’ the contributions from V, J,
and K are partially neglected to reduce the computational
complexity. This reduces somewhat the accuracy achieved but
leads to some computational savings at the MP2 level. The vari-
ants B and C neglect no terms but differ slightly in how the
approximate resolutions of the identity are inserted. Almost all
programs employ the variants B or C beyond MP2-F12 theory,
since for more costly methods no real saving is gained from
further approximations for the B intermediate.

The intermediate C is evaluated with the approximate Q ,
given in eq 256, which leads to the expression

YOS + g

d

= (222)

The intermediate C}}, appears in equations for the wave function
amplitudes only in connection with the contributions of double
excitations into the functions |af ) which are not at all present
with ansatz 1 or with the standard approximations applied in the
original R12 methods. Since these contributions are rather small
and decline quickly with increasing orbital basis sets, direct inser-
tion of the RI for this intermediate does not affect the overall
basis convergence of F12 methods.

The intermediate P only appears in contributions that are of
fourth and higher order in Meoller—Plesset perturbation theory
and (at least) quadratic in the amplitudes for excitations into
geminals. The intermediate Z occurs in third- and higher-order
terms which are at least second order in the geminal contribution
to the wave function. The individual contributions from the inter-
mediates P and Z can be sizable but cancel each other system-
atically (see section 7.1). Therefore, most modern F12 methods
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neglect such contributions altogether. For a discussion of P, Z,
and other intermediates for such higher-order terms we refer to
the literature (see, for example, ref 367 or 438).

6.4.

Moller—Plesset perturbation theory through second order,
MP2, is the correlated wave function method with the least com-
putational complexity. It is thus a good example to illustrate how
the geminals introduced in F12 theory are combined with a wave
function expansion in conventional Slater determinants. At the
same time, MP2 is also an important test ground for the different
ansatze and approximations.

To derive the working equations for Meller—Plesset pertur-
bation theory we first partition the Hamiltonian as

A=r9 + 5O + ;) 4 &y (283)
where E( ) = = Egyg is the zeroth-order or Hartree—Fock energy

and F{® the normal ordered part of the diagonal occupled/
occupied and virtual/virtual blocks of the Fock operator F©
(cf. eq 261)

O = EO _ (HF|EO) [HF) (284)

EY is used as the zeroth-order Hamiltonian, and the perturba-
tlon is defined as the sum of the off-diagonal occupied/virtual
blocks £’ = F of the Fock operator and the normal ordered
fluctuation potential given by @y

&y = ® — (HF|®|HF) = H — Eyp — Fy (285)

If the Hartree—Fock reference wave function fulfills the Brillouin
condition, that is, the matrix elements f;, and f,; of F © are zero,
the MP2 energy correction is given by

AEyp, = (HF|dy|MP1) (286)

The first-order wave function MP1 can be written as

IMP1y = T{"|HF) (287)
with
) = ¥ Vdaale; = ¥ 08 a (288)
i>j i>j
a>b a>b

The double-excitation amplitudes /; V) are determined by requir-

ing that the projection of the first-order Schrodinger equation
(EQ + )| MP1) + Dylur) = EOMP1) + EVHE) (289)

on the doubly excited determinants Z;,| = <HF|a}aba;raa =

(HF|aq) vanishes
(ol (BYIMP1) + Dy[HE) = (1Y, T57) + dyjaE) =0 (290)

Alternatively, the expression for Eyp, in eq 286 and the condi-
tion for the first-order wave function amplitudes, eq 290, can be
combined into the variational Hylleraas functional

Hypy = (HE|DN TV HE) + Y 000 159, 7] + by |HF)

i>j
a>b

(291)

which is a special case of a Lagrange functional. We have then Epp,
= Hyp,, and the amplitudes are determined by the variational

condition
dHyp
(1)
dat,

=0 (292)

Note that in eqs 290 and 291 the index N (indicating normal
ordering of the operators) can be dropped as subtracting
the expectation values for [HF) from 9 and ® has in these
equations no effect.

In MP2-F12 theory the set of conventional double excitations
a?jb is augmented by the excitations into the explicitly correlated
geminals |w,,) defined in eq 243 or 245 in section 6.1

IMPLI-F12) = (T + T\))[HE) (293)
with
F= A Y wia (294)
i>j a>f
x>y

Two alternative (but e% uivalent) expressions for the F12 double
excitation operator Tz/ are

=Y diry =Yy t" (295)
i>j i>j
x>y x>y

with excitation operators 7} and the amplitudes #/,3 defined as

xy af
=y wa’% ,(; and aﬂ = Z CZy B (296)
a>f
The form of Tg/l ) on the right-hand side of eq 295 is sometimes

useful for comparing contributions from double excitations into
geminals with their conventional counterparts, but it should be
kept in mind that the additional variable parameters in F12
theory are the coefﬁc1ents c,{y To determine the coeflicients CZ)(, )
that enter in TS, also the projection manifold for the first-order
Schrodinger equation is extended by the double excitations into
geminals. This leads to a coupled set of ecguatlons for the

conventl(oglal double-excitation amplitudes t,{;, and the coeffi-
ij(1

cients cg,
CIED, T + 7] + dy|HE) = 0 (297)
CIEY, T + 1Y) + dy[HE) = 0 (298)
with the bra states (| = HF| (7}’) . The MP2-F12 energy is given by

AEypypn = (HF|ci>N|MP1-F12>

(HF|<I>N( )+ T2, )\HF) (299)

The last three equations can again be cast into a variational Hylleraas
functional

Hyporrr = <HF|CI)N( % + Tz’ )|HF>

+Zt

i>j
a>b

+ X UG IR
i>j
a>b

CIEY, T + 10)] + dy|HE)
1Y+ 1) + dy[HE)

(300)
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eeview

which is now required to be stationary with respect to variations of
5D and el
With the matrix elements introduced in eqs 263—268 the

equations for the MP2-F12 energy and the first-order amplitudes
become

ABvprri2 = Y, t'}b f;h + Y c” (301)
i>j i>j
a>b a>b

= Z( Wfay +th cu)

4

%(ub fk} +t ka)

+ X G CU + gl
x>y
(302)
0= ¥ Byl — ¥ x5 Y (cfy + i)
v>w v>w k
Z a)li Zb + ‘/;C)’
a>b
(303)

ik(1)

The coupled equations for t’i’ (i ) and ¢, can be solved directly in

this form w1th computational costs scalmg as O(N°) w1th the

costs scaling as .
steps of a MP2-F12 ¢ i i
elements of B, V, X, and C. This motivated the develo
several more cost-efficient approximations.”*”***40%*!
In eqs 302—303 the matrix elements C}}, cause a coupling
between the equations for the amplitudes t,i;(, ) of the conven-
tional double excitations and the equations for the geminal
coeflicients c” (D These matrix elements vanish with ansatz 1

for the strong orthogonality projector or with the original
standard approximations and the MP2-F12 energy becomes

gment of

ABf, = Abyp + ABE (304)
where AEyp, is the conventional MP2 energy
{ab|rt i)
AE = — — v 305
MP2 g_, e T 26— (308)

a>b

tz1 . . .
and AEg)> © a basis-set incompleteness correction from the
geminal contribution

% o
i>j
x>y

AEDS = (306)

Such a partitioning of the MP2-F12 energy can also be obtained
for ansatz 2 if the equations are slightly reformulated. In a
(semi)canonical molecular orbital basis, which diagonalizes the
occupied and virtual blocks F © such that fij = 0y¢; and f,), =
Oup€, the general expression for the MP2-F12 energy can be
written as

AEypyri2 = AEypy + AEgp; AEp,; = ZC’} z'

i>j
x>y

(307)

40

where the modified Vi intermediate is defined as

~ ab|ritij
V:;y _ V:y _ 2 C:?; {ablryy |if) (308)
a>b & t+ & —&— &
Also, the equations for the geminal coeflicients IV can be

rewritten such that an explicit reference to the amplitudes of the
conventional double excitations is avoided

crcw .. -
0= Z va (51 4 SI)XVW* Z ab ~ab CZ;E/I) + V;;;V
oW v €a T & — & — &

(309)

The last equation is particularly useful in connection with the
so-called SP approach, where the coefficients czy are fixed by the
s- and p-wave coalescence conditions at the interelectronic cusp
at CZ), = (3,-,43 (5,y(3}x instead of optimizing them. The corre-
lation energy is then not calculated through eq 301, since this
would be too inaccurate, but through the variationally stable
Hylleraas functional for the MP2-F12 energy, which can be

written using eq 309

Hypo iz = AEvpy + Z Z {

i>j v>w
x>y

(& + &)X

ny W . o
D e RIS S I WA 4 (310)
b€ T & —E&E i>j
x>y
For the SP approach, where czy =0;0;, — 0,,0,,, the last equation
reduces to
Hypo i = ABpy + Y, { — (& + &)X Xx]
l>]
ij Cfi i
-y 2 YV (311)
asp€a T & — & — & i>j

Due to the diagonal structure of the coefficients czy the SP
approach requires calculation of only a small subset of the matrix
elements of B, V, and X and the MP2-F12 energy can be com-
puted with (?(_17) scaling costs, that is, with the same scaling
as a conventional MP2 calculation. Because of the larger number
of integrals and intermediates required for an MP2-F12 calcula-
tion, the prefactor of the computational costs is larger than for a
conventional calculation in the same orbital basis set, but this is
—depending on the required accuracy with respect the basis-set
errors—partially or completely outweighed by the much faster
basis-set convergence, which allows use of smaller basis sets. The
MP2-F12 method was reviewed in 2006, providing details of the
approximations made, the techniques used for the integral
evaluation, and the like.*** More details of the MP2-F12 method,
including the most recent developments and some large-scale
calculations that ﬂlustrate its range of application, can be found in
arecent article™° on the implementation**' ~** of the MP2-F12
method in the TURBOMOLE program package. Figure 10 provides
an illustration of the performance of the MP2-F12 method. For
the model cluster CH;OH- - - HAI(OH)(OSiH;);, taken from
the work of Svelle et al,,*** the electron-correlation contribution
to the interaction energy (AE in mEy; the basis-set limit is 13.42
mE;,) with respect to dissociation into the fragments CH;OH
and HAI(OH)(OSiH3); is shown. The geometries of the fragments
were kept fixed. The much improved basis-set convergence of the
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Figure 10. (a) Frozen-core MP2/aug-cc-pV(T+d)Z equilibrium geo-
metry of the model complex CH;0H- - - HAI(OH)(OSiH3);. Color
code: H, white; C, gray; Al, yellow; Si, cyan; O, red. (b) Basis-set
convergence of the magnitude of the electron-correlation contribution
to the interaction energy as a function of the cardinal number X of the
aug-cc-pV(X+d)Z basis sets obtained at the frozen-core MP2 and MP2-
F12 levels with and without counterpoise (CP) correction. Data taken
from ref 440.

MP2-F12 model is obvious. Moreover, the counterpoise correc-
tions™® to the electron-correlation contribution to the interac-
tion energy are much smaller at the MP2-F12 level than at the
conventional MP2 level. Accurate results can also be obtained
using basis-set extrapolation techniques, but as noted in ref 446,
basis-set extrapolation schemes should be applied to the counter-
poise-corrected conventional MP2 values, which show a mono-
tonic behavior.

6.5. CCSD-F12 Theory
As mentioned in section 4, coupled-cluster theory employs for
the correlated wave function an exponential parametrization

|CC) = exp(T)[HF) (312)

where T is called cluster operator and consists of a linear
combination of excitation operators, T = Yt T, Instead of the
Hartree—Fock wave function HF, also other wave functions, for
instance, from a Kohn—Sham density functional theory or from a
multiconfigurational self-consistent field calculation, can be used
as areference for the coupled-cluster expansion, which leads then
to the wave function ansatz |CC) = exp(T) |Ref). In the standard
coupled-cluster methods the amplitudes t, are determined by
solving a projected Schrodinger equation which can be obtained
in two different ways. Projecting the Schrodinger equation for
|CC) directly onto the reference wave function and the bra states
u| = (Ref|rﬂ gives the so-called unlinked form of the cluster
equations

{u|(H — Ecc)|cCy = 0

Alternatively, the Schrodinger equation can be transformed
before the projection with the inverse of exp(T), which results
in the linked cluster equations introduced in section 4

(ulexp( —

The two forms of the cluster equations, eqs 313 and 314, are
equivalent if no other approximations are made than a truncation
of the manifold of excitation operators %ﬂ that are included in the
cluster operator T, and this truncation is made such that the
projection manifold {(Ref|,(u|} is closed under de-excitation.
The latter criterion is fulﬁlled if for all excitation operators Tﬂ, ‘L',,
included in T also T/Jv is included unless ‘L’ﬂ‘[v |Ref>

(313)

T)(H — Ecc)|CC) = 0 (314)
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For example, if the excitation operators aZa} and a; aaba are
included, also the single-excitation aja, is needed for a projection
manifold that is closed under de-excitation.

With the unlinked form of the cluster equations the work-
ing equations are similar to those of configuration interac-
tion (CI) theory and coupled electron pair approximations
(CEPA)

. - 1.
(u|(H — Ecc) (T + ET2 + ) [Ref) = 0 (315)
On the other hand, one can exploit with the linked form of the
cluster equations that the nested commutator expansion of the
similarity-transformed Hamiltonian exp(— T)H exp(T) trun-
cates at four nested commutators

exp( — 1)L exp(T) = F1 + [B,7] + J[[f1, 7], 1]
+ 218,70, 7),7) + 18,7, 7,7, 7] (316)

The latter expansion is also termwise size extensive, that is, in
the linked form of the cluster equations

WA~ Bce + (A1) + S8, T) 7] + (A7), 7)7)
+ Al ), 7,7, T]jRef) = 0 (17

any commutator can be neglected without violating the size-
extensive structure of coupled-cluster theory.

For single-reference coupled-cluster calculations the reference
wave function |Ref) is usually chosen as a single Slater determi-
nant with orbitals optimized in a preceding Hartree—Fock cal-
culation, |HF). We restrict the following discussion to this case.
The cluster operator T can then be expanded in terms of exci-
tation levels as

T=T+T,+Ts + ... (318)

where T includes excitation operators which promote i electrons
from orbitals occupied in |HF ) to unoccupied molecular orbitals.
Truncating T after a maximum excitation level and including up
to this level all possible excitations out of the set of active
occupied orbitals into a set of active unoccupied orbitals gives
the standard hierarchy of coupled-cluster models CCSD
(coupled-cluster with singles and doubles), CCSDT (coupled-
cluster with singles, doubles, and triples), etc. Note that for these
methods the projection manifold is closed under de-excitation,
and thus, the linked and unlinked forms of the cluster equations
are equivalent. At the CCSD level the equations are greatly
simplified by using T-transformed operators, defined as

H = exp(— TI)I:I exp(’l"l) (319)

The linked cluster equations for CCSD are then given by

Ecesp = (HF|I§I + [H, T,]|HF) (320)
0 = (ulH + [H,T)JHE) (321)
0= (ul® + [H,T) + 3[BT, LIHE)  (322)

2
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where (u;| and (u,| are, respectively, the singly and doubly
excited determinants of the projection manifold. For later
reference we will abbreviate the right-hand side of eq 321 as
€2, ccsp and that of eq 322 as Q,, ccsp.

Explicitly correlated coupled-cluster theory with single and
double excitations has recently been reviewed by Tew et al.**®
and Werner et al.*** In CCSD-F12 theory, the cluster operator
and the projection manifold are extended similarly as in the MP2-
F12 approach by accounting for additional double excitations
into the F12 geminals

Ty= Y d

i>j
x>y

(323)

The expression for the energy and the linked cluster equations
for CCSD-F12 become

Eccspriz = Ecesp + (HF|[H, Ty][HE) (324)

0 = Qu, cesp + (u|[H, Ty]|HF) (325)

N PRPSEN 1. 4 .
0= Qluz,CCSD + <//‘2|[H; TZ’] + [[H; TZ’L TZ} + EHH; TZ’]rTZ’”HF>

(326)

< < R N 1 SN R R R
0={(uy|® + [H, T, + Ty] + E[[H, T, + Ty|, T, + Ty||HF)
(327)

In the last equation, (,uz/| are the additional bra states obtained
from the double excitations into the F12 geminals, (| =
(HF|(73?)". The above equations are formally identical to con-
ventional CCSD except that there are now in addition to double
excitations into orbital pairs also those into F12 geminals. The
size extensivity, the orbital invariance, and also the basis-set limit
of CCSD are retained. For both ansatz 1 and 2 (/12/|[[I:I, T,],
T,]|HF) = 0, and eq 327 can also be written as

< N . 1. . . R .
0= (uy|® + [H, T2 + To] + {215 + T, To][HF)
(328)

For ansatz 1 or within the original standard approximations also
<‘142|[[H, TZ’]; TZ’:HHF> =0.

Similar as for MP2-F12, an attractive alternative to optimizing
the geminal coefficients c, is to predetermine them by the
coalescence conditions at the interelectronic cusp as czy = 5ix5jy
— 04y0j,. In this so-called CCSD-F12-SP approach the ampli-
tudes for conventional excitations are optimized by solving
eqs 325 and 326 in the presence of the fixed geminal contribu-
tions. This approach is numerically less sensitive to the accuracy
of the RI approximations and several contributions of T, can be
precontracted, which reduces significantly the computational
costs. The energy for the SP approach is calculated from the
Lagrange functional

Eccsprise = Eccsp + (HEF|[H, Ty||HE)

< IS R 1. . R N N
+ Y Gle + H T, + Ty] + E[[H,zT2 + Ty, Ty][HF)
i>j

(329)
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In the last equation we used explicitly correlated bra states

defined as

Gl = X c(HE|(7)
x>y

(330)

With the strong orthogonality projector for ansatz 1, eq 249, and
also for the original standard approximation, Q ;=1 — P,P,, the
projection manifold for CCSD-F12 is closed under de-excitation.
However, for ansatz 2, eq 246, which is the most accurate choice,
this is not the case. The combination of a conventional single de-
excitation a; a, with a double excitation into a geminal ‘[’Ey gives
with ansatz 2 single excitations into the orthogonal complement
of the orbital basis with a/a,7;’|HF) # 0, which cannot be
expanded in the singly excited states |{'). For ansatz 2, linked
and unlinked cluster equations are therefore not comple-
tely equivalent. They differ in the equations for the geminal
coefficients by (uy/| T, H exp(T)|HF), which is only present in
the linked form of the equations. However, this term is of high
order in the fluctuation potential and for most circumstances
negligibly small.

6.6. Geminal Basis Functions

F12 methods, to alarge part, owe their success to the fact thata
high percentage of the dynamic correlation energy can be
recovered with just a single geminal basis function in the corre-
lation treatment of each pair of occupied orbitals. This fact
becomes even more remarkable when considering that the expli-
cit ry, dependence of the geminal functions enters only as a
spherical correlation factor. It is appropriate therefore to discuss
the physics behind the choice of geminal basis function and the
situations where the geminal basis should be extended.

6.6.1. Correlation Factor. The original choice of r1,|¢:¢;) to
correlate a Hartree—Fock orbital pair |¢;¢;) was motivated by the
coalescence conditions of the first-order pair functions (see
section 3.6). The function r1,|¢;¢;) is a very close fit to the corre-
lation hole at short-range r;,. However, because the correlation
hole integrates to zero, it was recognized that the linear 7,
correlation factor is unphysical at long-range r;,. A variety of corre-
lation factors have been tested, including r;, with Gaussian,*”®
exponential and complementary error function damping,**”***
and the exgonential and complementary error functions them-
selves 2940640944748 The regults of a comparison due to Tew
and Klopper*"*** demonstrated that the Slater-type geminal is
the best choice in the F12 approach. Tew and Klopper**” com-
puted the optimum correlation factor for a series of two-electron
ions, defined as the function f(r;,), such that f(r;,) Wy has the
maximum overlap with a tightly converged Hylleraas wave func-
tion. The results are plotted in Figure 11 for both the 1'S and the
2°S states.

Although the function rj,e” 7" is also a good candidate, the
faster rate of decay to a constant of (1 — e ”") appears to be
advantageous, giving a better separation of short- and long-range
correlation effects.**® While the Jastrow factor for the short-range
correlation is close to spherical in nature (see Figure 6), this is
certainly not the case for long-range correlation. In F12 methods,
the long-range correlation is parametrized through expansion in
excited-state configurations.

The necessary two-electron integrals for the overlap, Coulomb
and kinetic energy terms in the CCSD-F12 working equations,
can be solved analytically for the Slater-type correlation factor
but are significantly more complicated than standard elec-
tron repulsion integrals.”>***"**> In many programs, the Slater
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function is expanded as a linear combination of Gaussians (STG-
nG contraction)

n
Y e U m e

i

(331)

The integrals for the Gaussian geminals resulting from the STG-
nG contraction are well known and date back to Boys and
Singer.”*'° The necessary recursion formulas for integral evalua-
tion have been reported in refs 398 and 400 for the McMurch-
y—Davidson and Obara—Saika recursive schemes, respectively,
and the coefficients c; for the STG-nG fit withn = 3,4, 5,and 6 can
be found in ref 447 or, alternatively, computed using the prescrip-
tion in ref 410.

In Table 10 we list the coeflicients c and exponents y ina STG
fit to the optimum correlation factors for the helium isoelectronic
series of cations in their 'S ground states, refit from the data in ref
447. Note that c is not expected to be exactly 1/2 but is very close
to 1/2 because ¥ ~ Wiy (see section 3.3.1). y closely follows
a(Z — b) with a = 07177 and b = 0.8481, which may be
interpreted as the length scale of the correlation hole shrinking in
proportion to the contraction of the electron density. As
remarked by Tew and Klopper**” and Valeev,”® shortly after the
introduction of STG-type correlation factors, different exponents
y are expected to be appropriate for correlating core and valence
orbitals and significant differences are expected between anions,
cations, and neutral species.

The length-scale parameter y has been of considerable inter-
est, and the stability of the energy with respect to the choice of
is very often tested. Fortunately, there is significant redundancy
between the F12 geminal function and the orbital configuration
expansion, and in practice, the dependence on y is weak. Figure 12
is a plot of statistical measures of the basis-set errors in the
CCSD-F12 correlation energy as a function of the exponent  in
the STG correlation factor (actually, the CCSD(F12) method
was used (see section 7.2)). The test set consists of 58 com-
pounds of H, C, N, O, and F. For the valence orbitals of these
molecules, y =1 ap” " works extremely well.

A number of authors have investigated the dependence of the
MP2-F12 energy on y for heavier elements, including Zn and
Zn**** and hydrides of N, P, As, and Sb.*” Much larger values of
y, toward 2 ao ', were found to be appropriate for molecules
with heavy elements. Additionally, Bischoff et al.**” found that
the optimum 7 depended on which orbital pair was being corre-
lated. Low 7 values are appropriate for valence electron pairs,

Table 10. Parameters for the Fit ¢y '(1 — e 7") to the
Optimum Correlation Factor for He and Its Isoelectronic
Series of Cations”

VA 2 3 4 N 6 7 8

c 0.49 0.49 0.49 0.49 0.49 0.49 0.49

y(ag") 081 155 227 299 370 442 512

a(Z—b) 083 154 226 298 370 442 513
“ Taken from ref 425.

whereas the tighter electron densities in the core and d and f
shells warranted higher exponents. In 2008 Tew” derived an
analytic formula for the optimum Y for a given occupied pair in
MP2-F12 calculations based on the second-order coalescence
conditions (see section 3.5), but this has not yet been tested
numerically.

6.6.2. Multiple Geminals. In 2006 Valeev**”**° performed
MP2 calculations using a set of geminals with a range of Gaussian
correlation factor exponents, which may be viewed as a decon-
tracted set in eq 331. For the small molecules tested, the im-
provement upon decontraction was small, underlining the near
optimum form of the Slater function. The principal improvement
came from the better description of core and core—valence
correlation since the geminal basis could adapt to the different
length scales. It is interesting to note that the geminal basis for
these calculations is the same as in the GGO method of Dahle
et al,”® but Valeev used the strong-orthogonality functional and
RI rather than the weak-orthogonality functional to determine
the pair function parameters. Unfortunately, Valeev’s approach is
not compatible with the SP ansatz, which is important for both
computational efficiency and reducing basis-set superposition
errors.**® Additionally, to make the B matrix positive definite, it
was necessary to perform a singular value decomposition to elimi-
nate the near dependencies in the geminal basis.

A pragmatic alternative has been developed simultaneously by
Werner et al.**! and Tew and Gotz.*>* Here, Hartree—Fock
orbital pairs are classified as either core, core—valence, or valence
and a different correlation factor is used for each type. For core
and core—valence pairs a correlation factor exponent of 2 a, ' is
appropriate, and for valence pairs an exponent of 1 ao ' or even
smaller is appropriate. While such an approach breaks orbital
invariance, it may be used in combination with the SP ansatz.
Furthermore, since only the integrals are affected, this approach
is easily incorporated in CCSD-F12 calculations.

43 dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74
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6.6.3. Open-Shell Aspects. For open-shell calculations it is
impossible to satisfy the MP2 coalescence conditions using the
functions f(r12)|q01q0]> only The reason for this is that both the
s-wave and the p-wave coalescence conditions apply to pairs of
opposite-spin electrons in a spin—orbital formulation. To satisfy the
s-wave coalescence conditions requires that the spatial component
of the first-order pair function u; for opposite spin pairs obeys

leflz((l’i(l)(l’;(z) + ¢,(09,(2)) + ()
(332)

(1 + }312)1417 = 5

where ¢; = @, and ¢; = ¢;3 and p;, permutes electrons 1 and 2. To
satisfy the p-wave coalescence conditions requires that

9;(1)9i(2)) + O(r}y)
(333)

(1*}312)141']‘ = erlz( (1 )(/’j( ) —

=

Therefore, to satisty both the s- and the p-wave coalescence
conditions we have

3 4 1.
|uz) = 3 Q12’12|<Pi0‘€0j:3> + §Q12712|€0,-a€0iﬁ> + O(r})

(334)

The second determinant is referred to as a spin-flipped geminal
function where ¢, the spatial component of ¢;, now acquires /3 spin
¢, the spatial component of ¢; now acquires & spin. Inclusion of
spin-flipped geminals to satisfy both the s- and the p- wave
coalescence conditions is vital to ensure that the energy converges
as (L + 1) and is therefore necessary for a balanced treatment of
open- and closed-shell species.”**** For UHF-based calculations,
this doubles the computation time of an MP2-F12 calculation, but
since only the integrals and MP2-F12 intermediates are affected,
there is no additional expense in the CCSD iterations. For ROHF-
based calculations, inclusion of spin-flipped geminals carries almost
no additional cost. The spin-flipped geminals are included in the
formulation in section 6.1 through the rational generator in e(g 243
For completeness, we note that Wilke and Schaefer***
sented an explicitly correlated second-order perturbation theory
and coupled-cluster singes and doubles theory for high-spin
open-shell states in the framework of Z-averaged perturbation
theory. Their ZAPT-F12 approach allows for a spin-restricted
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formalism with equivalent a and S subspaces, similar in cost to
closed-shell calculations.

6.6.4. Extension of the Generating Orbital Space. The
standard choice for the orbitals x, y that generate the geminal,
namely, their restriction to occupied orbitals of the Hartree—
Fock reference function, is fully sufficient for calculating the
ground-state energy including derivative properties such as
equilibrium structures and harmonic frequencies. This also holds
true for static electric properties calculated as orbital relaxed deri-
vatives of the ground-state energy, as the geminal basis needs
only be suited to describing the correlation hole of the ground
state. For example, using finite difference techniques, Franke
et al.*® demonstrated that the basis-set convergence of the static
electrical properties of F~, Ne, and HF are greatly accelerated
using the standard CCSD(T)—RlZ method. However, the orbital
unrelaxed approach is favored in coupled-cluster response theory,
particularly for calculation of frequency-dependent properties,
because singularities from the Hartree—Fock reference would
spoil the pole structure of the resulting response function at the
correlated level. In the orbital unrelaxed approach the geminal
basis functions f(r,,)|ij) alone are not appropriate for parame-
trizing the response function.™" For example, in calculations of
single excitation energies it is necessary to include basis functions
of the type f(r15) |1u> to give a balanced treatment of the ground
and excited states.**® In general, the F12 cluster operator becomes

SN ij .kl kb _af ab _aff
Ty = Y cklwaﬁu,} + Y ckbwaﬁau + Y cubwaﬂat]
i>j,a>f x>; r1>/? i>j,a>f
k>1 a>b
(335)

A similar extension was discussed for the GGn methods (see
section 4.2.3). The computational cost of including all such
geminals is prohibitively large, however, so Neiss et al.*** pro-
posed transforming the virtual orbitals a,b by diagonahzmg the
virtual —virtual block of the MP2 density matrix. Then only a few
virtuals from each symmetry are required in response calcula-
tions in addition to the geminals constructed from the occupied
pairs. This approach was dubbed “R12+” and has been applied
successfully to compute excitation energies,**® electric polarizi-
bilites and hyperpolarizibilities,*****° and excited-state struc-
tures and harmonic frequencies.**"***> The R12+ method is
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not compatible with the SP ansatz and requires optimization of
the geminal amplitudes.

An alternative approach that extends the SP ansatz has been
pursued by Kohn and co-workers.*> * The extended SP
ansatz (XSP ansatz) uses a general geminal operator

R =R L pOw) 4 R (336)
= Towipail + Bwiipdl + T wipa] (337)
i>j ia a
B oa>p ap

We recall that the matrix elements over the geminal factor involve
appropriate symmetrization of the orbitals such that the cusp
conditions are fulfilled (see eq 244)

Wi?g = SpaB|Quz fr2|pa) (338)
The superscripts in eq 336 refer to the type of orbitals to which
f12 is applied: Pairs of occupied orbitals (“hole” orbitals, hence
abbreviated hh), pairs of occupied and virtual orbitals (“hole” and
“particle” orbitals, hp), and pairs of virtual orbitals (pp). This
geminal operator is then used for a cluster ansatz of the form
{8y eT|HF), where the curly brackets denote a normal-ordered
exponential, in order to avoid a nonterminating series of self-
contractions of R. When acting on a Hartree—Fock reference
function, the following rearrangements are equivalent to the
above cluster ansatz

eTe_T{eﬁ}eT\HE

. ef{exp (iz R+ %[[R, T],ﬂ) }|HF) (339)

- <T RO 4R, 3] 4 (R9), 7)),

1

4
2

(899,771 iy (340)
The index cb. denotes “closed from below” which means
(alluding to the respective diagrams) that all particle annihilation
indices of R are fully connected to T. In this case, all
summands in the exponential commute and give a nonvanishing
linear term when acting on the reference function.

With the first two terms in the argument of the exponential,
eq 340, we recover the usual SP ansatz, Tzr = ﬁ(hh), which is
restricted to geminals generated from occupied orbitals. The next
terms suggest a way to extend the cluster operator with further
geminal contributions, in the following we will restrict the discussion
to PA{(;'FA), T7. This introduces contributions like [R"” T,] and
[R"), T,] which are effective two and three-body operators, as
illustrated by their diagrammatic representations, Figure 13. [R"?),
T,] introduces geminal functions like f(r,,) |ia) and helps to obtain a
balanced description of ground and excited states in response
calculations (see sections 8.3 and 8.4). The commutator with T,
on the other hand, introduces the necessary geminal functions to
enhance the basis-set convergence of connected triple excitations in,
for example, CCSD(T) calculations (see section 6.8).

6.7. CABS Singles

F12-type geminal functions accelerate the basis-set conver-
gence in the double-excitation space, but by construction they
have no contribution to the single excitations. Furthermore, when
small orbital basis sets are used to compute the Hartree—Fock

Figure 13. Representation of [ R™) T 7 and [ R™, T,] in terms of
the corresponding Brandow-type diagrams. The single bar denotes the
T, or T, operator, respectively, and the double bar is the R operator;
double arrows denote excitations into the formally complete virtual
space (we implicitly assume the presence of the projector Q ;, for R). For
each diagram, the number of pairs of in- and out-going arrows
determines the rank of the operator.

reference determinant, there is a substantial basis-set error in the
Hartree—Fock energy resulting from the incomplete parametri-
zation of the Hartree—Fock orbitals. All of these issues can be
addressed by extending the parameter set for single excitations
beyond that of the Hartree—Fock orbital space.

In 2007 Noga et al.**® defined new single excitations using the
one-electron component of the geminal functions, and in an
approach analogous to the dual basis-set work of Wolinski and
Pulay*” (see also refs 468 and 469), they computed a second-
order energy correction in this basis. It was quickly realized that
the second-order energy is a perturbative basis-set incomplete-
ness correction to the Hartree—Fock energy and has no con-
tribution to singles correlation. As suggested by Adler et al,**®
the more natural parametrization of the new singles is therefore
done in terms of the orbitals of the CA basis**”*3*7°

Ty =Y ta (341)
ia'

K6hn and Tew*”' performed a systematic investigation of the
effect of including single excitations into CA orbitals in the
CCSD-F12 method, which extends the basis for both HF and
correlation contributions. A series of truncated models was defi-
ned based on perturbation arguments similar to those used to
construct the CC2 and CC3 methods. Note that Moller—Plesset
partitioning of the Hamiltonian, eq 283, implies that T’y is first
order in the perturbation. The conclusions were clear: The
dominant energy contribution for both total and relative energies
is the Hartree—Fock basis-set error correction. For closed-shell
molecules considered as single-reference cases, the improve-
ment in the singles correlation energy is unimportant. Moreover,
a second-order perturbative Hartree—Fock energy correction is
almost as accurate as a second-order iterative CCS correction and
is much cheaper to evaluate. Contributions beyond second order
are smaller than the error in the incompleteness of the unified
orbital plus CA basis sets for standard choices of RI basis sets.

The CABS singles second-order energy correction is obtained
by solving**’

ESY = Eyp + (HE|[FY, T, + Ty]|HE) = Eur + f*£ + f“¢,
(342)
0 = (u|FY + [FO, Ty + T,][HF) = £ + f't, — £, + 4,
(343)
0 = (uy|FY + [FO, T, + Ty]HE) = f, + fid, — fjiti/ + bt
(344)
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where summation over repeated indices is assumed. At second
order this energy correction is entirely decoupled from the MP2-
F12 doubles energy correction and the singles and doubles ampli-
tudes are determined independently. All of the Fock matrix
elements are required for constructmg the B intermediate, and
the cost of computing AE® s negligible compared to both the
underlying HF calculation and the MP2-F12 energy correction.
For ROHF open-shell calculations both T, and T introduce
spin contamination, and Knizia et al. derived spin-free expres-
sions where the CABS singles correct for the ROHF energy
without introducing spin contamination. 436

Table 11 is taken from ref 427 and lists the rms basis-set errors
for Hartree—Fock calculations on reaction energies, atomization
energies, ionization potentials, and electron affinities with and
without the CABS singles correction. For a HF/aug-cc-pVXZ
calculation the cc-pVXZ JKFIT basis set was used for CABS. The
basis-set limit was taken as the aug-cc-pV6Z value, and the
ROHF method was used for all open-shell calculations.

The CABS singles correction reduces the Hartree—Fock
basis-set errors by an order of magnitude and, despite its per-
turbative rather than variational nature, is sufficient to ensure that
the basis-set errors in the Hartree—Fock energies are not larger
than those of the CCSD-F12 correlation energies. In the context
of response theory, however, the basis-set incompleteness in the
singles correlation contribution becomes important. Here, an
iterative CABS singles approach is appropriate that includes cou
ing terms between the singles and doubles amplitudes.**>**

Very recently, Kong and Valeev*’* devised a CABS smgles
correction for CASSCF wave functions. They 1nvest1%ated two
choices for the zeroth-order Hamiltonian, H% and HY

(f/“h

HY = pEp + fYaf + f¥al) (345)

HY = PaP + fab + (e + f¥al) (346)

£ are the matrix elements of the CASSCF Fock operator, and P
projects onto the OBS. Although H is the correct zeroth-order
Hamiltonian for a CASSCF calculation, the more complete
HY Hamiltonian was found to give superior basis-set corrections.
The energy correction is computed using second-order Rayleigh—
Schrodinger perturbation theory and requires only 1- and 2-particle
reduced density matrices (evaluated from the CASSCEF wave function)

AE®) = f iy, (47
0= fityi— (f Vi + gﬂc /1”‘>t1 + 11t (348)
0=fy +fityyi— (f Vi + g,k )tJ

+ o8] (349)

Here, A1 = 71 — Pyl + yPylis the two-particle cumulant and { and
yb1 are the 1- and 2- partlcle reduced density matrices, respectively.
The equations for the H{”’ zeroth- order Hamiltonian are obtamed
by replacmg the intermediate (f} ¥ + (1/2)gii‘Aly,) with (A} —
ykj/]) The two methods have essentially the same computational
cost, ((0*X?), where O and X are the number of occupied and
CABS orbitals, respectively. This is one order lower scaling than
the underlying CASSCF calculation, which scales as (2(0*V),
where V is the number of virtual orbitals.
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Table 11. Hartree—Fock RMS Basis Set Errors for Open- and
Closed-Shell Reaction Energies (k] mol '), Atomization
Energies (kJ mol "), Ionization Potentials (meV), and Elec-
tron Affinities (meV) with and without the CABS Singles
Correction”

method basis RE(cs)  RE(os) AE P EA
RHF aug-cc-pVDZ 13.45 28.88 2439 6514 7622
aug-cc-pVIZ 2.07 3.61 347 11.07 11.80
aug-cc-pvVQZ 0.49 1.17 0.82 2.27 3.58
aug-cc-pVSZ 0.17 0.35 0.25 0.59 0.98
ESY  augccpVDZ 179 222 164 816 804
aug-cc-pVIZ 0.48 0.54 0.29 2.76 1.80
aug-cc-pVQZ 0.18 0.17 0.13 1.04 1.01
“ Data taken from ref 427.

For a single Slater determinant A} vanishes and % reduces to
a delta function. Hence, in the single-reference limit eqs 342—344
are recovered. The performance of the CASSCF CABS singles
correction is similar to the Hartree—Fock case and consistent
over potential energy surfaces.

6.8. Explicitly Correlated Triples
Inclusion of the cluster operator which describes connected
triple excitations

O ijk _ab

T3 - Z tubc ch (350)
i>j>k
a>b>c

is vital for obtaining quantitative results in coupled-cluster theory.
A very accurate estimate of the T'; contribution is obtained by the
noniterative CCSD(T) correction.*”>*”* The amplitudes are
obtained from the second-order equations in Meller—Plesset per-
turbation theory by substituting the converged T, amplitudes from
CCSD for the first-order amplitudes. The corresponding fourth-

order energy expression can be written as a Hylleraas functional
Hy = (HE|TYEY, T3] + Ti[dy, T)]

+ T}[dy, T5][HF) (351)

The stationarity condition leads to the amplitude equations for T

G lEY, T3] + [y, T,][HE) = 0 (352)
The pure fourth-order correction is known in the literature as the
CCSD+T(CCSD) or CCSD[T] method.*”* It was later recog-
nized that much improved results could be obtained by adding
the couplings to the T’ e % ations, which formally are fifth order
in perturbation theory;*”>*”* for a rationalization see, e.g., ref
476. The CCSD(T) energy then reads

E(r) = E4 + Es (353)

(HE|T[®y, T3] [HE) + (HF|TT[®y, T5]|HF)
(354)

— (HE|TIEO T4 HE) + (HF|T} [y, T5][HF)
(355)
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Table 12. RMS Basis Set Errors in the Isolated E() Contribution to Reaction Energies of Closed-Shell Molecules (REc) and
Open-Shell Molecules (REo), as Well as Atomization Energies (AE), Ionization Potentials (IP), and Electron Affinities (EA)”

method/basis REc/k] mol " REo/kJ mol !
Conv/CBS[DT] 0713 0.611
Conv/CBS[TQ] 0.144 0.136
Conv/CBS[Q5] 0.032 0.062
(T)/aVvDZ 2.683 5.930
(T*)/avDZ 1.375 3779
(T)/aVTZ 1292 1.670
(T*)/avTZ 0.564 0.822
(T)/avQz 0.604 0.731
(T*)/avQZ 0227 0.380

AE/kJ mol ! IP/meV EA/meV
0.604 215 214
0.130 0.64 1.52
0.092 0.24 0.44
8.767 33.40 42.09
3.671 24.34 26.19
2.470 10.51 13.07
0.368 4.97 4.63
1.066 4.58 578
0.150 1.67 1.87

? Listed are the root mean square deviations from the basis-set limit estimate from conventional CCSD(T)/CBS[56] extrapolations. The first three lines
are conventional extrapolated values; the remaining lines are the nonextrapolated results obtained by evaluation of the conventional expression, eq 353,
with T and T, from CCSD-F12a (cf. section 7.3) calculations with y = 1.0 ag . (T*) denotes the scaled energies, eq 357. Data taken from ref 427.

where in the last equality the stationarity condition was used to
rewrite the forth-order term, such that it can directly be evaluated
from the amplitudes. For canonical orbitals, the T amplitudes
take the explicit form

L X Zgaz
ik 2 d

t, = —P
abcga +e +e—¢

abc i~ & — & (356)
where the operatorPubc ensures the appropriate antisymmetry of
the amplitudes.

The correlation factor introduced in R12 and F12 theory by
design only takes care of pair correlation. Hence, starting with
early work on CC-R12 theory,***** explicit correlation for
connected triples is not considered. Instead, after a CCSD-R12
or CCSD-F12 calculation, the conventional expression, eq 352, is
used; see, for example, refs 419—421 and 428. There also exist a
number of works which include conventional higher-order clus-
ter operators up to Ty, both for energy*””*”® and response cal-
culations.**® The numerical results from all these publications
show that the basis-set convergence of E(r), or any other
correlation contribution beyond the pair level, is not improved.
For total correlation energies this may seem justified as usually
the contribution of connected triples is by 1 order of magnitude
smaller than the CCSD correlation energy. This observation,
however, does not necessarily carry over to relative energies.

In fact, it was found that particularly in F12 theory the error in
the E(t) contribution can become dominant, as demonstrated by
Knizia et al. in refs 427 and 479. The same authors also suggested a
scaled T3 correction, denoted (T*), which is defined as

Empori2

E(r+) = E(1) X (357)

Enpa

In Table 12 the E(r) error statistics for a number of test sets
are listed. It is found that the uncorrected E(ry can have very
large basis-set errors for the smaller basis sets. For the aug-cc-
pVQZ basis the deviations are below 1 kJ mol ', but they are
usually larger than the error in the CCSD correlatlon energy
(see ref 427). The correction, eq 357, leads to clearly more
satisfactory results; nevertheless, a more rigorous treatment of
E(r) seems desirable within F12 theory. This issue was addressed
recently by Kohn,***

First, some considerations are in place about the type of short-
range correlation that governs the convergence behavior of E(r.
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We can distinguish two cases: (a) two-electron coalescence with
correlated motion of a third electron at some distance away and
(b) a genuine three-electron coalescence. Thus far, the latter
issue has not received much attention in the literature and not
much is known about the functional behavior in such a case. There is
clear evidence, however, that b is much less important than a.

In case b, as discussed in section 3.4, the wave function must
vanish by virtue of the exclusion principle, as at least two
electrons must be triplet coupled. Hence, the convergence of
the partial wave expansion cannot be worse than in the triplet
case of two-electron coalescence which shows an (L + 1)°
behavior. In case a, also singlet coalescence is possible, leading to
a(L+1)73 convergence in line with empirical observations. 81
The task is hence to find an appropriate ansatz for a Ty operator
that incorporates geminal contributions into a connected triples
cluster. One way to achieve this is the extended SP ansatz (XSP
ansatz) ®** (see section 6.6.4). The expansion, eq 340, suggests
considering

Ty = [R") T, (358)
as the leading order geminal correction to connected triple-
excitation clusters. The diagrammatic representation of this
expression, Figure 13, immediately reveals the three-body char-
acter of the operator. It also suggests a direct physmal interpreta-
tion in the spirit of case a (see above): R R")describes a short-
range scattering of two electrons, the correlation of this close pair
with a third electron (at some distance) is included by T,.

The working equations are obtained from the fourth-order
Hylleraas functional, eq 351, by substituting T3 + Ty for T
Stationarity with respect to the conventional triples amplitudes
leads to a modified set of equations

[®y, Ty + Ty||HF) = 0
(359)

GRS, T3) + (B, Ty] +

The explicitly correlated part, eq 358, has no additional unknown
amplitudes. In analogy to the SP approach for CCSD-F12
(section 6.5), the energy contributions are instead evaluated
from a modified energy functional. Hence, for the fourth-order
energy contribution, we obtain

Eypn = — (HE|TIEY T5[HF) + 2(HF|(T} + T})[dy, Ty])|HE)

+ (HE|THEQ T, |HF) (360)
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while the fifth-order energy is simply

Es 1, = (HF|T|[®y, T3 + Ty]|HF) (361)

In addition, there is a fourth-order contribution with the Fock
matrix

Egrn = <HF|TH1A:§\});T3 + T3’]|HF> (362)

The purely conventional contribution in eq 362 vanishes if the
Brillouin condition is fulfilled; neglect of the corresponding F12
part implies the assumption of the GBC.

Full expansion of these equations leads to a rather large
number of terms. These can effectively be reduced by applying
the standard approximation scheme, and the resultant method
will be denoted as (T)-XSP’ in the following. A detailed discus-
sion of the resulting working equations can be found in ref 480.
The main observations can be summarized as follows.

o The overall scaling of the method remains at. {7 where 1" is

a measure of the size of the system. With the exception of
one term (discussed below), all additional F12 terms arising
from eqs 360—362 scale with A" 6 only. Likewise, the
calculation time for all necessary additional F12 intermedi-
ates scales with. 17 at most.

e The coupling between T and T'y (a part of the second term
of eq 360) leads to a term involving the intermediate ze
Zk(kalf]b + Z]bkk,“ + Z,] %%), where Zinh is defined in eq 265
Building this intermediate requires. |’ scaling steps, which
without additional approximations even includes a cubic
scaling with the number of CABS functions. The effort can be
reduced to terms with at most linear dependence on the CABS;
nevertheless, the amount of additional computation time (in
comparison to the conventional expression) is large. Precise
statements are difficult to draw from the present pilot imple-
mentation, but it is clear that future applications of this
method will critically depend on a more efficient treatment
of this contribution. We note that this problem is allev1ated
for iterative approaches, like CCSDT, and that Z“ does
not contribute to response properties and may hence be
neglected in such calculations.

ij

The numerical effect of the geminal correction for T; clusters
can be illustrated by the following examples. For the Ne atom, the
rate of convergence of the partial wave expansion is investi-
gated.*®® Figure 14 shows a double logarithmic plot of the CCSD
correlation energy and E () as a function of the maximum angular
momentum quantum number L included in the expansion. A
large uncontracted 20s14p11d9f7gSh3i basis set was used for
these calculations in order to provide a sufficiently saturated basis
for each angular momentum.

For conventional CCSD and CCSD(T) correlation energies
the expected (L + b) > convergence is found (due to the pre-
sence of triplet pairs, b # 1, as a pure (L + 1) > behavior holds for
singlet pairs only). Using the CCSD(F12*) method (which is an
accurate approx1mat10n to full CCSD-F12, cf. section 7.5), a
nearly ideal (L + 1) behavior arises. Inserting the T + T,
amplitudes from this calculation into the conventional energy
expression, eq 353, seems to give a close to converged Ej
contribution but the dominating E, contribution is not im-
proved. The overall convergence is (L + b) > (not shown in
Figure 14); just like in the conventional case, but the total Ery
typically deviates further from the basis-set limit. The latter
effect is possibly due to the T, amplitudes” avoiding the cusp
region in the presence of Ty. Adding the first part of the
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5 . ' ' —
A CcCSD
2 A CCSD(F12¥)
100 F X, o) 1
s (T)-XSP’ (no 2)

O (T)-XSP’

(E(L) - Epimir) [MER]

(L+b)

Figure 14. Basis-set convergence of the CCSD(T) correlation energy
of the Ne atom. Double logarithmic plot of the deviations from the
estimated basis-set limit as a function of (L + b) for CCSD and
CCSD(F12*) correlation energies (the latter is an accurate approxima-
tion to full CCSD-F12, cf. section 7.5) and for the (T) and (T)-XSP’
corrections (without and with contribution from the Z intermediate, see
text). The conventional CCSD calculations fit best to (L + 0.51)72,
while for the conventional (T) correction, (L + 0.09) " is found. The
F12 results, (T)-XSP’, show an (L + 1)~ behavior. Omitting the Z
contribution from (T)-XSP’, however, reduces the rate of convergence
to (L + 1) ~>. Reprinted with permission in part from ref 480. Copyright
2010 American Institute of Physics.

correction terms (not 1nclud1ng the Z intermediate) improves
the energy but leads to a (L +1) > behavior only. Only when Z is
included, the (L + 1)~ convergence of F12 methods is
recovered, leading to a run of the E(t) energy that is perfectly
parallel to the CCSD(F12*) correlation energy. This also in-
dicates that virtually all significant short-range contributions are
recovered with ansatz, eq 358. Genuine three-electron coales-
cence seems hence to be of minor importance.

Effects of including T'y are also present for reaction energies.
Figure 15 provides a graphical representation based on the data
from ref 480. While CCSD(F12*) in conjunction with the
reoptimized cc-pVTZ-F12 basis set greatly outperforms conven-
tional CCSD/aug-cc-pV6Z calculations (Figure 15, left), much
of the gain is lost in the standard approach with a conventional
(T) correction due to the rather inaccurate E(1y contributions
(Figure 18, right, dotted curve). This shortcoming is significantly
removed using the corrected expression, eq 360.

6.9. Multireference Methods

Most work on R12 or F12 theory has so far focused on single-
reference theories, that is, a single determinant is assumed to be a
proper zeroth-order description of the electronic state (see
section 2),. This assumption breaks down for many open-shell
cases, for instance, biradicals or transition metal compounds.

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74
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Figure 1S. Basis-set error of the CCSD (left) and CCSD(T) (right) correlation contribution to reaction energies (adapted from ref 480, assuming
Gaussian distributions). The error is normalized to the number of valence electrons. The curves labeled “aVXZ” refer to conventional calculations using
the aug-cc-pVXZ basis sets; the F12 calculations were done with the CCSD(F12*) method (cf. section 7.5) and the cc-pVTZ-F12 basis set. “(T)” uses

the conventional expression, eq 355, “(T)-XSP’” uses eq 360.

Hence, multireference methods are a necessary extension of the
quantum chemist’s toolbox, and as the problem of short-range
correlations persists, the transfer of explicitly correlated techni-
ques to such methods is desired. The field of explicitly correlated
multireference methods is rather undeveloped, and work for
modern F12 theory has only started recently. Below, we will start
with a short historical overview of the developments follo-
wed by a more detailed description of the approaches.

6.9.1. Overview. Pioneering work in this area dates back to
the 1990s when Gdanitz combined linear R12 theory and
multireference configuration interaction (MRCI)**~** or the
approximately size-extensive multireference averaged coupled-
pair functional (MRACPF).**®> The standard approximation
scheme was used to arrive at feasible working equations. A
number of applications were reported, for example, calculation
of atomic ground states and ionization potentials,486 electron
affinities, "’ as well as potential energy surfaces of N, *** Be,,*®8
Hez,46’489 Ne,,*° HF,*" and the F+ H, — HF + H reaction.*’*
Also, the valence excited states of CH, were investigated.493

One drawback of the approach was the use of an uncontracted
basis which leads to difficulties in maintaining an orbital-invariant
theory without running into serious numerical difficulties.******
This problem can be solved in the framework of F12 theory using
Slater-type geminals, as initially demonstrated by Ten-no** for
the case of multireference MP2 (MRMP2).** Using the SP ansatz,
the geminal contribution can be formulated in an internally
contracted manner (see next section for details) which both is
orbital invariant and numerically stable.

In the same spirit as Ten-no’s ansatz, Torheyden and Valeev
proposed a generalized perturbative correction to arbitrary wave
functions, including MRCI wave functions as a particular example.*”*
Their ansatz is applied to the complete wave function which on the
one hand leads to a very general theory; on the other hand, the work-
ing equations scale with the sixth power of the entire orbital basis set,
which renders the method rather expensive in practice.
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Most recently, Shiozaki et al. extended the work of Ten-no within
the context of internally contracted multireference expansions.
These authors reported the implementation of CASPT2-F12*"
and MRCI-F12, also including the approximately size-consistent
modifications MRACPF and MRAQCC.®**® Furthermore,
Kedzuch et al.**® recently developed an explicitly correlated multi-
reference Brillouin—Wigner coupled-cluster singles and doubles
method (MR BW-CCSD-F12) based upon the standard approxima-
tion.***” First pilot applications were reported for a model
system consisting of four hydrogen atoms and for the F, molecule.

For completeness, we note that Varganov and Martinez
combined a CASSCF wave function with a Slater-type correla-
tion factor.*”® No strong orthogonality projector was applied,
and the structure of the theory is more related to Hylleraas-CI
than to genuine F12 theory. Results were reported for two-electron
systems only.

6.9.2. Details of the Theories. The starting point in multi-
reference theories is the definition of a set of determinants which
span the reference function |W). All orbitals, which are occupied
in at least one of these determinants, are called internal orbitals,
and we will in the following use the indices i, j, k, ..., for these. A
distinction of closed-shell orbitals (that is, doubly occupied for all
reference determinants) and active orbitals (occupied for a
subset of reference determinants) will not be necessary in the
following. Usually the properly spin-coupled linear combina-
tions, called configuration state functions (CSFs), are con-
sidered as the basic building blocks of the wave functions.

The uncontracted MRCI singles and doubles wave function
can be represented as

(W) = [Wo) + [W)) + [Wo) + [Wa) = Y, °[|Dy,)

Iy

T alog) + ¥ cq|®p)

S,a D,ab

+ Y d|Pp) +
(363)
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Here, | W) is the reference wave function (with " obtained from
an MCSCEF calculation), while |¥;) collects all internal contribu-
tions to the correlated CI wave function. These consist of the
CSFs |®;) which span the reference state and those which are
generated by considering all single and double excitations from
the former which remain within the internal orbital space. In the
case of a complete active space, the set of CSFs spanning | W) is
identical to the one that spans the reference state |¥o). |¥y)
consists of all singly external CSFs |®5), where S runs over all
possibilities to create a hole in the reference functions and a
denotes the virtual (external) orbital that is occupied instead.
Similarly, ¥} consists of all doubly external CSFs |®$). The
respective coefficients can be evaluated variationally. Approxi-
mately size-extensive energies can be obtained either using the
Davidson correction*”” or self-consistently using MRACPF™* or
variants thereof. Using intermediate normalization, (‘P0|‘P> =1,
the MRACPF energy functional is

o (Wi~ £,|9)
1+ gt<lpt|lp1> + ge(<lpsllps> + <Lpd|lpd>)

(364)

where the parameters are chosen as g; = 1 and g, = 2/n, 1 being
the number of correlated electrons.

Explicitly correlated contributions are included, in line with the
philosophy of R12 and F12 theory for single-reference methods,
by augmenting the expansion eq 363 with a term containing the
geminal contribution. The original ansatz of Gdanitz js*82483

W)=Y ¥ ¥ "

K (i) k>1 a>p

hpaly) 1P

" (365)

The index K enumerates all reference determinants (indeed
determinants rather than CSFs are considered here), k, I run
over all internal orbitals, while the pair of internal orbitals (i) is
restricted to those occupied in determinant |®g). The matrix
element over the correlation factor is defined as
which ensures that all configurations created by eq 365 are
orthogonal to those of the conventional expansion, eq 363.

A fully orbital invariant implementation of the method is
difficult as it requires optimization of c{K_ This, however, is
hampered by near linear dependencies.*** In actual calculations
only unitary invariance between subsets of orbitals is considered,
where for a given i, j only those k, [ are taken into account which
form corresponding antibonding or bonding orbitals. The idea is
to maintain unitary invariance for orbital pairs that describe bond
breaking.484 Alternative schemes were considered as well, for
instance, “contracted geminals”, where the coefficients c,(j)"l were
obtained by first-order perturbation theory.***

With Slater-type correlation factors, the complications arising
for an unitary invariant formulation can be circumvented by
making use of the SP ansatz. For the MRMP2 method,** Ten-no
considered the following contracted ansatz for the additional
explicitly correlated terms**°

Ya) = X chﬂ“gﬁ Y &P
i>j K
a>f

(367)

In this equation, the e)q;{ansion of the reference function in terms of
determinants | W) = ¢ |Px) was used in order to emphasize the
internally contracted nature of the ansatz. Note that otherwise the
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MRMP2 method is based on an uncontracted expansion, which has
the same principle structure as given in eq 363.

The further derivation of the energy expressions in Ten-no’s
work includes the assumptions of the standard approximation, in
particular, the EBC, eq 259. In addition, the B matrix was restri-
cted to approximation A. This leads to a very simple energy ex-
pression for the F12 correction

ij (qkl ki
AE = g Yu(By + 2Vy)
=

(368)

where )/f-;l = (‘I‘0|a§l|q’0) is the internal part of the reduced two-
particle density matrix of the reference state. The intermediates B
and V are just the obvious generalizations of the single-reference
case with the index range extended to all internal orbitals.

In close analogy to the above ansatz, Torheyden and Valeev
proposed a perturbative correction denoted [2]g;, that is appli-
cable to arbitrary wave functions.*”® The ansatz is constructed
from the entire conventional wave function |1P>, for example, a
MRCI wave function, as defined above. It reads

Qs ~KA
gy = X &1 Y, Swgan W) (369)
p>q K>A
r>s
where K, 4, ;- Tun, over tl/%e entire lformally con}plete orb/iltal
~K, K. r K K r., K r,., K
space and d,; = dpq — a,V0; + agyy0r + ayy,0r — agy,0; +

Vpa oKt = (3;"(3/}) is the generalized normal ordered excitation
operator, as defined by Kutzelnigg and Mukherjee.*** 5 and y}y,
are the reduced one- and two-particle density matrices of |¥).

The matrix elements over the correlation factor w); are defined
as in single-reference theory but with a projector Qp = 1 — P,P,
(which effectively removes those parts which are already covered
by the wave function |¥}). The additional projector

§=1- Y a W)y ) (P,

sta

(370)

projects out those configurations which are only single excitations
with respect to |W); the necessary inverse of the metric can be
expressed by 7, the inverse of the one-particle density matrix.
In the further derivation of explicit expressions a number of
approximations are made, mainly inspired by the standard
approximation (denoted “screening approximations” by Valeev).
In addition, the contributions from three- and four-particle redu-
ced density matrices are approximated by lower-order cumulants.*"
A Hylleraas functional can be formulated that allows one to solve
for the expansion coefficients in eq 369, c&, or to evaluate the
energy taking advantage of the SP ansatz. With this an energy
expression for the correction term is obtained that bears some
resemblance with Ten-no’s formula, eq 368. However, the ap-
proximations employed by Torheyden and Valeev go beyond
approximation A. The [2]g, correction then becomes

_ PRI q TS PqY 7S
AE = Z (Vrs qu ¢€s qu + 2’}/75 qu)
=

(371)

For details of the definitions of the modified intermediates B, X,
and V we refer to the original article.*”> We only note that the
definition of B builds upon approximation C but includes some
further terms from the cumulant expansion. The matrix elements
¢%d contain products of the Fock matrix and cumulants.

The main difference from eq 368, however, lies in the sum-
mation over the complete computational basis (instead of inter-
nal orbitals). Hence, the expressions scale with the sixth power of
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the entire orbital basis set, which is rather expensive. Conse-
quently, only results for small basis sets have been reported.**®
A more compact representation of the CI wave function is
obtained by use of internally contracted schemes. The approach
of Werner and Knowles uses the following CI wave function®”
[Wa)y = ¥ Py + ¥ @y + ¥ S0 + Y F D)

Io I S,a pu, 1>>b)

(372)

In contrast to the uncontracted wave function, eq 363, contracted
doubly external configurations |<I)Z»i,> = E;i,PPO) are employed.
The E; are spin-free excitation operators (summed over spin,
E! = aly + af-f), and orthogonally spin-adapted double excita-
tiohns are olztained as Eg,bﬂ =(1+ (3ij)7l(EfEf + E}“Ef’) and
a a a

EY = E'E! — ECE!.

Shiozaki et al. recently presented an implementation of
CASPT2-F12*! and MRCI-F12****3 based on the above ansatz

which is augmented by

thya) = (Qp + Qs){ZWZé’Eff@ + Y ﬁ/ZmEE}’"]I‘Po>
pi>j i, j,m
a>f
(373)
tis a global scaling factor, see below, and
Wy = Tag T b (374)
= 75)

where ri;{;ﬁ is the integral over the correlation factor including the
rational generator but without antisymmetrization. The projector
Qp removes W, contributions, and Qg removes the single-
excitation contributions but allows for semi-internal doubles

Qs = e N0 |[1— B Wy ) (ol | (376)
The intermediates that result from the doubly external geminal,
eq 374, resemble those of the single-reference theory, with
occupied indices replaced by all internal indices. The additional
semi-internal geminal contribution gives rise to additional terms,
which can be evaluated by direct expansion in the CABS.

The working equations for MRCI-F12 can be derived from the
Lagrange functional

| _ (WCIHWe) + APCIH[p )t + (WalHp)t
(YalWe) + Walw)t?)

+ 2A((Wo|War + vy —1)

(377)

In order to enforce the cusp conditions, one must set ¢t = 1. In this
case the Lagrange multiplier 4 takes care of the intermediate
normalization with respect to |Wo). If ¢ is used as a variation
parameter, 4 can be set to zero and one obtains the usual CI
eigenvalue problem. In general, the variation of ¢ is problematic as
this scaling is global and hence violates size consistency. For CI
theories, however, pragmatic considerations render this option
acceptable, as it significantly facilitates the theory, particularly if
more than one state is considered at a time (see refs 432 and 433).

The coupling terms (‘PCI|I:I |W) can be evaluated along the
same lines as in single-reference theory. The analogous inter-
mediates occur in conjunction with the appropriate coupling
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coefficients from CI theory. For the geminal—geminal part,
(q’dr|I:I |W ), the same efficiency considerations emerge as for
coupled-cluster theory (see section 7). In this respect, the work
of Shiozaki et al. sticks to the F12b scheme (section 7.3), which
features nearly vanishing computational overhead as compared
to the conventional implementation.

In Table 13 some sample results from ref 432 are collected which
demonstrate the use of the approach. Comparison with the
CASSCE convergence shows that the remaining error is dominated
by the basis-set incompleteness in the underlying reference function.
A scheme analogous to the CABS singles correction (section 6.7)
was not considered in that work; a possible second-order correction
was recently proposed by Kong and Valeev*’* (see section 6.7).

7. COMPUTATIONALLY EFFICIENT FORMULATIONS

As detailed above, explicitly correlated methods with linear
and Slater-type correlation factors by now have a rather long
history, but they have only recently started to become standard
tools in quantum chemistry. This is mainly owing to their higher
complexity in comparison to conventional orbital expansions,
which required a series of developments in order to arrive at
computationally efficient implementations.

Certainly, the main development target is coupled-cluster
theory, since for these methods, CCSD(T) in particular, basis-
set errors determine the accuracy and the need for extremely
large basis sets significantly reduces the range of applicability.”7
One of the main obstacles in formulating and implementing a
CCSD-F12 method, as compared to MP2-F12, is the larée number
of extra terms that occur in a straightforward expansion.**”*** Initial
implementations of CCSD-R12*°**”" were therefore based on the
standard approximation which leads to significant reductions in the
number of terms.>*’ Extensions of this approach to Slater-type
correlation factors were reported in more recent works.*>*>%%* A
full implementation in the CABS formalism that takes care of all
terms has only recently been achieved using automated implemen-
tation techniques. *?>°0>%%¢

A perturbational analysis, however, shows that only a limited
number of terms contribute significantly (section 7.1). This
analysis may serve as a posthoc justification of the various
approximations to full CCSD-F12 that have been suggested in
the past years and which we will discuss subsequently, including a
comparison of the working equations in section 7.6.

Alongside this, there have been a number of further important
developments such as density fitting techniques (section 7.7) and
local correlation methods (section 7.8) which originally have
been worked out for conventional methods. For F12 methods
these ideas seem to both work better and have an even larger
impact on computational efficiency than for traditional methods.
F12 methods are particuarly well suited to localization techniques.

A final issue is basis sets, as detailed in section 7.9. The success
of the auxiliary basis-set approaches was mainly that one could
avoid the use of the specialized (and in fact large) basis sets that
are required for the standard approximation. Being able to use
the basis sets established for conventional calculations made
possible direct comparisons of conventional and F12 methods
and has certainly contributed to the acceptance of F12 methods.
It was then recognized, however, that F12 methods can give more
accurate results for a basis set of a given size if reoptimized exponents
are used (see section 7.9.1). Similarly, the issue of developing opti-
mal auxiliary basis sets for the RI and density fitting helped to im-
prove the efficiency of calculations (sections 7.9.2 and 7.9.3).

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

Table 13. Spectroscopic Constants of OH, C,, and O, As Calculated with MRCI and MRCI-F12 Wave Functions (including the
Davidson correction) and the aug-cc-pVXZ Basis Sets (abbreviated as aVXZ)”

molecule, state CASSCF MRCI MRCI-F12 CASSCF

OH, X*I1 r. (expt. 0.970)

avDZ 0.980 0.980 0.972 3700.3
avVTZ 0.975 0.974 0.972 3714.0
aVQZ 0.974 0.971 0.971 3723.1
avsz 0.973 0.971 0.971 3724.8
CBS[56] 0.971

C, X'Z; r. (expt. 1.243)

aVDZ 1267 1274 1262 18432
aVTZ 1255 1253 1.248 1839.1
aVQZ 1254 1.248 1.246 1841.7
avsz 1253 1.247 1.246 18422
CBS[56] 1.246

0, X%, r. (expt. 1.208)

avDZ 1221 1.225 1215 1542.8
aVTZ 1218 1217 1213 1536.5
avQzZ 1215 1212 1210 1547.8
avsz 1215 1211 1210 1548.1
CBS[56] 1210

MRCI MRCI-F12 CASSCF MRCI MRCI-F12

o, (expt. 3737.8) D, (expt. 106.6)
3685.4 3725.8 95.8 99.4 104.6
37113 3728.5 96.7 104.5 106.4
3729.8 3733.2 96.9 106.2 107.0
37334 37342 96.9 106.7 107.1
3734.9 107.1

o, (expt. 1854.7) D, (expt. 146 & 3)
1800.7 1844.2 139.0 128.3 137.9
1828.9 1844.5 142.5 139.4 143.0
1843.6 1850.2 143.2 142.8 144.3
1847.9 1851.2 143.3 143.7 144.5
1851.1 144.6

o, (expt. 1580.2) D, (expt. 120.6)
1536.3 15752 91.2 107.5 114.9
1550.0 1567.4 94.4 115.1 118.3
1571.9 1579.8 95.1 118.1 119.6
1575.9 1580.3 95.1 118.9 119.7
1581.2 119.7

“Bond lengths r, are given in Angstroms, harmonic frequencies in cm ™, and dissociation energies in kcal/mol. CBS[56] denotes the X 3 basis-set

extrapolation of the conventional result. All values taken from ref 432.

7.1. Perturbational Analysis
The analysis™® is based on the following partitioning of the
(normal-ordered) Hamiltonian

B =By + B0 + BV + & (378)
where the superscripts denote the formal order, Eyg = (HF|H |
HF) the Hartree—Fock energy, Fy the Fock operator, and Dy
the fluctuation potential. The zeroth- and first-order Fock
operators B and £, respectively, correspond to those in
eq 283. A number of alternative partitionings have been con-
sidered by Noga et al.**® The first-order part is further subdivided
into a part that lies within the orbital basis set and a part that
couples the occupied orbitals and the complementary space

= oF% 4 7F®

) (379)

=0 Y (faf + fla) + v Y (fo,a" + f™a,,) (380)

ayi

More importantly, the fluctuation potential is split into three
parts with strength parameters 4, &, and v

“ ~ (A “ “
CDI(\;) = MI’I(\,) + V(Dl(\;/) + ,uCD;/,‘) (381)
with
2 (u) 45 pr
(I)N - ngraqs (382)
p>r
q>s
A(V) s s
(I)N = Z(ggyﬂg? + ggZLagyL) (383)
2
q>s
(i)(ﬂ) _ .
y = the remainder (384)

The idea behind this additional partitioning is that the different
parts of the first-order Hamiltonian give rise to perturbations of
different “strength”. The perturbation associated with A remains
within the finite orbital basis set and gives rise to the major part of
correlation effects. The parts associated with ¢ and v lead to the
correction terms for the incompleteness of the finite orbital basis
set. While % leads to integrals with nontruncating partial wave
expansions, the integrals due to CDI(\,I,) will, in the atomic case,
truncate at some finite angular momentum L = 3L,,,,, where
L 0y is the maximum angular momentum contained in the finite
orbital basis set.

Perturbation theory immediately gives that T} is first order in
. The part of T that completely excites into the complementary
space is first order in

Tl = >2 w) 5 ail (385)
<11_>]/ﬂ
while the remainder is first order in v
o ij af
= Y (386)
i>j
ﬂ[ﬁ

Likewise, T} and T are first order in 0 and 7, respectively.
Furthermore, the CCSD-F12 Lagrange functional

L = Eccspriz + Y, Au, R, cospriz + Y, Aw, Qu, cespri
My Hy

+ Y AuyQu,, cospriz (387)

My
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can be defined, where Eccgp ri» is the energy expression, eq 324,
augmented with the residuals €2, ccspria eqs 325—327, as
constraints and corresponding Lagrange multipliers 4,, . The La-
grange multipliers have the same leading order in perturbation
theory as the corresponding cluster operators. Thus, each term of
eq 387 can be assigned an order of the general form o*z'Au™v". We
now can classify the terms according to the following three criteria.
1 The total order in perturbation theory, s + t + [ + m + n.
2 The order of the geminal correction, m + n.
3 The order in strong coupling to the complementary space,
m, leading to the terms present with ansatz 1 (or in the
standard approximation).

Formally, the relative importance of the terms should decrease
with increasing order and they should decrease faster for weak
perturbations like O, The vahdlty of this assumption has also
been demonstrated numerically.*** Here, we will discuss an
explicit example, as given in Table 14. The numbers are based
on ref 438, where the entire CCSD-F12 Lagrange functional was
evaluated perturbatively using the £, and #J, amplitudes of a
preceding conventional CCSD calculation.

The analysis shows that the most significant F12 contributions
come from second- and third-order terms and from the terms
that survive under the assumptions of the standard approxima-
tion. This observation basically explains the success of the
truncated methods described in the subsequent sections.

In addition, Table 14 is divided into “(F12) terms” and terms
“beyond (F12)” which will become more clear in the next
section. Here, we only note that the terms “beyond (F12)” can
be large individually but cancel very systematically (in particular,
the third-order “ladder” and “ring” terms, which correspond to
the P and Z intermediate (see section 6.3)). In particular, for
larger basis sets their contributions to total correlation energies
and reaction energies becomes negligibly small.

7.2. CCSD(F12)

The CCSD(F12) approximation was first considered for
linear R12 theory and described in the work of Fliegl et al;*'**"
the generahzatlon to F12 theory was later reported by Tew
etal,;**° a variant of CCSD (F12) using numerical quadrature was
pubhshed by Bokhan et al.>’

The reasoning for the approximation is as follows: the fluctua-
tion potential @ and the T, amplitudes are considered first order.
On the basis of this classification all terms are removed from the full
CCSD-F12 equations which are higher than second order. The work-
ing equations are hence (cf. the full CCSD-F12 equations, eq 324—327)

Eccsp(ers) = Eccso - (HE|[H) ] [HE) (385)
0 = Quccso + (uy][F T HE) (389)
0= Quceso + Wl[H, T2] + [[by, o], To]JHF)  (390)
0= Quz,|<I:>N + [Ex, Ty] + [H T,]|HF) (391)

with Eccgp denoting the conventional energy expression and
€, ccsp and €2, ccsp as a short cut for the conventional
residuals.

The (F12) approximation effectively removes all terms non-
linear in Ty and the terms arising from ([P, T ]|HF). In
comparison to MP2-F12 theory, no new types of special F12
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Table 14. Analysis of F12 Contributions for the Total CCSD
Correlation Energy E, of F,0 (limit — 865.13 mE,,) and the
CCSD Correlation Energy Contribution AE, to the Reaction
F,O + CF, — 2 F, + CO (limit — 10.9 k] mol ")*

E./mE, AE, /K] mol ™!
cc-pVDZ-  cc-pVIZ-  cc-pVDZ-  cc-pVTZ-
order F12 F12 F12 F12
conv. —701.02  —803.22 —29.81 —18.96
(F12) terms
w —154.74 —69.27 11.60 543
v —9.27 —3.58 347 1.65
YV 34.75 22.20 1.58 0.28
W —10.87 —3.85 —0.41 0.59
ou* 1.50 0.59 —2.12 —0.80
third order (rem.) —0.13 0.01 0.00 —0.02
2’ 621 2.66 1.24 0.53
fourth order (rem.) 0.51 0.14 —0.28 —0.17
fifth order (rem.) 0.00 0.00 0.00 0.00
sum conv + (F12) —833.08 —854.32 —14.73 —11.46
beyond (F12)
w* (ladder) 39.97 12.34 —3.36 —0.99
w0 (ring) —46.95 —13.21 491 1.47
2u? 1.78 0.52 —0.26 —0.06
Rem. 048 0.05 —0.18 —0.03
sum beyond (F12) —4.72 —0.30 1.12 0.38

“ Adapted from the data sets underlying ref 438.

intermediates occur, except for the V intermediate which is
generalized to V" to include contributions of Ty to the u,
residual and vice versa

The overall computational scaling of CCSD(F12) is. | i.e,, the
same as for conventional CCSD. This has to be contrasted with the
situation for MP2-F12 (which has a less favorable scaling than
conventional MP2) and full CCSD-F12: The latter requires, if
the geminal coefficients are optimized, noniterative .}”” and . 1™
steps.>”"*3* Nevertheless, CCSD(F12) still requires in each itera-
tion evaluation of computationally demanding terms which scale
with O*V?X, where O, V, and X are the number of occupied, virtual,
and auxiliary basis orbitals, respectively. Hence, a single iteration
usually takes 3—5 times longer than in a conventional calculation.

The iterative cost can be reduced by the SP ansatz.*** The
energy is then obtained from the modified energy functional (see
also eqs 329 and 330)

Eccsp(eiayse = Eccsp + (HE|[H, T||HF)

+ Z( ‘CI)N + FN)TZ’} + BT

i>j

2] [HF) (392)

while the set of equations reduces to those originating from the
projections onto the conventional excitation manifold, eqs 389
and 390. However, there still remains one O°V2X scaling term
which in comparison to conventional CCSD causes a factor of
2—3 in each iteration.

The SP ansatz induces only negligible loss in accuracy,
particularly for relative energies, as shown in Table 15. At the
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Table 15. Basis Set Error Statistics for the CCSD Correlation
Contribution to Reaction Energies over a Set of 53 Reactions

(kJ mol ! per valence electron)”
conv. (F12) (F12)-SP
basis mean O basis mean O  mean o
cc-pVDZ  —0.95 0.86
cc-pVTZ —026 029 cc-pVDZ-F12 —0.07 0.09 —0.10 0.08
cc-pVQZ —0.07 0.10 cc-pVIZ-F12 —0.01 0.02 —0.01 0.01
cc-pVSZ  —0.03 0.05 cc-pVQZ-F12 0.00 0.00 0.00 0.00
“ Adapted from ref 425.

same time, it is numerically significantly more stable and avoids
the geminal basis-set superposition error.***

7.3. CCSD-F12a and CCSD-F12b

Keeping only the leading order F12 corrections and a strict
avoidance of all cost-intensive terms is the basic idea behind the
CCSD-F12x (x = a,b) methods of Werner and co-workers.**”**®
In fact, these authors were the first to demonstrate the potential
of F12 to enhance the accuracy of the underlying methodology
without a significant increase in computation time.

One of the ingredients of their method is the fixed amplitude
approximation (SP ansatz), as described above. As an alternative,
they also considered fixed coeflicients ) determined by a
preceding MP2-F12 step. The energy functional is either

Egie = Eccsp + (HF|[®@y, Ty|[HF)

—+ Z( |‘DN + [Ex, Ty + T»)/HF) (393)
i>j
which constitutes the CCSD-F12a variant or
Eriab = Eccsp-F12a + Z <Z|Qg>{(d)l\f - (i)N)
i>j
+ [@y, T, }HF) (394)

which is the CCSD-F12b variant. Here, we used the projector
Q{Y =1 — PP, to indicate two important approximations in the
F12x approach: First, this projector selects only the standard
approximation terms, and second, the V intermediate will be
calculated according to the approximate form, cf. eq 276

ij rs
Z rrsgpq

r>s

/R
Voa = Vo

(395)
which effectively avoids the need to calculate two-electron
repulsion integrals with two virtual and one CABS index. Note
that for the V{; contributions occurring in eq 393 the above
approximation is not used.

The residual functions for both variants, CCSD-F12a and
CCSD-F12b, are the same. They can be written in short-hand as

0 =9 ccsp + (u,|[ Dy, Q(loz)j"z’HHF) (396)

0=9Q, ccsp + </42|[‘i)1\7; Qﬁg) Tz’} + [[(i)N; Tl]; ng)TZ’HHB
(397)

Comparing with the equations for CCSD(F12), eqs 388—391, it
becomes apparent that CCSD-F12x is a subset of the latter, but
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numerical experience shows that these terms indeed have the
biggest effect on improving CCSD toward the basis-set limit.

This is clearly reflected in Table 16: In comparison to the
conventional results, both CCSD-F12a and F12b significantly
reduce the error in, for example, reaction energies. For double-
and triple-§ basis sets, both methods perform equally
well, whereas for larger basis sets the CCSD-F12a results
deteriorate due to the method’s tendency to overshoot the
basis-set limit.

7.4. CCSD(2)rrz

In a series of papers, Valeev and co-workers worked out a
slightly different approach to adding explicitly correlated terms to
coupled-cluster calculations.**"**”>% Instead of extending the
CCSD equations with geminal dependent terms, an a posteriori
correction is formulated, based on a Lowdin partitioning of the
CCSD similarity transformed Hamiltonian. The resulting model
was called CCSD(2)g;, or CCSD(2 )z if the SP ansatz is used.
If, in addition, a noniterative correction for the effect of con-
nected triples clusters is applied, the naming changes to CCSD-
(T)g1,- We note that Valeev uses the names CCSD(2)gia,
CCSD(T)gy,, etc., irrespective of the actual correlation factor
in use, but for consistency we prefer to write “F12” whenever
Slater-type correlation factors are employed.

In the derivation of the theory, the similarity transformed
Hamiltonian matrix

B = (e~ PE ) (398)
is partitioned by defining an internal and an external space. The
former consists of the reference state and the singles and doubles
excitation manifold, {|HF),|u1),|u,)}, while the external space
includes only either the geminal doubles {|u,)} or the geminal
doubles and some higher excitations if, for example, the derlva—
tion of the (T) correction is considered at the same time.**' The
two spaces impose a block structure on H which now is written as
a zeroth- and first-order part

_ [Hp 0 0 Hpq
H = (0 79 ) + i 50 (399)
QQ QP QQ

The zeroth- order part of the external block is H( ) =
(uy|Ex + E( |/42) where E the zeroth-order energy
which equals the CCSD energy. Perturbation theory gives the
first nonvanishing energy correction at second order according to

E® = — AV Hpq (HYY — E%Sqq) "HopRY)  (400)
The EC© )SQQ term in the denomlnator cancels the respective
energy shift in the definition ofH ()2, and we are hence left
with determining the inverse of an (&; + & )Xm,, just like
in MP2-F12 theory. On expand1n§ the zeroth- order left and
right eigenvectors A®) and R’ one obtains AYH PQ =
(HF|H|uy) + (A|H|uy) and HqpRY = (uy|H|HE). In
addition, a number of further approximations are made: In
particular, only the standard approximation terms are re-
tained, including the extended Brillouin condition, eq 259.
The necessary F12 intermediates, however, are evaluated
fully for ansatz 2, including all CABS contributions (at
variance to the approach taken for CCSD-F12x). All singles
contributions are neglected, and the Lagrange multipliers A
are approximated by the T amplitudes. In a recent modifica-
tion of the approach®*’ the use of the EBC was abandoned,

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

Table 16. RMS Basis Set Errors of CCSD and CCSD-F12x Reaction Energies of Closed-Shell Molecules (REc) and Open-Shell
Molecules (REo) as well as Atomization Energies (AE), Ionization Potentials (IP), and Electron Affinities (EA)”

method basis REc/k] mol " REo/kJ mol " AE/kJ mol " IP/meV EA/meV
CCSD aVDZ 18.74 51.97 80.49 245.72 177.76
aVTZ 6.80 18.65 24.94 98.10 72.18
avVQzZ 2.46 6.71 8.84 40.10 28.00
aVszZ 123 3.09 4.17 20.54 14.64
CCSD-F12a aVDZ 2.68 4.68 7.03 51.96 34.93
aVTZ 1.28 1.29 1.86 9.23 11.76
aVQZ 0.51 1.24 2.17 9.10 11.38
CCSD-F12b avVDZ 2.34 5.00 10.23 70.84 50.22
avVTZ 1.18 1.81 2.14 21.80 14.83
avVQzZ 0.59 0.68 0.70 5.20 3.76
“ Adapted from ref 427.

resulting in significantly improved results (see also refs 427
and 509) The final energy expression is
E( Z <HF| I+ T+ (I)|/42 ><;“2’|FN|V2’
o1 Vyr

X{(Vy|®(1 + T,)|HF)

e

(401)

Equivalently, the energy can be obtained from minimizing
the modified Hylleraas functional

Y
i>j
x>y

;G |[F, Ty|[HE) + 2 Y &( |<I> + [®, T,][HF)

i>j
x>y

Hoygy, =

(402)

This also encompasses the possibility to use the SP ansatz, which
defines the CCSD(2)grz method. This form also reveals a close
relation to the CCSD-F12b method (see section 7.6).

7.5. CCSD[F12] and CCSD(F12%)

Inspired by the success of the CCSD-F12x methods, Hattig
and co-workers>” recently reinvestigated the CCSD(F12) meth-
od. A term-by-term analysis, as discussed in section 7.1, revealed
that basically all computationally demanding terms can either be
precomputed (within the SP ansatz) or give negligible contribu-
tions. Two approximations were considered: In a first approx-
imation, called CCSD[F12], a strict truncation at third order is
applied. In comparison to CCSD(F12)-SP, this changes the
energy expression to

Eccspfria] = Eccsp + (HF|[@y, Ty]|HF)

+ Y0+ BV, Ty) + [A,T) + T)HE)  (403)
i>j
and the residual equations become
0 =9, ccsp + (u,|[H, T»]|HF) (404)
0 =, ccsp + (| [H, Ty]|HE) (403)

Numerical experience shows that this method is nearly as
accurate as CCSD(F12) while causing only negligible computa-
tional overhead in the residual equations. For systems with
strong correlation effects, however, some noticeable deviations
from CCSD(F12) occur which can be traced down to terms
nonlinear in the cluster operator (see section 7.6). It thus seemed
necessary to include selected higher-order terms. As implied by
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the above numerical analysis, the most important higher-order
terms are those which remain under the standard approximation.
The resulting method was termed CCSD(FlZ*)

Using again the modified projector Q!9 to indicate the selection
of the standard approximation terms, the energy expression can be
written as

Eccspen®) = Eccspjpiz) + Z( |Q12 [[H T,], T:]|HF)
i>j
(406)
and the residuals read
0= Q,u,,CCSD[Flz] + <.“1|HI:I’ jwl}; Q(lg)TZ’HHF> (407)

0 =Q, cosppiz + Wl[[H, T, + Tz];Q(l(z))Tz’]|HF>

1oon A0 o0 A(0)n
+ (a8, 70 1), Q1 7] HE) (408)
The only matrix element containing the correlation factor that arises
from the extra terms in eqs 406—408 is a V-type intermediate. In the
evaluation of this mtermedlate, in contrast to the CCSD-F12x
methods, the projector Qu is replaced by the original ansatz 2
projector, as defined in eq 246.

Numerically, CCSD(F12*) leads to essentially the same
results as CCSD(F12). The additional terms, in comparison to
CCSD[F12], do not cause any further iterative overhead, as will
be apparent from the explicit expressions in the next section.

7.6. Synopsis of Approximate CCSD-F12 Methods

All methods from the last three sections are closely related to
each other, as a comparison of the working equations reveals. A
closer look at the explicit expressions also shows why, compared
to a conventional implementation, only little computational
overhead is caused by the additional terms, once the extra work
for evaluating the integrals is done.

All methods that we consider in this section employ the SP
ansatz cJ, = 0,0/, — 00). We will use the matrix elements V), and
Cly as deﬁned in eqgs 263 and 266 and in addition the effectlve
one-body intermediates

Vi=Y Vi (409)
k

Zczk

(410)
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Table 17. Synopsis of the Working Equations for the Methods Described in Sections 7.3—7.5"

E-1 E-2 E-3

geminal
AEMPZ-FIZ

X

+Vit,
X

+(1/4)[Cg e,
X X
X

X

(<)’

X

()

X
X
X

R1-1 R1-2 R1-3

AQL = +U. +C,

PN

X

R2-3 R2-4

AQJ, = +U%, P, Vit

)"

E-4

+(1/4)v5'th,

E-S E-6 E-7 method

+Ult,
X

+(1/4) U,
X

+(1/2)ViPiLd), (F12%)
[F12]
Fl12a

F12b
)

R1-4 method

v (F12°)
[F12]
Fl12a

F12b
)=

R2-§ R2-6 R2-7 method

+(1/2) Vit —P,Vith, +VIitht] (F12%)
[F12]
Fl12a
F12b

)

“ Note that (2)g73 is not iterated to self-consistency, rather AE + ¥, T}, Q,,_is evaluated using the unaltered conventional CCSD amplitudes. For brevity

the Einstein summation convention is used. Due to restricted summations, additional prefactors arise, for example, (1/4) [C*],j 0, =

5ty = [ C']5th, The

effect of IA’ab is f’abAiajb =AY, — A}, and analogous for 13,-1. bNeglected in the original formulation; see refs 507, 509, and 349. ‘Included for ROHF

references only.

and the one- and two-body U intermediate defined by

U= - ¥ gt (411)
>k, ¢
ij i jk jc' i
Ul = X (ghrhe + ghrae) (412)

kd

We note that precomputing the above two intermediates is only
possible in the SP approach. Furthermore, we define the “pure
geminal” energy contribution to the MP2-F12 energy

> (5]~

i>j

geminal
AE MP2-F12 —

(e + &)X + 2V}) (413)

With these definitions we can write down the CCSD(F12*)
equations, which are collected in Table 17. The actual expres-
sions can be obtained by adding the pertinent conventional con-
tributions, i.e., Eccsp, 24, ccspy and €, ccsp- The other methods,
CCSD[F12], CCSD-F12a, and CCSD-F12b, and CCSD(2)r1z
use a subset of these terms as indicated by x in Table 17.

The main difference between CCSD(F12*) and CCSD[F12]
is the neglect of the higher-order terms in the latter. The effect is
well illustrated by the perturbational analysis in Table 14. The
numerically most significant terms that make up the difference
between the two methods are R2-5 and R2-6, Table 17. These are
on order of A%4% and their contribution in the perturbational
analysis amounts to +2.66 mE,, for F,O using a cc-pVTZ-F12
basis set. Indeed, the difference between the self-consistent
results of the CCSD(F12*) calculation (correlation energy
—857.61 mE;,) and the CCSD[F12] calculation (— 860.17 mE},)
is +2.56 mE;,. The CCSD[F12] value is closer to the basis-set
limit (—865.13 mE,), but for larger basis sets there is a clear
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tendency of overshooting the limit, as shown by the inferior
results for atomization energies.509

The CCSD-F12b method neglects the R2-5 and R2-6 terms as
well. Out of the other terms neglected in CCSD-F12b, E-6 and
R2-3 are the numerically most significant ones. They are on the
order of Av%, and in the above F,O example their contribution
amounts to —3.85 mE;,. Thus, their effect nearly cancels that of
the higher-order terms. Again, the perturbative analysis very well
predicts the difference between CCSD-F12b (—856.535 mE,
using a variant with full evaluation of the V intermediate) and
CCSD(F12*) which is 1.07 mEj,

In CCSD-F12a, particularly, the term E-4 is neglected, which
for F,O gives a huge contribution of +11.10 mE,, (note that this is
only one-half of the value listed in Table 14 as R2-2, the
counterpart of E-4, is still included). In effect this lowers the
total CCSD-F12a energy by 11 mE;, and brings it very close to the
basis-set limit. For larger basis sets, however, CCSD-F12a grossly
overshoots and use of CCSD-F12b has been recommended in
this case.*”’

CCSD(F12*), on the other hand, is the most complete
method with respect to CCSD(F12) and full CCSD-F12. For
the present F,O example, it differs by only 0.02 mE,, from the
CCSD(F12) result and by around 0.3 mE;, from full CCSD-F12
(we recall that all calculations are based on the SP ansatz).**®
With respect to computational cost, one immediately sees that all
additional terms with respect to conventional CCSD are either
constant contributions to the residual or contractions with £, or
£, which have analogous counterparts in the conventional part.
In fact, for CCSD(F12*) as well as for all other methods dis-
cussed in this section implementations are feasible that have no
noticeable additional operation count during the iterative solu-
tion of the coupled-cluster equations (notins% that CCSD(2)r1z
implies an unmodified CCSD run anyway).>™
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The only difference between the methods lies in the non-
iterative step of calculating the various additional integrals and
intermediates, as described in section 6.3. The major savings with
CCSD-F12b, as compared to CCSD(F12*), are due to the
approximate calculation of V¥, according to eq 395, which effec-
tively avoids computation of integrals of the type gy,. For the
usual sizes of auxiliary basis sets this approximately halves the
operation count for formation of V. In principle, however, this
approximate calculation is also compatible with CCSD(F12¥).
In addition, CCSD(F12*) requires computation of the U inter-
mediate, which is less problematic as all the involved two-
electron integrals have two occupied orbital indices.

For CCSD-F12a, precomputation of VY, can be avoided
altogether as shown in ref 427, and the method hence is the com-
putationally least demanding one. The perturbative correction of
Valeev, on the other hand, has basically the same operation count
as CCSD(F12*) as it also uses the full V¥, intermediate. In a note
of caution, it should be said that the actual runtime of the pro-
grams crucially depends on a number of other factors, e.g., the
efficiency of the integral routines, and hence, the above formal
considerations warrant a dedicated study that is presently not
available in the literature. As a reference point, the overhead for
the noniterative part in the present Turbomole implementation
of CCSD(F12*) amounts to about 3—S5 CCSD iterations,
depending on the size of the CABS. Assuming around 10—15
iterations for a sufficiently converged CCSD result, this is an
overhead of around 20—50%. If the calculation is followed by a
calculation of a (T) correction, the overhead is much reduced, as
due to its steeper computational scaling the latter will dominate
the operation count for larger molecules.

With respect to accuracy, Hittig et al.>*” find that (F12*) >
(2)Fz > F12b> Fl2a, where the CCSD basis-set errors for
(F12*) are on average one-half those of F12b. However, for
ground-state energies the differences are small (only a few kJ/
mol) and the discussion mainly reduces to formal consistency
versus fast computation (where we again note that the most time-
saving approximation to V, eq 395, is also compatible with (F12*)
and (2)grz). Considering coupled-cluster response theory, how-
ever, CCSD(F12*) is clearly the preferred choice. A closely
related approximation was already shown to work well,*** while
some preliminary studies show that methods neglecting higher-
order terms, like CCSD[F12], lead to inferior results for excita-
tion energies.

As a general note on the performance of explicitly correlated
coupled-cluster methods, we point out that the range of applica-
tion of the approximate CCSD-F12 methods is not much
different from the range of application of conventional CCSD
calculations. In particular, use of local-correlation techniques (cf.
section 7.8) has paved the way toward large-scale applications at
the CCSD-F12a and -F12b levels (see, for example, refs 426 and
429). Since the domain error of local-correlation methods is
reduced by the explicitly correlated geminals, the local CCSD-
Fl12a and -F12b seem to be attractive, cost-efficient methods. As
far as CCSD(F12) coupled-cluster calculations with canonical
Hartree—Fock orbitals are concerned, an example from our own
recent work™"' with the Turbomole program package is illu-
strated in Figure 16. CCSD(T)/cc-pVDZ and CCSD(F12)/
cc-pVDZ-F12 calculations were performed on the transition-state
structures for the hydrogen-abstraction reactions for a chemical
reaction in which one phenyl radical abstracts a hydrogen atom
from another phenyl radical to form benzene (C4Hy) plus benzyne
(CgH,). Depicted are the results for the “singlet” (Mg = 0)
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36 kJ/mol

18 kJ/mol

11 kJ/mol p-benzyne + benzene
2 pheny| ------------ -13 kj/m()l

m-benzyne + benzene
-75 kJ/mol

o-benzyne + benzene
-149 kJ/mol

Figure 16. Barrier heights and reaction energies for three hydrogen
abstraction reactions of two phenyl radicals toward benzene plus o-, m-,
or p-benzyne. The energies include the vibrational zero-point energy.
The optimized structure of the transition state for the reaction toward
benzene + p-benzyne is also shown. Data taken from ref S11.

transition states, and all calculations were based on (broken-
symmetry) UHF reference determinants. (The geometries and
vibrational zero-point energies were computed at the DFT level.)
The purpose of Figure 16 is to show the kind of calculations that
can be performed at the CCSD(F12) level in an appropriate basis
set (cc-pVDZ-F12), but this figure also nicely illustrates the
Bell-Evans—Polanyi principle: exothermic reactions via lower
barriers release more reaction energy than reactions via higher
barriers.

7.7. Density Fitting

At the MP2-F12 level a large fraction of the additional
computational costs for the explicitly correlated terms arises
from calculation of the additional two-electron integrals. This is,
in particular, the case for the SP approach, which requires only
the diagonal elements of the V, B, and X intermediates. These
can be evaluated with (7(_1"*) scaling costs once the required
two-electron integrals are available in the MO basis. Computa-
tion of the two-electron integrals scales, however, with (. )
and has a rather high prefactor if they are obtained by four-index
transformations from AO two-electron integrals.

A standard technique to speed up evaluation of two-electron
MO integrals is the density fitting (DF) approximation. Density
fitting is in the literature also known as resolution of the identity
(RI) approximation. However, in the context of F12 theory we
reserve the term RI approximations for expansion of three- and
four-electron integrals as products of two-electron integrals to avoid
confusion. The idea behind the DF approximation is that in large
orbital basis sets the products of orbitals appearing for electrons 1
and 2 in the expressions for four-index two-electron integrals

(pqlo|rs) ://Q”p(rl)(Pq<1‘1)512(/’r(f2)<l’s(f2) dr,dr,
(414)

will soon become (numerically) highly linear dependent and can
thus be expanded with good accuracy in a dedicated auxiliary
basis of fitting functions {Q}

Pp(r)ep,(r) ~ % Qr)eq,pq (413)

For the Coulomb repulsion 1>, which is a positive definite
operator so that the matrix elements define a valid inner product,
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the coeflicients can be calculated as

Y V7 (Qlpa)
Q

where V,, = (QJP) and (Q|pq) are two- and three-index
Coulomb integrals,

(@P) = [[Qr)ry'P(ra)dvidrs

CQ_,pq == (416)

(417)

(Qlpa) =[] Qr)ry 0, (12, (x:)dridrs (418)

The four-index Coulomb integrals are then computed within the
DF approximation as

(palry Irs) = (palryy'[rs)™"

= 2 eV (@ (419)

= Z GQ!F‘IGQ1’5
Q
with
Gopg = Z [V_I/Z]QP(PU"Q)
P

Evaluation of the two- and three-index AO integrals and their
transformation to the MO basis is much cheaper than for four-
center AQ integrals. The only O(N°) scaling step is then the final
contraction to form the target four-index MO integrals. If these
integrals are only needed for a small subset of the whole MO
space, for example, because two or more indices are restricted to
occupied orbitals, as it is the case for the integrals needed for the
intermediates in MP2-F12 calculations, the DF approximation
reduces the computational costs often by more than an order of
magnitude. With optimized auxiliary basis sets the additional
error introduced by the DF approximation can be kept orders of
magnitude smaller than the orbital basis-set error so that the
overall accuracy of a calculation is not affected. Importantly for
the performance of the DF approximation, the error in the
integrals (pq|ri2'|rs)°" is quadratic in the fitting error for the

(420)

orbital products

Ryy(r) = @, (r) ZQ r)cq,pg (421)
as

(palrsy 1) — (palryyIrs) = (Ryglriy'[Rs) (422)

The same procedure can be used for other positive or negative
definite operators for which inversion of the two-index integral
matrix (Q_IB 12|P) is numerically stable.

A generalization of the fitting formula in eq 419 for operators
that are neither positive nor negative definite, which has the
same property that errors in the integrals are quadratic in the fit-

ting error pe 18 the robust density-fitting formula proposed by
Manby.*** It can be cast into the form
(paloralrs)™ = 2 GQp0qrs + 0q,peGa,r) (423)
where
R 1 . -
Oqpm = 2 V"V lgp <(P|012Pq) =35 X (Pln|R)[V 1]Rs(Slpq)>
P RS
(424)

Computation of two-electron MO integrals for general operators
is thus only twice as expensive as for electron repulsion integrals.
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Besides the lower operation count, another advantage of the DF
approximation is that, in particular, at the MP2-F12 level, also the
memory and disk requirements can be greatly reduced by
avoiding storage of the various four-index two-electron integrals.

7.8. Local Correlation Methods

The enhanced basis-set convergence of explicitly correlated
methods reduces dramatically the computational costs for accu-
rate correlated wave function calculations. However, just as for
conventional wave function methods, they suffer from a very
steep scaling of the operation count with the system size, which
hinders calculations on large systems. This problem can be alle-
viated by combining F12 theory with a local correlation %Fgro-
ach, as has been shown by Werner and co-workers,*”*!>#2°
Local correlation methods exploit the short-range character of
dynamic electron correlation using a local orbital basis and
restricting for each localized occupied orbital i the excitations
into the virtual space to a subset of projected atomic orbitals
(PAOs) that are spatially close to i. This subset is called the
domain for i and denoted as [i]. For each pair of occupied orbitals
i, j double excitations are restricted to a pair domain [ij] which is
formed as the union of [i] and [f]. Since the size of the domains is
roughly independent of the molecular size and since the set P, of
so-called strong pairs i, j that contribute significantly to the corre-
lation energy increases for large systems asymptotically only
linearly with the system size, one can achieve with this ansatz a
linear scaling in computational cost.

At the CCSD-F12 level the local correlation variant, LCCSD-
F12, approximates the single- and double-excitation parts of the
cluster operator as*?

T,=Y Y tala (425)
i aceli
=Y Y tiaaag (426)
i>j € Ps a>b € |ij
Ty = Y Ydr (427)
i>j € Py x>y
where in the SP approach ¢, = 0,0, — 0,0, Since the

conventional double excitations in eq 426 are restricted to the
pair domains, the strong orthogonality projector for ansatz 2 is
for the local correlation methods chosen such that it only projects
out these excitations. The pair-specific projector becomes

A, =(1-0)1-0y)(1- Y |edXcd|

d € [ij]

(428)

Thereby the excitations into the geminals can compensate for
most of the domain error caused by the restriction of the con-
ventional double excitations into products of virtual or projected
atomic orbitals. Some results which demonstrate how efficiently
the geminal contribution can compensate for the domain errors
at the CCSD level are shown in Table 18.

Recently, alternative approaches to combining F12 and loca-
lization ideas have been explored. Friedrich et al.>'* applied
Stoll’s incremental scheme to the CCSD(F12)-SP method using
local occupied orbitals. Here, the CCSD(F12)-SP equations are
solved independently for each domain, each pair of domains,
each triplet of domains, and so on until the incremental expen-
sion of the energy converges. Smaller basis sets can be used for
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Table 18. Correlation Energies (in mH) Obtained with the
cc-pVTZ-F12 Basis Set with Conventional CCSD, in CCSD-
F12a, and Their Local Variants in Comparison to Extrapo-
lated Basis Set Limits”

molecule CCSD LCCSD CCSD-Fl12a LCCSD-F12a basis-set limit
C,H,O0 —611.8 —609.2 —658.0 —658.1 —650.4
CH;CHO —606.1 —603.8 —651.6 —651.7 —643.9
CHOH  —6482 —6443 —697.3 —697.3 —689.1
NH,CONH, —851.9 —847.6 —918.0 —-917.9 —908.2
HCOOCH; —844.7 —841.1 —911.7 —911.7 —901.7

“ All results adopted from ref 429.

the higher-order increments, and the study demonstrated that it
was not necessary to include F12 terms beyond pair domains.

Tew et al.>"® very recently combined the MP2-F12-SP method
with the pair natural orbital (PNO) approach of Meyer.>'*~%'¢
PNOs have recently been advocated by Neese®'”*'® as an attrac-
tive way of reducing steep scaling through locality, without nece-
ssitating the definition of domains. In this aproach the set of
virtuals used to expand each pair correlation function is trans-
formed to PNOs by diagonalizing an approximate first-order pair
density and then truncated on the basis of the occupation number.
Tew et al. showed that these ideas can be used very effectively in
F12 theory to reduce both the number of virtual and the CA
orbitals to an average of only 40 orbitals per pair, without sig-
nificant loss of accuracy.

7.9. Basis Sets

For the accuracy and efficency of calculations with F12
methods it is crucial that the orbital basis and the complementary
auxiliary basis for the RI of the three- and four-electron integrals
are chosen or optimized carefully.

7.9.1. Orbital Basis Sets. As discussed in previous sections,
with basis sets saturated up to L,,,, the remaining basis-set error
for conventional correlated wave function methods decreases
only with (L. + b) 3. Orbital basis sets which have been
optimized for calculations with these methods reflect the slow
convergence by including already for small cardinal numbers (or
¢ levels) high angular momentum functions, Table 19. Inclusion
of the geminals in the F12 methods enhances the convergence
with the angular momentum of the basis functions to (Lyq, +b)
A balanced orbital basis for F12 calculations should thus contain
less functions with high angular momenta compared to the
number of functions with small angular momenta. The latter
are also important to keep the basis-set error of the underlying
Hartree—Fock (or, in the multireference case, MCSCF) calcula-
tion small enough so that it does not limit the overall accuracy of
a calculation. Furthermore, the functions with higher angular
momentum need not be as tight in F12 calculations as in standard
orbital expansions.*’

Orbital basis sets optimized for explicitly correlated calcula-
tions with F12 methods are (at the time this article has been
written) available for the atoms H, He, Li—Ne, and Na—Ar from
the work of Peterson and co-workers.*'**'7%'® These cc-pVXZ-F12
basis sets are constructed in a similar manner to the correlation-
consistent basis set for conventional correlated wave functions,
cc-pVXZ, such that the remaining basis-set errors are approxi-
mately the same for each angular momentum. For the first-row
atoms B—Ne this strategy led for the cc-pVDZ-F12 basis sets to
the composition [SsSp2d] and for the triple- and quadruple-G
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Table 19. Statistical Measures for the Remaining Basis Set
Errors from the Orbital Basis in Frozen Core MP2-F12
Calculations (with optimized amplitudes) from a Benchmark
Study on Set of 106 Small Molecules Containing H, C, N, O,
and F*

correlation energies mean STD MAD rms max
cc-pVDZ-F12 0.97 0.24 0.97 1.00 1.75
cc-pVTZ-F12 0.26 0.08 0.26 0.27 0.41
cc-pVQZ-F12 0.07 0.02 0.07 0.07 0.10
aug-cc-pVDZ 1.71 0.22 1.71 1.73 2.19
aug-cc-pVIZ 0.63 0.18 0.63 0.65 1.02
aug-cc-pVQZ 0.23 0.07 0.23 0.24 0.04
aug-cc-pVSZ 0.09 0.03 0.09 0.09 0.17
total energies mean STD MAD rms max
cc-pVDZ-F12 1.90 0.30 1.90 1.92 3.00
cc-pVTZ-F12 0.48 0.12 0.48 0.49 0.73
cc-pVQZ-F12 0.10 0.03 0.10 0.10 0.16
aug-cc-pVDZ 293 0.36 293 2.95 3.90
aug-cc-pVIZ 1.30 0.26 1.30 1.33 1.91
aug-cc-pVQZ 0.39 0.11 0.39 0.41 0.66
aug-cc-pVSZ 0.12 0.04 0.12 0.13 0.22
atomization energies mean STD MAD rms max
cc-pVDZ-F12 —0.33 0.34 0.35 0.47 —1.84
cc-pVTZ-F12 —0.02 0.04 0.03 0.04 —0.18
cc-pVQZ-F12 0.01 0.01 0.01 0.01 —0.03
aug-cc-pVDZ —0.21 0.33 0.29 0.39 —2.10
aug-cc-pVTZ 0.02 0.10 0.08 0.11 —0.64
aug-cc-pVQZ 0.09 0.04 0.10 0.10 —0.16
aug-cc-pVSZ 0.05 0.01 0.0S 0.06 0.08

? Listed are the mean error and standard (STD), mean absolute (MAD),
root mean square (RMS), and maximum deviations for the correlation
and total energies as well as for the atomization energies. All values are
adopted from ref 521 and given in k] mol ' per valence electron.

basis sets cc-pVTZ-F12 and cc-pVQZ-F12 to the composition
[6s6p3d2f] and [7s7p4d3f2g], respectively. This is somewhat
less regular than the composition of the basis sets optimized
for conventional correlated calculations. The accuracy achieved
with these basis sets with respect to remaining basis-set errors has
been tested in the literature, in particular, for MP2-F12 and
several approximations to CCSD-F12.52°7%

An alternative to the cc-pVXZ-F12 basis-set families is the
correlation-consistent basis sets augmented with diffuse functions,
aug-cc-pVXZ, from the work of Dunning and co-workers.>** %’
The remaining basis-set errors are with these basis sets larger
than with the optimized cc-pVXZ-F12 basis sets of the same
cardinal number, but this is partially compensated by the smaller
size of the aug-cc-pVXZ basis sets.””"

For calculations with conventional correlated wave function
methods and the correlation-consistent cc-pVXZ basis sets the
remaining basis-set errors in the correlation energy follows in
good approximation the idealized power law Ex™" = Eji + AX 3
(compare eq 94 in section 3.7.5). This is a consequence of the
building principle of the cc-pVXZ basis sets and the fact that in
conventional (i.e., not explicitly correlated) calculations the
basis-set error is dominated by the error in the pair correlation

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

Table 20. Optimized Exponents for Extrapolating MP2-F12
Correlation Energies with Eq 96 from Ref 50°

basis sets exponent MAD STD
MP2-F12/2C
cc-pVDZ-F12/cc-pVTZ-F12 2.7 0.16 0.14
cc-pVTZ-F12/cc-pVQZ-F12 4.07 0.04 0.04
aug-cc-pVDZ/aug-cc-pVTZ 2.08 0.37 0.30
aug-cc-pVTZ/aug-cc-pVQZ 2.98 0.20 0.16
aug-cc-pVQZ/aug-cc-pVSZ 4.11 0.05 0.04
MP2-F12/2C(FIX)

cc-pVDZ-F12/cc-pVTZ-F12 3.09 0.38 0.30
cc-pVTZ-F12/cc-pVQZ-F12 4.35 0.13 0.27
aug-cc-pVDZ/aug-cc-pVTZ 2.30 0.70 0.54
aug-cc-pVTZ/aug-cc-pVQZ 3.25 0.40 0.38
aug-cc-pVQZ/aug-cc-pV5SZ 4.33 0.07 0.0S

“The listed values refer to approximation 2C (in ref S0, denoted as
“3C”) with geminal coefficients determined by minimization of the
Hylleraas functional (MP2-F12/2C) or from the s- and p-wave coales-
cence conditions at the interelectronic cusp (MP2-F12/2C(FIX)). The
results for the mean absolute and standard deviations have been
determined for set of 14 small molecules containing first- and second-
row main-group elements.

energy due to the poor description of the electronic cusp. This
relation is often employed to correct approximately for the re-
maining basis-set error by extrapolating the basis-set limit from
the results obtained with two different cardinal numbers X and Y
based on eq 95 as

Y3

E o

limit ~ (E§,0fr - ECOIT)

< (429)

Y3
For F12 methods the remaining incompleteness error follows
such a simple power law only with specially constructed basis sets
which, e.g,, have been saturated up to a given angular momen-
tum. With the basis-set families cc-pVXZ-F12 and aug-cc-pVXZ
an extrapolation with AX™ ", where 7 is a fixed exponent, does not
efficiently improve the results. The remaining incompleteness
errors have for these sets a more complicated dependence on the
cardinal number. As shown in ref 520 they can, however,
successfully be improved by a Schwenke-type®® extrapolation,
eq 96, with exponents p optimized for the employed basis sets
and cardinal numbers and the variant of F12 theory. Optimized
exponents for MP2-F12/2C calculations with the geminal coefhi-
cients determined variationally or fixed by the s- and p-wave coal-
escence conditions (SP approach, “FIX”) are listed in Table 20
together with some results for the remaining errors.

7.9.2. Complementary Auxiliary Basis Sets. From the
expressions for the V and X intermediates in MP2-F12 calcula-
tions with ansatz 2, eqs 276 and 277, it follows that in a calculation
on an atom, which has occupied orbitals with a maximum angular
momentum L, an accurate computation of Vk and XJc requires
that the combined orbital plus CA basis is saturlzed up to L 3Lgce-
For higher angular momenta the contributions from the CA basis
functions to

Pkl Z (ij|ora|ma’Y(ma' |f12|KI) (430)

where 0}, and f;, are totally symmetric operators, vanish due to
symmetry. However, for the C and B intermediates, which are
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Table 21. Basis Set Errors in MP2-F12/2C Correlation En-
ergies Due to Truncation of the Orbital and Complementary
Auxiliary Basis Sets (in kcal/mol) for a Test Set of 42
Molecules with First- and Second-Row Atoms”

orbital basis CA basis
MAD STD MAX MAD STD MAX
cc-pVDZ-F12 0.71 0.80 3.84 0.05 0.07 0.31
cc-pVTZ-F12 0.24 0.24 0.99 0.01 0.02 0.09
cc-pVQZ-F12 0.15 0.12 0.47 0.004 0.005 0.03

“ All values have been adopted from ref 415 (therein referred to as MP2-
F12/3C). Listed are mean absolute deviations (MAD), standard devia-
tions (STD), and maximum deviations from reference results obtained
with large reference basis sets.

calculated (partially) with the more approximate form of the
strong orthogonality projector in eq 256, also higher angular
momentum functions contribute to the resolution of the identity.
Test calculations in refs 415 and 416 on molecules with the first-
and second-row atoms H—Ar showed that CA basis sets with
functions up to Lea = max(3LoeoLimay) + 1, where Ly, is the
maximum angular momentum of the orbital basis set, are for
these atoms sufficient to achieve very accurate results. Yousaf and
Peterson*'>*'® and Hill et al.>' optimized such CA basis sets for
the cc-pVXZ-F12, aug-cc-pVXZ, and cc-pCVXZ-F12 basis-set
families by minimizing the functional

(VU Vl], ref) (Bt] . Bt], ref)

y ) ) )

ART=Y > 2y~ 7 (431)
; ‘/l;], ref ; Bz], ref

)

With these CA basis sets the errors in total and reaction energies
due the resolution of the identity approximation for the three-
and four-electron integrals are about an order of magnitude
smaller than the incompleteness error from the orbital basis.
Table 21 shows some results from MP2-F12/2C calculations
with the cc-pVXZ-F12 basis sets from ref 415 (therein referred to
as “MP2-F12/3C”). For the first-row atoms B—Ne the CA basis sets
are uncontracted and have the compositions (4s4p4d3flg) for
cc-pVDZ-F12, (4s4p4d3f2g) for cc-pVTZ-F12, and (4s4p4d3f2glh)
for cc-pVQZ-F12, while the orbital basis sets have the compo-
sitions (11s7p2d)/[SsSs2d] for cc-pVDZ-F12, (13s7p3d2f)/
[6s6p3d2f] for cc-pVTZ-F12, and (15s9p4d3f2g)/[7s7p4d3f2g]
for cc-pVQZ-F12. Thus, the size of the CA basis increases only
slowly with the size of the orbitals basis set.

7.9.3. Auxiliary Basis Sets for Density Fitting. Several
implementations of F12 methods employ the density-fitting
approximation described in section 7.7 for computation of the
various two-electron integrals that enter in the expressions for the
V, X, B, C, etc. intermediates. This necessitates a further auxiliary
basis set in addition to the orbital and CA basis sets. For integrals
(pi]rs) with at least one occupied MO index i auxiliary basis sets
with functions up to an angular momentum of Ly, + Locc are
sufficient to make the DF errors insignificantly small. F12 methods
employ the DF approximation also for integrals of the type
(p'i|rs), where p' is a CA basis function. For these calculations the
DF auxiliary basis should include functions up to an angular
momentum of max(L,,.oLca) + Loce, where L4 is the maximum
angular momentum of the CA basis set.

Not only the angular momenta but also the range of exponents
that needs to be spanned by the DF basis set depend on the
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orbital products that are fitted. Auxiliary basis sets optimized for
RI-MP2 calculations are tuned to accurately fit products of
occupied and virtual orbitals ¢,¢,. For integrals with products
of two occupied orbitals ¢;¢; the fitting basis should contain
somewhat tighter (i.e., larger) exponents, while the maximum
angular momentum could be restricted to 2L,.. This led to devel-
opment of method-specific auxiliary basis sets, for instance, the
RI-J basis sets for fitting the Coulomb matrix in DFT calculations
with functionals without exact exchange contribution, the RI-JK
basis sets for a simultaneous fitting of the Coulomb and exchange
matrices in DFT (with hybrid functionals) or Hartree—Fock
calculations, or the RI-C basis sets for fitting (p'i|rs) integrals in
calculations with correlated wave function methods.

For F12 calculations the cc-pVXZ-F12 and aug-cc-pVQZ
orbital basis sets with the respective optimized CA basis sets
from Peterson and co-workers*'*~*'%*! can be combined with
the aug-cc-pwCV(X+1)Z auxiliary RI-C basis sets from refs 528
and 529 for the DF of the integrals for V, X, B, C, etc. inter-
mediates and the RI-JK basis sets cc-pV(X+1)Z from ref 530 for
the DF in the computation of the Fock matrix elements F, and
F,q- The tight core—valence functions in the aug-cc-pwCV-
(X+1)Z RI-C basis sets are included to accurately fit products of
two occupied orbitals in the integrals for the F12 intermediates.
With these basis sets the errors from the DF approximation in the
correlation contribution are negligible in comparison to the incom-
pleteness errors from the orbital basis sets. For example, for calcula-
tions in the cc-pVTZ-F12 basis sets the errors due to the DF
approximations are with these auxiliary basis sets on the order of
1—2 uE,, per valence electron compared to truncation errors on the
order of 4—20 uEy, and 100—400 uEy, per valence electron from
the CA and orbital basis sets.

8. PROPERTIES AND RESPONSE THEORY

The largest part of the development work in F12 theory has
has been devoted to energy calculations, but as the methodology
develops, other targets such as molecular properties come into
focus. The main questions are as follows. How important are F12
corrections for the prediction of properties? Do the assumptions
behind the approximations used in F12 theory carry over to the
expressions to be evaluated for the calculation of properties?

One obvious next step is exploration of the Born—Oppenheimer
potential energy surface (PES), in particular, in order to obtain
equilibrium structures and vibrational frequencies. While for
2—4 atoms this still might be feasible by calculating the PES on a grid,
for any larger system, the implementation of analytical geometric deri-
vatives is required. Analytical derivatives of the energy not only
give access to geometric gradients on the PES, but also provide
access to molecular properties via generalization of the Hellmann—
Feynman theorem to approximate wave functions.

Higher-order derivatives of the energy then give rise to non-
linear response properties such as polarizabilities (or, more general,
susceptibilities). The time-dependent or frequency-dependent
generalization of response theory can also be used to consistently
derive equations for electronically excited states in the case of
theories like coupled-cluster theory, which originally is a ground-
state theory only.

We note that for Hy-CI, ECG-type calculations, and similar
methods a rich literature on molecular property calculations
exists (see, for example, ref 531). Here, we will only point to
some recent results for the biggest systems that presently are in
reach for these methods. Potential energy curves were reported
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for LiH (ground and excited states) using the free complement
local Schrédinger equation approach (FC LSE)'7® and with an
ECG expansion.”*® Excited states computed with the Hy-CI
method were recently reported for lithium,"** and with an ECG
expansion beryllium'%*** and boron'®” have been feasible.
Dynamic dipole polarizabilities (up to second hyperpolarizabilities)
have been computed for Be and Be-like ions with the ECG
method.>**>** Furthermore, nonadiabatic effects as well as
relativistic and quantum electrodynamic effects were calculated
for several systems, for example, for He,**!

For R12 and F12 theory a number of exploratory works exist
that use finite differences for calculation of geometry- or electric-
field-dependent properties, as summarized in section 8.1. The
encouraging results have triggered development of analytical
techniques, like implementation of geometric analytical gradi-
ents, section 8.2, and implementation of response theory for
treatment of excited states, section 8.3, and higher-order res-
ponse properties, section 8.4.

8.1. Finite Difference Approaches

In this section we summarize calculations of molecular proper-
ties using R12 or F12 methods which were based on finite differe-
nces or evaluation of a Born—Oppenheimer surface on a grid.

Computing the spectroscopic constants of diatomics is rather
straightforward, and a first example, concerned with N, at dif-
ferent levels of pair theory, was published by Klopper et al.>*> as
early as 1991. Further examples, including Be,, LiH, HF, etc. can
be found in other work, e.g,, refs 46, 366, 369, 484, 488, and 491.
One of the first examples for application to a polyatomic mole-
cule is possibly the work on SiH; ™ by Aarset et al.,*”” which also
includes calculation of the quartic force field at the CCSD(T)-
R12 level.

High-accuracy benchmarks using CCSD(T)-R12 (still in the
standard approximation using large basis sets) have later been
published for evaluation of composite methods for obtaining
structures>*® and harmonic vibrational frequencies®®” of diatomics
and small polyatomic molecules. More recently, a study of equili-
brium structures and harmonic and anharmonic frequencies of
polyatomics appeared which uses Slater-type correlation factors
within the CCSD(T)-F12a and CCSD(T)-FI12b approach.”*
The reported examples comprised, for example, CH,NH and
1,2-C,H,F,. Another recent study evaluates equilibrium struc-
tures and force fields up to quartic level using the CCSD(T )5
approach in comparison to extrapolation schemes.>*’

With respect to electric properties the literature becomes
rather sparse. Magnetic properties have, to our knowledge, not
been considered to date. A first finite-difference-based study of
the dipole polarizability and second hyperpolarizability of the
beryllium atom was published by Tunega et al.>* in 1997. A
number of R12 augmented coupled-cluster methods have been
employed, including CCSD(T)-R12. The study was followed by
work on LiH, which included up to the static second dipole
hyperpolarizability and the quadrupole hyperpolarizability.**” As
at most basis sets with f functions were feasible at that time, very
little improvement with the linear correlation factor was seen.
CCSD(T)-R12 was also used as a benchmark for a basis-set con-
vergence study of the BH and HF molecular dipole moment.>**®

Other work based on CCSD(T)-R12 in the standard approx-
imation scheme and finite difference calculations includes in-
vestigation of interaction-induced changes in the dipole polari-
zability of helium®® and a stuc‘lgl of static electrical response
properties of F~, Ne, and HE.**® The latter included the static
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Table 22. Intermolecular Distance and Binding Energy of the Ammonia—Water Complex Calculated at the MP2 Level (with

density fitting)”
MP2-F12 + CABS singles MP2 MP2 + CP correction”
basis r(N-..H) AE* r(N-..-H) AE* r(N-..H) AEc
aug-cc-pVDZ 196.56 —10.10 196.78 —11.07 201.98 —9.31
aug-cc-pVIZ 195.96 —10.40 195.74 —10.69
aug-cc-pVQZ 196.07 —10.41 195.83 —10.55
aug-cc-pVSZ 196.09 —10.40 196.01 —10.45 196.74 —10.26
aug-cc-pVoZ 196.03 —10.42

“ All values taken from ref 543. © Counterpoise-corrected results. ¢ Intermolecular distance in pm. ¢ Binding energy in mEj,.

dipole polarizability and second hyperpolarizability; for HF also
the static dipole moment and the hyperpolarizability were reported.

8.2. Analytical Gradients

Analytical first derivatives are the essential ingredient for
efficient determination of equilibrium structures and transition-
state structures of polyatomic molecules. As compared to con-
ventional orbital expansions, the main complication in F12 theory
arises from the larger number of two-particle integrals for which
effective two-particle densities and integral derivatives need to be
calculated. Development of methods is still in its beginnings;
analytical gradient codes have so far been reported for MP2-
R12°*%**! using conventional four-index integrals and MP2-
F12°**® ysing density fitting. In both works approximation A
was used for the B matrix (see section 6.3) which reduces the
number of necessary integral derivatives to a minimum. Accord-
ingly, we will restrict the following discussion to this case, as this
suffices to show the basic principles.

The starting point is a stationary Lagrange functional. To this
end, the MP2-Hylleraas functional, eq 300, is augmented with the
constraints for fulfillment of the Brillouin condition, f; = f =0,
and canonical frozen orbitals, f} f =0, where for J runs over all
core orbitals that are excluded from the correlation treatment.
The Lagrange functional thus reads
%)

ST AE-) (432)

rs

L = Hupar12 + E fo; + E Z;’f]’
ai i

where the last term stems from the orthonormality condition, S;
being the overlap matrix of the orbitals.

The Lagrange multiplier z{ can be calculated by solving a set of
coupled-perturbed Hartree—Fock equations, also known as z-
vector equations.”** As compared to the conventional case, the
right-hand side of these equations has a few additional terms that
or1g1nate from the orbital gradient of the F12 contributions.
Once z{ is determined, the multipliers z/ and &} can be calculated
directly from the pertinent expressions, again with corresponding
additional F12 terms.

The first derivative with respect to a geometric distortion &,
expressed in the AO basis, has the general structure

R
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The derivatives of the one-electron Hamlltoman (3/05)hy,,,
are associated with the relaxed density Dm,, into which the
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contributions from z¢ and 2z} have been absorbed. The overlap
matrix derivatives (9/0&)S,, come along with the Lagrange
multipliers X,,,, which are the AO representation of x;. The index
9¢ runs over all two-electron operators 01/2 In the case of MP2-
F12/A this comprises 115", f(r12), f(r12)r12, and |VLf(r12)| Al
these integral derivatives are joined with the respective two-
electron density matrices.

In the MO representation these density matrices possess two
occupied and two general indices (including frozen and CABS
orbitals). Storage of these matrices and their subsequent back-
transformation and contraction with integral derivatives is likely
to pose a severe bottleneck, in particular, as for certain integral
types up to two indices will also include the CABS. This problem
is removed when using density fitting (see section 7.7). This
approximation replaces the terms with four-index integral deri-
vatives by terms involving three-index and two-index integrals
and corresponding density matrices

o Huv|Of) |kd) o (ux|O%|P)
Z mc/lig z AP/,uKig
UvKA uxP
UaPoW

RS
As in section 7.7 the indices P and Q run over the auxﬂlary basis
employed for density fitting. The quantities N4 e and )/PQ are
the effective three- and two-index two-particle density matrices.

An example application is shown in Table 22 for the ammonia—
water complex. Using MP2-F12 in the structure determination,
for both the intermolecular distance and the resulting interaction
energy basically converged results are obtained at the triple-C
level, and even using a double-{ basis set only little deviation
from the putative basis-set limit is found. In contrast, conven-
tional calculations are plagued by basis-set superposition errors,
which in the present case fortuitously compensate for the basis-
set error in the correlation contribution. The results including the
counterpoise correction®® reveal a much larger uncertainty in
the conventional results, for example, for the hydrogen bond
which is 6 pm longer for the counterpoise-corrected double-§
calculation (see also ref 546).

8.3. Excited States

Multireference approaches (section 6.9) can treat excited
states rather naturally. Nevertheless, only the most recent works
have actually moved beyond the ground state, for example,
different low- lgmg states of methylene were considered by Flores
and Gdanitz*> using the MRACPF-RI12 approach. Similarly,
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in his initial work on F12 corrections for MR-MP2 Ten-no™**°

applied his method to the excited states of carbon atom and silane.
Shiozaki and Werner reported CASPT2-F12 excitation energies
for pyrrole®' and MRCI-F12 excited-state potential energy
curves for LiF, O3, and the H, + OH reaction.”>® In all cases
the correlation factors significantly improve the convergence of
excitation energies toward the basis-set limit, as expected from
the good performance for ground-state energies.

Single-reference theories, as coupled-cluster theory, are also
capable of describing excited states, for example, by use of
response theory.**’ The basic principle of this approach is as
follows: Formulate the time-dependent coupled-cluster equa-
tions and obtain the response functions and equations. In this
procedure it is important to take care of a physically correct pole
structure of the response functions. If this is the case, one may
identify the position of the poles as excitation energies and devise
equations to directly calculate these. In the case of coupled
cluster, one finds that the excitation energies can be obtained as
the eigenvalues of the Jacobian A which is the first derivative of
the coupled-cluster residual Q,, = (u|e” "He'|HF) (cf. section 6.5)
with respect to the cluster amplitudes

— BQM

w =t = (e (B, 7] [HE)

(435)
For excitation energies, the procedure turns out to be equivalent
to the equation of motion coupled-cluster (EOM-CC) method.
Some differences, however, occur for calculation of transition
moments and excited-state properties, which only for response
theory are strictly size consistent. The particular appeal of res-
ponse theory is the fact that any (approximate) method can be
fully defined by its ground-state energy Lagrange functional.
All other equations can be derived from that by the response
formalism.

A straightforward application of response theory to CC2-R12
was reported in Fliegl et al.**” CC2 is a simplification of CCSD
which truncates the doubles equations such that excitation energies
remain correct through second order in the fluctuation potential.***
Fliegl et al. obtained a general eigenvalue problem of the form

AS = SSw (436)
where S is the metric matrix with elements
Syv - </'£|%V|HF> (437)

The geminal—geminal block S, is equivalent to the X inter-
mediate, eq 268, while for conventional excitations the metric is
unity. Analogous to the cluster amplitudes, the vector ¢ consists of a
singles, &'}, doubles, &, and geminal part, &y

Contrary to initial expectations, the excitation energies were
not found to improve by including the correlation factor in CC2-
R12. On the contrary, for certain cases a significantly worse con-
vergence was observed.*”” It was found that this problem is
caused by the ansatz for the geminal contribution which is inhere-
ntly biased toward the ground state. The geminal contribution to
the excited state can be written as the operator

oo i K _af

Oy = Z O Z waﬂui}' (438)
i>j a>f
a>b

The &7, amplitudes just include occupied indices, and the
correlation factor effectively only contains basis functions of
the type f(r1,)|ij). Hence, the expansion misses contributions
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Figure 17. Partial wave expansion of the ground- and 'P excited-state
energy of the Be atom using CC2 and a 20s17p14d11f8gSh basis and
subsets thereof. R12 denotes the usual ansatz for the linear correlation
factor, the extended ansatz (R12+) includes virtual p orbitals in the
generating space of the geminal. Figure based on the values from ref 458.

from the virtual orbitals. Even worse, in certain cases it might even
not contain any geminal contributions. This happens if no
occupied orbitals of the appropriate symmetry are present. Consider,
for example, the P state of the Be atom, whose ground state features
occupied s-type orbitals only. This is illustrated by Figure 17: The
ground-state converges quickly with CC2-R12, but the excited
state remains nearly unaffected by the correlation factor.

The finding is supported by a numerical analysis**”**® which
indicates that the geminal fails to describe excited-state correla-
tion effects. It was therefore suggested to extend the generat-
ing space of the geminal to include virtual orbitals**® (see also
section 6.6.4). Computational feasibility and numerical stability
demands, however, restricting these additional orbitals to a
minimal set. Neiss et al.**® therefore performed a selection based
on MP2 natural orbitals. The approach, termed R12+, indeed
leads to the expected improvements, as indicated in Figure 17.

Yang and Hittig*® later generalized the approach to F12 correla-
tion factors. However, they adhered to the original geminal factor
with occupied orbitals only but found that excited-state structures
and vibrational frequencies are nevertheless well described.

A different route was taken by Kohn*®® with the intention of
combining response theory and the SP ansatz. As a pure fixed-
amplitude geminal does not contribute to the response, an exten-
sion is needed. The extended SP (XSP) ansatz, as described in
section 6.6.4, leads to the desired amplitudes, which are obtained
as the response of [fl(hp ) T.]

> S(hp) B 5 G 5 a,

Sy = RG] = ¥ 8wy + ¥ iy |a?
i>j c c

a>f

(439)

Clearly, this ansatz incorporates geminals of the type f(r)ia), that
is, a correlation factor times a singly excited determinant. Two choices
are possible for the above parametrization: One can either fix5 ;=&
(as it naturally results from the expansion, eq 339, where [R™, T']
appears) or allow &} as an additional free parameter. The first choice
is numerically more stable, but a small bias toward the ground state
remains. Better results for excitation energjes are obtained with the
second choice; for excited-state structures and vibrational frequencies,
however, both choices work equally well.*®
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Table 23. Comparison of the CCSD Values for the Frequency-Dependent ESHG Hyperpolarizabilities ) (®) of N, (in atomic
units) Using Conventional CCSD and Different Explicitly Correlated Variants”

ccsD? CCSD(R12)" CCSD(F12)° CCSD(F12/)-XSP*
A/nm TZ Qz TZ Qz est. limit* TZ TZ Qz
o 903.0 882.7 882.4 872.7 864.5 8724 864.3 865.2
1055.0 959.2 936.9 936.7 925.9 917.2 918.2% 916.9 917.7
694.3 1041.1 1015.6 1015.7 10032 993.8 995.6° 993.4 993.9
457.9 12734 1238.1 1239.1 12215 1210.0 1214.0° 12089 1209.0

“ The t-aug-cc-pVXZ basis sets have been used in all calculations, unless indicated otherwise. ¥ Values from ref 459.  Values from ref 461. Values from ref
465. °A = 0o: CCSD(R12)/t-aug-cc-pV6Z value, for nonzero frequency estimated as y(w) = V(Rlz)/Qz(w) X j/(Ru)/éZ(O)/y(Ru)/Qz(O) Obtained

with the d-aug-cc-pVTZ basis set.

Closely related to this approach is the work of Bokhan and
Ten-no, who recently showed that ionization potentials can be
accurately calculated within the SP approach.>® In this case, one
electron is removed upon excitation, and hence, no extension of
the generating space for the geminal is required.

8.4. Analytical Calculation of Higher-Order Response
Properties

Response theory not only provides a framework for calculating
excited states, as discussed in the previous section, but also gives
access to linear and nonlinear optical properties. Except for the
static limit, calculation of coupled-cluster response properties is not
compatible with including the response of the SCF orbitals (also
known as “relaxed properties”). The reason for that is the occurrence
of additional poles due to the response of the SCF wave function.”’
Instead, one relies on the capability of the coupled-cluster wave func-
tion to approximately treat orbital relaxation through the T'; opera-
tors. Often the term “unrelaxed properties” is used in this context, but
it should be understood that the term unrelaxed merely refers to the
absence of SCF contributions to the response.

For R12 and F12 wave functions the issue of orbital relaxation
leads again to the question of an appropriate ansatz for the
geminal. In all studies that include orbital relaxation contribu-
tions, the geminal generating space is adapted to the perturbation,
and hence, no problems occur. This holds for all finite-difference
studies mentioned in section 8.1 and the analytical relaxed first-
order properties discussed in refs 540 and 542.

In the orbital-unrelaxed ansatz the geminal generating space is
not adapted to the perturbatlon, as T does not directly modify
Ty. Neiss and Hittig*® derived and implemented analytical
response properties up to second hyperpolarizabilities for the
CCSD(R12) approach. In most cases, the response of the cf; was
found to be sufficiently flexible, and an improved basis-set con-
vergence of the calculated properties was observed. In addition to
static properties, also the dispersion of the electric-field-induced
second-harmonic generation (ESHG) hyperpolarizability of N,
was presented. For cases analogous to those giving problems for
excitation energies, however, a slowed-down convergence was
found, for example, for the polarizability of BH perpendicular to
the molecular axis. In this case, the extended R12+ ansatz is needed.
Yang and Héittig%l’462 recently extended the work to Slater-type
correlation factors.

Hanauer and Kohn™” investigated the SP and XSP ansatz; see
section 8.3 for a definition. They found best results for the XSP
ansatz with optimized expansion coefficients in the geminal. In
addition, they also considered a simplified method which is
analogous to CCSD(F12*) and a correction for the error in
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one-electron contributions which is an iterative extension of the
(S2) correction discussed in section 6.7. Apart from static
nonlinear response properties of BH, LiF, and N, they also
investigated the frequency dispersion of ESHG second hyperpo-
larizabilities of N, and the optical rotation of H,O, at fixed values
for the dihedral angle.

In Table 23 we compare the results for the dynamic ESHG
hyperpolarizability of N, obtained with the different approaches
that were presented in this section. The results clearly indicate
that using Slater-type correlation factors converged results can
already be obtained at the triple-C level, that is, with at most
ffunctions in the basis set, while a conventional calculation must
use i functions, and higher, in order to achieve this accuracy
This is particularly important as properties like y are relatively
demanding with respect to the convergence of the one-electron
basis set, requiring three sets of diffuse functions in the present
example. In other words, in conventional calculations the choice
of the basis is largely dictated by the interelectronic cusp rather
than by the property under consideration. F12 methods relax the
requirement to include high-angular momentum and allow
adding those functions to the basis set which really are needed
for accurate prediction of the property.

As a final remark, we note that the developments reported in
the last two sections are restricted to CCSD theory. Quantitative
comparison with the experiment requires inclusion of connected
triply excited clusters. Work on this issue is in progress but not
yet documented in the literature.

9. SUMMARY AND OUTLOOK

In the present review we have presented the basics and historical
background of present-day R12 and F12 theories for nonrelati-
vistic electronic wave functions. Fundamental properties of
correlated electronic wave functions have been discussed as well
as the explicitly correlated wave functions for few-electron atoms
and molecules that were developed in the early days of quantum
mechanics. Hylleraas-type and Hy-CI wave functions including
variants for linear molecules (James—Coolidge- and Kotos—
Wolniewicz-type wave functions) have proven to be very useful
for accurate electronic-structure calculations ever since their
conception in the 1920s and 1930s. The corresponding compu-
tational methods remain highly relevant to contempory numer-
ical quantum chemistry and physics today, for example, for
calculation of non-Born—Oppenheimer corrections, of various rela-
tivistic effects including those described by quantum electrodyna-
mics, and of electronically excited states and for calculation of mole-
cular properties such as rovibrational energy levels (e.g, for Hs").
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Gaussian functions are very well suited to the represention
of electronic wave functions of atoms and molecules with very
high accuracy, despite their inability to satisfy the electronic
cusp conditions. Exponentially correlated Gaussians have
been used in variational calculations on systems with up to
six electrons such as the carbon atom but as is also true for the
Hylleraas-type and Hy-CI wave functions, progress toward
more-electron systems is slow due to the very high computa-
tional costs involved. Gaussian geminals are exponentially
correlated Gaussians for two electrons, either for a two-
electron system or for the two-electron pair functions in pair
theories for description of electron correlation, and they have
been used successfully in the framework of second-order
perturbation theory as well as coupled-cluster theory. How-
ever, due to the occurrence of six-center three-electron
integrals, their range of application has remained rather
limited. Nevertheless, when applied to few-electron systems,
impressive results can be obtained, which was, for example,
achieved for the four-electron problem of the helium pair
potential.

R12 theories were introduced to quantum chemistry in
1985, and they have been actively developed ever since. Before
2004 linear r;, terms were used in the electronic wave
functions, but thereafter, more general functions f(r;,) of
the interelectronic distance have been considered. For this
reason the newer methods are today known as F12 methods.
Development of the R12 and F12 methods has been a break-
through in explicitly correlated theories for general many-
electron, polyatomic molecules, because the very challenging
calculations of many-electron integrals (more than two) is
entirely avoided. This was achieved by insertion of a resolu-
tion of the identity (also know as completeness relation) into
the many-electron integrals such that only products of two-
electron integrals remained. In particular, after it was pro-
posed to use an auxiliary basis set for the completeness
relation in 2002 and after the change to the functions f(r;,),
that is, Slater-type geminals, further development of the R12/
F12 methods has been vary rapid. These methods have now
reached a high level of maturity, and they have been imple-
mented in a number of noncommercial as well as commercial
program packages of numerical quantum chemistry.

In this review we have provided many details of F12 theory
and many convincing arguments in favor of the applicability of
F12 methods for obtaining reliable and accurate results in a
cost-efficient manner. However, it is undeniably true that “all
the proof of the pudding is in the eating”. In other words, to
actually find out how well they work the methods should be
applied to chemical problems of current interest, where it is
important to describe electron-correlation effects near the limit of a
complete one-particle basis set. In our own work at the CCSD-
(F12) level, for example, we recently computed the enthalpies
of formation of the radicals HOSO,>*" and HOSO4,552 we studied
the thermochemistry of the HOSO, + O, association reaction,>>*
and we used the CCSD(F12) model to compute accurate reaction
rate constants for two reactions between the CH, molecule and
the CHj radical.>*® F12 methods are particularly useful for bench-
marking, as shown in ref 554, where the hydrogenation of
benzene and naphthalene was carefully studied by means of
F12 methods to test more approximate methods for calculation
of the hydrogenation products of fullerenes. These applica-
tions show the potential of the explicitly correlated methods in
the field of computational thermochemistry.>*> With regard to
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larger systems, we refer to our own large-scale MP2-F12
calculations on the trimerization of the pyrazine (C,H,N,)-
molecule®> or the recent study of complexes of argon with
n-propanol.>*

Feller et al.>>” performed a calibration study of the CCSD(T)-
F12a/b methods for C, and small hydrocarbons, and Lane and
others**#35875% y55es5ed the performance of F12 with respect to
weak intermolecular interaction (e.g., hydrogen bonds). Patkowski
and Szalewicz*®" investigated the CCSD(T)-F12a/b methods on
the Ar pair potential, but these authors note that “the CCSD-F12
method cannot yet compete with the orbital basis calculations and
extrapolations.” In this regard, we note that first and foremost the
F12 methods have been developed to accomplish a rapid con-
vergence toward the limit of a complete basis and to get a very
good answer very quickly, but it appears that for extreme accuracy
at the limits of what is technically feasible still more experience
must be gained with the various approximations—F12/a or F12/
b or (F12*)—and (auxiliary) basis sets in such calculations.

In a series of papers Botschwina and co-workers®®> %%
performed explicitly correlated coupled-cluster calculations on
astrochemically relevant molecules such as polyynes, their an-
ions, the propargyl radical (H,C3H), etc. In particular, in the field
of high-resolution spectroscopy and also for the study of
molecular reaction dynamics, use of explicitly correlated coupled-
cluster methods may be advantageous for the accurate calculation
of the necessary potential energy hypersurfaces (see, for example,
refs 535, 568, and 569).

Concerning larger systems or even solids, we note that the
explicitly correlated MP2 and coupled-cluster theories not
only have been implemented in terms of the local-correlation
methods but also can be applied in the framework of Stoll’s
incremental scheme®'>*”° or in the framework of quantum
mechanics/molecular mechanics (QM/MM) strategies.”” ">
Preliminary results have been obtained for MP2-F12 calcula-
tions on systems with periodic boundary conditions,*”* where
Slater-type geminals may be particularly important: in solids,
the large one-particle basis sets required for accurate electron-
correlation calculations can often not be used due to near
linear dependencies, and explicit correlation may solve this
problem.

Concerning heavy-element computational chemistry, we note
that scalar relativistic corrections and scalar relativistic effective
core potentials have been implemented*”***3”* and that a two-
component MP2-F12 theory with spin orbit relativistic effective
core potentials has been developed.***>”> However, with res-
pect to applying F12 methods in four-component methods, for
example, on the basis of the Dirac—Coulomb many-electron
Hamiltonian, we note that the problems related to the Brown—
Ravenhall*’ disease become rather subtle and difficult. Since
fully relativistic calculations are beyond the scope of the present
review, we refer the interested reader to very recent work by
Pestka and co-workers.””” %

We expect that in the near future explicitly correlated
coupled-cluster calculations in small basis sets will replace
conventional coupled-cluster calculations in very large one-
electron basis sets, because the explicitly correlated calcula-
tions will be more economical. The computer programs will be
developed further toward including explicitly correlated high-
er excitations, methods for excited states, multireference
methods, and analytical derivatives. These programs will then
have the potential to become very useful tools for numerical
quantum chemistry with a broad range of applicability.

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

AUTHOR INFORMATION

Corresponding Author
*Phone: +49 (0)721 60847263. Fax: +49 (0)721 60847225.
E-mail: klopper@kit.edu.

BIOGRAPHIES

Christof Hattig studied Chemistry at the University Bonn, Ger-
many, where he received his Ph.D. degree in Theoretical Chemistry in
1995. His thesis on the development of a correlated wavefunction
method of dispersion coefficients for intermolecular interactions was
supervised by Professor Bernd A. Hess. In 1996 he joined as a post-
doctoral research associate and since 1997 as Forskningsadjunkt
(Assistant Research Professor) in the theoretical chemistry group at
Aarhus University, Denmark, where he worked with Poul Jergensen on
the development of an integral-direct coupled-cluster response code for
the calculation of nonlinear optical properties such as first and second
hyperpolarizabilities and two- and multiphoton transition moments.
From 1999 to 2000 he has been a researcher at the Institute of
Nanotechnology (INT) of the Forschungszentrum Karlsruhe, Ger-
many, in the group of Professor Reinhart Ahlrichs. In 2000 he became
head of an independent junior research group at the INT, and in 2003
he received his habilitation (venia legendi) in theoretical chemistry at
the Universitat Karlsruhe (TH). During that time he started to work
on the development of approximate coupled-cluster response methods
for electronic spectra and excited states in large molecules and became
involved in the TURBOMOLE program package. In 2004 he was
awarded the Hans G. A. Hellmann Prize of the Arbeitsgemeinschaft
Theoretische Chemie. Since 2006, he has been Associate Professor for
Theoretical Chemistry at the Ruhr-University Bochum, Germany.

Wim Klopper was born in Opperdoes, The Netherlands,
in 1961. He studied Chemistry at the University of Leiden

66

(1979—1982) and at the Ruhr-Universitat Bochum (1982—1985).
He received his Ph.D. degree in 1989 from the Ruhr-
Universitat Bochum under the supervision of Werner Kutzelnigg.
He was a postdoctoral research associate in the groups of
Jan Almlof (University of Minnesota, 1991) and Hans Peter
Lithi (ETH Zurich, 1993—1996) and he spent three years
(1996—1999) at the University of Oslo as Fersteamanuensis
(Associate Professor) and three years (1999—2002) at the
University of Utrecht as Akademie Onderzoeker of the Royal
Netherlands Academy of Arts and Sciences (KNAW). In
September 2002 he accepted the position of Professor of
Theoretical Chemistry at the Universitit Karlsruhe (TH),
and in 2003 he became Group Leader at the Institute of
Nanotechnology at the Forschungszentrum Karlsruhe.
(Since 2009, the Universitat Karlsruhe (TH) and the For-
schungszentrum Karlsruhe have merged into the Karlsruhe
Institute of Technology.) He has received the Venia Legendi
for Theoretical Chemistry (ETH Zurich, 1998), the Hans G.
A. Hellmann Prize of the Arbeitsgemeinschaft Theoretische
Chemie (1999), and the Medal of the International Academy
of Quantum Molecular Science (1999). He became Member
of the International Academy of Quantum Molecular Science
in 2011. His research interests include further develop-
ment of explicitly correlated electronic structure methods
and accurate computation of molecular energies as well as
properties.

Born in 1974 in Germany, Andreas Kohn received his Ph.D.
degree in Chemistry in 2003 under the supervision of Professor
R. Ahlrichs at the University of Karlsruhe. After postdoctoral
work with Christof Hattig at the Forschungszentrum Karlsruhe
(2003) and Professor J. Olsen and Professor P. Jorgensen at the
University of Aarhus, Denmark (2003—2005), he moved in 2005
to the University of Mainz, where he started an independent
young researcher’s group in theoretical chemistry and received in
2011 the venia legendi in physical chemistry. Since 2011 he has
been a Heisenberg fellow of the German Research Foundation
(Deutsche Forschungsgemeinschaft). His research interests are
the development of advanced coupled-cluster methods, particu-
larly with respect to explicit electron-correlation and multirefer-
ence extensions, and development and application of methods
for photophysical and photochemical problems. For his research
he recently received the Hans G. A. Hellmann prize of the
Arbeitsgemeinschaft Theoretische Chemie (2010) and the
medal of the International Academy of Quantum Molecular
Sciences (2011).

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

David P. Tew was born in the United Kingdom in 1977. He
studied Natural Sciences at Trinity College, Cambridge, where he
later also received his Ph.D. degree for work on wide ampli-
tude motion in quantum molecular dynamics under the supervi-
sion of Professor N. C. Handy (2003). In 2004 he moved to
the Univeristy of Karlsruhe, Germany, to work with Professor
W. Klopper on explicitly correleted coupled-cluster theory, first as a
Marie-Curie Fellow and then as an independent researcher. After
S years in Karlsruhe he obtained a Royal Society University Research
Fellowship and moved to the Centre for Computational Chemistry
at Bristol University, UK., where he now continues to persue his
research interests, developing accurate and eficient methods for
both electronic structure and quantum molecular dynamics.

ACKNOWLEDGMENT

C.H. and W.K. thank the Deutsche Forschungsgemeinschaft
(DFG) for support through the Priority Programme 114S:
“Modern and universal first-principles methods for many-electron
systems in chemistry and physics”. W.K. also thanks the DFG for
support through the Center for Functional Nanostructures
(CFN, project no. C3.3). AK. thanks the DFG for support
through grant no. KO 2337/2. D.P.T. thanks the Royal Society
for support through the University Research Fellowship scheme.

REFERENCES

(1) Kutzelnigg, W. Theory of Electron Correlation. In Explicitly
Correlated Wave Functions in Chemistry and Physics— Theory and Appli-
cations; Rychlewski, J., Ed.; Kluwer Academic Publishers: Norwell, MA,
2003; p 3.

(2) Tew, D. P,; Klopper, W.; Helgaker, T. J. Comput. Chem. 2007,
28, 1307.

(3) McWeeny, R. Rev. Mod. Phys. 1960, 32, 33S.

(4) Kutzelnigg, W.; Del Re, G.; Berthier, G. Phys. Rev. 1968, 172, 49.

(5) Lowdin, P.-O. Adv. Chem. Phys. 1959, 2, 207.

(6) Pople, J. A.; Binkley, J. S. Mol. Phys. 1975, 29, 599.

(7) Hollett., J. W.; McKemmish, L. K.; Gill, P. M. W. . Chem. Phys.
2011, 134, 224103.

(8) Hartree, D. R. Math. Proc. Cambridge Philos. Soc. 1928, 24, 89.

(9) Hartree, D. R. Math. Proc. Cambridge Philos. Soc. 1928, 24, 111.

(10) Slater, J. C. Phys. Rev. 1930, 38, 210.

(11) Fock, V. Z. Phys. 1930, 61, 126.

(12) NIST Atomic Spectra Database, Version 3.0.3; available at
http://physics.nist.gov/PhysRefData/ASD.

(13) Kato, T. Commun. Pure Appl. Math. 1957, 10, 151.

(14) Fournais, S.; Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof,
T.; Serensen, T. @. Commun. Math. Phys. 2005, 25§, 183.

(15) Pack, R. T.; Byers Brown, W. J. Chem. Phys. 1966, 4S5, 556.

67

(16) (a) Kutzelnigg, W.; Morgan, J. D., III J. Chem. Phys. 1992, 96,
4484. (b) Kutzelnigg, W.; Morgan, J. D., I ]. Chem. Phys. 1992, 97, 8821E.

(17) Morgan, J. D., III; Kutzelnigg, W. J. Phys. Chem. 1993, 97, 2425.

(18) Kutzelnigg, W.; Morgan, J. D., III Z. Phys. D 1996, 36, 197.

(19) Kutzelnigg, W. Angew. Chem., Int. Ed. 1996, 35, 572.

(20) Jastrow, R. Phys. Rev. 1958, 98, 1479.

(21) Fock, V. Det Kngl. Norske Vidensk. Selsk. Forh. 1958, 31, 138.

(22) Fock, V. Det Kngl. Norske Vidensk. Selsk. Forh. 1958, 31, 145.

(23) Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T.; Stremnitzer,
H. Phys. Rev. Lett. 1992, 68, 3857.

(24) Nagy, A; Sen, K. D. J. Chem. Phys. 2001, 115, 6300.

(25) Tew, D. P. J. Chem. Phys. 2008, 129, 014104.

(26) Nagy, A.; Amovilli, C. Phys. Rev. A 2010, 82, 042510.

(27) March, N. H.; Howard, I. A,; Holas, A.; Senet, P.; Van Doren,
V. E. Phys. Rev. A 2000, 63, 012520.

(28) Tew, D. P,; Klopper, W. Mol. Phys. 2010, 108, 315.

(29) Bokhan, D.; Ten-no, S.; Noga, J. Phys. Chem. Chem. Phys. 2008,
10, 3320.

(30) Klahn, B; Bingel, W. A. Theor. Chim. Acta 1977, 44, 9.

(31) Klahn, B.; Bingel, W. A. Theor. Chim. Acta 1977, 44, 27.

(32) Boys, S. F. Proc. R. Soc. London, Ser. A 1950, 200, 542.

(33) Schwartz, C. Phys. Rev. 1962, 126, 1015.

(34) Klahn, B.; Morgan, J. D., III J. Chem. Phys. 1984, 81, 410.

(35) Hill, R. N. J. Chem. Phys. 1985, 83, 1173.

(36) Klopper, W.; Kutzelnigg, W. J. Mol. Struct.. THEOCHEM 1986,
13§, 339.

(37) Davies, C. L;; Jensen, H.-J. A.; Monkhorst, H. J. J. Chem. Phys.
1984, 80, 840.

(38) Carroll, D. P,; Silverstone, H. J.; Metzger, R. M. J. Chem. Phys.
1979, 71, 4142.

(39) Martin, J. M. L. Chem. Phys. Lett. 1996, 259, 669.

(40) Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. J. Chem. Phys.
1997, 106, 9639.

(41) Halkier, A.; Helgaker, T.; Jorgensen, P.; Klopper, W.; Koch, H.;
Olsen, J.; Wilson, A. K. Chem. Phys. Lett. 1998, 286, 243.

(42) Truhlar, D. G. Chem. Phys. Lett. 1998, 294, 45.

(43) Chuang, Y.-Y,; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 651.

(44) Lee, J. S;; Park, S. Y. J. Chem. Phys. 2000, 112, 10746.

(45) Varandas, A. J. C. J. Chem. Phys. 2000, 113, 8880.

(46) Gdanitz, R. J. J. Chem. Phys. 2000, 113, S14S.

(47) Klopper, W. Mol. Phys. 2001, 99, 481.

(48) Huh, S. B; Lee, J. S. J. Chem. Phys. 2003, 118, 3035.

(49) Valeev, E. F,; Allen, W. D.; Hernandez, R.; Sherrill, C. D.;
Schaefer, H. F., III J. Chem. Phys. 2003, 118, 8594.

(50) Schwenke, D. W. J. Chem. Phys. 20085, 122, 014107.

(S1) Flores, ]. R;; Slupski, R.; Jankowski, K. J. Chem. Phys. 2006, 124,
104107.

(52) Bakowies, D. J. Chem. Phys. 2007, 127, 084105.

(53) Bakowies, D. J. Chem. Phys. 2007, 127, 164109.

(54) (a) Varandas, A. J. C. J. Phys. Chem. A 2010, 114, 8505. (b)
Varandas, A. J. C. J. Phys. Chem. A 2011, 115, 2668E.

(S5) Kutzelnigg, W. Phys. Chem. Chem. Phys. 2008, 10, 3460.

(56) Feller, D.; Peterson, K. A; Hill, J. G. J. Chem. Phys. 2011,
135, 044102.

(57) Kutzelnigg, W. Int. J. Quantum Chem. 1994, S1, 447.

(58) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293.

(59) Barnes, E. C.; Petersson, G. A. J. Chem. Phys. 2010, 132, 114111.

(60) Halkier, A.; Helgaker, T.; Klopper, W.; Jorgensen, P.; Csdszdr,
A. G. Chem. Phys. Lett. 1999, 310, 38S.

(61) Galek, P. T. A;; Handy, N. C,; Cohen, A. J.; Chan, G. K.-L.
Chem. Phys. Lett. 2005, 404, 156.

(62) Nyden, M. R; Petersson, G. A. J. Chem. Phys. 1981, 75, 1843.

(63) Petersson, G. A.; Nyden, M. R. J. Chem. Phys. 1981, 75, 3423.

(64) Vogiatzis, K. D.; Barnes, E. C.; Klopper, W. Chem. Phys. Lett.
2011, 503, 157.

(65) Dunning, T. H,, Jr.; Peterson, K. A.; Woon, D. E. Basis sets:
correlation-consistent sets. In Encyclopedia of Computational Chemistry;
Schleyer, P. v. R,, Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A,

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

Schaefer, H. F., III, Schreiner, P. R., Eds.; Wiley: New York, 1998; Vol. 1,
p 88.

(66) Klopper, W.; Samson, C. C. M.; Tarczay, G.; Csaszar, A. G.
J. Comput. Chem. 2001, 22, 1306.

(67) Feller, D.; Peterson, K. A.; Crawford, T. D. J. Chem. Phys. 2006,
124, 054107.

(68) Helgaker, T.; Jorgensen, P.; Olsen, J. Molecular Electronic-
Structure Theory; John Wiley & Sons: Chichester, 2000.

(69) Helgaker, T.; Ruden, T. A.; Jorgensen, P.; Olsen, J.; Klopper, W.
J. Phys. Org. Chem. 2004, 17, 913.

(70) Helgaker, T.; Klopper, W.; Tew, D. P. Mol. Phys. 2008,
106, 2107.

(71) Musial, M; Bartlett, R. J. Rev. Mod. Phys. 2007, 79, 291.

(72) Klopper, W.; Schiitz, M.; Liithi, H. P.; Leutwyler, S. J. Chem.
Phys. 1995, 103, 1085.

(73) Rychlewski, J.; Komasa, J. Explicitly Correlated Functions in
Variational Calculations. In Explicitly Correlated Wave Functions in
Chemistry and Physics—Theory and Applications; Rychlewski, J., Ed,;
Kluwer Academic Publishers: Norwell, MA, 2003; p 91.

(74) Klopper, W.; Noga, J. Linear R12 Terms in Coupled Cluster
Theory. In Explicitly Correlated Wave Functions in Chemistry and Physics
—Theory and Applications; Rychlewski, J., Ed.; Kluwer Academic
Publishers: Norwell, MA, 2003; p 149.

(75) Bukowski, R.; Jeziorski, B.; Szalewicz, K. Gaussian Geminals in
Coupled-Cluster and Many-Body Perturbation Theories. In Explicitly
Correlated Wave Functions in Chemistry and Physics—Theory and Appli-
cations; Rychlewski, J., Ed.; Kluwer Academic Publishers: Norwell, MA,
2003; p 18S.

(76) Hylleraas, E. A. Z. Phys. 1929, 54, 347.

(77) Helgaker, T.; Klopper, W. Theor. Chem. Acc. 2000, 103, 180.

(78) Slater, J. C. Phys. Rev. 1928, 31, 333.

(79) Hartree, D. R.; Ingman, A. L. Mem. Proc. Manchester Lit. Philos.
Soc. 1933, 77, 69.

(80) Jolly, P. Int. J. Quantum Chem. 1979, 16, 1149.

(81) Koga, T. J. Chem. Phys. 1990, 93, 3720.

(82) Koga, T. J. Chem. Phys. 1991, 94, 5530.

(83) Koga, T. J. Chem. Phys. 1992, 96, 1276.

(84) Klopper, W. rj,-Dependent Wavefunctions. In Encyclopedia of
Computational Chemistry; von Ragué Schleyer, P., Allinger, N. L., Clark,
T., Gasteiger, J., Kollmann, P. A,, Schaefer, H. F., III, Schreiner, P. R,
Eds.; Wiley: Chichster, 1998; p 2351.

(85) Hiylleraas, E. A. Adv. Quantum Chem. 1964, 1, 1.

(86) Pekeris, C. L. Phys. Rev. 1958, 112, 1649.

(87) Pekeris, C. L. Phys. Rev. 1959, 115, 1216.

(88) Pekeris, C. L. Phys. Rev. 1962, 126, 1470.

(89) Kinoshita, T. Phys. Rev. 1957, 10S, 1490.

(90) Kinoshita, T. Phys. Rev. 1959, 1185, 366.

(91) Schwartz, H. M. Phys. Rev. 1960, 120, 483.

(92) Schwartz, H. M. Phys. Rev. 1963, 130, 1029.

(93) Schwartz, C. Phys. Rev. 1962, 128, 1146.

(94) Gronwall, T. H. Phys. Rev. 1937, 51, 655.

(95) Bartlett, J. H., Jr. Phys. Rev. 1937, S1, 661.

(96) Myers, C. R;; Umrigar, C. J.; Sethna, J. P,; Morgan, J. D., III
Phys. Rev. A 1991, 44, 5537.

(97) (a) Frankowski, K; Pekeris, C. L. Phys. Rev. 1966, 146, 46. (b)
Frankowski, K.; Pekeris, C. L. Phys. Rev. 1966, 150, 366E.

(98) Freund, D. E.; Huxtable, B. D.; Morgan, J. D., III Phys. Rev. A
1984, 29, 980.

(99) Morgan, J. D., III Theor. Chim. Acta 1986, 69, 181.

(100) Baker, J. D.; Freund, D. E.; Hill, R. N.; Morgan, J. D., III Phys.
Rev. A 1990, 41, 1247.

(101) Kleindienst, H.; Emrich, R. Int. ]. Quantum Chem. 1990,
37, 257.

(102) Drake, G. W. F. Nucl. Instrum. Methods Phys. Res. B 1988, 31, 7.

(103) Kleindienst, H.; Liichow, A.; Merckens, H.-P. Chem. Phys. Lett.
1994, 218, 441.

(104) Drake, G. W. F.; Yan, Z.-C. Chem. Phys. Lett. 1994, 229, 486.

(10S) Drake, G. W. F. Phys. Scr. 1999, T83, 83.

68

(106) Drake, G. W. F.; Cassar, M. M; Nistor, R. A. Phys. Rev. A 2002,
65, 054501.

(107) Schwartz, C. Int. . Mod. Phys. E 2006, 15, 877.

(108) Korobov, V. 1. Phys. Rev. A 2002, 66, 024501.

(109) Nakashima, H.; Nakatsuji, H. J. Chem. Phys. 2007, 127,
224104.

(110)

(111)

(112)

(113)
90, 1600.

(114) Korobov, V. 1. Phys. Rev. A 2000, 61, 064503.

(115) Kurokawa, Y. L; Nakashima, H.; Nakatsuji, H. Phys. Chem.
Chem. Phys. 2008, 10, 4486.

(116) Frost, A. A.; Braunstein, J. J. Chem. Phys. 1951, 19, 1133.

(117) Roothaan, C. C.]J.; Weiss, A. W. Rev. Mod. Phys. 1960, 32, 194.

(118) Kotos, W.; Roothaan, C. C.].; Sack, R. A. Rev. Mod. Phys. 1960,
32, 178.

(119)

(120)

Pachucki, K.; Komasa, J. Chem. Phys. Lett. 2004, 389, 209.
Thakkar, A. J.; Koga, T. Phys. Rev. A 1994, 50, 854.
Thakkar, A. J.; Koga, T. Theor. Chem. Acc. 2003, 109, 36.
Sims, J. S.; Hagstrom, S. A. Int. . Quantum Chem. 2002,

Lowdin, P.-O. Rev. Mod. Phys. 1960, 32, 328.
Grein, F.; Tseng, T. J. Chem. Phys. Lett. 1970, 7, S06.

(121) Hultgren, G.; Kern, C. Chem. Phys. Lett. 1971, 10, 233.

(122) (a) Power,]. D.; Somorjai, R. L. Phys. Rev. A 1972, 5, 2401. (b)
Power, J. D.; Somorjai, R. L. Phys. Rev. A 1972, 6, 1996E.

(123) Winkler, P.; Porter, R. N. J. Chem. Phys. 1974, 61, 2038.

(124) Thakkar, A. J.; Smith, V. H,, Jr. Phys. Rev. A 1977, 15, 1.

(125) James, H. M.; Coolidge, A. S. Phys. Rev. 1936, 49, 688.

(126) Burke, E. A. Phys. Rev. 1963, 130, 1871.

(127) King, F. W.; Bergsbaken, M. P. J. Chem. Phys. 1990, 93, 2570.

(128) Liichow, A; Kleindienst, H. Chem. Phys. Lett. 1992, 197, 105.

(129) Yan, Z.-C; Drake, G. W. F. Phys. Rev. A 1995, 52, 3711.

(130) (a) Yan, Z.-C; Nortershauser, W.; Drake, G. W. F. Phys. Rev.
Lett. 2008, 100, 243002. (b) Yan, Z.-C.; Nortershauser, W.; Drake,
G. W. F. Phys. Rev. Lett. 2009, 102, 249903E.

(131) Puchalski, M.; Pachucki, K. Phys. Rev. A 2006, 73, 022503.

(132) Puchalski, M.; Kedziera, D.; Pachucki, K. Phys. Rev. A 2009,
80, 032521.

(133) Larsson, S. Phys. Rev. 1968, 169, 49.

(134) Sims, J. S.; Hagstrom, S. Phys. Rev. A 1971, 4, 908.

(135) Sims, J. S; Hagstrom, S. A. Phys. Rev. A 2009, 80, 052507.

(136) Thakkar, A. J.; Koga, T.; Tanabe, T.; Teruya, H. Chem. Phys.
Lett. 2002, 366, 95.

(137) Kleindienst, H.; Liichow, A. Int. J. Quantum Chem. 1993, 45, 87.

(138) Kleindienst, H.; Biisse, G.; Liichow, A. Int. J. Quantum Chem.
199§, 53, 575.

(139) Busse, G.; Kleindienst, H.; Liichow, A. Int. J. Quantum Chem.
1998, 66, 241.

(140) Ohrn, Y.; Nordling, J. J. Chem. Phys. 1963, 39, 1864.

(141) Burke, E. A. Phys. Rev. 1963, 130, 1871.

(142) Hinze, J.; Pitzer, K. S. J. Chem. Phys. 1964, 41, 3484.

(143) Szasz, L.; Byrne, J. Phys. Rev. 1967, 158, 34.

(144) Perkins, J. F. J. Chem. Phys. 1968, 48, 1985.

(145) Ho, Y. K; Page, B. A. P.’J. Comput. Phys. 1975, 17, 122.

(146) Fromm, D. M.; Hill, R. N. Phys. Rev. A 1987, 36, 1013.

(147) Remiddi, E. Phys. Rev. A 1991, 44, 5492.

(148) Harris, F. E. Phys. Rev. A 1997, S5, 1820.

(149) Yan, Z.-C.; Drake, G. W. F. J. Phys. B: At. Mol. Opt. Phys. 1997,
30, 4723.

(150) Pelzl, P. J.; King, F. W. Phys. Rev. E 1998, 57, 7268.

(151) Zotev, V. S.; Rebane, T. K. Phys. Rev. A 2002, 65, 062501.

(152) Frolov, A. M,; Bailey, D. H. J. Phys. B: At. Mol. Opt. Phys. 2003,
36, 1857.

(153) (a) Frolov, A. M. J. Phys. B: At. Mol. Opt. Phys. 2004, 37,2103.
(b) Frolov, A. M. J. Phys. B: At. Mol. Opt. Phys. 2008, 41, 059801E.

(154) Pachucki, K.; Puchalski, M.; Remiddi, E. Phys. Rev. A 2004,
70, 032502.

(155) Harris, F. E. Int. J. Quantum Chem. 2005, 102, 940.

(156) Sims, ]. S.; Hagstrom, S. A. J. Phys. B: At. Mol. Opt. Phys. 2004,
37, 1519.

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

(157) Sims, J. S.; Hagstrom, S. A. J. Phys. B: At. Mol. Opt. Phys. 2007,
40, 1575.

(158) Ruiz, M. B. J. Math. Chem. 2009, 46, 24.

(159) Ruiz, M. B. J. Math. Chem. 2009, 46, 1322.

(160) Harris, F. E. Phys. Rev. A 2009, 79, 032517.

(161) Albert, V. V.; Guevara, N. L.; Sabin, J. R.; Harris, F. E. Int. J.
Quantum Chem. 2009, 109, 3791.

(162) Puchalski, M.; Pachucki, K. Phys. Rev. A 2010, 81, 05250S.

(163) Bubin, S.; Komasa, J.; Stanke, M.; Adamowicz, L. J. Chem.
Phys. 2009, 131, 234112.

(164) Sims, J. S, Hagstrom, S. A. Phys. Rev. A 2011, 83, 032518.

(165) Stanke, M.; Komasa, J.; Bubin, S.; Adamowicz, L. Phys. Rev. A
2009, 80, 022514.

(166) Sharkey, K. L.; Adamowicz, L. J. Chem. Phys. 2011,
134, 094104.

(167) Bubin, S.; Adamowicz, L. Phys. Rev. A 2011, 83, 02250S.

(168) Sharkey, K. L.; Bubin, S.; Adamowicz, L. J. Chem. Phys. 2010,
132, 184106.

(169) Clary, D. C.; Handy, N. C. Phys. Rev. A 1976, 14, 1607.

(170) Davidson, E. R;; Hagstrom, S. A.; Chakravorty, S. J.; Umar,
V. M,; Fischer, C. F. Phys. Rev. A 1991, 44, 7071.

(171) Chakravorty, S. J.; Gwaltney, S. R;; Davidson, E. R.; Parpia,
F. A; Fischer, C. F. Phys. Rev. A 1993, 47, 3649.

(172) Klopper, W.; Bachorz, R. A.; Tew, D. P.; Hattig, C. Phys. Rev. A
2010, 81, 022503.

(173) de Oliveira, G.; Martin, J. M. L.; de Proft, F.; Geerlings, P. Phys.
Rev. A 1999, 60, 1034.

(174) Clary, D. C.; Handy, N. C. Chem. Phys. Lett. 1977, 51, 483.

(175) Clary, D. C. Mol. Phys. 1977, 34, 793.

(176) Bande, A.; Nakashima, H.; Nakatsuji, H. Chem. Phys. Lett.
2010, 496, 347.

(177) James, H. M.; Coolidge, A. S. J. Chem. Phys. 1933, 1, 825.

(178) James, H. M.; Coolidge, A. S. Phys. Rev. 1933, 43, 588.

(179) James, H. M.; Coolidge, A. S. J. Chem. Phys. 1935, 3, 129.

(180) Kotos, W.; Roothaan, C. C. J. Rev. Mod. Phys. 1960, 32, 219.

(181) Kotos, W.; Wolniewicz, L. J. Chem. Phys. 1964, 41, 3663.

(182) Kotos, W.; Wolniewicz, L. J. Chem. Phys. 1965, 43, 2429.

(183) Kotos, W.; Wolniewicz, L. J. Chem. Phys. 1966, 45, 509.

(184) Kurokawa, Y.; Nakashima, H.; Nakatsuji, H. Phys. Rev. A 2008,
72, 062502.

(185) Nakatsuji, H.; Nakashima, H.; Kurokawa, Y.; Ishikawa, A. Phys.
Rev. Lett. 2007, 99, 240402.

(186) Cencek, W.; Kutzelnigg, W. J. Chem. Phys. 1996, 10S, 5878.

(187) Cencek, W.; Szalewicz, K. Int. ]. Quantum Chem. 2008, 108, 2191.

(188) Piszczatowski, K; 1ach, G.; Przybytek, M.; Komasa, J;
Pachucki, K; Jeziorski, B. J. Chem. Theory Comput. 2009, S, 3039.

(189) Preiskorn, A.; Woznicki, W. Chem. Phys. Lett. 1982, 86, 369.

(190) Preiskorn, A.; Woznicki, W. Mol. Phys. 1984, 52, 1291.

(191) Urdaneta, C.; Largo-Cabrerizo, A; Lievin, J.; Lie, G. C;
Clementi, E. J. Chem. Phys. 1988, 88, 2091.

(192) Frye, D.; Preiskorn, A,; Lie, G. C.; Clementi, E. J. Chem. Phys.
1990, 92, 4948.

(193) Clementi, E.; Corongiu, G.; Bahattacharya, D.; Feuston, B.;
Frye, D.; Preiskorn, A.; Rizzo, A.; Xue, W. Chem. Rev. 1991, 91, 679.

(194) Preiskorn, A.; Zurawski, B. Int. J. Quantum Chem. 1985, 27, 641.

(195) Kutzelnigg, W.; Jaquet, R. Phil. Trans. R. Soc. A 2006,
364, 2855S.

(196) Wolniewicz, L. J. Chem. Phys. 1995, 103, 1792.

(197) Sims, J. S.; Hagstrom, S. A. J. Chem. Phys. 2006, 124, 094101.

(198) Pachucki, K. Phys. Rev. A 2010, 82, 032509.

(199) Alexander, S. A.; Monkhorst, H. J.; Roeland, R.; Szalewicz, K.
J. Chem. Phys. 1990, 93, 4230.

(200) Rohse, R.; Klopper, W.; Kutzelnigg, W. J. Chem. Phys. 1993,
99, 8830.

(201) Polyansky, O. L.; Prosmiti, R.; Klopper, W.; Tennyson, J. Mol.
Phys. 2000, 98, 261.

(202) Rohse, R; Kutzelnigg, W.; Jaquet, R.; Klopper, W. J. Chem.
Phys. 1994, 101, 2231.

69

(203) Cencek, W.; Komasa, J.; Rychlewski, J. Chem. Phys. Lett. 1995,
246, 417.

(204) Cencek, W.; Rychlewski, J.; Jaquet, R.; Kutzelnigg, W. J. Chem.
Phys. 1998, 108, 2831.

(205) Bachorz, R. A.; Cencek, W.; Jaquet, R.; Komasa, J. J. Chem.
Phys. 2009, 131, 024108.

(206) Pavanello, M.; Adamowicz, L. J. Chem. Phys. 2009, 130, 034104.

(207) Pavanello, M; Tung, W.-C.; Leonarski, F.; Adamowicz, L.
J. Chem. Phys. 2009, 130, 074108S.

(208) Kutzelnigg, W. Theor. Chim. Acta 1988, 68, 44S.

(209) Boys, S. F. Proc. R. Soc. London, Ser. A 1960, 258, 402.

(210) Singer, K. Proc. R. Soc. London, Ser. A 1960, 258, 412.

(211) Singer, K; Longstaff, J. V. L. Proc. R. Soc. London, Ser. A 1960,
258, 421.

(212) Longstaff, J. V. L.; Singer, K. Theor. Chim. Acta 1964, 2, 265.

(213) Longstaff, J. V. L,; Singer, K. J. Chem. Phys. 1965, 42, 801.

(214) (a) Lester, W. A,, Jr.; Krauss, M. J. Chem. Phys. 1964, 41, 1407.
(b) Lester, W. A,, Jr.; Krauss, M. J. Chem. Phys. 1965, 42, 2990E.

(215) Lester, W. A, Jr.; Krauss, M. J. Chem. Phys. 1966, 44, 207.

(216) King, H. F. J. Chem. Phys. 1967, 46, 705.

(217) Prendergast, D.; Nolan, M.; Filippi, C.; Fahy, S.; Greer, J. C.
J. Chem. Phys. 2001, 1185, 1626.

(218) Salmon, L.; Poshusta, R. D. J. Chem. Phys. 1973, 59, 3497.

(219) Karunakaran, K. M.; Christoffersen, R. E. J. Chem. Phys. 1975,
62, 1992.

(220) Pan, K.-C; King, H. F. J. Chem. Phys. 1970, 53, 4397.

(221) Pan, K.-C,; King, H. F. J. Chem. Phys. 1972, 56, 4667.

(222) Adamowicz, L.; Sadlej, A. J. J. Chem. Phys. 1977, 67, 4298.

(223) Adamowicz, L.; Sadlej, A. J. J. Chem. Phys. 1978, 69, 3992.

(224) Jeziorski, B.; Szalewicz, K. Phys. Rev. A 1979, 19, 2360.

(225) Szalewicz, K; Adamowicz, L.; Sadlej, A. J. Chem. Phys. Lett.
1979, 61, 548.

(226) Chatasinski, G.; Jeziorski, B.; Andzelm, J.; Szalewicz, K. Mol.
Phys. 1977, 33, 971.

(227) Szalewicz, K; Jeziorski, B. Mol. Phys. 1979, 38, 191.

(228) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994,
94, 1887.

(229) Szalewicz, K.; Patkowski, K. Jeziorski, B. Intermolecular
Interactions Via Pertubation Theory: from Diatoms to Biomolecules.
In Intermolecular Forces and Clusters II, Structure and Bonding; Wales, D.,
Ed.; Springer: Berlin, 2005; Vol. 116, p 43.

(230) Szalewicz, K.; Jeziorski, B.; Monkhorst, H. J.; Zabolitzky, J. G.
Chem. Phys. Lett. 1982, 91, 169.

(231) Rychlewski, J. Int. J. Quantum Chem. 1994, 49, 477.

(232) Stanke, M.; Kedziera, D.; Molski, M.; Bubin, S.; Barysz, M.;
Adamowicz, L. Phys. Rev. Lett. 2006, 96, 233002.

(233) Cafiero, M.; Adamowicz, L. Chem. Phys. Lett. 2001, 335, 404.

(234) Pavanello, M.; Tung, W.-C.; Adamowicz, L. J. Chem. Phys.
2009, 131, 184106.

(235) Cencek, W.; Rychlewski, J. Chem. Phys. Lett. 2000, 320, 549.

(236) Tung, W.-C.; Pavanello, M.; Adamowicz, L. J. Chem. Phys.
2011, 134, 064117.

(237) Bubin, S.; Adamowicz, L. J. Chem. Phys. 2004, 121, 6249.

(238) Bubin, S.; Stanke, M.; Adamowicz, L. J. Chem. Phys. 2009,
131, 044128.

(239) Tung, W.-C; Pavanello, M.; Adamowicz, L. J. Chem. Phys.
2010, 133, 124106.

(240) Cencek, W.; Komasa, J.; Pachucki, K.; Szalewicz, K. Phys. Rev.
Lett. 2005, 95, 233004

(241) Przybytek, M.; Cencek, W.; Komasa, J.;1ach, G.; Jeziorski, B.;
Szalewicz, K. Phys. Rev. Lett. 2010, 104, 183003.

(242) Kinghorn, D. B.; Poshusta, R. D. Int. J. Quantum Chem. 1997,
62,223.

(243) Pachucki, K.; Komasa, J. Phys. Rev. Lett. 2004, 92, 213001.

(244) Cencek, W.; Rychlewski, J. . Chem. Phys. 1993, 98, 1252.

(245) Cencek, W.; Rychlewski, J. J. Chem. Phys. 1995, 102, 2533.

(246) Kozlowski, P. M.; Adamowicz, L. J. Chem. Phys. 1991, 95,
6681.

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

(247) Kozlowski, P. M.; Adamowicz, L. . Chem. Phys. 1992, 96,
9013.

(248) Kozlowski, P. M.; Adamowicz, L. . Chem. Phys. 1992, 97,
5063.

(249) Kozlowski, P. M.; Adamowicz, L. J. Comput. Chem. 1992, 13, 602.

(250) Kozlowski, P. M.; Adamowicz, L. Phys. Rev. A 1993, 48, 1903.

(251) Szalewicz, K; Jeziorski, B.; Monkhorst, H. J.; Zabolitzky, J. G.
J. Chem. Phys. 1983, 78, 1420.

(252) Szalewicz, K; Jeziorski, B.; Monkhorst, H. J.; Zabolitzky, J. G.
J. Chem. Phys. 1983, 79, 5543.

(253) Jeziorski, B.; Monkhorst, H. J.; Szalewicz, K.; Zabolitzky, J. G.
J. Chem. Phys. 1984, 81, 368.

(254) Szalewicz, K.; Zabolitzky, J. G.; Jeziorski, B.; Monkhorst, H. J.
J. Chem. Phys. 1984, 81, 2723.

(255) Wenzel, K. B.; Zabolitzky, J. G.; Szalewicz, K.; Jeziorski, B.;
Monkhorst, H. J. J. Chem. Phys. 1986, 85, 3964.

(256) Sinanogly, O. J. Chem. Phys. 1962, 36, 706.

(257) Sinanogly, O. J. Chem. Phys. 1962, 36, 3198.

(258) Szalewicz, K; Jeziorski, B. Mol. Phys. 2010, 108, 3091.

(259) Bukowski, R.; Jeziorski, B.; Szalewicz, K. J. Chem. Phys. 1999,
110, 4165.

(260) Cencek, W.; Jeziorska, M.; Bukowski, R.; Jaszunski, M.;
Jeziorski, B.; Szalewicz, K. J. Phys. Chem. A 2004, 108, 3211.

(261) Patkowski, K.; Cencek, W.; Jeziorska, M.; Jeziorski, B.; Szale-
wicz, K. J. Phys. Chem. A 2007, 111, 7611.

(262) Bukowski, R.; Jeziorski, B.; Szalewicz, K. J. Chem. Phys. 1994,
100, 1366.

(263) Przybytek, M.; Jeziorski, B.; Szalewicz, K. Int. J. Quantum
Chem. 2009, 109, 2872.

(264) Bukowski, R;; Jeziorski, B.; Rybak, S.; Szalewicz, K. J. Chem.
Phys. 1995, 102, 888.

(265) Williams, H. L.; Korona, T.; Bukowski, R.; Jeziorski, B.;
Szalewicz, K. Chem. Phys. Lett. 1996, 262, 431.

(266) Korona, T.; Williams, H. L.; Bukowski, R.; Jeziorski, B.;
Szalewicz, K. J. Chem. Phys. 1997, 106, 5109.

(267) Jeziorska, M.; Cencek, W.; Patkowski, K.; Jeziorski, B.;
Szalewicz, K. J. Chem. Phys. 2007, 127, 124303.

(268) Bukowski, R.; Jeziorski, B.; Szalewicz, K. J. Chem. Phys. 1998,
108, 7946.

(269) Persson, B. J.; Taylor, P. R. J. Chem. Phys. 1996, 105, 5915.

(270) Poshusta, R. D. Int. J. Quantum Chem. Symp. 1979, 13, 59.

(271) Poshusta, R. D. Int. J. Quantum Chem. 1983, 24, 65.

(272) Alexander, S. A.; Monkhorst, H.J.; Szalewicz, K. J. Chem. Phys.
1986, 85, 5821.

(273) Alexander, S. A.; Monkhorst, H.J.; Szalewicz, K. J. Chem. Phys.
1987, 87, 3976.

(274) Alexander, S. A.; Monkhorst, H. J.; Szalewicz, K. J. Chem. Phys.
1988, 89, 355.

(275) Schwegler, E.; Kozlowski, P. M.; Adamowicz, L. J. Comput.
Chem. 1993, 14, 566.

(276) Persson, B. J.; Taylor, P. R. Theor. Chem. Acc. 1997, 97, 240.

(277) Dahle, P.; Taylor, P. R. Theor. Chem. Acc. 2001, 105, 401.

(278) Dahle, P. Accurate calculations using explicitly correlated wave
functions; Ph.D. thesis, University of Oslo, 2004.

(279) Pulay, P. Chem. Phys. Lett. 1983, 100, 151.

(280) Pulay, P.; Szbe, S. Theor. Chim. Acta 1986, 69, 357.

(281) Sabe, S.; Pulay, P. J. Chem. Phys. 1987, 86, 914.

(282) Hampel, C.; Werner, H.-J. J. Chem. Phys. 1996, 104, 6286.

(283) Hetzer, G; Pulay, P.; Werner, H.-J. Chem. Phys. Lett. 1998,
290, 143.

(284) Schiitz, M.; Hetzer, G.; Stoll, H.; Werner, H.-J. J. Chem. Phys.
1999, 111, 5691.

(285) Klopper, W. Chem. Phys. Lett. 1991, 186, 583.

(286) Dahle, P.; Helgaker, T.; Jonsson, D.; Taylor, P. R. Phys. Chem.
Chem. Phys. 2007, 9, 3112.

(287) Valeev, E. F. J. Chem. Phys. 2006, 125, 244106.

(288) Tew, D. P.; Klopper, W.; Manby, F. R. J. Chem. Phys. 2007,
127, 174108S.

70

(289) Flores, J. R. Int. J. Quantum Chem. 2008, 108, 2172.

(290) Jeziorski, B.; Bukowski, R.; Szalewicz, K. Int. J. Quantum Chem.
1997, 61, 769.

(291) Polly, R.;; Werner, H.-].; Dahle, P.; Taylor, P. R. J. Chem. Phys.
2006, 124, 234107.

(292) Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916.

(293) Samson, C. C. M.; Klopper, W. Mol. Phys. 2004, 102, 2499.

(294) Foster, J. M; Boys, S. F. Rev. Mod. Phys. 1960, 32, 296.

(295) Yamaki, D.; Koch, H; Ten-no, S. J. Chem. Phys. 2007,
127, 144104.

(296) Hirschfelder, J. O. J. Chem. Phys. 1963, 39, 3145.

(297) Jankowski, K. Acta Phys. Pol. 1967, XXXII, 421.

(298) Jankowski, K. Acta Phys. Pol, A 1970, 37, 669.

(299) Boys, S. F.; Handy, N. C. Proc. R. Soc, London Ser. A 1969,
309, 209.

(300)
310, 43.

(301)
310, 63.

(302)
311, 309.

(303)

(304)

(305)

(306)

Boys, S. F.; Handy, N. C. Proc. R. Soc,, London Ser. A 1969,
Boys, S. F.; Handy, N. C. Proc. R. Soc,, London Ser. A 1969,
Boys, S. F.; Handy, N. C. Proc. R. Soc,, London Ser. A 1969,

Handy, N. C. Mol. Phys. 1971, 21, 817.
Handy, N. C. Mol. Phys. 1972, 23, 1.
Nooijen, M.; Bartlett, R. J. J. Chem. Phys. 1998, 109, 8232.
Ten-no, S. Chem. Phys. Lett. 2000, 330, 169.

(307) Ten-no, S. Chem. Phys. Lett. 2000, 330, 175.

(308) Zweistra, H. J. A.; Samson, C. C. M.; Klopper, W. Collect.
Czech. Chem. Commun. 2003, 68, 374.

(309) Luo, H.; Hackbusch, W.; Flad, H.-J. Mol. Phys. 2010, 108, 425.

(310) Luo, H. J. Chem. Phys. 2010, 133, 154109.

(311) Luo, H. J. Chem. Phys. 2011, 135, 024109.

(312) Luchow, A; Anderson, J. B. Annu. Rev. Phys. Chem. 2000,
$1, 501.

(313) Foulkes, W. M. C.; Mitas, L.; Needs, R. J.; Rajagopal, G. Re.
Mod. Phys. 2001, 73, 33.

(314) Needs, R. J.; Towler, M. D.; Drummond, N. D.; Rios, P. L. J.
Phys.: Condens. Matter 2010, 22, 023201.

(315) McMillan, W. L. Phys. Rev. 1965, 138, A442.

(316) Ceperley, D. M.; Chester, G. V.; Kalos, H. M. Phys. Rev. B
1977, 16, 3081.

(317) Schmidt, K. E.; Moskowitz, J. W. J. Chem. Phys. 1990,
93, 4172.

(318) Drummond, N. D.; Towler, M. D.; Needs, R. J. Phys. Rev. B
2004, 70, 235119.

(319) Grimm, R. C,; Storer, R. G. J. Comput. Phys. 1971, 7, 134.

(320) Anderson, J. B. J. Chem. Phys. 1975, 63, 1499.

(321) Anderson, J. B. J. Chem. Phys. 1976, 65, 4121.

(322) Williamson, A. J.; Hood, R. Q.; Grossmann, J. C. Phys. Rev.
Lett. 2001, 87, 246406.

(323) Korth, M,; Liichow, A.; Grimme, S. J. Phys. Chem. A 2008,
112, 2104.

(324) Aspuru-Guzik, A.; Akramine, O. E.; Grossman, J. C.; Lester,
W. A, Jr. ]. Chem. Phys. 2004, 120, 3049.

(325) Filippi, C.; Ziccheddu, M.; Buda, F. J. Chem. Theory Comput.
2009, 5, 2074.

(326) Valsson, O.; Filippi, C. J. Chem. Theory Comput. 2010, 6, 1275.

(327) Kedzuch, S.; Milko, M.; Noga, J. Int. J. Quantum Chem. 2008,
108, 929.

(328) Klopper, W.; Kutzelnigg, W. Chem. Phys. Lett. 1987, 134, 17.

(329) Ten-no, S. Chem. Phys. Lett. 2004, 398, S6.

(330) Ten-no, S. J. Chem. Phys. 2004, 121, 117.

(331) Klopper, W.; Kutzelnigg, W. J. Phys. Chem. 1990, 94, 5625.

(332) Kutzelnigg, W.; Klopper, W. J. Chem. Phys. 1991, 94, 1985.

(333) Termath, V.; Klopper, W.; Kutzelnigg, W. J. Chem. Phys. 1991,
94, 2002.

(334) Klopper, W.; Kutzelnigg, W. J. Chem. Phys. 1991, 94, 198S.

(335) Wind, P.; Helgaker, T.; Klopper, W. Theor. Chem. Acc. 2001,
106, 280.

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

(336) Wind, P.; Klopper, W.; Helgaker, T. Theor. Chem. Acc. 2002,
107, 173.

(337) Valeev, E. F. Chem. Phys. Lett. 2004, 395, 190.

(338) Bearpark, M. J; Handy, N. C.; Amos, R. D.; Maslen, P. E.
Theor. Chim. Acta 1991, 79, 361.

(339) Bearpark, M. ]J.; Handy, N. C. Theor. Chim. Acta 1992, 84, 115.

(340) Klopper, W.; Samson, C. C. M. J. Chem. Phys. 2002, 116, 6397.

(341) Valeev, E. F.; Schaefer, H. F., IIl J. Chem. Phys. 2000,
113, 3990.

(342) Valeev, E. F.; Allen, W. D.; Schaefer, H. ., III; Csészar, A. G. J.
Chem. Phys. 2001, 114, 2875.

(343) Tschumper, G. S.; Leininger, M. L.; Hoffman, B. C.; Valeev,
E. E,; Schaefer, H. F., III; Quack, M. J. Chem. Phys. 2002, 116, 690.

(344) Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. J. Am. Chem. Soc.
2002, 124, 10887.

(345) Valeev, E. F.; Janssen, C. L. J. Chem. Phys. 2004, 121, 1214.

(346) Sinnokrot, M. O.; Sherrill, C. D. J. Phys. Chem. A 2006,
110, 10656.

(347) Kenny, J. P.; Allen, W. D.; Schaefer, H. F., III J. Chem. Phys.
2003, 118, 7353.

(348) Jansen, C. L.; Kenny, J. P.; Nielsen, I. M. B.; Krishnan, M,;
Gurumoorthi, V.; Valeev, E. F.; Windus, T. L. J. Phys. Conf. Ser. 2006,
46, 220.

(349) Huang, X; Valeev, E. F; Lee, T. J. J. Chem. Phys. 2010,
133, 244108.

(350) Auer, A. A; Helgaker, T.; Klopper, W. J. Comput. Chem. 2002,
23, 420.

(351) Rosas-Garcia, V. M.; Crawford, T. D. J. Chem. Phys. 2003,
118, 2491.

(352) Klopper, W.; Rohse, R.; Kutzelnigg, W. Chem. Phys. Lett. 1991,
178, 4S5.

(353) Klopper, W.; Almlof, J. J. Chem. Phys. 1993, 99, 5167.

(354) Klopper, W.; Liithi, H. P.; Brupbacher, T.; Bauder, A. J. Chem.
Phys. 1994, 101, 9747.

(355) Klopper, W. J. Chem. Phys. 1995, 102, 6168.

(356) Klopper, W.; Schiitz, M. Ber. Bunsenges. Phys. Chem. 1995,
99, 469.

(357) Sulzbach, H. M.; Schaefer, H. F., III; Klopper, W.; Liithi, H. P.
J. Am. Chem. Soc. 1996, 118, 3519.

(358) Klopper, W.; Luthi, H. P. Chem. Phys. Lett. 1996, 262, 546.

(359) Klopper, W.; Quack, M.; Suhm, M. A. Chem. Phys. Lett. 1996,
261, 35.

(360) Klopper, W.; Quack, M.; Suhm, M. A. J. Chem. Phys. 1998,
108, 10096.

(361) Klopper, W.; Quack, M.; Suhm, M. A. Mol. Phys. 1998,
95, 108.

(362) Bachorz, R. A.; Klopper, W.; Gutowski, M. J. Chem. Phys.
2007, 126, 085101.

(363) Leist, R; Frey, J.; Ottiger, P.; Frey, H.-M.; Leutwyler, S.;
Bachorz, R.; Klopper, W. Angew. Chem., Int. Ed. 2007, 46, 7449.

(364) Klopper, W.; Rohse, R. Theor. Chim. Acta 1992, 83, 441.

(36S) Turbomole V6.3; Universitat Karlsruhe (TH) and Forschungs-
zentrum Karlsruhe GmbH, 1989—2007, TURBOMOLE GmbH, since
2007. Available from http://www.turbomole.com, 2011.

(366) Noga, J.; Kutzelnigg, W.; Klopper, W. Chem. Phys. Lett. 1992,
199, 497.

(367) Noga, J.; Kutzelnigg, W. J. Chem. Phys. 1994, 101, 7738.

(368) Klopper, W.; Noga, J. J. Chem. Phys. 1995, 103, 6127.

(369) Noga, J.; Tunega, D.; Klopper, W.; Kutzelnigg, W. J. Chem.
Phys. 1995, 103, 309.

(370) Noga, J.; Klopper, W.; Kutzelnigg, W. CC-R12: An Explicitly
Correlated Coupled-Cluster Theory. In Recent Advances in Coupled-
Cluster Methods; Bartlett, R. J., Ed.; World Scientific: Singapore, 1997; p 1.

(371) Noga, J.; Valiron, P. Chem. Phys. Lett. 2000, 324, 166.

(372) (a) Noga, J.; Valiron, P.; Klopper, W. J. Chem. Phys. 2001,
115, 2022. (b) Noga, J.; Valiron, P.; Klopper, W. J. Chem. Phys. 2001,
1185, S690E. (c) Noga, J.; Valiron, P.; Klopper, W. J. Chem. Phys. 2002,
117, 2989E.

71

(373) Noga, J.; Valiron, P. Mol. Phys. 2008, 103, 2123.

(374) Noga, J.; Klopper, W.; Helgaker, T.; Valiron, P. Dirccr12, a
direct explicitly-correlated coupled-cluster program, 2003; see http://www-
laog.obs.ujf-grenoble.fr/~valiron/ccr12.

(375) Miiller, H.; Kutzelnigg, W.; Noga, J.; Klopper, W. J. Chem.
Phys. 1997, 106, 1863.

(376) Tarczay, G.; Csiszar, A. G.; Klopper, W.; Szalay, V.; Allen,
W. D,; Schaefer, H. F., III J. Chem. Phys. 1999, 110, 11971.

(377) Aarset, K; Csaszar, A. G.; Sibert, E. L., II; Allen, W. D.;
Schaefer, H. F., III; Klopper, W.; Noga, J. J. Chem. Phys. 2000, 112, 4053.

(378) Klopper, W.; van Duijneveldt-van de Rijdt, J. G. C. M,; van
Duijneveldt, F. B. Phys. Chem. Chem. Phys. 2000, 2, 2227.

(379) Auer, A. A; Helgaker, T.; Klopper, W. Phys. Chem. Chem. Phys.
2000, 2, 2235.

(380) Klopper, W.; Noga, J. ChemPhysChem 2003, 4, 32.

(381) Rajamiki, T.; Noga, J.; Valiron, P.; Halonen, L. Mol. Phys.
2004, 102, 2259.

(382) Rajamiki, T.; Kallay, M.; Noga, J.; Valiron, P.; Halonen, L.
Mol. Phys. 2004, 102, 2297.

(383) Schuurman, M. S.; Muir, S. R.; Allen, W. D.; Schaefer, H. F., III
J. Chem. Phys. 2004, 120, 11586.

(384) Faure, A.; Valiron, P.; Wernli, M.; Wiesenfeld, L.; Rist, C.;
Noga, J.; Tennyson, J. J. Chem. Phys. 2008, 122, 221102.

(385) Fliegl, H,; GloB, A,; Welz, O.; Olzmann, M.; Klopper, W.
J. Chem. Phys. 2006, 125, 054312.

(386) Heckert, M.; Kéllay, M.; Tew, D. P.; Klopper, W.; Gauss, J.
J. Chem. Phys. 2006, 125, 044108.

(387) Tew, D. P.; Klopper, W.; Heckert, M.; Gauss, J. J. Phys. Chem.
A 2007, 111, 11242.

(388) Kahn, K; Granovsky, A. A,; Noga, J. J. Comput. Chem. 2007,
28, 547.

(389) Valiron, P.; Wernli, M.; Faure, A.; Wiesenfeld, L.; Rist, C.;
Kedzuch, S.; Noga, J. J. Chem. Phys. 2008, 129, 134306.

(390) Aguilera-Iparraguirre, J.; Boese, A. D.; Klopper, W.; Ruscic, B.
Chem. Phys. 2008, 346, S6.

(391) Aguilera-Iparraguirre, J.; Curran, H. J.; Klopper, W.; Simmie,
J. M. J. Phys. Chem. A 2008, 112, 7047.

(392) Czaké, G.; Nagy, B.; Tasi, G.; Somogyi, A.; Simunek,}.; Noga,
J.; Braams, B. J.; Bowman, J. M.; Csaszar, A. G. Int. J. Quantum Chem.
2009, 109, 2393.

(393) Troscompt, N.; Faure, A,; Wiesenfeld, L.; Ceccarelli, C.;
Valiron, P. A&’A 2009, 493, 687.

(394) Kahn, K; Kirtman, B.; Noga, J.; Ten-no, S. J. Chem. Phys.
2010, 133, 074106.

(395) Friesner, R. A. Chem. Phys. Lett. 1985, 116, 39.

(396) Martinez, T. J.; Mehta, A.; Carter, E. A. J. Chem. Phys. 1992,
97, 1876.

(397) Bokhan, D.; Bernadotte, S.; Ten-no, S. Chem. Phys. Lett. 2009,
469, 214.

(398) Samson, C. C. M.; Klopper, W.; Helgaker, T. Comput. Phys.
Commun. 2002, 149, 1.

(399) Weber, V.; Daul, C. Comput. Phys. Commun. 2004, 158, 1.

(400) Hofener, S.; Bischoff, F. A.; GloB, A.; Klopper, W. Phys. Chem.
Chem. Phys. 2008, 10, 3390.

(401) Ten-no, S. J. Chem. Phys. 2007, 126, 014108.

(402) Shiozaki, T. Chem. Phys. Lett. 2009, 479, 160.

(403) Hofener, S.; Tew, D. P.; Klopper, W.; Helgaker, T. Cherm. Phys.
2009, 356, 25.

(404) Manby, F. R. J. Chem. Phys. 2003, 119, 4607.

(40S) Ten-no, S.; Manby, F. R. J. Chem. Phys. 2003, 119, 5358.

(406) May, A. J.; Manby, F. R. J. Chem. Phys. 2004, 121, 4479.

(407) Adler, T. B.; Werner, H.-J.; Manby, F. R. J. Chem. Phys. 2009,
130, 054106.

(408) Klopper, W. J. Chem. Phys. 2004, 120, 10890.

(409) May, A. J; Valeev, E; Polly, R;; Manby, F. R. Phys. Chem.
Chem. Phys. 2005, 7, 2710.

(410) Werner, H.-J.; Adler, T. B.; Manby, F. R. J. Chem. Phys. 2007,
126, 164102.

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

(411) Werner, H.-J.; Manby, F. R. J. Chem. Phys. 2006, 124, 054114.

(412) Manby, F. R;; Werner, H.-J.; Adler, T. B.; May, A. J. J. Chem.
Phys. 2006, 124, 094103.

(413) Werner, H.-J. . Chem. Phys. 2008, 129, 101103.

(414) Peterson, K. A.; Adler, T. B.; Werner, H.-J. J. Chem. Phys. 2008,
128, 084102.

(415) Yousaf, K. E.; Peterson, K. A. J. Chem. Phys. 2008, 129, 184108.

(416) Yousaf, K. E.; Peterson, K. A. Chem. Phys. Lett. 2009, 476, 303.

(417) Hill, J. G.; Peterson, K. A. Phys. Chem. Chem. Phys. 2010,
12, 10460.

(418) Fliegl, H.; Klopper, W.; Haittig, C. J. Chem. Phys. 2008,
122, 084107.

(419) Fliegl, H.; Hattig, C.; Klopper, W. Int. J. Quantum Chem. 2006,
106, 2306.

(420) (a) Tew, D. P.; Klopper, W.; Neiss, C.; Hattig, C. Phys. Chem.
Chem. Phys. 2007, 9, 1921. (b) Tew, D. P.; Klopper, W.; Neiss, C.;
Hattig, C. Phys. Chem. Chem. Phys. 2008, 10, 632SE.

(421) Valeev, E. F; Crawford, T. D. J. Chem. Phys. 2008,
128, 244113.

(422) Kohn, A; Richings, G. W.; Tew, D. P. J. Chem. Phys. 2008,
129,201103.

(423) Tew, D. P.; Klopper, W.; Hattig, C. Chem. Phys. Lett. 2008,
452, 326.

(424) Bachorz, R. A. Implementation and Application of the Explicitly
Correlated Coupled-Cluster Method in Turbomole; Ph.D. thesis, Universitat
Karlsruhe (TH), 2009.

(425) Tew, D. P,; Hattig, C.; Bachorz, R. A.; Klopper, W. Explicitly
Correlated Coupled-Cluster Theory. In Recent Progress in Coupled
Cluster Methods— Theory and Applications; Cérsky, P., Paldus, J., Pittner,
J., Eds.; Springer: Dordrecht, Heidelberg, London, New York, 2010;
p S3S.

(426) Werner, H.-J.; Adler, T. B.; Knizia, G.; Manby, F. R. Efficient
Explicitly Correlated Coupled-Cluster Approximations. In Recent Pro-
gress in Coupled Cluster Methods— Theory and Applications; Carsky, P.,
Paldus, J., Pittner, J., Eds.; Springer: Dordrecht, Heidelberg, London,
New York, 2010; p 573.

(427) Knizia, G.; Adler, T. B.; Werner, H.-J. J. Chem. Phys. 2009,
130, 054104.

(428) Adler, T. B.; Knizia, G.; Werner, H.-J. J. Chem. Phys. 2007,
127, 221106.

(429) Adler, T. B.; Werner, H.-J. J. Chem. Phys. 2009, 130, 241101.

(430) Ten-no, S. Chem. Phys. Lett. 2007, 447, 175.

(431) Shiozaki, T.; Werner, H.-J. J. Chem. Phys. 2010, 131, 141103.

(432) Shiozaki, T.; Knizia, G.; Werner, H.-J. . Chem. Phys. 2011,
134, 034113.

(433) Shiozaki, T.; Werner, H.-J. J. Chem. Phys. 2011, 134, 184104.

(434) Klopper, W.; Kutzelnigg, W. J. Chem. Phys. 1991, 94, 2020.

(435) Noga, J.; Kedzuch, S.; Simunek, J.; Ten-no, S. J. Chem. Phys.
2008, 128, 174103.

(436) Knizia, G.; Werner, H.-J. J. Chem. Phys. 2008, 128, 154103.

(437) Bischoff, F. A,; Hofener, S.; Glof, A.; Klopper, W. Theor.
Chem. Acc. 2008, 121, 11.

(438) Kohn, A,; Tew, D. P. J. Chem. Phys. 2010, 133, 174117.

(439) Klopper, W.; Manby, F. R;; Ten-No, S.; Valeev, E. F. Int. Rev.
Phys. Chem. 2006, 25, 427.

(440) Bachorz, R. A; Bischoff, F. A; Glo8, A.; Haittig, C.; Hofener,
S.; Klopper, W.; Tew, D. P. J. Comput. Chem. 2011, 32, 2492.

(441) GloB, A. Entwicklung und Implementierung schneller MP2-R12-
Methoden; Ph.D. thesis, Universitat Karlsruhe (TH), 2007.

(442) Bischoff, F. A. Explizit korrelierte quasirelativistische Wellen-
funktionen; Ph.D. thesis, Universitat Karlsruhe (TH), 2009.

(443) Hofener, S. Entwicklung und Anwendung explizit korrelierter
Wellenfunktionsmodelle; Ph.D. thesis, Karlsruher Institut fur Technologie,
2010.

(444) Svelle, S.; Tuma, C.; Rozanska, X.; Kerber, T.; Sauer, J. J. Am.
Chem. Soc. 2009, 131, 816.

(445) van Duijneveldt, F. B.; van Duijneveldt-van de Rijdt, J. G. C.
M.; van Lenthe, J. H. Chem. Rev. 1994, 94, 1873.

72

(446) Halkier, A; Klopper, W.; Helgaker, T.; Jorgensen, P.; Taylor,
P. R. . Chem. Phys. 1999, 111, 9157.

(447) Tew, D. P.; Klopper, W. J. Chem. Phys. 2008, 123, 074101.

(448) Tew, D. P.; Klopper, W. J. Chem. Phys. 2006, 125, 094302.

(449) Villani, C.; Klopper, W. J. Phys. B: At. Mol. Opt. Phys. 2005,
38, 255S.

(450) Valeev, E. F. Chem. Phys. Lett. 2006, 418, 333.

(451) Werner, H-J; Knizia, G; Manby, F. R. Mol. Phys. 2010,
109, 407.

(452) Gotz, D. Investigating the performance of explicitly correlated
FI12 methods for core correlation and second/third row elements; M.Sc.
thesis, University of Bristol, 2010.

(453) Bokhan, D.; Bernadotte, S.; Ten-no, S. J. Chem. Phys. 2009,
131, 084108.

(454) Wilke, J. J; Schaefer, H. F., III ]. Chem. Phys. 2009,
131, 244116.

(455) Wilke, J.J.; Schaefer, H. F., 11 J. Chem. Theory Comput. 2011,
7, 2416.

(456)

(457)
044112.

(458)
064111.

(459)

(460)

(461)

(462)

(463)

(464)

Franke, R.; Miiller, H.; Noga, J. . Chem. Phys. 2001, 114, 7746.
Fliegl, H.; Hattig, C.; Klopper, W. J. Chem. Phys. 2006, 124,

Neiss, C.; Hattig, C.; Klopper, W. J. Chem. Phys. 2006, 125,

Neiss, C.; Hattig, C. J. Chem. Phys. 2007, 126, 154101.
Yang, J.; Hattig, C. J. Chem. Phys. 2009, 130, 124101.
Yang, J.; Hattig, C. J. Chem. Phys. 2009, 131, 074102.
Yang, J.; Hattig, C. Z. Phys. Chem. 2010, 224, 383.
Kohn, A. J. Chem. Phys. 2009, 130, 104104.

Kohn, A. J. Chem. Phys. 2009, 130, 131101.

(465) Hanauer, M.; Kohn, A. J. Chem. Phys. 2009, 131, 124118.

(466) Noga, J; Kedzuch, S; Simunek, J. J. Chem. Phys. 2007,
127, 034106.

(467) Wolinski, K; Pulay, P. J. Chem. Phys. 2003, 118, 9497.

(468) Jurgens-Lutovsky, R; Almlof, J. Chem. Phys. Lett. 1991,
178, 451.

(469) Deng, J.; Gill, P. M. W. J. Chem. Phys. 2011, 134, 081103.

(470) Noga, J.; Simunek, J. Chem. Phys. 2009, 356, 1.

(471) Kéhn, A; Tew, D. P. J. Chem. Phys. 2010, 132, 024101.

(472) Kong, L.; Valeev, E. F. J. Chem. Phys. 2010, 133, 174126.

(473) Raghavachari, K; Trucks, G. W.; Pople, ]. A.; Head-Gordon,
M. Chem. Phys. Lett. 1989, 157, 479.

(474) Watts, J. D.; Gauss, J.; Bartlett, R. J. Chem. Phys. Lett. 1992,
200, 1.

(475) Urban, M.; Noga, J.; Cole, S. J.; Bartlett, R. J. J. Chem. Phys.
1985, 83, 4041.

(476) Stanton, J. F. Chem. Phys. Lett. 1997, 281, 130.

(477) Shiozaki, T.; Kamiya, M.; Hirata, S.; Valeev, E. F. J. Chem. Phys.
2009, 130, 054101.

(478) Shiozaki, T.; Valeev, E. F.; Hirata, S. . Chem. Phys. 2009, 131,
044118.

(479) Marchetti, O.; Werner, H.-J. J. Phys. Chem. A 2009, 113,
11580.

(480) Kohn, A. J. Chem. Phys. 2010, 133, 174118.

(481) Barnes, E. C.; Petersson, G. A.; Feller, D.; Peterson, K. A.
J. Chem. Phys. 2008, 129, 194115.

(482) Gdanitz, R. J. Chem. Phys. Lett. 1993, 210, 253.

(483) (a) Gdanitz, R. J.; Rohse, R. Int. J. Quantum Chem. 1995,
55, 147. (b) Gdanitz, R. J.; Rohse, R. Int. J. Quantum Chem. 1996,
59, SOSE.

(484) (a) Gdanitz, R. J. Chem. Phys. Lett. 1998, 283, 253. (b)
Gdanitz, R. J. Chem. Phys. Lett. 1998, 288, S90E. (c) Gdanitz, R. J.
Chem. Phys. Lett. 1998, 295, 540C.

(485) Gdanitz, R. J.; Ahlrichs, R. Chem. Phys. Lett. 1988, 143, 413.

(486) Gdanitz, R. J. J. Chem. Phys. 1998, 109, 9795.

(487) Gdanitz, R. J. J. Chem. Phys. 1999, 110, 706.

(488) Gdanitz, R. J. Chem. Phys. Lett. 1999, 312, 578.

(489) Gdanitz, R. J. Mol. Phys. 1999, 96, 1423.

(490) Gdanitz, R. J. Chem. Phys. Lett. 2001, 348, 67.

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

(491) Cardoen, W.; Gdanitz, R. J. J. Chem. Phys. 2008, 123, 024304.

(492) Cardoen, W.; Gdanitz, R. J.; Simons, J. J. Phys. Chem. A 2006,
110, 564.

(493) Flores, J. R; Gdanitz, R. J. J. Chem. Phys. 2005, 123, 144316.

(494) Hirao, K. Chem. Phys. Lett. 1992, 190, 374.

(495) Torheyden, M.; Valeev, E. F. J. Chem. Phys. 2009, 131,171103.

(496) Kedzuch, S.; Demel, O.; Pittner, J.; Ten-no, S.; Noga, J. Chem.
Phys. Lett. 2011, 511, 418.

(497) Kedzuch, S.; Demel, O.; Pittner, J.; Noga, J. Multireference
RI12 Coupled Cluster Theory. In Recent Progress in Coupled Cluster
Methods— Theory and Applications; Carsky, P., Paldus, J., Pittner, J., Eds.;
Springer: Dordrecht, Heidelberg, London, New York, 2010; p 251.

(498) Varganov, S. A.; Martinez, T. J. . Chem. Phys. 2010, 132,
054103.

(499)

(500)

(501)

(502)

Davidson, E. R; Silver, D. W. Chem. Phys. Lett. 1977, 52, 403.
Kutzelnigg, W.; Mukherjee, D. J. Chem. Phys. 1997, 107, 432.
Kutzelnigg, W.; Mukherjee, D. J. Chem. Phys. 1999, 110, 2800.
Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1988, 89, 5803.

(503) Dunning, T. H,, Jr. J. Phys. Chem. A 2000, 104, 9062.

(504) Noga, J.; Kedzuch, S.; Simunek, J.; Ten-no, S. J. Chem. Phys.
2009, 130, 029901E.

(505) Shiozaki, T.; Kamiya, M.; Hirata, S.; Valeev, E. F. Phys. Chem.
Chem. Phys. 2008, 10, 3358.

(506) Shiozaki, T.; Kamiya, M.; Hirata, S.; Valeev, E. F. J. Chem. Phys.
2008, 129, 071101.

(507) Valeev, E. F. Phys. Chem. Chem. Phys. 2008, 10, 106.

(508) Torheyden, M.; Valeev, E. F. Phys. Chem. Chem. Phys. 2008,
10, 3410.

(509) Hattig, C; Tew, D. P; Kohn, A. J. Chem. Phys. 2010,
132,231102.

(510) Werner, H.-J. Private communication.

(511) Diirrstein, S. H; Olzmann, M.; Aguilera-Iparraguirre, J.;
Barthel, R.; Klopper, W. Chem. Phys. Lett. 2011, 5§13, 20.

(512) Friedrich, J.; Tew, D. P.; Klopper, W.; Dolg, M. J. Chem. Phys.
2010, 132, 164114.

(513) Tew, D. P.; Helmich, B.; Hattig, C. J. Chem. Phys. 2011,
135, 074107.

(514) Meyer, W. J. Chem. Phys. 1973, 58, 1017.

(515) Meyer, W. Theor. Chim. Acta 1974, 35, 277.

(516) Meyer, W.; Rosmus, P. J. Chem. Phys. 1975, 63, 2356.

(517) Neese, F.; Wennmohs, F.; Hansen, A. J. Chem. Phys. 2009,
130, 114108.

(518) Neese, F.; Hansen, A; Liakos, D. G. J. Chem. Phys. 2009,
131, 064103.

(519) Hill, J. G; Mazumder, S.; Peterson, K. A. J. Chem. Phys. 2010,
132, 054108.

(520) Hill, J. G; Peterson, K. A.; Knizia, G.; Werner, H.-]. J. Chem.
Phys. 2009, 131, 194105.

(521) Bischoff, F. A.; Wolfsegger, S.; Tew, D. P.; Klopper, W. Mol.
Phys. 2009, 107, 963.

(522) Klopper, W.; Bachorz, R. A; Hattig, C.; Tew, D. P. Theor.
Chem. Acc. 2010, 126, 289.

(523) Neese, F.; Valeev, E. F. J. Chem. Theory Comput. 2011, 7, 33.

(524) Dunning, T. H.,, Jr. J. Chem. Phys. 1989, 90, 1007.

(525) Kendall, R. A; Dunning, T. H,, Jr; Harrison, R. J. J. Chem.
Phys. 1992, 96, 6796.

(526) Woon, D. E,; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.

(527) Wilson, A. K; van Mourik, T.; Dunning, T. H,, Jr. J. Mol.
Struct.. THEOCHEM 1996, 388, 339.

(528) Hattig, C. Phys. Chem. Chem. Phys. 2008, 7, 59.

(529) Hattig, C.; Weigend, F. J. Chem. Phys. 2000, 113, 5154.

(530) Weigend, F. J. Comput. Chem. 2008, 29, 167.

(531) Rychlewski, J.; Komasa, J. Atomic and Molecular Properties
Using Explicitly Correlated Functions. In Explicitly Correlated Wave
Functions in Chemistry and Physics— Theory and Applications; Rychlewski, J.,
Ed.; Kluwer Academic Publishers: Norwell, MA, 2003; p 373.

(532) Stanke, M.; Kedziera, D.; Bubin, S.; Adamowicz, L. Phys. Rev.
Lett. 2007, 99, 043001.

73

(533) Komasa, J. Phys. Rev. A 2001, 65, 012506.

(534) Komasa, J. Chem. Phys. Lett. 2002, 363, 307.

(535) Rauhut, G; Knizia, G.; Werner, H.-]. ]. Chem. Phys. 2009,
130, 054108S.

(536) Tunega, D.; Noga, J.; Klopper, W. Chem. Phys. Lett. 1997,
269, 435.

(537) Tunega, D.; Noga, J. Theor. Chim. Acta 1998, 100, 78.

(538) Halkier, A.; Klopper, W.; Helgaker, T.; Jorgensen, P. J. Chem.
Phys. 1999, 111, 4424.

(539) Jaszunski, M.; Klopper, W.; Noga, J. . Chem. Phys. 2000,
113, 71.

(540) Kordel, E.; Villani, C.; Klopper, W. J. Chem. Phys. 2008,
122, 214306.

(541) Kordel, E.; Villani, C.; Klopper, W. Mol. Phys. 2007, 108, 2565.

(542) Hofener, S.; Hattig, C.; Klopper, W. Z. Phys. Chem. 2010,
224, 695.

(543) Hofener, S.; Klopper, W. Mol. Phys. 2010, 108, 1783.

(544) Handy, N. C; Schaefer, H. F., II1 J. Chem. Phys. 1984, 81, S031.

(545) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.

(546) Boese, A.D.;Jansen, G.; Torheyden, M.; Hofener, S.; Klopper,
W. Phys. Chem. Chem. Phys. 2011, 13, 1230.

(547) Christiansen, O.; Jorgensen, P.; Hattig, C. Int. J. Quantum
Chem. 1998, 68, 1.

(548) Christiansen, O.; Koch, H.; Jorgensen, P. Chem. Phys. Lett.
1995, 243, 409.

(549) Bokhan, D.; Ten-no, S. J. Chem. Phys. 2010, 132, 021101.

(550) Pawowski, F.; Jergensen, P.; Hattig, C. Chem. Phys. Lett. 2004,
391, 27.

(551) Klopper, W.; Tew, D. P.; Gonzalez-Garcia, N.; Olzmann, M.
J. Chem. Phys. 2008, 129, 114308.

(552) Gonzilez-Garcia, N.; Klopper, W.; Olzmann, M. Chem. Phys.
Lett. 2009, 470, S9.

(553) Klopper, W.; Bachorz, R. A.; Tew, D. P.; Aguilera-Iparraguirre,
J.; Carissan, Y.; Hattig, C. J. Phys. Chem. A 2009, 113, 11679.

(554) Bihlmeier, A.; Tew, D. P.; Klopper, W. J. Chem. Phys. 2008,
129, 114303.

(555) Jung, T.; Beckhaus, R; Kliiner, T.; Hofener, S.; Klopper, W.
J. Chem. Theory Comput. 2009, 5, 2044.

(556) Lee, J. J.; Hofener, S.; Klopper, W.; Wassermann, T.; Suhm,
M. A. J. Phys. Chem. C 2009, 113, 10929.

(557) Feller, D.; Peterson, K. A; Hill, J. G. J. Chem. Phys. 2010,
133, 184102.

(558) Lane,]. R;; Kjaergaard, H. G. J. Chem. Phys. 2009, 131, 034307.

(559) Lane,].R;; Kjaergaard, H. G. J. Chem. Phys. 2010, 132, 174304.

(560) de Lange, K. M; Lane, J. R. J. Chem. Phys. 2011, 134, 034301.

(561) Patkowski, K; Szalewicz, K. J. Chem. Phys. 2010, 133, 094304.

(562) Botschwina, P.; Oswald, R. J. Phys. Chem. A 2010,
114, 4875.

(563) Botschwina, P.; Oswald, R. J. Phys. Chem. A 2010, 114, 9782.

(564) Botschwina, P.; Oswald, R. Chem. Phys. 2010, 378, 4.

(565) Botschwina, P.; Oswald, R. J. Chem. Phys. 2011, 134, 044305.

(566) Botschwina, P.; Oswald, R.; Rauhut, G. Phys. Chem. Chem.
Phys. 2011, 13, 7921.

(567) Botschwina, P.; Oswald, R.; Dopfer, O. Phys. Chem. Chem.
Phys. 2011, 13, 14163.

(568) Tew, D. P.; Klopper, W.; Bachorz, R. A.; Hittig, C. Ab initio
theory for accurate spectroscopic constants and molecular properties. In
Handbook of High-Resolution Spectroscopy; Quack, M., Merkt, F., Eds.;
Wiley: Chichester, 2011; Vol. 1, p 363.

(569) Wang, Y.; Braams, B. J.; Bowman, J. M.; Carter, S.; Tew, D. P.
J. Chem. Phys. 2008, 128, 224314.

(570) Stoll, H. Chem. Phys. Lett. 1992, 191, 548.

(571) Claeyssens, F.; Harveyn, J. N,; Manby, F. R;; Mata, R. A;
Mulholland, A. J.; Ranaghan, K. E.; Schiitz, M.; Thiel, S.; Thiel, W,;
Werner, H.-J. Angew. Chem., Int. Ed. 2006, 45, 6856.

(572) Mata, R. A;; Werner, H.-J.; Thiel, S.; Thiel, W. J. Chem. Phys.
2008, 128, 025104

(573) Shiozaki, T.; Hirata, S. J. Chem. Phys. 2010, 132, 151101.

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



Chemical Reviews

(574) Bischoff, F. A.; Valeev, E. F.; Klopper, W.; Janssen, C. L.
J. Chem. Phys. 2010, 132, 214104.

(575) Bischoff, F. A,; Klopper, W. J. Chem. Phys. 2010, 132, 094108.

(576) Brown, G. E,; Ravenhall, D. G. Proc. R. Soc, London Ser. A
1951, 208, 552.

(577) Pestka, G.; Karwowski, J. Hylleraas-CI Approach to Dirac-
Coulomb Equation. In Explicitly Correlated Wave Functions in Chemistry
and Physics — Theory and Applications; Rychlewski, J., Ed.; Kluwer
Academic Publishers, 2003; p 331.

(578) Pestka, G.; Tatewaki, H.; Karwowski, ]. Phys. Rev. A 2004,
70, 024501.

(579) Bylicki, M.; Pestka, G.; Karwowski, J. Phys. Rev. A 2008,
77, 044501.

(580) Pestka, G.; Bylicki, M.; Karwowski, J. J. Math. Chem. 2011, 1.

74

dx.doi.org/10.1021/cr200168z |Chem. Rev. 2012, 112, 4-74



