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In this work, explicitly correlated second order N-electron valence state perturbation theory (NEVPT2-
F12) has been derived and implemented for the first time. The NEVPT2-F12 algorithm presented here
is based on a fully internally contracted wave function and includes the correction of semi-internal
excitation subspaces. The algorithm exploits the resolution of identity (RI) approximation to improve
the computational efficiency. The overall O(N5) scaling of the computational effort is documented.
In Sec. III, the dissociation processes of diatomic molecules and the singlet-triplet gap of several
systems are studied. For all relative energies studied in this work, the errors with respect to the
complete basis set (CBS) limit for the NEVPT2-F12 method are within 1 kcal/mol. For moderately
sized active spaces, the computational cost of a RI-NEVPT2-F12 correlation energy calculation for
each root is comparable to a closed-shell RI-MP2-F12 calculation on the same system. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4996560]

I. INTRODUCTION

It is well known that the electron correlation energy eval-
uated with determinantal wave functions converges slowly
with respect to the basis set extension. To overcome this
problem, Hylleraas first introduced a basis set that explic-
itly depended on the inter-electronic distance r12 more than
80 years ago.1 Subsequently, in the 1980s, Kutzelnigg pro-
posed the R12 method, which marks the most important
step in explicit correlation theory.2–4 Kutzelnigg’s semi-
nal work has sparked many developments in the field of
explicit electron correlation theory.5–10 Nowadays, the explic-
itly correlated R12/F12 methodology is well established
for single reference (SR) methods.11–14 Recently, F12 the-
ory has been further extended to the linear or low scal-
ing SR perturbation theory (PT) and coupled cluster (CC)
theory.15–20

The explicitly correlated method is applicable to multi-
reference (MR) theories as well. Gdanitz developed the
first explicitly correlated MR method, namely, the MR
configuration interaction (MR-CI-R12) method.21,22 In the
context of MRPT2, Ten-no23 as well as Haunschild and
co-workers24 implemented the MR-MP2-F12 and Mk-
MRPT2-F12 approaches, respectively. Explicitly correlated
MRCC methods were independently proposed by Noga
et al.,25,26 Yanai and Shiozaki,27 and Köhn and co-workers.28

However, many approaches, like the MR-F12 methods of
Ten-no or Haunschild, do not consider the F12 correction
for the semi-internal excitation subspaces. A series of explic-
itly correlated multireference methods were presented by
Werner, Shiozaki, and Knizia, who applied the F12 theory to
complete active space second-order perturbation theory

a)Author to whom correspondence should be addressed: Frank.Neese@cec.
mpg.de

(CASPT2-F12),29 and later to partially internally contracted
MRCI.30 In their approach, not only the doubly external spaces
are considered but also the F12 corrections for semi-internal
excitation spaces are included. In contrast to these method-
specific MR-F12 theories, Valeev and co-workers developed
a more general explicitly correlated formalism, applicable
to all kinds of MR correlation methods.31,32 More detailed
discussions of MR-F12 methods can be found in recent
reviews.33,34

Among the MR methods, MRPT is computationally the
most attractive approach. The CASPT2 method developed
by Roos and co-workers is a MRPT that is most widely
used.35,36 However, CASPT2 suffers from the well-known
intruder state problem and is not strictly size-extensive.37 In
an attempt to overcome some defects of CASPT2, Angeli,
Malrieu, and co-workers proposed N-electron valence state
perturbation theory (NEVPT2).38,39 NEVPT2 is a fully inter-
nally contracted MRPT method, which is computationally
less expensive compared to uncontracted or partially inter-
nally contracted MR methods. Moreover, the NEVPT2 method
is size consistent and virtually intruder state free. Because
of these virtues, NEVPT2 has gained significant popularity
and inspired many new developments in recent years.40–42

For NEVPT2 calculations of large systems with moder-
ate active spaces, the computational bottleneck is the treat-
ment of the S(0)

ij,ab (two-hole/two-particle) subspace, which,
in itself, is similar to SR-MP2. By using the basic idea of
domain-based local pair natural orbitals (DLPNOs),43–45 we
have developed a linear scaling NEVPT2 method, which
can treat very large systems.46 Subsequently, Werner and
co-workers reported an efficient PNO-CASPT2 implementa-
tion.47 Despite recent progress in the NEVPT2 methodology,
the extension from NEVPT2 to NEVPT2-F12 has not yet been
reported. In this short paper, we present our recent efforts on
NEVPT2-F12.
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II. THEORY AND IMPLEMENTATION

Throughout this work, {i, j, k, l} are used to denote the
inactive MOs, {t, u, v, w} denote the active MOs, and vir-
tual MOs are labeled by {a, b, c, d}. The labels {α′, β′, γ′,
δ′} and {p, q, r, s} denote the orbitals in the complemen-
tary auxiliary basis set (CABS)8 and orbital basis set (OBS),
respectively. Indices {α, β, γ, δ} denote the (normalized)
unoccupied orbitals in the CABS, which are orthogonal to the
occupied space. Our formalism uses the spin traced excitation
operators, given by Eq

p = a+
q↑ap↑ + a+

q↓ap↓.
The 1st-order wave function used in NEVPT2-F12 is an

extension of the single reference MP2-F12 method. It can
generally be defined as

|1〉 = |1NEVPT2〉 + |1NEVPT2−F12〉, (1)

in which |1NEVPT 2〉 is the 1st-order wave function of NEVPT2,
and |1NEVPT 2�F 12〉 is the 1st-order wave function of NEVPT2-
F12. Similar to MP2-F12, the two electron integrals of pro-
jected geminals W ij

αβ have to be included in the definition of
|1NEVPT2−F12〉,

W ij
αβ = 〈αβ |Q12 f̂12 |ij〉

=

∫∫
ϕα(r1)ϕβ(r2)Q12 f̂12ϕi(r1)ϕj(r2)dr1dr2. (2)

Here, f̂12 is the symmetric correlation factor and Q12 is the
orthogonality projector, which has been defined previously48

as
Q12 = 1 −

∑
|ab〉 〈ab|. (3)

Using W ij
αβ and Eq

p , the detailed definition of the NEVPT2-F12

1st-order wave function is given in Table I. Note that the S(0)
i,a

and S(−1)
a subspaces contain Brillouin single excitations that

must be projected out.31 This is due to the fact that the F12
terms are only designed to correct the basis set incompleteness
of two-electron excitations.

For each subspace, the amplitudes of the 1st-order wave
function must make the corresponding component of the
Hylleraas functional stationary,

Hyl = 〈1|HDyall |1〉 + 2 〈1|H |0〉 . (4)

The 0th-order Hamiltonian is taken as the Dyall Hamilto-
nian HDyall.49 Once the amplitudes have been determined,
the NEVPT2-F12 energies correction can be computed. By
varying the Hylleraas functional, two sets of residual equa-
tions are derived. One set comprises the canonical NEVPT2
equations; the other set defines the NEVPT2-F12 equations.
The latter equations, involving the F12 intermediates, density
matrices, and amplitudes, are much more complicated than
their canonical NEVPT2 counterparts.

In general, the F12 equations derived from Eq. (4) must
be solved iteratively. The computational cost for solving the
F12 equations is larger than the cost of the canonical NEVPT2
calculation. In this work, the fixed amplitude approximation
proposed by Ten-no is used, which fixes the F12 amplitudes
T rs

pq to fit the first order (natural) singlet and triplet cusp
condition,6

T rs
pq =

3
8
δprδqs +

1
8
δpsδqr . (5)

Inserting Eq. (5) into the Hylleraas functional, the F12
energy correction can directly be calculated (no iterations).
More details about the NEVPT2-F12 equations derived and
implemented in this work can be found in the Appendix.

In the NEVPT2-F12 equations, all the involved density
and Koopmans matrices are readily available from the pre-
ceding canonical NEVPT2 step. Therefore, the additional
computational cost in NEVPT2-F12 solely arises from the
computation of the F12 intermediates. All F12 integrals and
intermediates are evaluated in the same way as the MP2-F12
algorithm in ORCA.50 However, in contrast to MP2-F12, not
only the diagonal V, B, and X matrix elements are needed10 but
also the off-diagonal matrix elements, involving the active MO
indices, have to be computed. For large systems with moderate
active spaces, the bottleneck of NEVPT2-F12 is in the evalu-
ation of two electron integrals and the “diagonal” elements of
V, B, and X matrices.10,51 For such calculations, the compu-
tational cost of NEVPT2-F12 is comparable to its MP2-F12
counterpart.

Besides the F12 correction to the correlation energy, the
correction for the basis set incompleteness of complete-active-
space self-consistent field (CASSCF) calculation is considered
in this work as well. Many efforts have been made in this

TABLE I. The definition of 1st-order wave functions for NEVPT2 and NEVPT2-F12. Einstein summation is
implied, unless noted.

Subspace |1NEVPT2〉 |1NEVPT2−F12〉

S(0)
ij,ab

1
2

Ea
i Eb

j |0〉T
ij
ab

1
2

Wkl
αβEαi Eβj |0〉T

ij
kl

S(−1)
i,ab Ea

i Eb
t |0〉T

it
ab W ju

αβEαi Eβt |0〉T
it
ju

S(−2)
ab Ea

t Eb
u |0〉T

tu
ab Wvw

αβEαt Eβu |0〉T
tu
vw

S(1)
ij,a Ea

i Et
j |0〉T

ij
at Wkl

αtE
α
i Et

j |0〉T
ij
kl

S(0)
i,a Ea

i Et
u |0〉T

iu
at + Et

i Ea
u |0〉T

iu
ta W jv

αt

(
Eαi Et

u − 〈0 |E
t
u |0〉E

α
i

)
|0〉T iu

jv

+ W jv
tα

(
Et

i Eαu +
1
2
〈0 |Et

u |0〉E
α
i

)
|0〉T iu

jv

S(−1)
a Ea

u Et
v |0〉T

uv
at Wwx

αt
*.
,
Eαu Et

v −
∑
xy

〈0 |Et
vEx

u |0〉

〈0 |Ex
y |0〉

Eαy
+/
-
|0〉Tuv

wx
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area.52,53 To avoid an iterative process, the perturbative method
proposed by one of the present authors is adopted here.52 The
Dyall Hamiltonian is used as the 0th-order Hamiltonian. The
original abbreviation [2]S is used to denote this CABS singles
correction for the CASSCF.

III. RESULTS

The NEVPT2-F12 equations have been derived and
implemented in a development version of ORCA. In all cal-
culations shown below, the frozen core and resolution of
identity (RI) approximations are used. In NEVPT2-F12 cal-
culations, the cc-pVXZ-F12 (X = D, T, Q) basis sets with
their matching Slater-type correlation factors f̂12 = (1 − exp
(−γr12))/γ, CABS basis sets cc-pVXZ-F12/OptRI, and den-
sity fitting basis sets aug-cc-pVXZ are employed (abbrevi-
ated as “XZ-F12”).54,55 The cc-pVXZ-F12/OptRI basis set
is a compact RI basis set optimized for explicitly correlated
calculations by Peterson and co-workers.55 The commonly
used two point extrapolation schemes are utilized to esti-
mate the CASSCF or NEVPT2 CBS limits, respectively. The
extrapolation is based on cc-pV5Z and cc-pV6Z results. The
CASPT2 and CASPT2-F12 calculations have been performed
with MOLPRO.56

Employing the NEVPT2-F12 method, the singlet and
triplet states of CH2 were computed (Table II). The geome-
tries of the two states are taken from Werner’s CASPT2-F12
paper.29 With a F12 optimized double-ζ basis set, the corre-
lation energies produced by NEVPT2-F12 are already close
to the CBS results. The deviation between NEVPT2-F12/DZ-
F12 results and the CBS limit is around 1 mhartree, which
is significantly more accurate than any of the results without
the F12 correction. With larger basis sets, the NEVPT2-F12
method clearly comes very close to the CBS limit of the
correlation energy.

We also studied the dissociation process of the O2

molecule using the NEVPT2, NEVPT2-F12, and NEVPT2-
F12+[2]S methods. The state-averaged CASSCF wave
functions of the 3Σ� ground and lowest 1∆ excited states are
used as references. The errors of absolute and relative ener-
gies with respect to the CBS limit are given in Fig. 1. Figure
1(a) shows the absolute error of the different methods for the
3Σ� state of the O2 molecule. The F12 correction improves
the absolute energies substantially, especially for small basis
set calculations. For the results with cc-pVDZ-F12, the [2]S

TABLE II. The basis set convergence of NEVPT2 and NEVPT2-F12 corre-
lation energies of the two lowest states of methylene.

CASSCF(6,6) NEVPT2 NEVPT2-F12
State Basis set (a.u.) (a.u.) (a.u.)

Singlet

DZ-F12 −38.953 690 −0.075 473 −0.097 323
TZ-F12 −38.957 360 −0.087 261 −0.097 802
QZ-F12 −38.958 105 −0.092 437 −0.097 891

CBS . . . −0.097 803 . . .

Triplet

DZ-F12 −38.970 486 −0.077 616 −0.097 601
TZ-F12 −38.973 413 −0.088 944 −0.098 319
QZ-F12 −38.974 132 −0.093 646 −0.098 449

CBS . . . −0.098 465 . . .

FIG. 1. (a) The basis set error of the total NEVPT2 energy for the ground
state of the O2 molecule along the PES. (b) The basis set error of the vertical
singlet-triplet gap of O2 molecule along the PES. The absolute correlation
energies are given in Table S1 of the supplementary material (XZ are conven-
tional NEVPT2 results with cc-pvXZ-F12 basis set, XZ-F12 are NEVPT2-F12
results, and XZ-F12+[2]S are results with CABS singles corrections).

correction primarily reduces the error in the short-range region.
The NEVPT2-F12+[2]S approach, with a double-ζ basis set,
predicts absolute energies comparable to NEVPT2 with the
cc-pVQZ-F12 basis set. A similar trend is observed for the 1∆

excited state calculated by the same methods (see the supple-
mentary material). The errors of the vertical excitation energies
computed by the various NEVPT2 methods and different basis
sets are shown in Fig. 1(b). The NEVPT2 calculations with
the double-ζ basis set produce very large errors with respect
to the CBS limit. With the F12 correction, the errors in the
relative energy along the PES are consistently reduced to
less than 1 kcal/mol. The [2]S correction does not improve
the excitation energies, if state-averaged wave functions are
used.

Finally, the adiabatic excitation energies of four molecules
were studied. The ground and excited state geometries of the
four molecules are taken from Ref. 57. For the NEVPT2 and
NEVPT2-F12 calculations, state-specific CASSCF wave func-
tions are used as reference. The results given in Table III
demonstrate that the NEVPT2 results with small basis sets
always underestimate the energy gaps. Without the F12

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-037729
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-037729
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-037729
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TABLE III. The low-lying adiabatic excitation energies (in eV) calculated by NEVPT2-F12 and CASPT2-F12
with different basis sets. The absolute energies are given in Table S2 of the supplementary material.

C2H2 (1A-1A) C3H4O (3A′′-1A′) C6H6 (1A-1A) C6H8 (1A-1A)
Method Basis sets CAS(4,4) CAS(6,5) CAS(6,6) CAS(6,6)

NEVPT2

cc-pVDZ-F12 5.255 3.161 5.062 4.784
cc-pVTZ-F12 5.264 3.175 5.093 4.791
cc-pVQZ-F12 5.279 3.191 5.106 4.803

CBSa 5.286 3.209 5.114 4.812

NEVPT2-F12
cc-pVDZ-F12 5.266 3.214 5.094 4.805
cc-pVTZ-F12 5.288 3.213 5.119 4.814
cc-pVQZ-F12 5.287 3.212 5.118 4.815

NEVPT2-F12+[2]S

cc-pVDZ-F12 5.300 3.222 5.116 4.820
cc-pVTZ-F12 5.286 3.214 5.120 4.816
cc-pVQZ-F12 5.287 3.212 5.118 4.815

CASPT2
cc-pVDZ-F12 5.114 2.803 4.420 4.358
cc-pVTZ-F12 5.118 2.806 4.432 4.353

CASPT2-F12b cc-pVDZ-F12 5.124 2.845 4.438 4.369
cc-pVTZ-F12 5.142 2.840 4.453 4.373

Experiment . . . 5.23 3.01 4.72 4.93

aThe CASSCF energies in the CBS limit have been computed following Ref. 58.
bFor the CASPT2 (CASPT2-F12) calculations on C6H6 and C6H8, a level shift of 0.2 Hartree is applied to both ground and excited
states.

correction, the error between the double-ζ and CBS limits
can exceed 0.05 eV, while with the NEVPT2-F12 correc-
tion, the CBS limit is predicted accurately. For all of these
excitation energies, the deviations between DZ-F12 results
and the CBS limit are less than 0.02 eV (0.5 kcal/mol). The
energy gaps computed with the NEVPT2-F12+[2]S method
are also given. With the [2]S correction, more accurate results
are produced with the double-ζ basis set in most cases. How-
ever, when larger basis sets are employed, the [2]S correc-
tion does not influence the excitation energies. The excita-
tion energies calculated by CASPT2 and CASPT2-F12 are
also given in Table III. Compared to the CASPT2 results,
their F12 corrections increase the energy gaps as well. The
final results predicted by NEVPT2-12 and CASPT2-F12 are
comparable.

For benzene, the detailed CPU time of NEVPT2-F12 for
the ground state is shown in Table IV. All calculations are per-
formed on one core of an Intel Xeon E5649 2.53GHz CPU and
no advantage was taken of symmetry. The whole NEVPT2-F12
calculation can be divided into two parts: the evaluation of the

F12 matrices step and the Hylleraas functional evaluation step.
The results show that the evaluation of the F12 matrices is the
most time consuming step in NEVPT2-F12. The CPU time
spent on the Hylleraas functional evaluation is negligible. For
the conventional NEVPT2 calculation with the cc-pV6Z basis
set, the NEVPT2 calculation takes less than 14 min, which
is ten times faster than NEVPT2-F12 with the double-ζ basis
set. However, with the sextuple-ζ basis set, the CASSCF step
becomes the bottleneck of the overall calculation. By using
the RIJK approximation (RI for both Coulomb and exchange
matrices), the CASSCF calculations can be sped up signifi-
cantly. Nevertheless, a large amount of CPU time can be saved
for the NEVPT2-F12 calculations, since the CASSCF step is
much faster for small basis sets. In Table IV, the CPU time
for RI-MP2-F12 calculations is also given. The CPU time for
NEVPT2-F12 and MP2-F12 is comparable (excluding the SCF
step). The bottlenecks in both NEVPT2-F12 and MP2-F12 are
the same, which is the evaluation of two electron integrals. If
the number of active MOs is considered as a small constant,
the overall algorithm of NEVPT2-F12 scales as O(N5).

TABLE IV. The detailed CPU time (in minutes) of NEVPT2-F12 and RI-MP2-F12 for C6H6.

NEVPT2-F12 NEVPT2

DZ-F12 TZ-F12 QZ-F12 cc-pV5Z cc-pV6Z

CASSCF/iterationa 1.6 9.3 299.3(2.1) 58.4 797.1(45.5)
F12 matrices evaluation 146.0 658.4 3465.8 . . . . . .
Hylleraas functional evaluation 0.1 0.4 1.8 2.2 13.3

MP2-F12
Self-consistent-field (SCF)/iteration 1.2 7.8 65.3 . . . . . .
MP2-F12 83.7 460.8 2940.1 . . . . . .

aThe number given in parentheses is the CPU time of CASSCF with the RIJK approximation.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-037729
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IV. CONCLUSION

In this study, we have derived and implemented the explic-
itly correlated NEVPT2 method, which is able to predict
NEVPT2 correlation energies close to the complete basis set
limit. Our ansatz is based on a fully internally contracted
wave function. In addition to the correlation energy correc-
tions for the doubly external subspaces, the energy correction
for semi-internal excitation subspaces is included as well. This
is instrumental to obtain very accurate correlation energies
already with double-ζ basis sets. The findings are supported by
the bond dissociation processes and low lying excitation ener-
gies studied in this article. The relative energies predicted by
NEVPT2-F12 with double-ζ basis sets are already very close
to the CBS limit. The computational cost of NEVPT2-F12
increases significantly compared to the canonical approach,
especially for the calculations with the QZ-F12 basis set. How-
ever, an explicitly correlated calculation with a double-ζ basis
set is computationally much more efficient than a conventional
calculation with a quintuple-ζ basis set (including the SCF
step). The NEVPT2-F12 with a double-ζ basis set can already
produce comparable results as basis set extrapolation with the
quintuple and sextuple-ζ basis sets. Further progress can be
made by combining the NEVPT2-F12 method with the con-
cept of pair natural orbitals, as shown in our recent work on
DLPNO-MP2-F1217 or the work of Werner and co-workers on
PNO-MP2-F12.16 The promising combination of NEVPT2-
F12 with the DLPNO methodology will be reported in due
course.

SUPPLEMENTARY MATERIAL

See supplementary material for detailed absolute refer-
ence or correlation energies.
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APPENDIX: The NEVPT2-F12 EQUATIONS
FOR S( – 1)

i,ab AND S( – 1)
a SUBSPACES

The 1st-order wave functions for both NEVPT2 and
NEVPT2-F12 have been given in Table I. By inserting the
1st-order wave functions into the Hylleraas functional and
minimizing it, one will get two sets of linear equations. One
set of equations is corresponding to the conventional NEVPT2
energy equations, and the other set is the equations for F12
amplitudes. For the S(−1)

i,ab subspace, the two residues read
as

Rit
ab = (ia|ub) Γ t

u + (εa + εb) T iu
abΓ

t
u + T iu

abK t
u

− εiT
iu
abΓ

t
u + T it

juCab
jwΓ

w
u , (A1)

Rit
jv = V ju

it Γ
v
u + T it

kuBkw
jv Γ

w
u + T it

kuXkw
jv Kw

u

− εiT
it
kuXkw

jv Γ
w
u + Cab

jw T it
abΓ

w
v . (A2)

In Eq. (A2), the intermediates are defined as

V ju
it = (iα|t β) W ju

αβ , (A3)

Bkw
jv = W kw

αβ(fα + fβ)W jv
αβ , (A4)

Xkw
jv = W kw

αβW jv
αβ , (A5)

Cαβ
jw = W kw

αβ(fα + fβ), (A6)

where fα = 〈α | f̂ |α〉 is the Fock matrix. The intermediates
given above are evaluated in the same way as the single
reference case.10

In the NEVPT2 calculation, the amplitudes T0
it
ab have been

computed according to a residue similar to Eq. (A1). How-
ever, the residue in canonical NEVPT2 calculations does not
contain the last term in Eq. (A1). Under the fixed amplitude
approximation, an extra iteration must be performed to get the
converged T it

ab to make Rit
ab vanish. To avoid the extra iteration,

the final Hylleraas functional value (total correlation energy)
is computed as

E
S(−1)

i,ab

Total = T̃0
it
ab

[
(ia|ub) Γ t

u + Rit
ab

]
+ T̃ it

jv

[
V ju

it Γ
v
u + Rit

ju

]

= E
S(−1)

i,ab

NEVPT + T̃0
it
ab

[
T it

juCab
jwΓ

w
u

]
+ T̃ it

jv

[
V ju

it Γ
v
u + Rit

ju

]

= E
S(−1)

i,ab

NEVPT + E
S(−1)

i,ab

F12 . (A7)

In Eq. (A7), the exact T it
ab amplitudes in Rit

ju are calculated by

T0
it
ab,

T it
ab = T0

it
ab − T it

juC̃it
ab = T0

it
ab − T it

juSu
µ

Cab
jµ

εa + εb − εi + εµ
. (A8)

In Eq. (A8), the St
µ matrix is the transformation matrix, which

diagonalizes the Koopmans matrix Kw
v with the density matrix

Γw
v = 〈0| E

w
v |0〉. The final F12 correction energy can be written

as

E
S(−1)

i,ab

F12 = 2
[
V ju

it

(
2T it

ju − T ti
ju

)
Γ t

u + Cab
it T0

ju
ab

(
2T it

ju − T ti
ju

)
Γ t

u

]

−T kv
it Cab

it C̃kv
abT ju

kv

(
2T it

ju − T ti
ju

)
Γ t

u

+ T kv
it Bju

kv

(
2T it

ju − T ti
ju

)
Γ t

u + T kv
it X ju

kv

(
2T it

ju − T ti
ju

)
K t

u

− εiT
kv
it X ju

kv

(
2T it

ju − T ti
ju

)
Γ t

u. (A9)

The final result E
S(−1)

i,ab

F12 is invariant with respect to unitary
rotations within the active space.

For the S(−1)
a subspace, we can also derive two

residues for NEVPT2 and NEVPT2-F12 from the Hylleraas
functional,

Ruv
at = (wa|xy) Γwxy

tuv + F ′waΓ
′w
tuv + εaT xy

awΓ
wxy
tuv

+ T xy
awKwxy

tuv + Tuv
xy Γ

wxy
tuv W xy

aw, (A10)

Ruv
xy = W xy

αwΓ̃
wxy
tuv (tα|uv) + εaW xy

αwΓ̃
wxy
tuv Wuv

αt

+ W xy
αwK̃wxy

tuv Wuv
αt + W xy

awΓ
wxy
tuv Tuv

at , (A11)

where
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Γ̃
wxy
tuv = Γ

wxy
tuv −

∑
zz′

Γvz
tu Γ

yz′
wx

(
Γ−1

)z′

z
,

K̃wxy
tuv = Awxy

tuv −
∑
zz′

Bvz
tuΓ

yz′
wx

(
Γ−1

)z′

z
−

∑
zz′

Γvz
tu Cyz′

wx

(
Γ−1

)z′

z

+
∑
z1z2

z3z4

Dz3
z4
Γvz1

tu Γ
yz2
wx

(
Γ−1

)z3

z1

(
Γ−1

)z4

z2
.

By using the amplitudes T0
uv
at from the NEVPT2 calculation,

the total correlation energy expression takes the following
form:

ES(−1)
a

Total = ES(−1)
a

NEVPT + T0
uv
tα

[
Tuv

xy Γ
wxy
tuv W xy

aw

]

+ Tuv
xy

[
W xy
αwΓ̃

wxy
tuv (tα|uv) + Ruv

xy

]

= ES(−1)
a

NEVPT + ES(−1)
a

F12 . (A12)

Since the energy corrections for semi-internal excitation sub-
spaces are already very small, T0

uv
at is used as the approximation

of converged Tuv
at in the last term of Eq. (A11).

In the above equations for both S(−1)
i,ab and S(−1)

a , density
and Koopmans matrices have been defined in our previous
work.46 The matrices Awxy

tuv , Bvz
tu , Cvz

tu , Dz3
z4

have the same defi-
nition as S(−1)

a subspace in strongly contracted NEVPT2 (SC-
NEVPT2).59 The equations of other subspaces can be derived
in the similar way.
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