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We present an investigation into the use of an explicitly correlated plane wave basis for periodic
wavefunction expansions at the level of second-order Møller-Plesset (MP2) perturbation theory. The
convergence of the electronic correlation energy with respect to the one-electron basis set is inves-
tigated and compared to conventional MP2 theory in a finite homogeneous electron gas model. In
addition to the widely used Slater-type geminal correlation factor, we also derive and investigate a
novel correlation factor that we term Yukawa-Coulomb. The Yukawa-Coulomb correlation factor is
motivated by analytic results for two electrons in a box and allows for a further improved conver-
gence of the correlation energies with respect to the employed basis set. We find the combination
of the infinitely delocalized plane waves and local short-ranged geminals provides a complementary,
and rapidly convergent basis for the description of periodic wavefunctions. We hope that this ap-
proach will expand the scope of discrete wavefunction expansions in periodic systems. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4818753]

I. INTRODUCTION

Despite huge advantages in terms of accuracy and sys-
tematic improvability, wavefunction-based quantum chemi-
cal methods are routinely used by only a small fraction of
electronic structure theorists, in contrast to density functional
theory (DFT) which dominates the community.1 Nowhere is
this more true than in the solid state, where application of
high-level quantum chemistry methods are only beginning to
emerge in a recently growing field.2–17 The reason for this
slow uptake is the computational cost of these methods, which
generally scale as a high power of the system size, com-
pared to the lower mean-field scaling of DFT. This is exac-
erbated in the solid state where increasing the size of the su-
percell to converge finite size effects is far more costly than
for mean-field counterparts. Much of this expense originates
from the need to expand out the many-electron wavefunction
in terms of anti-symmetrized one-particle functions of a spec-
ified basis set. This itself must then be expanded and generally
extrapolated to near completeness to obtain accurate results
and justify the use of the high level of correlation treatment.
Although methods more familiar to the solid state, such as
DFT18 and Diffusion Monte Carlo (DMC)19 require a basis
set, there is only a weak dependence since no many-electron
wavefunctions are expanded in this basis.

The difficulty with the expansion of many-electron wave-
functions as antisymmetric products of one-particle basis
functions (Slater determinants) has been known since the
early days of electronic structure theory, and is due to the

a)Electronic mail: andreas.grueneis@univie.ac.at
b)Electronic mail: ghb24@cam.ac.uk

short-ranged or “dynamic” correlation between electron pairs.
As the electrons coalesce, a derivative discontinuity or “cusp”
must arise, so that a divergence in the kinetic energy op-
erator cancels an opposite one in the potential. Within an
expansion of Slater determinants the exact cusp is never ob-
tained, and a quantitatively correct linear form at small inter-
electronic distances only arises with large basis sets of high
momenta. A description of these cusps was initially formu-
lated by Kato,20–23 who found the wavefunction to be linear
to first-order as a function of the interelectronic distance be-
tween the pairs (r12). Moreover, the gradient of this linear be-
havior was found to be exactly a half (or quarter for triplet
pairs), regardless of the form of the rest of the potential in the
system. Higher order terms in r12 however are affected by the
rest of the potential.24

For many years, methods were developed which tried to
exploit this knowledge of the form of the exact wavefunction
in the small r12 limit, but the methods which resulted, such
as methods utilizing exponentially correlated Gaussians25 and
the transcorrelated method26 among others, were generally
expensive, plagued by many electron integrals, and limited
to systems of only a small size. A major breakthrough was
achieved in 1985 by Kutzelnigg,27–29 where two electron gem-
inal functions were introduced into the wavefunction which
satisfied the electron cusps, and augmented a traditional Slater
determinant expansion. This resulting wavefunction expan-
sion was then used within the formulation of traditional
quantum chemical methods, and crucially, an approximate
resolution of identity (RI) was performed as a way to fac-
torize the many-electron integrals into sums of products of
at most two-electron quantities. A small set of these gem-
inals dramatically improved the convergence of quantum
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chemical methods with respect to basis set size, since fewer
high momenta functions were required for these energetically
significant cusp regions. This dual basis of traditional deter-
minants and strongly orthogonal geminals, and the methods
for evaluating resultant expectation values, has been named
F12 theory.

In the intervening years, this approach has matured, with
important advances taking it from a promising technique to an
indispensable tool for high-accuracy quantum chemical meth-
ods for large systems.30–36 These advances include the intro-
duction of a complementary auxiliary basis set in which to
perform the RI,37, 38 refinement of the approximations used in
order to minimize the impact of the RI and maintain orbital
invariance,39–43 a more general function of the interelectronic
coordinate to approximately capture longer range effects,44, 45

and the introduction of specially designed basis sets for op-
timal efficiency.46, 47 The result are methods which share the
intrinsic accuracy of the complete basis set (CBS) limit of
their parent method, but which approach this limit far more
rapidly, thereby reducing the cost of the method. Combin-
ing this with density fitting,48 local approximations,49, 50 and
multireference methods51–62 has greatly extended the reach of
quantum chemistry in recent years.

All F12 approaches to date have taken place within the
framework of a traditional atom-centered Gaussian basis set.
Although these functions are ubiquitous in gas-phase molec-
ular quantum chemistry, where their local nature generally
suits the wavefunction, it is unclear whether these are well
suited for extended systems, especially when the wavefunc-
tion is intrinsically delocalized. These systems have been tra-
ditionally studied in a discrete basis of plane waves, chosen
such that the boundary conditions at the edges of the unit cell
are fulfilled, although this is by no means the only choice in
solids. However, a plane wave basis confers many advantages
in the solid state. There is a single basis set parameter (the or-
bital kinetic energy cutoff), which allows the CBS limit to be
approached systematically and straightforwardly, without the
need for basis set optimization. These basis functions are also
strictly orthogonal, and therefore no issues with linear depen-
dencies occur as the basis increases, in contrast to Gaussian
functions.

However, for all these advantages of a plane wave ba-
sis, the features of electronic cusps are still missing, and are
difficult to capture without including very high energy plane
waves in the expansion which dramatically increases the cost.
This convergence has been found to have the same scaling
behavior as the Gaussian expansion,63, 64 though generally re-
quires many more functions to reach the complete basis limit.

In this paper, we attempt to overcome these difficul-
ties by combining a plane wave basis with the explicitly
correlated F12 approach, and evaluate energies at the level
of second-order Møller–Plesset (MP2) theory to analyze the
benefit. We first consider the 3D finite-electron uniform elec-
tron gas (UEG) for this approach, which has recently received
attention as a model system for wavefunction-based quan-
tum chemistry,22, 63, 65–69 as well as long being an important
model, especially in the development of density functional
theory.70, 71 As the simplest model for a fully periodic metal-
lic system, it has many advantages. The plane waves in the

UEG are exact natural orbitals, but in addition they are also
exact Hartree–Fock solutions, and kinetic energy eigenfunc-
tions. This means that the generalized Brillouin condition
(GBC) and the extended Brillouin condition (EBC) are ex-
actly satisfied, which decouples the conventional and F12 en-
ergy contributions.28, 37, 43

In addition, all three-electron integrals have simple ana-
lytic forms, whose RI can be saturated completely with the
addition of at most just a single auxiliary orbital. Tractable
expressions for the electron repulsion integrals mean that ex-
trapolation to the CBS limit is straightforward to derive and
understand; these energies can be easily found and used as
benchmarks.63 We note in passing that the CBS limit is also
well-defined for the MP2 energy of a finite system, even
though the energy diverges in the thermodynamic limit.9, 68

This is because the divergence is caused by low-momenta ex-
citations in the large box limit, rather than the high-momenta
basis functions responsible for converging the basis set in-
completeness error.

The simple model Hamiltonian also allows us to calculate
the exact MP1 wavefunction for the two electron UEG analyt-
ically, whose expansion about r12 = 0 we find to take a dif-
ferent form than the traditional Slater-type correlation factor
now established in molecular F12 theory. We use this to com-
pare the Slater-type form to a new correlation factor which we
find to be optimal for the UEG, and which may have advan-
tages in other solid-state (or even potentially molecular) sys-
tems. Finally, we apply the method to the most widely stud-
ied solid-state system with quantum chemical methods, rock
salt lithium hydride crystal, to check the transferability of the
findings into realistic ab initio solid state systems.

II. THEORY

This section outlines the theoretical methods that are em-
ployed in the present work to study the uniform electron gas
simulation cell Hamiltonian. We briefly recapitulate MP2 per-
turbation theory, explicit correlation and the Hylleraas func-
tional. Furthermore, we elaborate on the use of a plane-wave
basis set in the many-electron wavefunction expansion and its
implications for explicitly correlated methods. Analytical ex-
pressions for the integrals required in the above methods are
derived and techniques to treat finite size effects as well as
singularities are discussed. Finally, a new correlation factor
that we term Yukawa-Coulomb correlation factor is derived.

A. Second-order Møller-Plesset perturbation theory

In MP2 theory, electron correlation is treated using many-
body Rayleigh-Schrödinger perturbation theory, taking the N-
electron Fock operator as the unperturbed Hamiltonian H(0).72

The Hartree–Fock wave function |�(0)〉 both defines and is
defined by the Fock operator. Formally, it is the ground state
Slater determinant with occupied orbitals that are eigenstates
of the 1-electron Fock operator

F |i〉 = εi |i〉. (1)

In practical computations, however, the |i〉 are rarely true
eigenstates of the Fock operator, since they are expressed
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in a finite and in general, insufficient 1-electron basis.
Nevertheless, these Hartree–Fock orbitals define H(0). For the
UEG, which is the main focus of this work, the Hartree–Fock
orbitals are determined by symmetry. They are therefore exact
eigenstates and the generalized and extended Brillouin condi-
tions are fulfilled. For the UEG, |�(0)〉 is the exact ground
state of the zeroth-order Hamiltonian H(0).

In MP2 theory, the standard route to obtaining the first-
order wavefunction is to expand it in the basis of excited
Slater determinants |�ab

ij 〉,

|�(1)〉 = 1

2

occ.∑
ij

virt.∑
ab

tab
ij Eab

ij |�(0)〉, (2)

where i, j and a, b refer to occupied and unoccupied spa-
tial Hartree–Fock orbitals, respectively, from the full set of M
one-electron basis functions. Eab

ij is the spin-free two electron
excitation operator. The coefficients of the excited determi-
nants tab

ij are readily calculated and read

tab
ij = 〈ij |ab〉

εi + εj − εa − εb

. (3)

In the above expression, εn corresponds to the one-electron
HF eigenvalues, and 〈ij|ab〉 are the conventional electron re-
pulsion integrals. The calculation of two-electron integrals
will be outlined in Sec. II D. In Møller-Plesset perturbation
theory, the second-order energy is the leading order correction
to the correlation energy that can be obtained by calculating
〈�(0)|H − H(0)|�(1)〉, which simplifies to

EMP2
c =

occ.∑
ij

virt.∑
ab

〈ij |ab〉(2〈ab|ij 〉 − 〈ba|ij 〉)
εi + εj − εa − εb

. (4)

Both the energy and the equations that determine the first-
order wavefunction separate into decoupled equations for
each occupied pair. The pair correlation energy can alterna-
tively be obtained by optimizing the first-order pair correla-
tion function |uij〉 to minimize the Hylleraas energy functional

Eij
c = min[〈uij |F1 + F2 − εi − εj |uij 〉 + 2〈uij | 1

r12
|ij 〉].

(5)
This expression is useful in explicitly correlated methods. In
conventional MP2 theory, the spinless first-order pair function
and its contravariant counterpart, have the expansion

|uij 〉 = 1

2

virt.∑
ab

tab
ij |ab〉, (6)

〈uij | = 1

2

virt.∑
ab

〈ab|(2tab
ij − tba

ij

)
. (7)

Figure 1 visualizes the zeroth-(HF) and first-order wave-
functions using the example of two electrons in a box with
a homogeneous neutralizing background charge. The wave-
functions are plotted with respect to the interelectronic dis-
tance r12. While the first-order wavefunction accounts for
electronic correlation by decreasing the probability of find-
ing both electrons at short interelectronic distances, the
zeroth-order wavefunction does not exhibit this so-called

FIG. 1. The MP1 wavefunction for the two electron uniform electron gas at
rs = 5 a.u. with increasing plane wave orbital basis sets (OBS), up to a total
basis of 15 625 plane waves. One electron is fixed at the center of the box,
and the other is moved in a line through the coalescence point. This illus-
trates the slow convergence to the exact wavefunction as the interelectronic
distance tends to zero. The Hartree–Fock wavefunction shows no variation
with interelectronic distance, as only the average electronic potential is felt
across the box. This demonstrates the same qualitative cusp convergence in
plane waves as demonstrated elsewhere for molecular systems in Gaussian
basis sets.30, 31

correlation hole centered at the electron coalescence point
(r12 = 0), and is depicted by a flat line. We note that the
first-order wavefunction converges very slowly to a cusp in
the complete basis set limit with respect to the number of em-
ployed virtual one-electron orbitals used in the expansion of
|�(1)〉 [see Eq. (2)].

B. Explicitly correlated MP2

As outlined above and in Refs. 30, 31, and 63, the MP1
wavefunction converges frustratingly slowly to the complete
basis set limit, with a M−1 dependence. Concomitantly, the
correlation energy converges very slowly and usually requires
the treatment of a large one-electron basis sets of high mo-
menta, that result in significant computational effort. How-
ever, as shown in Figure 1, a large fraction of the basis is
needed to describe the many-electron wavefunction in the
vicinity of the electron-electron coalescence points. The first-
order cusp condition defines the shape of the many-electron
wavefunction close to the electron coalescence of singlet
pairs20

∂
(

�(rij )
�(0)

)
∂rij

∣∣∣∣∣∣
rij =0

= 1

2
. (8)

The above equation implies that the many-electron wavefunc-
tion exhibits a derivative discontinuity about r12 = 0, with a
linear behavior as you move from this point regardless of the
external potential of the system, and as seen in Figure 1. Ex-
plicitly correlated methods fulfill the first-order cusp condi-
tions exactly by augmenting the ansatz for the many-electron
wavefunction with two-electron terms that depend on the
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interelectronic distance of each electron pair. In explicitly
correlated MP2-F12 theory,41, 73 the first-order pair functions
|uF12

ij 〉 are expanded as

∣∣uF12
ij

〉 = 1

2

virt.∑
ab

tab
ij |ab〉 + tij Q̂12f12|ij 〉, (9)

where tij are geminal amplitudes determined by the universal
cusp conditions, f12 is the correlation factor that models the
shape of the correlation hole and is typically chosen to be a
Slater-type function44

f STG
12 = e−γ r12 . (10)

This choice ensures that the geminal functions included in
the basis are linear with respect to r12 in the vicinity of the
electron-electron cusp and decay to zero at large r12, where
the wavefunction is expected to vary smoothly and is gener-
ally well-represented by the conventional determinantal basis.
We note that it is more common in explicitly correlated Gaus-
sian implementations to approximate this functional form by
a fixed combination of Gaussian type correlation factors to
simplify integral evaluation over this kernel, however, this is
not a problem here (see Sec. II D), and an exact Slater-type
geminal function is used.

This form of the correlation factor is an empirical choice,
and its longer-ranged decay is not motivated by an underlying
theory, but rather intuition.44 However, it has been shown to
be accurate compared to various other alternatives in molec-
ular systems.45, 74 In molecules, it is likely that the rapid ex-
ponential decay of the correlation factor to zero (the lack of
long range structure) is an advantage because it separates out
the long-range behavior which is not expected to be able to be
modeled by a simple function of r12 due to the anisotropy of
the external potential.74 Furthermore, in Ref. 45 the function
has been shown to not increase monotonically to a constant,
but rather to reach a maximum and then decrease, due to the
fact that the remaining molecular electron density is reduced
at large interelectronic distances.

However, here we will also investigate a new correlation
factor derived from perturbation theory that we term Yukawa-
Coulomb correlation factor,

f YC
12 = 2

γ

1 − e−γ r12

r12
. (11)

The MP2-F12 theory outlined in this work is, however, in-
dependent from the specific form of f12. Therefore, we will
return to the discussion of f YC

12 in Sec. II E.
The projector Q̂12 enforces strong orthogonality between

|�(1)〉 and |�(0)〉, and it also enforces orthogonality between
the standard and F12 contributions to the first-order wave
function

Q̂12 = (1 − Ô1)(1 − Ô2) − V̂1V̂2, (12)

where

O1 =
occ.∑
i

|r ′
1〉〈r ′

1|i〉〈i|r1〉〈r1|, V1 =
virt.∑
a

|r ′
1〉〈r ′

1|a〉〈a|r1〉〈r1|.

In F12 theory, it is convenient to obtain the second-
order correlation energy by optimizing |uF12

ij 〉 to minimize

the Hylleraas functional Eq. (5). The F12 contributions in-
volve non-factorizable many-electron integrals, which in-
crease the computational cost of evaluating EMP2−F12

c com-
pared to EMP2

c . The calculation of many-electron integrals
can, however, be approximated by the introduction of reso-
lutions of identity using the orbital basis, and an additional
orthogonal complimentary auxiliary basis set (CABS). In
this work, we employ unoccupied Hartree–Fock orbitals as
CABS.

For calculations on the UEG, since the EBC is fulfilled,
the contributions involving tab

ij do not depend on the F12
terms.28, 30, 43 The energy then decomposes into the standard
MP2 correlation energy and a F12 correction

EMP2−F12
c (M) = EMP2

c (M) + EF12
c (M). (13)

The dependence of the above energies on M indicates that
these energies are calculated using a finite orbital basis that
is composed of M plane waves with a kinetic energy below a
specified cutoff. The complete basis set limit is approached
for M → ∞. The expressions for EF12

c have been derived
elsewhere,30, 31, 36, 41 and are given here as

EF12
c (M) =2V ij

mn

(
2t ijmn − t ijnm

)
+ t kl

mnB
ij

kl

(
2t ijmn − t ijnm

)
− (εm + εn)t kl

mnX
ij

kl

(
2t ijmn − t ijnm

)
. (14)

In the above expression, the indices i, j, k, l, m, and n refer
to occupied HF orbitals, and Einstein summation convention
is assumed. t ijkl are the geminal amplitudes that fulfill the first-
order cusp condition and are kept fixed at the diagonal orbital-
invariant ansatz of Ten-no,40 which exactly satisfy the first
order cusp-conditions of singlet and triplet electron pairs,

t iiii = −1

2
γ −1, (15)

t
ij

ij = −3

8
γ −1, (16)

t
j i

ij = −1

8
γ −1. (17)

The intermediates V , X, and B are defined as

V ij
mn =Y ij

mn − Rpq
mnv

ij
pq − Rla′

mnv
ij

la′ − Ra′l
mnv

ij

a′l , (18)

Xij
mn =R̄ij

mn − Rpq
mnR

ij
pq − Rla′

mnR
ij

la′ − Ra′l
mnR

ij

a′l , (19)

Bij
mn =τ ij

mn + Ŝ12

(
1

2
ŜH R̄

ij

mP hP
n

− RPQ
mn kR

P R
ij

RQ − RPk
mnf

Q
P R

ij

Qk

+ Rka′
mnf

l
kR

ij

la′ − Rpa
mnf

q
p Rij

qa

−ŜH Rka′
mnf

P
k R

ij

Pa′ − ŜH Ra′b
mnf

p

a′ R
ij

pb

)
. (20)
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TABLE I. Index notation for different orbital subspaces of the complete
one-electron basis. CABS refers to the complimentary auxiliary basis set,38

and OBS refers to the orbital basis set over which the conventional MP1 am-
plitudes are defined.

Occ. OBS orbitals Virt. OBS orbitals CABS

i, j, k, l, m, n Yes No No
a, b No Yes No
p, q Yes Yes No
P, Q, R Yes Yes Yes
a′ No No Yes

For this work, the B intermediate is calculated using approx-
imation C.39, 75 Table I summarizes the meaning of the above
indices. f

Q
P , h

Q
P , and k

Q
P refer to the Fock-, Hartree-, and ex-

change matrix. We note that f
Q
P = h

Q
P − k

Q
P . Section II C out-

lines their evaluation for the UEG. Y
ij
mn, R

ij
mn, R̄

ij
mn, τ

ij
mn, and

v
ij
mn correspond to two electron integrals defined as

Y ij
mn =〈φmφn |f12v12| φiφj 〉, (21)

Rij
mn =〈φmφn|f12|φiφj 〉, (22)

R̄ij
mn =〈φmφn|f 2

12|φiφj 〉, (23)

τ ij
mn =〈φmφn|(∇1f12)2|φiφj 〉, (24)

vij
mn =〈φmφn|v12|φiφj 〉. (25)

f12 and v12 is the correlation factor and the electron repulsion
kernel, respectively. We will return to the evaluation of the
above integrals in reciprocal space in Sec. II D, which is per-
formed in the Vienna ab initio simulation package (VASP).76

The operators Ŝ12 and ŜH symmetrize four index quantities
such that

Ŝ12T
ij
mn = T ij

mn + T ji
nm, (26)

ŜHT ij
mn = T ij

mn + T mn
ij . (27)

We stress that the above expressions hold for general systems
with real as well as complex electron repulsion integrals, so
that the introduction of k-point symmetry in ab initio systems
follows naturally.

C. The homogeneous electron gas in a plane
wave basis set

In this work, we seek to apply explicitly correlated
second-order Møller-Plesset perturbation theory to a finite-
size (insulating) uniform electron gas model. The N-electron
homogeneous electron gas simulation-cell Hamiltonian reads

Ĥ = −
∑

α

1

2
∇2

α +
∑
α,β

1

2
v̂αβ, (28)

where α and β are electron indices and the two-electron
Ewald interaction v̂αβ is given by

v̂αβ = 1




∑
G

4π

G2
eiG(rα−rβ ), (29)

and 
 refers to the volume of the real-space simulation cell.
For all calculations in the present work, we employ a cubic
real-space unit cell with 54 electrons unless stated otherwise.
The reciprocal lattice vectors G are defined as

G = 2π

L

⎛
⎝ n

m

l

⎞
⎠ , (30)

where n, m, and l are integer numbers and L is the real-space
box length such that L3 = 
. The one-electron orbitals are
chosen to be plane waves

φn(r) = 1√



eiknr, (31)

where k refers to the unique reciprocal lattice vector of the
orbital. The one-electron Hartree–Fock Hamiltonian becomes
diagonal in this orbital basis and reads

〈φn|H (0)|φm〉 = f m
n = δn,m

(
hm

n − km
n

) = εn,

where

hn
n = 1

2
kn

2 (32)

and

kn
n = −

∑
i

〈ni |v12| in〉 . (33)

D. Evaluation of the integrals in reciprocal space

It can be advantageous to calculate the electron repul-
sion integrals in reciprocal space if a plane-wave basis set is
employed. This reduces the computational effort from a six-
dimensional integral in real space to a three-dimensional sum
in reciprocal space over the Fourier components of the given
electron pair codensities

〈ij |v12|ab〉 =
∑

G

CiaGṽGC∗
bjG, (34)

where ∑
G

CiaGeiGr = φ∗
i (r)φa(r). (35)

The Fourier components of the integral kernels in Eqs. (22)
and (25) read

f̃ STG
G = FT

(
f STG

12

) = 4π

(G2 + γ 2)2
, (36)

f̃ YC
G = FT

(
f YC

12

) = 4π

(G2 + γ 2)G2
, (37)

ṽG = FT (v12) =4π

G2
. (38)
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We note that if the orbitals correspond to plane waves, as
it is the case in the UEG, momentum conservation applies.
〈ij |v12|ab〉 is non-zero only if ki + kj = ka + kb. Moreover,
in the UEG all orbital codensities, and therefore two-electron
integrals can be defined uniquely from the momentum trans-
fer vector ki − ka such that

〈ij |v12|ab〉 = ṽki−ka
. (39)

1. Treatment of singularities in reciprocal potentials

The reciprocal kernels in Eqs. (37) and (38) diverge
at G = 0. Although these singularities become only prob-
lematic for integrals 〈vw|vw〉 (due to the orthogonality of
the orbitals), a direct numerical evaluation of the G = 0
contribution to the electron repulsion integrals according to
Eq. (39) is not possible. The singularities are, however, inte-
grable and well-known solutions to this problem have already
been proposed.77 We will employ a technique that introduces
a Gaussian charge distribution CG whose integral over the re-
ciprocal space with the corresponding kernels can be calcu-
lated analytically as

1




∑
G

CGṽG →
∫

dGe−αG2
ṽG, (40)

where

CG = e−αG2
.

α is chosen such that the charge distribution decays to zero at
the boundary of the employed plane wave grid and is constant
in the vicinity of G = 0. Adding and removing this Gaus-
sian charge distribution to CiaGC∗

bjG on the right-hand side of
Eq. (34) gives

1




∑
G

(CnnGC∗
mmG − CG + CG)ṽG

= 1




∑
G

(CnnGC∗
mmG − CG)ṽG

︸ ︷︷ ︸
G=0 contribution vanishes

+ 1




∑
G

CGṽG

︸ ︷︷ ︸
analytical integration

.

(41)

The difference between the Gaussian and orbital charge distri-
bution vanishes for G = 0, removing the G = 0 contribution
from the sum in the first term on the right-hand side of the
above equation. The last term on the right-hand side can be
integrated analytically. Depending on the kernel, we obtain
the following results for the integrals:

1




∑
G

CGṽG →
∫

dG
4πe−αG2

G2
=2π

√
π

α
, (42)

1




∑
G

CGf̃ YC
G →

∫
dG

4πe−αG2

(G2 + γ 2)G2
=2π2eαγ 2

Erfc
(√

αγ
)

γ
.

(43)

Practically speaking, the G = 0 component is computed once
per kernel and stored. This one-time effort does not require
significant optimization.

2. Convolution of integral kernels in reciprocal space

We compute the reciprocal kernels for the integrals in
Eqs. (21), (23), and (24) using the convolution theorem with

FT (f12v12) = 1




∑
G′

ṽG−G′ f̃G′ , (44)

FT
(
f 2

12

) = 1




∑
G′

f̃G−G′ f̃G′ , (45)

FT ((∇1f12)2) = 1




∑
G′

f̃G−G′ f̃G′(G · G′ − G′ · G′). (46)

The integral kernels are calculated using the convolution the-
orem in order to treat finite-size effects in the B intermedi-
ate consistently and obtain the correct limiting behavior for
the F12 contributions away from the large box-size limit. We
stress that EF12

c must vanish in the complete basis set limit (M
→ ∞) in a non-trivial way, since the conventional determi-
nant amplitudes recover the CBS energy in this limit. Specif-
ically, the contributions of the V , X, and B intermediates to
EF12

c must all vanish individually. In the following, we will
discuss this behavior for the V intermediate that reads

V ij
mn = Y ij

mn − Rpq
mnv

ij
pq − Rla′

mnv
ij

la′ − Ra′l
mnv

ij

a′l . (47)

The first term in the above equation on the right hand side
must cancel with the others as the employed basis set ap-
proaches completeness. The contraction over the orbital in-
dices in the last three terms corresponds to a resolution of
identity between the Coulomb potential (present in the v

ij
pq

integrals) and the correlation factor (present in the R
pq
mn in-

tegrals). Thus, it is important that the three different integral
kernels ( 1

r
, e−γ r, and e−γ r

r
) are treated in a consistent manner,

which is achieved via the convolution theorem.

E. A new MP2-F12 correlation factor:
Yukawa-Coulomb

The optimal correlation factor maximizes the conver-
gence rate of the MP2-F12 correlation energy to the CBS
limit with respect to the employed orbital basis set. All MP2-
F12 implementations have so far been confined to molecular
systems, where different choices of correlation factors have
been investigated but did not yield an improvement over the
conventional Slater-type correlation factor.45 In this work, we
seek to investigate a correlation factor motivated by analytic
results for two electrons in a box with a neutralizing and uni-
form background charge.22, 78, 79 The amplitudes of the first-
order wavefunction for two electrons with opposite spins in a
box are given by

tab
ii = 〈ii|ab〉

εi + εi − εa − εb

, (48)
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where |i〉 = 
−1/2 is the spatial orbital at the gamma point G
= 0. In this case, the kinetic energy of the occupied orbitals
are zero and momentum conservation of all two-electron ex-
citations requires that kb = −ka. Therefore, the denominator
of Eq. (48) can be approximated by

εi + εi − εa − εb ≈ −k2
a + γ̃ . (49)

In the above equation, we have approximated the contribu-
tions of the exchange ka

a [see Eq. (33)] to the HF one-electron
energies by a constant γ̃ . We note that in the limit ka → ∞,
the denominator will be dominated by contributions of the ki-
netic energy whereas the exchange contributions to εa will
decay as 1/k2

a . Inserting the definition of the electron repul-
sion integrals and noting that ka in this instance is also equal
to the momentum transfer vector of the excitation, the above
approximation gives

tab
ii = − 1




4π

k2
a(k2

a − γ̃ )
. (50)

A sum over all orbital products in the reciprocal lattice to ob-
tain the wavefunction form then allows for an analytic inverse
Fourier transform of the electron pair function to real space,
to yield the first-order pair function

|uii〉 = − 2

γ 2

1 − e−γ r12

r12

1



(51)

with γ 2 = γ̃ . The corresponding correlation factor consistent
with Eqs. (9) and (15) is

f YC
12 = 2

γ

1 − e−γ r12

r12
. (52)

The above correlation factor, that we denote Yukawa-
Coulomb correlation factor, becomes linear in r12 for r12 → 0
and decays to zero for large r12. We note that the Yukawa-
Coulomb correlation factor is similar to the two-body Jas-
trow factor used in previous studies of the homogeneous elec-
tron gas with transcorrelated methods.80 This correlation fac-
tor may equivalently be derived directly in real space, starting
from the differential equation for the first-order wave function
for doubly occupied pairs in a UEG,

(F1 + F2 − εi − εj )Q12f (r12)
ei2kis



+ Q12

1

r12

ei2kis



= 0,

(53)

where s = (r1 + r2)/2 and we have asserted that the first-
order pair function can be exactly represented by the product
of the ij orbital pair with an isotropic function of r12. Since the
GBC and EBC are fulfilled, [Q12, F1] = 0 and we can there-
fore solve for f(r12) without considering Q12. Approximating
F1 + F2 ≈ T1 + T2 + γ̃ = −∇2

r12
− 1

4∇2
s + γ̃ gives

(−∇2
r12

+ k2
i − εi − εj + γ̃

)
f (r12) + 1

r12
= 0, (54)

which has the solution f (r12) = −f YC
12 /2γ with γ 2 = k2

i

− 2εi + γ̃ .
The main difference between Eq. (52) and the Slater-type

function is in the longer-ranged behavior, as fYC decays to

zero as 1/r12 for r12 → ∞ as opposed to an exponential decay
for the Slater-type correlation factor in Eq. (10) commonly
used in F12 theories. From consideration of the correct van
der Waals description of a minimal basis helium dimer, the
same long range 1/r12 form was deduced in Ref. 40. How-
ever, since this long-range part of the correlation function is
continuous and able to be captured in single reference theories
by basis functions of angular momentum of Locc + 1, it was
not deemed necessary there to include this asymptotic behav-
ior in the form of the correlation factor. In this paper, we will
show clear improvements from the Yukawa-Coulomb corre-
lation factor in the case of the UEG where the correlation is
isotropic, however, it remains to be seen if any advantages are
transferable to ab initio solid state or extended molecular sys-
tems, where the longer range behavior in the geminals may be
projected out by the determinantal expansion in the presence
of significant inhomogeneity in the potential.

Although we use simple perturbative arguments to mo-
tivate correlation functions of the uniform electron gas – the
prototypical example of a metallic system where simple per-
turbation theory will fail – it should be noted that for a two
electron system the model is highly insulating and metallic
behavior and divergent results only arise on approach to the
thermodynamic limit.68 In addition, this long-range 1/r12 tail
for the pair correlation function can also be motivated from
the random phase approximation in this thermodynamic limit,
where Gaskell78, 79 found the exact long-range behavior of the
uniform electron gas to be

lim
r12→∞ u(r12) ∝ r

−(D−1)/2
12 , (55)

where D is the dimension of the model, and e−u(r12) then gives
the exact solution to the two-body Schrödinger equation. This
gives confirmation that the form of the correlation factor given
in Eq. (52) is exactly correct for both long and short dis-
tances in the two-body correlation, although not necessarily
between. This is also true in the strongly correlated regime,
although there higher body effects are obviously increasingly
important. This knowledge has informed the choice of Jas-
trow factors within the quantum Monte Carlo community,81

whose simplest functional form of

u(r12) = e
− r12

2(1+br12) , (56)

also has the correct long-ranged 1/r12 behavior, and is used
as standard for two-body correlation in both molecular and
extended systems.26, 82–84 These Jastrow factors, which can
be constructed to have increasing numbers of variational pa-
rameters, additionally in higher particle number coordinates85

capture all correlation effects of variational Monte Carlo
methods.19

III. RESULTS

This section discusses MP2 and MP2-F12 results of
the finite simulation cell uniform electron gas model.
Section III A recapitulates the well-known basis set extrapo-
lation procedures used in MP2 theory to obtain accurate com-
plete basis set limit reference energies. Section III B investi-
gates the convergence of the MP2-F12 correlation energy with
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respect to the employed computational parameters such as the
size of the CABS space, the variational parameter γ used in
the correlation factors, and the orbital basis set. Having estab-
lished CABS convergence, Sec. III C examines the variation
in the optimal parameter γ governing the extent of the corre-
lation hole, as the electron density of the system is changed.
Section III D explores the potential benefit of a pairwise op-
timization of the correlation factor in order to accelerate the
correlation energy convergence with respect to the employed
basis set even further. Finally, Sec. III E investigates the rela-
tive accuracy in finite basis set MP2 and MP2-F12 correlation
energies as a function of the electron density.

A. Basis set convergence in MP2 theory

Accurate complete basis set limit MP2 correlation ener-
gies are an indispensable prerequisite for the investigation of
the quality of our MP2-F12 results. To this end, we outline
the calculation of the MP2 complete basis set limit energies
below. Figure 2 shows the convergence of the MP2 correla-
tion energy with respect to the employed basis set for 54 elec-
trons in a box at a density corresponding to rs = 5.0 bohrs,
a typical electron density, e.g., potassium metal. As derived
and discussed thoroughly in Ref. 63, the MP2 correlation en-
ergy converges only as 1/M to the complete basis set limit,
where M corresponds to the number of plane waves. This rate
of convergence results directly from the convergence of the
first-order cusp condition by the wavefunction. In the present
work, we employ this functional behavior (1/M) to extrapo-
late to the complete basis set limit (M → ∞). The extrapo-
lations were carried out using several MP2 energies obtained
for orbital cutoffs yielding 5887–9171 orbitals. The inset in
Figure 2 confirms that the MP2 correlation energies for these
basis sets converge as 1/M to the complete basis set limit.
In the following, we will employ extrapolated complete ba-
sis set limit energies as reliable comparisons for MP2-F12
results.
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FIG. 2. Convergence of the MP2 correlation energy for the 54 electron UEG
simulation cell (rS = 5.0 bohrs) with respect to the employed number of
orbitals M. The inset shows that the correlation energy behaves as 1/M using a
very large orbital basis set, which allows for the extrapolation to the complete
basis set limit.

B. Computational parameters in MP2-F12 theory

1. CABS convergence

To avoid the explicit evaluation of three- and
four-electron integrals in F12 calculations, a CABS is
introduced.38 By insertion of the RI, many-electron integrals
can be replaced with products of two electron integrals
contracted over the union of the orbital basis and the CABS
(e.g., 〈mnl|f12f23|lji〉 → ∑

P〈mn|f12|lP〉〈Pl|f12|ji〉). In this
work, the CABS space is trivially constructed as a set
of higher momentum plane waves to those in the orbital
basis, and is therefore automatically orthogonal. Figure 3
demonstrates a rapid convergence of the MP2-F12 energy
with respect to the number of CABS orbitals used in the RI,
and crucially, the rate of this convergence is independent of
the orbital basis size. This is because the occupied orbitals do
not include components of higher momentum as the orbital
basis increases, and therefore the quality of the RI for a fixed
number of electrons is independent of the size of the virtual
basis, and only depends on the size of the complete basis set
(the union of OBS and CABS). In addition, we note that the
MP2-F12 energy changes by less than 50 meV if the number
of basis functions in the RI increases from 587 to 1503. As
indicated in Sec. I, due to conservation of momentum, the RI
for three-electron integrals in the uniform electron gas can in
fact be saturated with a single function, obviating the need
for a full RI in these cases. However, in order to maintain
generality, this approach will not be considered further here.

This invariance with respect to orbital basis size will
not be strictly true for ab initio systems, and so the ques-
tion of convergence with respect to the auxiliary basis will
need to be readdressed at a later date. In addition, even for
the uniform electron gas, the convergence will change with
number of electrons, as the formal requirement for satura-
tion of the auxiliary basis for three-electron integrals includes
plane waves with momenta 3 × kocc, where kocc is the maxi-
mum momenta of the occupied orbitals.28, 29 However, errors
may be sufficiently small such that the RI basis can be trun-
cated well before this limit, and the computational cost for
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FIG. 3. Convergence of the MP2-F12 correlation energy for the 54 electron
UEG simulation cell (rs = 5 bohrs) with respect to the employed number
of basis functions in the orbital basis and the CABS. A Slater-type correla-
tion factor and γ = 0.67 Å−1 was used. The number of basis functions in
the orbital space was fixed to 27 (upper panel) and 81 (lower panel). The
CABS convergence rate does not change as the number of virtual orbitals is
increased.



084112-9 Grüneis et al. J. Chem. Phys. 139, 084112 (2013)

increasing the basis is only O[M2]. This issue will be returned
to in the context of ab initio systems at a later date.

2. γ optimization

As discussed in Sec. II, the f STG
12 and f YC

12 correla-
tion factors depend on the parameter γ that describes how
quickly the correlation factor decays to zero with increas-
ing inter-electronic distance, modeling the physical extent of
the correlation hole. The Hylleraas energy functional Eq. (5)
is variational and allows optimization of γ through energy
minimization. Figure 4 shows the dependence of the MP2-
F12 energy on γ for the Slater and Yukawa-Coulomb corre-
lation factors. The Yukawa-Coulomb and Slater-type correla-
tion factors minimize the MP2-F12 correlation energies when
γ = 1.04 Å−1 and γ = 0.67 Å−1, respectively.

It is instructive to compare the behavior of the two corre-
lation factors by contrasting their series expansion about r12

= 0, which gives

−f STG
12 (r12)

γ
= − 1

γ
+ r12 − γ r2

12

2
+ O

(
r3

12

)
, (57)

−f YC
12 (r12)

γ
= − 2

γ
+ r12 − γ r2

12

3
+ O

(
r3

12

)
. (58)

The zeroth-order terms on the right hand side of the above
equations are constant. Constant shifts in the correlation fac-
tors are, however, always removed by the projector Q̂12 de-
fined in Eq. (12) and yield no contribution to the MP2-F12
correlation energy. The first-order terms agree in both cor-
relation factors, and are linear as required by the first-order
cusp condition. Inserting the optimized γ ’s to calculate the
coefficients for the second-order terms in r12 from Eqs. (57)
and (58) yield 0.347 Å−1 and 0.335 Å−1 for the Yukawa-
Coulomb and Slater-type correlation factor, respectively. This
comparison shows that both correlation factors give in fact
very similar results at the cusp position for the present system.
However, the Yukawa-Coulomb correlation factor yields an
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FIG. 4. The variation in the MP2-F12 energy with respect to the γ parame-
ter in the Slater- and Yukawa-Coulomb correlation factors, with the optimal
γ giving the lowest MP2-F12 energy. We employed 123 orbitals with 724
CABS basis functions for the 54 electron system at a density of rs = 5 bohrs.

improved minimum energy for the system, which is lower by
approximately 100 meV compared to the Slater-type correla-
tion factor, indicating its superior suitability for the system as
expected.

We also note that the MP2-F12 energy becomes identi-
cal for both correlation factors in the limits γ → ∞ and γ

→ 0. For γ → ∞, the MP2-F12 energy converges to the con-
ventional MP2 energy in the respective orbital basis set. In the
limit γ → 0, both correlation factors become r12. As such, the
latter limit corresponds to the MP2-R12 correlation energy.

3. Basis set convergence

As a further test of the quality of the MP2-F12, we con-
sider the convergence with respect to the orbital basis using
the Slater-type correlation factor, and compare to the extrap-
olated CBS limit results outlined in Sec. III A and in Ref. 63.
Figure 5 confirms that the correct CBS limit correlation en-
ergy (30.61 eV) is recovered in the large basis limit of our
MP2-F12 implementation. As anticipated, we find that the
rate of convergence for the MP2-F12 results is greatly im-
proved compared to conventional MP2 theory. The inset in
Figure 5 shows that the MP2-F12 correlation energy con-
verges approximately as 1/M

7
3 , significantly faster than the

1/M convergence of MP2. This can be rationalized from the
optimal convergence of a principal expansion of the wave-
function with terms linear in r12, which can be shown to be (L
+ 1)−7 where L is the largest momentum in the expansion.29

Figure 6 shows the convergence of the MP2 and MP2-
F12 correlation energies with respect to the employed basis
set for the Slater-type and Yukawa-Coulomb correlation fac-
tors. We stress that a logarithmic scale is used on the horizon-
tal axis. As expected, both correlation factors converge to the
correct CBS limit. Furthermore, the Yukawa-Coulomb cor-
relation factor exhibits a slightly faster rate of convergence
indicating that the 1/r decay of fYC captures longer-ranged,
important correlation effects that are neglected by the expo-
nentially decaying Slater-type correlation factor. The results
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FIG. 5. Convergence of the MP2 and MP2-F12 correlation energies for the
54 electron UEG simulation cell (rS = 5.0 bohrs) with respect to the em-
ployed number of orbitals M using the optimum γ (see Figure 4).
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FIG. 6. Convergence of the MP2-F12 correlation energy for the Slater- and
Yukawa-Coulomb correlation factors at rs = 5.0 bohrs with respect to the
employed number of orbitals compared to the MP2 energy and the CBS limit.
It can be seen that MP2-F12 converges far quicker than MP2.

shown in Figure 6 suggest that MP2-F12 allows for a reduc-
tion of the size of the orbital basis by approximately an order
of magnitude, although often more. Even though more inves-
tigation is required, and this factor will certainly not be fixed
for different systems, this suggests savings in the orbital space
could be on the whole larger than those generally achieved for
molecular systems within a Gaussian orbital basis.

C. Variation of γ opt with electron density

The physical extent of the correlation hole will change
with the density of electrons, which in the electron gas model
we are considering is inversely proportional to the rs parame-
ter. Therefore, we expect the optimal γ for the correlation fac-
tors to increase for higher densities. This is indeed observed,
as can be seen in Figure 7, which shows an approximately lin-
ear relationship between the optimal γ and the electron den-
sity (1/rs) for both correlation factors. This linear relationship
allows for the determination of an approximately optimal γ

in advance of any calculation, without the need for an explicit
optimization of the parameter with respect to the MP2-F12
energy.
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FIG. 7. Change in optimal γ parameter for the Slater- and Yukawa-Coulomb
correlation factors as the density (∝rs) of the electron gas is varied, for the
54 electron simulation cell.

D. Pairwise γ optimization

We now seek to investigate the potential improvement
in the basis set convergence rate of MP2-F12 by optimizing
the correlation factor for each pair of electrons. The corre-
lation factor in MP2-F12 theory is known to depend on the
orbital eigenvalues24 and indeed our derivation of f YC

12 for
doubly occupied pairs also reveals a dependence of γ on εi,
although this dependence is weak since it is partially can-
celed by k2

i . Since MP2 theory is an independent electron
pair approximation, one is free to use different correlation
factors for each electron pair. Figure 8 shows the F12 cor-
relation energy contributions as a function of γ for three dif-
ferent classes of electron pairs: (i) a core-core electron pair,
(ii) a core-valence electron pair, and (iii) a valence-valence
electron pair, as defined by the kinetic energy of the elec-
trons and their plane wave momenta, rather than their den-
sity since all plane waves have a uniform density across the
computational cell. Core and valence orbitals correspond to
the plane wave orbitals with zero and the highest possible
kinetic energy for the present 54 electrons in a cubic box
system.

The energy contributions are variational with respect to γ

and the respective minima are depicted by vertical lines. The
optimal γ is found to be larger for core-core electron correla-
tion than for valence-valence and core-valence electron corre-
lation. As such it would seem beneficial to employ pairwise-
optimized correlation factors. However, the contribution of
the core-core correlation energy in the present system is small
compared to the contribution of the valence-valence electron
pair energy. Furthermore, the additional correlation energy
gained by the optimized correlation factor for the core-core
electron pair is almost negligible. To this end, we conclude
that a pairwise optimization of the electron correlation factor
is not a particularly worthwhile pursuit for the uniform elec-
tron gas. Furthermore, this observation indicates that the re-
maining errors in the finite-basis MP2-F12 calculations using
optimized γ values arise from the violation of higher-order
cusp conditions.
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FIG. 8. Pairwise optimization of γ used for the Slater-type correlation factor
shown for a core-core, core-valence, and valence-valence electron pair at rs
= 5.0 bohrs.
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E. Relative errors in plane wave MP2-F12 theory

Although a rapid convergence of the absolute correlation
energy with respect to the employed basis set is advantageous
for the study of real solid state systems, it can be equally im-
portant that the rate of convergence does not change signifi-
cantly in the investigated coordinate space. The latter allows
for the calculation of properties such as lattice constants, bond
lengths, or reaction energies in the complete basis set limit
without having to converge the underlying absolute correla-
tion energies, since absolute errors are relatively constant, and
therefore a cancellation of these errors yield accurate energy
differences. In the present system, the errors in the MP2(-F12)
correlation energies for a range of electron densities with re-
spect to a fixed basis set size, provides a good test case to
investigate the issues described above.

Figure 9 shows the MP2(-F12) correlation energy as a
function of rs in the complete basis set limit and for a range
of finite basis sets. We find that the correlation energy in-
creases in the limit of higher densities and that finite as well
as complete basis set limit results exhibit the same quali-
tative behavior for increasing rs. However, a more instruc-
tive plot is shown in Figure 10, where the errors compared
to the CBS result are given at each electron density. This
shows that the non-parallelity errors (the difference between
the maximum and minimum basis set errors over the elec-
tron densities considered) in finite basis conventional MP2
converge frustratingly slowly. Employing 203 orbitals yields
MP2 non-parallelity errors of approximately 2 eV over this
density range, which roughly corresponds to the range of re-
alistic solid-state electron densities.

In contrast to conventional MP2, MP2-F12 exhibits non-
parallelity errors that converge much faster with respect to
the basis set size. Figures 11 and 12 show the MP2-F12 er-
rors compared to the complete basis set limit for the same
range of densities, for the Slater-type correlation factor and
Yukawa-Coulomb correlation factor, respectively. In contrast
to the conventional MP2 result, 203 plane-wave orbitals
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suffice to obtain non-parallelity errors over this density range
below 100 meV in the correlation energy, a reduction in the
relative errors by over an order of magnitude for the same ba-
sis size.

We note that the non-parallelity errors for all finite basis
set results lead to a relative over-correlation at lower densi-
ties, where longer ranged, non-dynamic correlation is more
important, and therefore the basis set convergence is seen to
be faster. The only exception to this observation is seen in the
non-parallelity of the MP2-F12 energy using the Slater-type
correlation factor with 81 orbitals, as shown in Figure 11. In
this case, the MP2-F12 basis set error exhibits a minimum at
rs = 3 a.u. We believe that this indicates that the Slater-type
correlation factor is less efficient for lower densities where the
long-range behavior of the correlation factor is energetically
more significant.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have shown that explicitly correlated
MP2 theory can be used in conjunction with a plane-wave
basis set for three-dimensional fully periodic systems. The
combination of infinitely delocalized plane waves and a two-
electron correlation factor centered at the electron coales-
cence points spans a very efficient and rapidly convergent ba-
sis set for the many-electron wavefunction expansion. This
allows for the accurate evaluation of the electronic correla-
tion energy close to the complete basis set limit. Our results
for the uniform electron gas show that the reduction in the
size of the employed one-electron basis set is similar to the
corresponding findings in Gaussian orbital based molecular
systems, although tentatively we suggest that the reduction
could be even larger, perhaps due to the slower convergence
of the original plane wave basis compared to an optimized
Gaussian-type orbital expansion.

We have introduced a novel correlation factor that is
termed Yukawa-Coulomb correlation factor, which in contrast
to other employed correlation factors, is derived from ana-
lytic results for two electrons in a box. The Yukawa-Coulomb
correlation factor differs from the Slater-type correlation fac-
tor in the long range and shows a faster rate of convergence
with respect to the employed basis set. We believe that this
novel correlation factor may be useful for the study of solid
state systems and potentially large molecules with relatively
isotropic interactions within explicitly correlated theories.

The change in the optimal variational parameter γ opt was
investigated for a range of densities. We found that γ opt in-
creases linearly for larger electron densities, which indicates
that the correlation hole becomes more localized in this limit.
A close to optimal γ can be determined solely from the den-
sity of the system and the expectation is that even in ab initio
systems, a γ optimization will not always be necessary.

Furthermore, we have investigated the pairwise optimiza-
tion of the correlation factor for core-core, core-valence, and
valence-valence electron pairs. Our findings show that al-
though γ opt for the core-core electron pairs differs signifi-
cantly from γ opt for valence-valence electron pairs, the gain in
the absolute correlation energy using pairwise optimized cor-
relation factors is negligible. As such, we believe that it is not
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FIG. 13. Basis set convergence of the MP2 valence-only cohesive energy
contribution to LiH. Our calculations were done using a 4×4×4 k-mesh and
norm-conserving pseudo-potentials in the framework of the PAW method.76

The LiH unit cell volume was set to 17.03 Å3. The MP2 calculations were
done using HF and approximate natural orbitals.12 Our MP2 and MP2-F12
(using a STG) results converge to the same complete basis set limit results ob-
tained using local MP2 (CRYSCOR, from Ref. 13), the hierarchical method
(from Ref. 8), and the incremental scheme (from Ref. 14).

beneficial to optimize the correlation factor for each electron
pair individually.

Finally, we have studied the convergence of the non-
parallelity error from the complete basis set limit using MP2-
F12 and MP2 for a range of densities and basis sizes. This
is expected to provide a good test case for the convergence
of lattice constants and other energy differences in solid state
systems with respect to the employed basis set. As expected,
the convergence of MP2-F12 clearly outperforms MP2 and
also allows for a reduction by approximately an order of mag-
nitude in the employed basis set.

We hope that the findings of the present work will trans-
late both to alternative UEG models,86, 87 ab initio systems,
and to other explicitly correlated methods in the solid state
such as CCSD-F1232, 33, 88–90 or FCIQMC-F12,2, 61, 91–94 where
the additional computational cost for calculating the F12 con-
tribution becomes negligible in comparison to these more ex-
pensive parent methods. The application of the methods out-
lined in this work to real, ab initio solid state systems is
expected to significantly expand the scope of the whole range
of quantum chemical wave function based methods. Figure 13
shows a preliminary application of the MP2-F12 implemen-
tation for the LiH crystal confirming our findings for the uni-
form electron gas that explicitly correlated MP2 theory allows
for a substantial reduction in the basis set. We will expand on
these results in a forthcoming paper.
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