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Abstract

Ž .The recently proposed MR-CI ansatz which contains terms linear in the interelectronic distances r is used to compute12

the potential energy curve of N by means of r -MR-ACPF. The computed spectroscopic constants with the respective2 12
y4 ˚ y1Ž . Ž . Ž .errors, e.g. D D y0.2 kcalrmol , D R q1=10 A and Dv q2 cm , are found to be in excellent agreement withe e e

values derived from experimental spectra. With only a moderate computational effort, we reach accuracies which are
Ž .probably out of reach of present day traditional CI-methods and computers. q 1998 Elsevier Science B.V.

1. Introduction

The most common approach to approximately
solve the electronic Schrodinger equation for medium¨
sized atoms or molecules is to expand the solution in
antisymmetrized products of orbitals, i.e. Slater-de-
terminants. However, since this traditional CI ansatz
does not have the analytical properties of the exact
wavefunction, one cannot expect fast convergence to
the solution. It turns out that the region where two
electrons of opposite spin approach each other closely
Žhere the exact wavefunction is linear in the inter-

. w xelectronic distance r , becomes the bottleneck 1 ,12
Ž . Ž .limiting the truncation error D E L :sE L™` y

Ž . Ž .E L of the computed energy E L , which arises

1 Present address: Festkorperchemie, FB 19, Gesamthochschule¨
Kassel, D-34109 Kassel, Germany.

when the basis set used is truncated at the angular
Ž . y3momentum quantum number L, to D E L AL

Ž w x.for details see for example Ref. 2 . Therefore to
increase the accuracy of a CI calculation by a factor
of 10, the value of L must be more than doubled!
Furthermore, assuming that the number n of basis
functions grows as nAL2 and that the CPU time T
needed to solve a particular set of CI-like equations
grows as TAn4, then one may roughly estimate the
accuracy D E achieved by using a certain amount of
CPU time with the relation

'D EA1r T 1Ž .

Including terms that are linear in r in the12

expansion of the wavefunction dramatically in-
creases the efficiency in the case of two-electron
atoms and molecules, but the straightforward exten-
sion to many electron systems leads to integrals over

0009-2614r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
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the coordinates of 3 and 4 electrons whose sheer
Ž 8.number An cancels the improvement in the con-

vergence of the energy with respect to the number of
basis functions, leaving the relation between accu-

Ž .racy and CPU time, Eq. 1 , unaltered.
w xKutzelnigg 1 carefully analyzed the problem and

suggested that, in order to keep things simple enough
to allow for the extension of Hylleraas’ ansatz to
many electron systems, one should append to the
traditional CI expansion, only those terms linear in
r that are constructed from orbitals which are12

occupied in the reference. Later a many electron
w xtheory was formulated 3 , which is applicable to

arbitrary closed-shell systems and where the evalua-
tion of 3- and 4-electron integrals is entirely avoided
by means of the approximate resolution of the iden-

Ž .tity RI and by summing certain contributions in
closed form; the remaining contributions which could
not be treated this way could be neglected because
they only give rise to errors converging faster to zero

Ž .than the truncation error of traditional CI see above .
Meanwhile, this so-called ‘‘r -method’’ has been12

implemented into methods as sophisticated as
Ž . Ž .CC SDT the triples being approximated and has

Ž w xbeen applied to a variety of problems see Ref. 4
.for a review .
w xRecently 2,5 the present author has generalized

the method of Kutzelnigg and coworkers to arbitrary
open-shell and multiple-reference cases. In the pre-
sent Letter, as the first application of r -MR-CI, we12

calculate the potential energy curve of nitrogen
Ž .molecule N at chemical distances.2

2. Theory

Since the theory has already been described in
w xdetail in Refs. 2,5 , we will only give a broad

outline here. In the following we use the notation of
the cited papers and make use of the Einstein sum-
mation convention. It is further assumed that the
basis set used is approximately complete up to a
certain l-quantum number so that the RI-approxima-

Ž Ž .tion can be applied ‘‘standard approximation’’ SA
w x.3 .

We append to the CI expansion all those terms
that can be generated from all the reference Slater

determinants f on which the former is based by
applying the recipe

k l k l kl k l kl k l p qf :sR a fs r a yr a f 2Ž .ˆ ˆ ˆž /i j kl i j k l i j p q i j

where akl and a p q denote the usual excitation oper-ˆ ˆi j i j
Ž .ators which substitute the internal orbital pair w , wi j

Ž .by the general orbitals w , w from a hypotheticallyk l

Ž .complete orthonormal set, by the orbitals w , w ,p q

respectively, from the given basis set. It was shown
w x Ž . Ž . k l2,5 that for k, l s i, j , f is equal to a termi j

linear in r where the orbitals w and w in f are12 i j

joined and which is orthogonal to all the determi-
nants of the traditional CI expansion. The additional

Ž . Ž . w x Žterms where k, l / i, j 6 k and l run over all
.internal orbitals are required to achieve the same

invariance properties with respect to orbital rotations
as in the corresponding traditional MR-CI. To distin-

Ž .guish the index pair k, l from the more physical
Ž . w xpair i, j , we follow the notation of Ref. 4 and

write the former in bold face letters.
Ž .The ansatz Eq. 2 , for each reference determinant

4 Žcontains AN terms N being the number of elec-
. 2trons , whereas there are only AN electron pairs

which form cusps in the wavefunction. Thus for
large N, most of the terms are not well defined and
in conjunction with inaccuracies due to numerics and
the SA, this fact may give rise to serious instabilities
Ž w x .see Ref. 4 for a detailed discussion . Probably the
simplest way to solve this problem is to restrict the
r -terms to those that are absolutely necessary. For12

the treatment of molecular dissociation, this set con-
sists of those terms that insure the invariance of the
CI functional with respect to the unitary transforma-

Žtion of the molecular spin orbitals obtained with
.MCSCF to orbitals localized at the atomic centers.

Invariance with respect to unitary transformations
among the atomic orbitals, however, even if they

Ž .belong to the same irrep e.g. 1s and 2 s , seems
dispensable. To this end, we form sets of spatial
orbitals which contain exactly two members: a bond-
ing orbital and its anti-bonding counterpart. Given an

Ž . Ž .orbital index pair i, j we will let k, l run over all
spin orbitals that can be constructed from the joined
sets to which w and w belong. For example in ai j

Ž .homo-nuclear diatomic in D symmetry let2 h
Ž . Ž .w , w s 1s , 1p . From these two orbitals wei j g u, x
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� 4 � 4construct the two sets 1s , 1s and 1p , 1pg u u, x g , x
Ž .and let k, l run over all spin orbitals that can be

constructed from the members of the joined set, i.e.
� 41s , 1s , 1p , 1p , where, of course, terms withg u u, x g , x

a different spatial or spin symmetry as the state of
consideration may be omitted. Since when using this
approach the r -MR-CI wavefunction loses most of12

the invariance of rotations between pairs of inactive
and respective active orbitals, it is now mandatory to
properly define the internal orbitals. In the MCSCF

Žcalculations where we use the same references as in
Ž . .the subsequent MR-CI SD or MR-ACPF expansion ,

we therefore fix the rotational degrees of freedom by
requiring that the F-matrix in the space of the inac-
tive orbitals and the Q-matrix in the space of the

w xactive orbitals 7 are diagonal.
The different types of matrix elements arising in

w xan r -MR-CI may be simplified 2 using extensions12

of the well-known Slater-Condon rules. A priori no
w xclosed formulae result, however, in Ref. 2 it has

been shown how these intermediate expressions may
be evaluated; the final tensor products are listed in

w xTable 3 of Ref. 5 and will not be repeated here.
With the exception of the symbolic expression g XX

pkXX

d q
k i l

Ž Ž . w x.see Eq. 33 in Table 3 of Ref. 5 which arises from
the interaction of the r -terms with the determinants12

of the traditional CI expansion over the two-electron
part of the Hamiltonian, all tensor products have

Ž 6 2 2storage requirements AN or AN n , see Section
w x.4.3 of Ref. 2 which are easily fulfilled on present

day computers. For the former expression, however,
AN 4 n2 elements have to be stored and manipulated,
a task which at least requires some thought about
efficient implementation. Fortunately, within the SA,
only determinants with 2 external orbitals may inter-
act with the r -terms. Since these matrix elements12

of the Hamiltonian occur in third order perturbation
theory for the first time and since, in the presence of
terms linear in r , one may expect a fast conver-12

gence of a perturbation expansion of the wavefunc-
tion in the cusp region, which has a small contribu-

Ž .tion say f5 % of the correlation energy when a
basis set large enough to fulfill the SA is used, it
seems justified to totally omit the mentioned matrix
elements. To stay consistent, the corresponding ma-
trix elements arising from the interaction of Slater
determinants with r -terms over the one-electron12

Ž Ž .part of the Hamiltonian see Eq. 31 in Table 3 of

w x.Ref. 5 also have to be omitted. Please note that in
the single-reference closed-shell case, the Brillouin
theorem may be used to avoid evaluation of the
matrix elements mentioned.

The present r ansatz is easily combined with12
w x Ž .MR-ACPF 8 by appending the r -terms, Eq. 2 ,12

to the set of determinants which belongs to the
Žexternal part of the correlation function C in Ref.e

w x.8 . This can be understood by noting that within the
Ž .SA, the r ansatz, defined by Eq. 2 , is equivalent12

w xto the ansatz of Ref. 2 where the summation is over
only the virtual orbitals of the complete set. Thus the

Ž .r -terms given by Eq. 2 may be regarded as12

consisting of a fixed linear combination of those
double substitutions which are missing in the tradi-
tional CI expansion. Therefore, one may expect the

Žr -MR-ACPF to qualitatively have the same we12
.have checked this numerically size-extensivity prop-

Ž w x.erties see Ref. 8 as the corresponding MR-ACPF.

3. Details of implementation

Ž .The r -MR-CI SD and r -MR-ACPF methods12 12

have been implemented into the Columbus ‘‘direct’’-
w xMR-CI program system 9 without abandoning its

flexibility in defining the wavefunction and the pos-
sibility of making use of D symmetry and sub-2 h

w xgroups. The special integrals 10 needed for the
w xr -method have been implemented 11 into a recent12

w xversion of program Hermit 12,13 which generates
integrals over spherically harmonic Gaussians. The
integrals over r are transformed to the molecular12

Ž .orbital MO basis with program Tran which is
w xcontained in the Columbus system; the r ,T inte-12 1

grals, however, where only two indices have to be
transformed to external MOs, are computed by accu-
mulating them in AN 2 n2 words of memory using
AN 2 n4 floating point operations. The arrays needed
to evaluate the matrix elements of the Hamiltonian
H in r -CI are computed by a program called12

R12tran following the guidelines of Section 4.3 in
w xRef. 2 .

We will now describe the changes made to pro-
Ž .gram Ciudg, where finally the MR-CI SD or MR-

ACPF equations are solved: to construct the r -terms12
Ž .according to Eq. 2 , the reference configuration

Ž . Ž .state functions CSFs , which as well as the others
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w xin the GUGA formalism 14 are defined as
Gelfand-Tsetlin states, are decomposed into Slater
determinants. Based on these determinants, all possi-

Ž .ble r -terms defined by Eq. 2 are constructed. Of12
Ž .this initial set, redundant terms and optionally terms

Ž .not required due to physical reasons see Section 2
are removed. The matrix elements of the Hamilto-
nian between the r -terms are computed once. The12

entire diagonal elements and the elements of one
Ž .i, j block are stored in sequential files, only the
non-vanishing elements of the off-diagonal blocks
are put to disc. The metric tensor S in the space of
the r -terms is block-diagonal with respect to the12
Ž . Ž .i, j indices, the matrix elements depending on k, l
only. Therefore one block of the metric tensor can
easily be kept in main memory throughout the calcu-
lation. The interaction of the r -terms with the CSFs12

of the traditional CI expansion is computed by de-
composing the latter into Slater determinants and
generating a formula tape which contains the indices

Ž .and weights of the tensors defined in Eq. 33 of
w xTable 3 in Ref. 5 which are stored in arrays

throughout the calculation. The programming of the
evaluation of the matrix elements of the r -terms is12

considerably simplified by making heavy use of
Fortran statement functions.

To minimize the changes made to the program
code where the wavefunction is optimized, the coef-
ficients c of the r -terms are defined in a symmetri-12

cally orthogonalized basis. Thus the s-vector is
calculated by evaluating the expression

s :sSy1r2 HSy1r2c 3Ž .
Žfrom right to left. Since the condition numbers de-

fined as absolute largest eigenvalue divided by the
.absolute smallest eigenvalue of S were usually

found to be less than 103, this is a stable procedure.
w xAs described in Ref. 8 we use a modification of

Davidson’s method to optimize the wavefunction. To
this end, a set of trial vectors is generated by a
first-order update. To enhance convergence we com-
pute the reduced resolvent in the block-diagonal
approximation.

In the future, we will call the present software,
where we additionally changed various details to

Ženhance user friendliness, the Amica ‘‘atoms and
.molecules in chemical accuracy’’ suite of programs

w x15 .

4. Applications

The basis sets we use in this work are based on
w xthe aug-cc-pV5Z basis set of Woon et al. 16 . The s

Ž . w x Ž .set is re-contracted to 15s r 11s ; the 3g set is
Ž .substituted by the 2 g set contained in aug-cc-pVQZ

w x17,18 ; the tight h function is deleted. We logarith-
Ž .mically extrapolate a tight d function hs11.911 .

Ž . w xOur final standard basis set is 11s9p6d4 f 2 g1h
from which we construct three sets spdf , spdfg and
Ž .the unchanged spdfgh.

We then investigated the influence of several
changes made to the spdf set on the r -ACPF12

Ženergies of the single atom and the molecule Rs
. Ž .2.07 a . We find the contraction errors <0.1 m E0 h

Ž .are negligible on the level of chemical accuracy
Ž .f 1 kcalrmol we are aiming at. The substitutions

w x w xof the sp part by Partridge’s 14 s9p and 18 s13 p
w x Žsets 19 while the diffusest s and p functions

.remain unchanged lower the energies substantially
Ži.e. 0.2 and 0.5 m E , respectively for the atom andh

.0.7 and 1.4 m E , respectively for the moleculeh
Žresulting in a rising of D which is computed ase

Ž . Ž ..2 E N yE N by 0.1 and 0.2 kcalrmol, respec-2

tively. We have also done the substitution with the
w x18 s13 p set with the core electrons kept frozen and

Žfound that the lowerings of the individual systems N
.and N approximately halve; D , however, drops2 e

only by one fourth when compared to the value
obtained with all electrons being correlated. Based
on this findings, one would want to use Partridge’s
large sp sets. However this was not practical, since
in our present program version the highest number of
contracted basis functions is limited to 255. We
therefore could not afford to use these large sp sets

w xtogether with the gh sets. In the presence of the 2 g
set, however, the influence of the substitution of the

w xstandard sp set by the 14 s9p set on the individual
energies almost completely cancels in D whiche

rises by only 0.03 kcalrmol. This finding seems to
Ž .justify the usage of this smaller sp set, provided

higher polarization functions are present.
The neglect of the most diffuse functions in the

spdf set causes errors that are intolerable when one
aims at chemical accuracy. The effect on the total
energies and on D varies strongly, the diffuse de

having the largest influence on the energies of both
Ž . Žthe atom q0.7 m E and the molecule q1.6h
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.m E . Its effect on D , however, almost cancelsh e
Ž .y0.1 kcalrmol : here the neglect of the diffuse s
increases D by 0.4 kcalrmol. To be on the safee

side, we included diffuse functions of all occurring
quantum numbers. A second set of diffuse functions,
however, is dispensable since it raises D by onlye

0.09 kcalrmol. The presence of a tight d function is
clearly mandatory: its neglect raises the energies of
the atom by 0.4 m E and of the molecule by 1.8h

m E , resulting in a lowering of D by 0.7 kcalrmol.h e

In contrast, a second tight d function or a tight f
function, as well as a second set of diffuse spdf
functions are dispensable, since their influences on
the individual energies are well below 0.1 m E .h

To get a feeling for the overall quality of our
standard basis set, we did an r -MR-ACPF calcula-12

tion with 19 references generated by allowing for all
possible single and double substitutions 2 p™3 p,

Žincluding those that do not have the symmetry Au
.in D of the state under investigation. Our result2 h

Ž .E sy187.852 m E is further lowered by 0.570c h

w xm E when Partridge’s 18 s13 p set is used as de-h

scribed above. The energy in the latter basis set only
Ž . w xslightly 0.04 m E overshoots a recent estimate 20h

based on the evaluation of experimental data.
In Table 1 we have compiled the equilibrium

Ž . Ž .energies E , dissociation energies D , equilib-e e
Ž .rium bond lengths R and harmonic frequenciese

Ž .v computed for N using various ansatze and¨e 2

basis sets. For our r ansatz we used those 2012

references which contribute to the MCSCF wave-
w xfunction in the limit of large distances; see Ref. 21

for a listing. We validated this choice of the refer-
ence space in a comparison with a full-CI calculation

w xin a DZP basis set with 6 electrons correlated 22 .
MR-ACPF was found to underestimate D by 0.1e

Žkcalrmol. Since this method is at least approxi-
.mately size-extensive one may expect that this accu-

racy is conserved when all 14 electrons are corre-
lated. Please note that the dissociation of N is a2

rather easy case for this method since the molecule is
closed-shell and in the separated atoms the spins of

Table 1
Comparison of calculated spectroscopic constants a,b of the ground state of 14 N with experimentally derived values c

2

d e y1˚Ž .Method Corr. Basis set yE rE y109 D r kcalrmol R rA v rcme h e e e

f g Ž .r -MR-ACPF all spdf 0.535 479 y0.69 0.05 q0.00013 q0.112
g Ž .r -MR-ACPF all spdfg 0.536 655 y0.16 0.09 q0.00003 q1.812

h Ž .r -MR-ACPF all spdfgh 0.537 006 "0.00 0.12 i q0.00009 q2.012
Ž .r -MR-ACPF fc spdfgh 0.418 670 y0.94 0.11 q0.00226 y7.112

fŽ Ž .r -MR-CI SD all spdfgh 0.514 337 y0.58 0.13 y0.00150 q15.812
f Ž .r -MR-AQC all spdfgh 0.532 963 y0.09 0.12 y0.00024 q4.912

j kŽCCSD T all cc-pCV6Z 0.535 855 y1.13 y0.0007 q12.5
j,l kICMRC all cc-pCV5Z 0.509 547 y0.61 y0.0005 q8.8

j,l ,m kICMRCIq all cc-pCV5Z 0.530 038 y1.82 y0.0005 "0.0

Experiment 228.42 1.09769 2358.6

a Entries are deviations from the experimental values given in the last line.
b Ž .Values of this work obtained from a fit of 5 equidistant points around 2.07 a 0.05 a mutual distance to a 4th degree polynomial in 1rr.0 0
c w xRefs. 28,27 .
d Ž . Ž .All 14 electrons are correlated all ; frozen core fc .
e Ž .Dissociation energy corrected for BSSE counterpoise correction in parenthesis .
f� 4 � 4 Ž .2 p m 2 p orbitals active 6 electrons, 20 references in D .2 h
g Subsets of standard basis set.
hStandard basis set.
i Ž .Relativistic effects fy0.2 kcalrmol presumably cancel error; see text for details.
j w xFrom Ref. 26 .
k BSSE was not corrected.
l� 4 � 4 Ž .2 s,2 p m 2 s,2 p orbitals active 10 electrons, 176 references in D .2 h
m Davidson’s correction applied.
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the open-shell electrons are all parallel and therefore
correlate to a lesser extent. MR-ACPF overestimates,

w xe.g. the D of O by 0.7 kcalrmol 8 compared toe 2

full-CI.
The first three lines of Table 1 demonstrate the

fast convergence of the spectroscopic constants com-
puted with r -MR-ACPF, to the experimental val-12

ues. Using the spdfgh basis set results in D beinge

accurate to within the experimental error, R ise
y4 ˚ y1better than 10 A and v is accurate to 2 cm .e

Only the D values were corrected for the basis sete
Ž .superposition error BSSE using the well-know

Boys-Bernardi method, since even in the spdfgh set,
y5 ˚Ž .the corrections to R q1.7=10 A and ve e

Ž y1 .q0.26 cm were found to be entirely negligible
within the accuracy obtained. The BSSE grows with
the highest l contained in the basis set, a behavior
which presumably is due to higher polarization func-
tions on one atom compensating the lack of satura-
tion in the lower l shells on the other atom. Due to
the fast l convergence of the r method, the further12

saturation and additional introduction of functions
with higher l due to the ‘‘ghost’’ basis set seems to
become unimportant. The coincidence of the com-
puted D with the experimental value is probablye

due to a fortuitous cancelation of errors caused by
unsaturations of the basis set with inherent errors of
the ACPF method and relativistic effects. The latter

w x Ž .were calculated 23 using CI SD with the Davidson
Ž .correction for the N atom and CCSD T for the N2

molecule, with the Dirac-Coulomb-Gaunt Hamilto-
nian in an uncontracted cc-pVTZ basis set with an

Ž .augmented p function hs283.8 and were found
Žto decrease D by 0.2 kcalrmol 0.1 kcalrmole

.without the Gaunt interaction . Due to the smallness,
we neglect these effects in the present work. There is

w x w xboth theoretical 24 and experimental 25 evidence
that Born-Oppenheimer breakdown effects for
molecules of similar mass as N may safely be2

expected to be still several orders of magnitude too
small to be of any importance for the present study.
Comparing our calculated spectroscopic constants

Ž . w xwith recent traditional large-scale calculations 26
Ž .see Table 1 , we observe that our values are consid-

w xerably closer to experiment 27,28 .
To obtain the influence of the core correlation on

the calculated spectroscopic constants, we performed
an r -MR-ACPF calculation with the two core or-12

bitals being doubly occupied in all CSFs and being
Žomitted from the r terms. Our results D D s12 e

˚q0.94 kcalrmol, D R sy0.0022 A, Dv sq9.1e e
y1 .cm , see Table 1 are in excellent agreement with

w xrecent estimate 26,29 .
Ž .We also performed r -MR-CI SD calculations12

using the same 20 references as before. While D ise

still calculated to within chemical accuracy, the other
spectroscopic constants are approximately ten times
less accurate than the ones obtained with the corre-
sponding ACPF ansatz. The results of the recently
proposed alternative choice of the renormalization
factor g in ACPF named ‘‘averaged quadratic cou-

Ž .pled-cluster method’’ AQCC of Szalay and Bartlett
w x30 are, as expected, intermediate between the ACPF
and CI values, the error in the spectroscopic con-
stants being about two times larger than with ACPF.
This behavior is connected to the wrong asymptotic
dependence of AQCC; in that case g™4rN instead
of the correct relation for identical non-interacting
electron pairs which is gs2rN as implemented in
ACPF. Accordingly, the AQCC method recovers
99.3 % of the correlation energy obtained with ACPF,
whereas the corresponding value for CI is only 95.8
%. While the slight difference in performance be-
tween ACPF and AQCC in many cases does not

Žmatter AQCC may even be able to compensate for
the tendency of ACPF to slightly overshoot correla-

.tion effects when basis set saturation is the major
bottleneck, it may become important at the basis set
limit.

Ž .To assess the quality of the CCSD T and ICM-
ŽRCI with and without Davidson correction, denoted

. w xwith ‘‘qQ’’ calculations of Ref. 26 we did MR-
ACPF calculations in the cc-pCVxZ, xsD,T,Q ba-

w x Ž .sis sets 31 and found the energies fy0.7 m Eh
Ž .and D values -0.2 kcalrmol to be in strikinge

agreement with the ICMRCIqQ results, which in
turn are close, i.e. better than 0.3 kcalrmol in D , toe

Ž .the CCSD T numbers. Comparing our MR-ACPF
energy in the cc-pCVQZ set with the ICMRCI value

w xof Ref. 26 , we conclude that at the basis set limit
Žthe latter method, where 10 electrons from 2 s and

.2 p are active, resulting in 176 references in D ,2 h

will overestimate the D by 1.3 kcalrmol. We con-e
Ž .firmed this number by a r -MR-CI SD calculation12

with these 176 references and obtained a BSSE
corrected value which overshoots experiment by 0.6
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kcalrmol. Adding the contraction error of this ICM-
w xRCI ansatz of q0.8 kcalrmol 29 , we get an excel-

lent agreement with our previous estimate. By simi-
Ž .lar arguments we conclude that the CCSD T and

w xICMRCIqQ methods of Ref. 26 in the basis set
Žlimit underestimate D by 0.3 in excellent agree-e

w x.ment with the extrapolations of Ref. 32 and 0.04
kcalrmol, respectively. This implies that the basis

Ž .set incompleteness error of CCSD T in the cc-
w xpCV6Z set 26 which gives an energy too low by

1.1 kcalrmol is 0.8 kcalrmol which is in excellent
Ž .agreement with the estimate 0.7 kcalrmol of Ref.

w x29 . However, using this basis set with e.g. ICMRCI
qQ which, due to a fortuitous cancelation of errors

Ž .in the correlation treatment, in the large L limit is
Ž .accurate to better than 0.1 kcalrmol see above , in

the cc-pCV6Z set an accuracy better than 1 kcalrmol
can presumably still not be achieved since the BSSE
for a cc-pV6Z set with a frozen core was still found

w xto be 0.2 kcalrmol 29 .
We also computed D with r -MR-ACPF usinge 12

176 references, obtaining a value too low by 1.2
kcalrmol, which is in good agreement with the 1.0
kcalrmol energy lowering obtained by Almlof et al.¨
w x33 on going from MR-ACPF with 6 active elec-

Ž .trons 32 references to the ansatz with 10 active
Ž .electrons 176 references . This puzzling behavior

may be explained by an imbalance caused by a
double counting of certain terms in the expansion of
the wavefunction. To avoid this phenomenon when
using ACPF, the reference space should not be too
large: we recommend a minimal space constructed
by chemical arguments which may be appended by
certain CSFs to allow for the presence of higher

Žlinked terms in the cluster expansion e.g. see the
.calculation of the N atom above . These problems

are less apparent if ACPF is used in conjunction with
Ž w x.internal contraction see Ref. 26 since here, the

weight of superfluous terms is kept low by con-
straints.

ŽAfter having established the high accuracy see
.above of r -MR-ACPF with 20 references in the12

Ž .standard spdfgh basis set 250 functions , we de-
cided to compute the whole potential energy curve in

Žthe range of chemical distances with this ansatz see
.Table 2 . All computations were performed on a

ŽSilicon-Graphics ‘‘Power-Challenge’’ R8000, 75
.MHz . The timings for the calculations, e.g. at an

Table 2
r -MR-ACPF energie a and BSSE b for the ground state of N12 2

Rra y ErE y108 yBSSErmE0 h h

1.4 0.650 991 225
1.6 1.215 183 214
1.8 1.456 391 208
1.9 1.508 642 204
1.97 1.527 753 200
2.02 1.534 651 198
2.07 1.536 991 195
2.12 1.535 565 193
2.17 1.531 054 190
2.22 1.524 037 188
2.3 1.508 811 184
2.5 1.458 140 172
2.75 1.387 836 158
3 1.323 866 146
3.5 1.234 660 117
4 1.194 726 92
5 1.176 512 58
6 1.173 851 39

100 1.172 808 0

a 20 reference CSFs and minimal r -ansatz for proper dissocia-12
w xtion; all electrons correlated; 11s9p6d4 f 2 g1h basis set as

specified in the text.
b BSSE computed with the counterpoise method.

interatomic distance of 2.07 a were: 1.8 h for the0

integrals and their transformation, 1.3 h for the com-
putation of the special matrix elements needed by the
r method and 3.9 h for the 10 iterations needed to12

converge the r -MR-ACPF energy to better than12
y6 Ž10 E , resulting in a total CPU time without theh

optimization of the orbitals which took 1.5 h from
.scratch of 7.0 h. This number is to be compared

with 0.5 h used for the integrals and their transforma-
tion and 3.3 h for 10 iterations of the corresponding
Ž .traditional MR-ACPF, resulting in a total CPU time
Ž .without orbitals of 3.8 h. The computation of the
counterpoise correction, where the integral handling

Žis the most time consuming step, without the SCF
.which took 0.8 h from scratch we used 4.1 h CPU

time for the r -ACPF calculation; the corresponding12

traditional computation would take 1.2 h.
ŽWe then interpolated the curve including correc-

.tions for the BSSE between neighboring points us-
ing cubic splines, the limits of small and large
distances were extrapolated using an exponential and
a rational function, respectively and finally numeri-
cally solved the Schrodinger equation of the rotating¨
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Table 3
Comparison of calculate a spectroscopic constant b of the ground state of 14 N with experiment2

Present work Experiment
cŽ .B yB 0.01733 0.0173697 300 1
cŽ .B yB 0.01746 0.0174331 351 2

y9 y8 cŽ .D yD 9.5=10 1.04 0.16 =101 0
d f eG 1176.4 1175.7670

f gv 2360 2358.57e
f gv x 14.35 14.324e e

h gB 1.9979 1.99824e 1
h ga 0.01733 0.017318e

i y6 j y6 gD 5.73=10 5.76=10e
k g˚R rA 1.0978 1.09768e 5

a Ž .From T , B and D computed from the potential energy curve including corrections for BSSE listed in Table 2.Õ Õ Õ
b y1 c w xIf not stated otherwise, in units of cm .2e From Ref. 35 ; the numbers in parenthesis give three times the standard deviation.
dZero point energy.
e w xFrom Ref. 27 .
f 1 1 2Ž . Ž .By solving T syG qv Õq qv x Õq for Õs0,1,2.Õ 0 e e e2 2
g w xFrom Ref. 28 .
h 1Ž .By solving B sB ya Õq for Õs0,1.Õ e e 2
iCentrifugal distortion constant.
j 1Ž .By solving D sD qb Õq for Õs0,1.Õ e e 2
k 2Calculated as R s hr 8p cmB .( Ž .e e

and vibrating molecule using Cooley’s method, im-
w xplemented in the program Level 34 in order to

obtain the vibrational levels T , rotational constantsÕ

B and centrifugal distortion constants D . Our TÕ Õ Õ

differ from the first 22 experimentally derived values
w x Žlisted in Table 78 of Ref. 27 about the first half of

. y1the well depth by at most q10 cm , compared
w xwith Table 49 of Ref. 27 our B are at most 20Õ

cmy1 too large, our D value of 5.73=106 cmy1
0

Žcompares favorably with the values 5.48"0.05,
6 y1. w x5.76"0.03 and 5.743=10 cm of Ref. 27 and

our D is 1=104 cmy1 to large. From these T , B1 Õ Õ

and D values we computed various spectroscopicÕ

Ž .constants see Table 3 . A satisfying agreement with
experimentally derived values is achieved: the accu-
racies obtained in the present work vary from being

Žin the same range as the experimental accuracy to at
.most 100 times worse.

5. Summary and conclusions

To overcome the basis set bottleneck in CI calcu-
Ž .lations, we have programmed an MR-CI SD method

which contains terms that are linear in the interelec-

Ž .tronic distances r . In order to accurately solve12

the electronic Schrodinger equation, we combine this¨
Ž .method with the approximately size-extensive

MR-ACPF which is able to yield energies close to
the full-CI limit. To demonstrate the high perfor-
mance of the present method and to show that it can
be applied to general chemical problems, we have
computed the potential energy curve of the nitrogen

Ž .dimer N to an accuracy which is probably out of2

reach using traditional CI methods on present day
computers without the aid of extrapolations or empir-

Ž w x.ical corrections see e.g. Ref. 32 .
This high accuracy is not only useful for the

calculation of atomic and molecular spectra; other
applications are the computation of potential energy
surfaces, e.g. of elementary chemical reactions and
the generation of benchmarks to be used for the
calibration of density functional methods.
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