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We have implemented the use of mixed basis sets of Gaussian one- and two-electron (geminal)

functions for the calculation of second-order Møller–Plesset (MP2) correlation energies. In this

paper, we describe some aspects of this implementation, including different forms chosen for the

pair functions. Computational results are presented for some closed-shell atoms and diatomics.

Our calculations indicate that the method presented is capable of yielding highly accurate second-

order correlation energies with rather modest Gaussian orbital basis sets, providing an alternative

route to highly accurate wave functions. For the neon atom, the hydrogen molecule, and the

hydrogen fluoride molecule, our calculations yield the most accurate MP2 energies published so

far. A critical comparison is made with established MP2-R12 methods, revealing an erratic

behaviour of some of these methods, even in large basis sets.

1. Introduction

An important limitation in most current treatments of electron

correlation in molecules arises from the expansion of the wave

function in products of one-electron basis functions. The

convergence of such an expansion of the exact wave function

and the associated correlation energy is very slow: even very

large basis sets, comprising hundreds of functions of angular

momentum up to l = 6, cannot recover more than 95–98% of

the exact correlation energy. The practical consequence is that

the best orbital-based many-particle treatments can predict

thermochemical quantities even for small molecules to an

accuracy of only 2 kcal mol�1 or worse, unless extrapolation

schemes are used.

The difficulty with using products of one-electron functions

to describe many-electron wave functions is the poor descrip-

tion of the latter when two electrons approach one another,

say, to within less than 1 bohr and, in particular, of the two-

electron cusp for coinciding electrons. A good illustration of

the inadequacies of products of one-electron functions is a

comparison of various basis-set calculations with the exact

wave function for He, discussed, for instance, by Helgaker

et al.1 It must be emphasized that these inadequacies are

independent both of the particular many-electron approach

chosen for the parameterization of the orbital-product expan-

sion and of the type of orbital functions used for this expan-

sion. For example, the inadequacies are not a limitation of

Gaussian-type orbitals (GTOs) compared with Slater-type

orbitals (STOs) nor a limitation of particular types of GTO

basis sets, although the details differ, depending on what

particular wave-function model and one-electron basis set

are used.

From a mathematical perspective, the most attractive

alternative to orbital expansions is to employ functions that

provide a better description of the wave function as electrons

approach one another, which naturally leads to a basis of

two-electron functions. The earliest example of such an ex-

plicitly correlated approach was that of Hylleraas, whose

calculations on He represent the first accurate quantum-

chemical calculations on a many-electron system. In his work,

Hylleraas augmented the basis of one-electron functions with

terms that contain the interelectronic distance r12 to any

desired order.2–4 The terms linear in r12, in particular, are

extremely effective in improving the convergence of an

approximate wave function at very short interelectronic

distances, since the cusp in the exact wave function behaves

as r12 as the interelectronic distance tends to zero. Unfortu-

nately, although such terms dramatically accelerate

convergence, they are difficult to use in practical calculations

because of the complicated many-electron integrals that arise

over the basis. To solve this problem, Kutzelnigg and Klopper

retained only terms linear in r12 and avoided the explicit

integration over more than two electrons by invoking the

resolution of identity (RI), thereby reducing the computa-

tional work to a tractable level.5–7 These approximations

become exact as the one-electron basis approaches complete-

ness and the convergence of the energy contributions with the

two-electron basis is much better than that of methods em-

ploying only one-electron functions—namely, l þ 1
2

� ��6
rather

than l þ 1
2

� ��4
. Their R12 approach has since been successfully

used not only in second-order Møller–Plesset (MP2) perturba-

tion theory but also in coupled-cluster and multireference

averaged coupled-pair functional theories. For a recent review

on R12 theory, see ref. 8.
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A different explicitly correlated approach has been devel-

oped by Szalewicz, Jeziorski and their coworkers.9–13 Rather

than augmenting the orbital-product basis with terms linear in

r12, they expand the two-electron pair functions directly in

Gaussian-type geminals (GTGs), optimizing all nonlinear

parameters. In MP2 theory, the need for integrals involving

more than three electrons is avoided by the use of the weak-

orthogonality (WO) functional in place of the rigorous strong-

orthogonality (SO) functional. Nevertheless, certain three-

electron integrals must be computed and so the resulting

GTG method is more expensive than the method of Klopper

and Kutzelnigg. An advantage, however, is that the computed

pair energies are upper bounds to the true pair energies.

Moreover, although GTGs do not describe the inner part of

the Coulomb hole as well as linear r12 does, they are better

suited to describing its overall shape.

Here we investigate, within the framework of MP2 theory,

the GTO–GTG (GG) model, where the WO pair functions are

expanded in both GTO products and GTGs. These GTGs

may be given in alternative forms as shown below. A paper has

already been published that describes some aspects of our

MP2-GG approach within the context of local MP2 theory,

containing some sample calculations on medium-sized mole-

cules.14 Our purpose here is different in that we focus on high

accuracy in closed-shell atoms and diatomics.

2. Theory and implementation

In this section, we discuss first the calculation of the MP2

energy using modified Hylleraas functionals. Next, we present

the wave-function ansatz employed in these functionals and

discuss its optimization. Finally, we consider some aspects

related to the implementation of the method.

2.1. The MP2 energy functional

In general, the first-order wave function C(1) can be deter-

mined by minimization of the Hylleraas functional

F ½C� ¼ hCjHð0Þ � Eð0ÞjCi þ 2hCjV � Eð1ÞjCð0Þi ð1Þ

which is bounded from below by the second-order energy

F ½C� � Eð2Þ; F ½Cð1Þ� ¼ Eð2Þ ¼ hCð1ÞjVjCð0Þi ð2Þ

In the Møller–Plesset theory where C(0) is the Hartree–Fock

wave function, the second-order energy E(2) may be expressed

in terms of the pair energies esij

Eð2Þ ¼
X
i�j

e1ij þ
X
i4j

e3ij ; esij ¼
s

1þ dij
hQusij jr�112 jfs

iji ð3Þ

where the associated pair functions usij are obtained by mini-

mizing the functional

Fs
ij ½usij � ¼

s

2ð1þ dijÞ
½hQusij jf ð1Þ þ f ð2Þ � ei � ej jQusiji

þ 2hQusij jr�112 jfs
iji� ð4Þ

In these expressions, f(1) and f(2) are the Fock operators of the

two electrons, the ei are orbital energies, the fs
ij are singlet

(s = 1) and triplet (s = 3) products of occupied molecular

orbitals (MOs)

fs
ij ¼

1ffiffiffi
2
p ½jið1Þjjð2Þ þ ð2� sÞjjð1Þjið2Þ�; ð5Þ

and strong orthogonality is enforced by the projection

operator

Qð1; 2Þ ¼ ½1� pð1Þ�½1� pð2Þ�; p ¼
X
k

jjkihjkj ð6Þ

where the summation is over all occupied MOs jk. The

evaluation of matrix elements over QfQ gives rise to three-

and four-electron integrals, the latter of which can be avoided

if the SO functional Fs
ij[u

s
ij] is replaced by one of the WO

functionals developed by Szalewicz and coworkers.9–12 The

simplest such functional takes the form

Js
ij ½usij � ¼

s

2ð1þ dijÞ
½husij j ~f ijð1Þ þ ~f ijð2Þ � ei � ej jusiji

þ 2hQusij jr�112 jfs
iji� ð7Þ

We have introduced here the modified Fock operator f̃ij = f+

Dijp where p is the projector onto the occupied MO space and

Dij is defined by Dij ¼ 1
2
ðei þ ejÞ � e1 þ Zwith e1 r ei and Z Z

0. The purpose of Dijp is to shift the expectation value of

f̃ij(1) + f̃ij(2) by an amount proportional to the level-shift

parameter Z, thereby ensuring that the matrix element between

the pair functions in eqn (7) is positive definite and that the

minimum principle applies. The level-shift parameter Z intro-

duces a penalty that is large if the pair function overlaps with

the occupied space. We monitor the degree of strong ortho-

gonality by calculating

wSOij ¼
usij

D ���pð1Þ þ pð2Þ usij
��� E

usij jusij
D E ; ð8Þ

which, if small, indicates a more strongly orthogonal pair

function uij. In general, Jsij[u] Z Fs
ij[u] for Z 4 0, provided the

Hartree–Fock equations have been solved exactly. Although

the optimized energy depends on the arbitrary parameter Z,
this dependence is weak as shown in section 3.1.3.

2.2. Choice of pair functions

The pair functions used in our calculations are symmetric and

antisymmetric spatial functions, multiplied by singlet and

triplet spin functions, respectively. For a given pair of occu-

pied MOs i and j, a traditional pair function may thus be

written as

usij ¼
X
a�b

fs
abc

ab
ij;s ð9Þ

where fs
ab is defined as in eqn (5) and the summation is over all

pairs of unoccupied MOs (denoted by indices a and b). The

symmetric form s = 1 and the antisymmetric form s = 3 of usij
are to be combined with normalized two-electron singlet and

triplet spin functions, respectively. To include a linear r12 term,

Kutzelnigg and Klopper5–7 proposed the ansatz

usij ¼
X
a�b

fs
abc

ab
ij;s þQ0r12f

s
ijcij;s; ð10Þ
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later generalized by Klopper15 to

usij ¼
X
a�b

fs
abc

ab
ij;s þ

X
k�l

Q0r12fs
klc

kl
ij;s; ð11Þ

to ensure invariance to rotations among the occupied MOs.

The projection operator

Q0 ¼ ½1� p0ð1Þ�½1� p0ð2Þ�; p0 ¼
X
p

jjpihjpj ð12Þ

ensures an orthogonality even ‘‘stronger’’ than the strong

orthogonality enforced by Q in eqn (12)—that is, not just to

the occupied MOs but all MOs.

Persson and Taylor16 suggested replacing the linear r12 term

in eqn (10) by a linear combination of GTGs gsij,v, each taken

as a product of fs
ij and a Gaussian correlation factor (GCF)

exp(�gvr212) with a fixed exponent gv:

gsij;v ¼ expð�gvr212Þfs
ij ð13Þ

With such geminals, our pair-function ansatz becomes

usij ¼
X
a�b

fs
abc

ab
ij;s þ

X
v

gsij;vc
v
ij;s: ð14Þ

where the linear coefficients cvij,s are variationally optimized in

the course of the MP2 calculation. In the present work, we

consider the following three generalizations of this pair func-

tion: the GG0 pair-function ansatz, with a summation over all

pairs of occupied MOs in the geminal part in analogy with

eqn (11):

usij ¼
X
a�b

fs
abc

ab
ij;s þ

X
k�l

X
v

gskl;vc
kl;v
ij;s ð15Þ

the GG1 pair-function ansatz, where at least one of the MOs

in the summation in the geminal part is an occupied MO:

usij ¼
X
a�b

fs
abc

ab
ij;s þ

X
k;q

X
v

gskq;vc
kq;v
ij;s ð16Þ

and the GG2 pair-function ansatz, where we sum over all pairs

of MOs in the geminal part:

usij ¼
X
a�b

fs
abc

ab
ij;s þ

X
p�q

X
v

gspq;vc
pq;v
ij;s ð17Þ

In general, therefore, the GGn ansatz contains geminals gspq,v
with up to n virtual MOs, (with n denoting the highest

excitation level). To distinguish the orbital-variant ansatz

eqn (14) from the orbital-invariant GG0 ansatz eqn (16), we

shall refer to eqn (14) as the GG00 ansatz. In section 3, we shall

compare the performance of the different GGn pair functions.

In the GGn pair functions, it is possible to use dual basis

sets, one for the virtual-orbital expansion and one for the

geminal expansion, thereby introducing more flexibility into

the calculations.16 In the present implementation, we always

use the same basis for the two parts of the pair functions.

2.3. Optimization of MP2-GGn pair functions

With the GGn pair functions expanded in orbital products and

geminals as in eqns (15)–(17), the WO functional may be

parameterized as

Js
ij ½usij � ¼ Js

ijðCo;CgÞ ð18Þ

where the matrices Co and Cg contain the orbital and geminal

expansion coefficients cabij,s and cmn,v
ij,s , respectively, arranged

with ab and (mn, v) as composite row indices and with (ij, s)

as a composite column index. The superscript mn is used here

generically for kl, kq, pq, depending on which of the three

ansätze eqns (15)–(17) is used.

Applying the minimum principle to the WO functional for

each pair of electrons and collecting the resulting equations

into a single matrix equation, we get

Hoo Hog

Hgo
~Hgg

� �
Co

Cg

� �
¼ � Ro

Rg

� �
ð19Þ

In the canonical MO basis, the elements of the orbital–orbital

block Hoo = HT
oo, the geminal–orbital block Hgo = HT

og, and

the geminal–geminal block H̃gg = H̃T
gg are given by

½Hoo�ab;cd ¼ ea þ eb � ei � ej
� �

dacdbd ; ð20Þ

½Hgo�smnv;cd ¼ hgsmn;vjf ð1Þ þ f ð2Þ � ei � ej jfs
cdi; ð21Þ

½ ~Hgg�smnv;m 0n 0v 0 ¼ hgsmn;vj ~f ijð1Þ þ ~f ijð2Þ � ei � ej jgsm 0n 0;v 0 i; ð22Þ

while the elements of the orbital and geminal blocks Ro and

Rg, respectively, of the right-hand side are given by

½Ro�sab ¼ hf
s
abjr�112 jfs

iji; ð23Þ

½Rg�smnv ¼ hgsmn;vjQr�112 jfs
iji: ð24Þ

Note that, since the projector p gives zero when operating on

fs
ab, the modified Fock operator f˜ only appears in the

geminal–geminal block Hgg.

If the pair functions are expanded in virtual orbitals only,

then eqn (19) reduces to

Co ¼ �H�1oo Ro ð25Þ

where Hoo is diagonal, and the amplitudes Co are then

obtained trivially, as in the standard MP2 theory. By contrast,

when the pair functions are expanded in GTGs, eqn (19) must

be solved by some iterative process. Noting that Hoo is positive

definite, we introduce the decomposition

Hoo Hog

Hgo
~Hgg

� �
¼ I 0

Z I

� �
Hoo 0

0 ~Ggg

� �
I ZT

0 I

� �
ð26Þ

where

Z ¼ HgoH�1oo ; ð27Þ

~Ggg ¼ ~Hgg �HgoH�1oo Hog ð28Þ

are easily formed since Hoo is diagonal. Inserting this decom-

position into eqn (19) and rearranging, we obtain

Hoo Hog

0 ~Ggg

� �
Co

Cg

� �
¼ � Ro

Sg

� �
ð29Þ

with

Sg ¼ Rg � ZRo ð30Þ

The coefficients Cg are now found by solving the equation

~Ggg Cg ¼ �Sg ð31Þ

3114 | Phys. Chem. Chem. Phys., 2007, 9, 3112–3126 This journal is �c the Owner Societies 2007

Pu
bl

is
he

d 
on

 2
9 

M
ay

 2
00

7.
 D

ow
nl

oa
de

d 
by

 A
us

tr
al

ia
n 

N
at

io
na

l U
ni

ve
rs

ity
 o

n 
18

/0
4/

20
16

 0
1:

03
:5

4.
 

View Article Online

http://dx.doi.org/10.1039/b616488a


using some iterative method. Inserting the resulting ampli-

tudes into eqn (29), Co are obtained explicitly from

Co ¼ �H�1oo Ro � ZTCg ð32Þ

Whereas the first part in eqn (32) is identical to the usual

amplitudes of orbital-based MP2 theory eqn (25), the second

part is a correction arising from the presence of geminals.

Through the decomposition eqn (26), we have reduced the

dimension of the linear equations to be solved iteratively from

No + Ng to Ng, where No is the number of functions in the

virtual orbital expansion and Ng is the number of geminals. A

similar decomposition is used in ref. 17.

2.4. Calculation of the MP2-GGn energy

From the converged amplitudes, the second-order MP2-GGn

energy of eqn (3) is given as the sum over all pair energies and

may be calculated from the expression

Eð2Þ ¼ trðCT
oRoÞ þ trðCT

g RgÞ ð33Þ

where we have introduced parity-weighed versions of the

matrices Ro and Rg defined as

½R�sij ¼
s

1þ dij
½R�sij : ð34Þ

The relative magnitudes of the orbital and geminal contribu-

tions to the MP2-GGn energy may vary considerably, depend-

ing on the relative sizes of the orbital and geminal expansions.

In Table 1, we have listed the percentage of the correlation

energy contributed by the virtual-orbital and GTG expansions

when they are used on their own, relative to the correlation

energy recovered when both expansions are used simulta-

neously. Except for the GG0 ansatz, most energy is recovered

by the geminal expansion. We also note that, whereas the

proportion of the correlation energy recovered by the GTG

expansion decreases with basis-set expansion with the GG0

ansatz, it increases with the GG1 and GG2 ansätze. In the

GG0 ansatz eqn (15), basis-set expansion increases the size of

the virtual-orbital expansion (by including more virtual orbi-

tals), while the size of the GTG expansion is constant. With

increasing basis set, therefore, more and more correlation

energy is recovered by the virtual-orbital expansion, while

the energy recovered by the GTG expansions remains essen-

tially constant. By contrast, for the GG1 and GG2 ansätze

eqns (16) and (17), basis-set expansion increases the size of

both the virtual-orbital and GTG expansions; consequently,

both expansions are able to recover more of the total correla-

tion energy with increasing basis set.

The decomposition eqn (26) also allows us to rewrite the

MP2-GGn energy as

Eð2Þ ¼ �trðRT
oH�1oo RoÞ þ trðCT

g SgÞ; ð35Þ

which is a conventional MP2 energy expression with a correc-

tion from the geminal expansion. In the limit of a complete

one-electron basis, the orbitals become exact eigenfunctions of

the Fock operator and Sp|jpihjp| - 1. From a consideration

of the detailed form of the matrix elements in eqns (20)–(24),

we note that, in this limit, Sg - 0 in eqn (30). We conclude

that, in the limit of a complete one-electron basis, the solution

to eqn (29) becomes Co - �H�1ooRo and Cg - 0. Thus, in this

limit, all of the correlation energy in eqn (35) is recovered by

the virtual-orbital expansion.

2.5. Notes on the implementation

The integrals needed for the theory presented here have been

implemented in the GREMLIN
18 program, as an extension to an

experimental version of DALTON,19 in which the optimization

of the pair functions has been implemented. The details of the

implementation have been presented in ref. 20.

By far the most time-consuming step in our MP2 calcula-

tions is the calculation of three-electron integrals over GTGs.

In calculations that require an hour of computer time, more

than 59 min is typically spent computing these integrals and

accumulating their contributions into various matrix elements,

and for longer calculations the proportion of the time required

for this step increases.

In traditional applications of GTGs, with nonlinear opti-

mization of the geminal parameters, the emphasis has been on

evaluating integrals over GTGs with low angular quantum

numbers very rapidly. This is less appropriate for our mixed

GTO/GTG basis sets, where higher angular-momentum func-

tions are employed. We have developed a scheme for calculat-

ing GTG integrals efficiently by extending the Hermite-

expansion approach suggested by McMurchie and Davidson21

and combining it with the technique suggested originally by

Boys22 by which many-electron integrals over GTGs can be

reduced to (more complicated) one- and two-electron inte-

grals.1 A full description of this formulation can be found in

ref. 23. One way of reducing the number of integrals that must

be calculated is to use molecular symmetry. We have imple-

mented a scheme for evaluating integrals over symmetry-

adapted functions from symmetry-distinct integrals, using a

double-coset decomposition technique. Full details have been

given in ref. 24.

3. Applications

3.1. Computational details and considerations

3.1.1. One-electron basis sets. The correlation-consistent

basis sets cc-pVXZ of Dunning25 constitute a principal expan-

sion, belonging to the orbital spaces (2s1p), (3s2p1d),

(4s3p2d1f), and so on.1 They are widely used in traditional

orbital-based correlated calculations, giving a smooth conver-

gence of the correlation energy with increasing cardinal num-

ber X. In our work, we also consider the partial-wave

expansion, where the expansion is instead truncated at a given

Table 1 The percentage of the all-electron MP2-GGn correlation
energy recovered for the neon atom by only the virtual-orbital expan-
sion (VOE) part or only the geminal (GTG) part of the pair function,
relative to the amount of energy recovered when both are used
simultaneously

GG0 GG1 GG2

Basis VOE GTG VOE GTG VOE GTG

cc-pVDZ 62 54 54 83 53 99.2
cc-pVTZ 79 47 73 93 72 99.4
cc-pVQZ 88 44 85 95 84 99.6
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angular momentum. We generate these expansions by omit-

ting high angular-momentum functions from the correlation-

consistent basis sets. The orbital types retained in the basis are

then given in parentheses after the basis-set name. For exam-

ple, for the first-row elements hydrogen and helium, cc-

pVTZ(sp) is a cc-pVTZ basis with the d shell omitted; for

the second-row elements, it denotes a basis with the 2d1f part

omitted. For systems containing both first- and second-row

atoms, both expansions are given in parentheses, with that of

the heavier atom first—for instance, in a calculation on

hydrogen fluoride using the cc-pVTZ(spd,sp) basis, we have

omitted the f shell on fluorine and the d shell on hydrogen.

Although cc-pVXZ basis sets are available for both lithium

and beryllium25,26 and cc-pCVXZ basis sets exist for lithium,25

it is not clear how to augment these sets with diffuse functions.

We have instead used an atomic natural-orbital basis of Roos

and co-workers,27 based on sets originally developed by van

Duijneveldt.28 This basis set is referred to as ANO-2.

3.1.2. Two-electron basis sets. The GTG expansions of

eqns (15)–(17) may be modified both by adjusting the expo-

nents gv in exp(�gr212) and by varying the number of such

GCFs in the expansion. Following Persson and Taylor,16 we

use the fixed even-tempered exponents gv =3v�1a with a= 1/9

and 1 r v r NGCF. In our standard GTG basis set, we use

NGCF = 9.

To examine the relative importance of the different GCFs,

we have carried out a series of calculations on the neon atom

where the GTGs have been constructed from the AO basis sets

cc-pVDZ and aug-cc-pCVTZ(spd) and from GCFs with even-

tempered exponents g1 = 1/9 and 0 r NGCF r 9, see Table 2.

For each AO set, the first entry (NGCF = 0 ) represents the

conventional MP2 energy. When one (diffuse) GCF is in-

cluded, the energy barely changes for the GG0 and GG1

ansätze but makes a significant jump for the GG2 ansatz.

This happens since GTGs constructed from diffuse GCFs are

essentially orbital products (exp(�gr212) - 1 when gv - 0);

according to the Brillouin theorem, only products of virtual

orbitals contribute to the energy. Only the GG2 ansatz con-

tains such products.

With more GCFs included, also the MP2-GG0 and MP2-

GG1 energies improve, although the MP2-GG0 energy

changes little from NGCF = 1 to NGCF = 2 in the aug-cc-

pCVTZ(spd) basis. In the larger AO basis, therefore, GCFs

with exponents smaller than one do not improve significantly

upon the standard virtual-orbital expansion. By contrast,

geminals with exponents equal to one and three make sig-

nificant energy contributions for all three ansätze. For

NGCF = 9, all MP2-GGn energies are converged to within

0.1 mEh, the last three GCFs improving mainly the 1s2 singlet

energy.

3.1.3. The level-shift parameter. All calculations presented

in the previous sections were carried out with the level-shift

parameter Z= 0.1. In the present section, we examine how the

MP2-GGn energy and the strong orthogonality depend on the

level shift, carrying out calculations with different Z. In Table

3, we have, for each selected value of Z, listed the energy and

pSO = �log10�wSO, where �wSO is the average of wSOij in eqn (8)

over all 15 singlet and 10 triplet pair functions in neon. The

pSO value increases as the pair functions become more

strongly orthogonal to the occupied orbitals. Since we have

used the operator p(1) + p(2) as an approximation to

1 � Q(1, 2) = p(1) + p(2) � p(1)p(2) in wSOij , the orthogonality

will appear less than it really is, punishing the GG0 and GG1

ansätze the most.

From Table 3, we see that the MP2-GGn energy barely

changes for 0.001 o Z o 1. Moreover, the sensitivity to Z is

strongest in the small AO basis and for the GG0 ansatz.

Likewise, the most flexible pair functions also appear to be

most strongly orthogonal to the occupied MOs, the largest

pSO values occurring in the large AO basis with the GG2

ansatz. Whereas orthogonality increases only marginally from

the GG0 ansatz to the GG2 ansatz in the small AO basis, it

increases significantly (by many factors) in the large AO basis.

The slightly nonmonotonic behaviour observed in the GG2/

aug-cc-pCVTZ(spd) calculations is caused by numerical noise,

which becomes apparent for very small wSOij of eqn (8).

As expected, strong orthogonality increases with Z. A

comparison of the pSO value and the energy for different Z
indicates that a good compromise is achieved with Z = 0.1,

which is therefore used in all calculations discussed below.

Similar conclusions are reached for water in ref. 29.

3.1.4. Linear dependencies and numerical stability. From

Table 2, we see that the GGn performance improves with

increasing geminal excitation level n. However, these improve-

ments come at a cost. Using LDL factorization to solve eqn

(31), the complexity of the solution is, for each distinct MO

pair ij, equal to O(N3), where N is the number of GTGs.

Denoting the total number of MOs by Ntot and the number of

occupied MOs by Nocc, the cost of the solution, for each of the

N2
occ pair functions usij, is thus O(N6

occN
3
GCF) for the GG0

ansatz, O(N3
occN

3
totN

3
GCF) for the GG1 ansatz, and

O(N6
totN

3
GCF) for the GG2 ansatz. Since Ntot is usually several

times larger than Nocc, the solution of the linear equations can

be an order of magnitude more expensive for the GG2 ansatz

than for the GG0 ansatz. Besides, the increased dimensionality

of the GG2 ansatz makes it more prone to linear dependencies

and to numerical instabilities than the GG0 ansatz.

To quantify the linear-dependency problem for the different

pair-function ansätze, we have diagonalized the geminal–

geminal overlap matrix using the standard GTG expansion

Table 2 Neon all-electron MP2-GGn correlation energies (�E/mEh)
calculated using geminal exponents from the sequence 1/9, 1/3,
1,. . .,729

cc-pVDZ aug-cc-pCVTZ(spd)

NGCF GG0 GG1 GG2 GG0 GG1 GG2

0 187.567 187.567 187.567 309.078 309.078 309.078
1 187.655 187.758 206.325 309.078 309.126 335.423
2 196.870 240.497 280.170 309.368 337.466 364.538
3 229.085 294.675 307.021 319.221 362.224 376.800
4 274.410 320.640 331.566 337.957 374.004 382.839
5 290.017 335.968 345.550 346.125 380.437 385.912
6 296.844 343.290 352.874 350.167 383.779 387.156
7 299.810 345.784 355.252 352.651 385.416 387.591
8 300.708 346.621 356.144 353.695 386.062 387.905
9 300.976 346.932 356.372 353.914 386.232 388.008
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(NGCF = 9) and the cc-pVDZ and aug-cc-pCVTZ(spd) orbital

basis sets—see Table 4, where we have listed the number of

eigenvalues l transformed to a given integer by D(l) = max(0,

min(15, �int(log10 l))). For a given AO basis, the number of

eigenvalues—in particular, the number of small eigen

values—increases dramatically with n, as more and more

GTGs are introduced into the GGn pair function. Except

for the GG0 ansatz, the number of small eigenvalues also

increases with increasing AO basis—in particular, for the GG2

ansatz. For instance, in the aug-cc-pCVTZ(spd) basis, there

are 446 eigenvalues smaller than or equal to 10�15, making the

solution of the linear equations difficult.

The equation solver employed in this work uses the LDL

approach of the LINPACK library,30 with the pivoting strat-

egy of Bunch and Kaufman31 for general symmetric matrices.

Higham has shown that this approach gives a stable factoriza-

tion,32 and linear dependencies are not expected to create

severe numerical instabilities in the equation solver.

3.2. Results

3.2.1. Helium. The helium results in Table 5 show that the

GG1 and GG2 pair functions perform excellently, while the

GG0 performance is only fair. Thus, whereas the lowest MP2-

GG0 energy is reached in the aug-cc-pV6Z basis, lower

energies are obtained with the GG1 ansatz with only s and p

orbitals. In fact, good MP2-GG1 and MP2-GG2 energies are

already obtained with only s orbitals, the p orbitals contribut-

ing �0.2 mEh or less to the correlation energy. Moreover, the

GG1 and GG2 ansätze perform better in the aug-cc-pV5Z(sp)

basis than in the cc-pV5Z basis, indicating that saturation with

diffuse functions is more important for the energy than the

inclusion of functions of high angular momentum. We shall

later see that this is a typical feature of geminal calculations,

valid also for the other systems.

In Table 6, we compare our MP2-GGn helium correlation

energies with literature data. Our best energy of �37.3773
mEh, obtained with the GG2 ansatz in the aug-cc-pV6Z(spd)

basis containing only 50 orbitals, is close to the value of

�37.37744 mEh, obtained by Bukowski et al.33 using GTGs

of the form

gið1; 2Þ ¼ exp½ � aiðr1 � PiÞ2 � biðr2 �QiÞ
2 � gir

2
12� ð36Þ

with the exponents ai, bi and gi and the centers Pi and Qi

(constrained to lie on the internuclear axis in diatomics and on

the nucleus in atoms) variationally optimized using the WO

functional. Each such GTG may be regarded as a pair of s

orbitals multiplied by a GCF; higher angular-momentum

functions are not used. For pair functions of S+ symmetry,

such geminals constitute a complete basis.41–43 To obtain their

helium MP2 energy, Bukowski et al. used 150 GTGs. For

comparison, we used 2349, 153, and 9 GTGs, respectively, to

obtain our best GG2, GG1, and GG0 energies. Moreover,

Bukowski et al. obtained their limit with a pure GTG expan-

sion, while we supplemented the GTGs with a conventional

virtual-orbital expansion.

Table 3 Neon all-electron MP2-GGn correlation energies (�E/mEh) and pSO values for different values of the level-shift parameter Z

cc-pVDZ aug-cc-pCVTZ(spd)

GG0 GG1 GG2 GG0 GG1 GG2

Log10 Z �E pSO �E pSO �E pSO �E pSO �E pSO �E pSO

+3 252.462 1.9 315.307 2.6 336.135 2.6 334.630 4.1 384.519 4.9 387.811 11.6
+2 282.105 1.5 335.286 2.1 348.959 2.1 345.706 3.1 385.761 4.2 387.926 10.8
+1 297.655 1.2 344.908 1.8 355.068 1.8 352.384 2.6 386.162 3.9 387.996 10.3
0 300.625 1.2 346.721 1.7 356.235 1.8 353.749 2.5 386.225 3.9 388.008 10.2
�1 300.976 1.2 346.932 1.7 356.372 1.8 353.914 2.5 386.232 3.9 388.008 10.4
�2 301.014 1.1 346.954 1.7 356.386 1.7 353.932 2.4 386.232 3.8 388.009 10.2
�3 301.048 0.8 346.960 1.2 356.390 1.3 353.940 1.5 386.232 2.5 388.009 9.7

Table 4 Distribution of eigenvalues for some geminal–geminal over-
lap matrices for the neon atom. Geminals are constructed from the full
standard set of nine GCFs. Eigenvalues l are reported as D(l) =
max(0, min(15,�int(log10 l)))

cc-pVDZ aug-cc-pCVTZ(spd)

D GG0 GG1 GG2 GG0 GG1 GG2

0 19 67 115 19 309 750
1 25 70 108 25 266 609
2 22 77 124 22 337 791
3 28 100 162 28 415 931
4 23 83 155 23 323 1018
5 13 60 104 13 220 865
6 3 36 71 3 197 727
7 1 20 35 2 130 671
8 1 12 32 125 567
9 7 27 93 438
10 5 4 57 416
11 3 8 48 373
12 18 317
13 15 225
14 12 171
15 446

Table 5 Helium MP2 correlation energies (�E/mEh), calculated
using a virtual-orbital expansion (VOE) and the GG0, GG1, and
GG2 pair-function expansions

Orbital basis VOE GG0 GG1 GG2

cc-pVDZ 25.83 33.75 36.713 36.9501
cc-pVTZ 33.14 35.87 37.183 37.2998
cc-pVQZ 35.48 36.77 37.326 37.3628
cc-pV5Z 36.41 37.09 37.363 37.3738
aug-cc-pVDZ 26.96 35.23 37.169 37.2926
aug-cc-pVTZ 33.62 36.52 37.255 37.3610
aug-cc-pVQZ 35.72 37.06 37.354 37.3758
aug-cc-pV5Z 36.53 37.23 37.373 —
aug-cc-pV6Z 36.88 37.31 — —
aug-cc-pV5Z(s) 13.44 29.59 37.235 37.3613
aug-cc-pV5Z(sp) 32.35 36.02 37.369 37.3769
aug-cc-pV5Z(spd) 35.46 36.98 37.371 37.3772
aug-cc-pV5Z(spdf) 36.29 37.19 37.372 37.3772
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Very recently, Patkowski et al. have improved on this GTG

result, obtaining an MP2 energy of �37.37747452 mEh, using

600 GTGs.34 Presently, this energy is the best MP2 energy

correction of helium. Although not the lowest overall, it does

constitute the lowest upper bound to the true MP2 energy, and

has been converged to within 1.0 � 10�10 Eh.

3.2.2. Beryllium. Our beryllium MP2 correlation energies

are presented in Table 7. Unlike for helium, an sp basis is

needed for a good description of beryllium. Thus, taking the

MP2 limit to be �76.358 mEh (see Table 8), we find that the

GG2 ansatz recovers only 89% of the correlation energy in an

s basis but 99.99% in an sp basis. As for helium, the GG0 and

GG1 ansätze are more reliant than the GG2 ansatz on high

angular-momentum functions, the best MP2-GG0 and MP2-

GG1 sp calculations recovering 97.1% and 99.5%, respec-

tively, of the correlation energy. Comparing the 14s4p and

14s9p energies, we see that the addition of more p orbitals does

not improve the MP2-GG1 energy substantially—in fact, the

GG1 ansatz needs an spdf basis to match the performance of

the GG2 ansatz in an sp basis. Although it probably needs g

orbitals for convergence, the GG0 ansatz performs far better

than the virtual orbital expansion, which recovers only 90% of

the MP2 correlation energy in our largest basis.

The best beryllium MP2 correlation energy in the literature

is �76.358 mEh, obtained independently by Bukowski et al.45

and by Salomonsen and Öster47 using different methods, see

Table 8. Our lowest MP2-GG2 energy of �76.355 mEh,

obtained in the 14s9p3d basis, is thus only 3 mEh higher than

their value; this is remarkably good, considering the size of the

orbital basis and the fact that our GCF exponents were not

optimized. With the GG1 ansatz, we obtain a slightly poorer

MP2 correlation energy, 13 mEh higher than the reference

value of Bukowski et al. and Salomonsen and Öster.

The MP2-R12 energies of Termath et al.,37 which have been

obtained using the expansion eqn (11), are considerably lower

than our lowest MP2-GG0 energy, demonstrating that good

results can be achieved by including correlation factors only in

occupied MO pairs, provided very large basis sets are used.

However, since the GTGs do not contribute to the correlation

energy beyond s orbitals, most of the energy is recovered by

the virtual orbital expansion. Extrapolating their MP2-R12/B

results, Termath et al. obtained �76.316 mEh as the basis-set

limit, 42 mEh higher than the result of Bukowski et al. and of

Salomonsen and Öster.

In Table 9 we have listed our best MP2-GGn pair energies

for beryllium, along with pair energies from the literature. We

first note that the GG2 ansatz performs better than the GG1

ansatz mainly for the 2s2 pair. Next, we note that the R12/A

performance is inconsistent. While it performs well for the 1s2s

pairs, being only one or two mEh above our MP2-GG2

energies, it is smaller in magnitude than our 1s2 result by

9 mEh but larger in magnitude than our 2s2 result by 30 mEh.

Table 6 Helium MP2 correlation energies (�E/mEh), listed chronologically. For helium, the total correlation energy is �42.044 mEh
33

Authors Method Energy

This work MP2-GG0 (aug-cc-pV6Z) 37.305
MP2-GG1 (aug-cc-pV6Z(spdf)) 37.375
MP2-GG2 (aug-cc-pV6Z(spd)) 37.3773

Patkowski et al.34 600 nonlinearly optimized GTGs 37.37747452
Lee and Park35 extrapolation 37.4052
Bukowski et al.33 150 nonlinearly optimized GTGs 37.37744
Flores36 FEM-MP2 with l r 12 and angular extrapolation 37.376
Termath et al.37 MP2-R12/A with STO basis (12s11p11d9f9g) 37.375

MP2-R12/B with STO basis (12s11p11d9f9g) 37.362
Petersson et al.38 CBS (complete basis-set) model 37.59
Malinowski et al.39 Partial-wave expansion with radial and angular extrapolation 37.359
Winter et al.40 First-order equation solved numerically 37.355

Table 7 Beryllium all-electron MP2 correlation energies (�E/mEh).
All basis sets are based on ANO-2 and used in uncontracted form

Orbital basis VOE GG0 GG1 GG2

14s 15.91 55.76 66.239 68.217
14s9p 64.05 74.18 75.939 76.349
14s9p4d 68.28 75.39 76.318 76.355
14s9p4d3f 69.40 75.62 76.345 —

Table 8 Beryllium all-electron MP2 correlation energies (�E/mEh), listed chronologically. The total correlation energy is �94.332 mEh
44

Authors Method Energy

This work MP2-GG0 (14s9p4d3f) 75.62
MP2-GG1 (14s9p4d3f) 76.345
MP2-GG2 (14s9p3d) 76.355

Bukowski et al.45 350 nonlinearly optimized GTGs for each pair 76.358
Noga et al.46 MBPT-R12 (16s10p6d5f4g) 76.248
Termath et al.37 MP2-R12/A (STO basis 15s12p11d11f10g) 76.373

MP2-R12/B (STO basis 15s12p11d11f10g) 76.311
Salomonsen and Öster47 Extrap. partial-wave expansion (l r 10) with num. orbitals 76.358
Petersson et al.38 CBS (complete basis-set) model 77.27
Alexander et al.48 Nonlinearly optimized even-tempered GTGs 76.350
Jankowski et al.49 Partial-wave expansion with l r 9 75.98
Malinowski et al.39 Partial-wave expansion with radial and angular extrapolation 76.29
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Since a large orbital basis is used, it is difficult to see why the

MP2-R12/A method should perform so differently for the

different electron pairs. By contrast, the MP2-R12/B method

does not show any inconsistency.

3.2.3. Neon. The all-electron MP2 correlation energies

obtained for neon are listed in Table 10. Since the correla-

tion-consistent polarized-valence basis sets cc-pVXZ are not

sufficiently flexible for recovering core and core-valence corre-

lation energies, we have also carried out calculations in

the correlation-consistent polarized core-valence basis sets

cc-pCVXZ.50

As for helium, the energy convergence is relatively fast for

the GG1 and GG2 ansätze but only moderate for the GG0

ansatz, which still converges much faster than the conven-

tional virtual-orbital expansion. We note a significant im-

provement when core orbitals are included in the cc-pCVXZ

basis sets—in particular, for the nongeminal calculations. In

the geminal calculations, the core orbitals are less important,

reflecting the reduced role of the orbital expansion in these

calculations. In fact, these calculations benefit more from the

addition of diffuse functions in the aug-cc-pVXZ basis sets51

than from the addition of core functions—in particular, for

the GG1 and GG2 ansätze.

The aug-cc-pCVXZ basis sets, which contain both core and

diffuse functions, perform very well for neon. In fact, our best

estimate of the neon MP2 correlation energy in Table 11

(�388.19 mEh) is obtained with the GG2 ansatz in the aug-

cc-pCVTZ basis. The GG1 ansatz, the GG0 ansatz, and the

virtual-orbital expansion recover 99.7%, 95.5%, and 86.9%,

respectively, of this energy in the same basis. Clearly, for the

latter two approaches, the lack of high angular-momentum

functions in this triple-zeta basis becomes apparent. In the

much larger aug-cc-pCV5Z basis, the GG0 ansatz recovers

99.3% of the MP2 correlation energy.

Since the augmented core-valence basis sets give excellent

results, we have explored the partial-wave expansion with the

aug-cc-pCVQZ basis—see Table 10. Lacking high angular-

momentum functions, the first term in the partial-wave ex-

pansion sp gives poor correlation energies, as also observed for

beryllium. In the larger spd basis, we recover 99.97%, 99.7%,

and 92.6% of the MP2 correlation energy for the GG2, GG1,

and GG0 ansätze, respectively. As we shall see below, the high

angular-momentum functions are needed mainly for the 1D

pair, which cannot be properly described without d functions.

Accurate neon MP2 correlation energies have been given by

several authors—see Table 11, which also contains our best

(i.e., variationally lowest) neon energies. Among the energies

in this table, our MP2-GG2 result of �388.19 mEh is the best

variationally bounded energy, although not the lowest overall.

Table 9 Beryllium MP2 pair correlation energies (�E/mEh)

Pair R12/Aa R12/Ba GTGb GG0c GG1c GG2d

1s2 40.334 40.325 40.340 39.883 40.341 40.343
1s2s, 1S 3.252 3.249 3.251 3.211 3.253 3.253
1s2s, 3S 2.217 2.217 2.219 2.165 2.219 2.219
2s2 30.570 30.520 30.540 30.363 30.532 30.540
E(2) 76.373 76.311 76.350 75.622 76.345 76.355

a MP2-R12/A(STO) and MP2-R12/B(STO) from ref. 37. b Non-

linearly optimized even-tempered GTGs from ref. 48. c Using basis

set 14s9p4d3f. d Using basis set 14s9p3d.

Table 10 Neon all-electron MP2 correlation energies (�E/mEh). A
dagger (w) indicates calculations that failed to converge

Orbital basis VOE GG0 GG1 GG2

cc-pVDZ 187.57 300.98 346.93 356.37
cc-pVTZ 277.29 350.32 380.61 383.99
cc-pVQZ 326.26 371.77 386.19 387.30
cc-pCVDZ 228.30 310.43 356.40 364.16
cc-pCVTZ 329.10 362.47 383.67 385.49
cc-pCVQZ 361.51 378.51 w —
aug-cc-pVDZ 209.06 323.58 369.27 380.66
aug-cc-pVTZ 285.91 358.89 384.86 387.55
aug-cc-pVQZ 330.01 375.51 387.21 —
aug-cc-pCVDZ 249.90 333.13 375.05 384.56
aug-cc-pCVTZ 337.29 370.72 387.14 388.19
aug-cc-pCVQZ 365.16 382.12 — —
aug-cc-pCV5Z 375.93 385.54 — —
aug-cc-pCVQZ (sp) 190.94 275.73 358.59 365.74
aug-cc-pCVQZ (spd) 319.34 358.23 387.14 388.10
aug-cc-pCVQZ (spdf ) 354.18 377.17 w —

Table 11 Neon all-electron MP2 correlation energies (�E/mEh), listed chronologically. The total correlation energy is �390.47 mEh
52

Authors Method Energy

This work MP2-GG0 (aug-cc-pCV5Z) 385.54
MP2-GG1 (aug-cc-pVQZ) 387.21
MP2-GG2 (aug-cc-pCVTZ) 388.19

Ten-no53,54 MP2-geminal (aug-cc-pV5Z, without h functions) 387.64
MP2-geminal (aug-cc-pV5Z, without h functions) 387.55

Klopper and Samson17 MP2-R12/1A0 (20s14p11d9f7g5h3i) 387.69
MP2-R12/1B (20s14p11d9f7g5h3i) 387.56
MP2-R12/2A0 (20s14p11d9f7g5h3i) 388.24
MP2-R12/2B (20s14p11d9f7g5h3i) 388.09

Wind et al.55 MP2-R12-SO (20s14p11d9f7g5h/exact 3-el. int.) 388.06
MP2-R12/A (20s14p11d9f7g5h) 388.29
MP2-R12/B (20s14p11d9f7g5h) 388.00

Flores36 FEM-MP2 with l r 12 and angular extrapolation 388.10
Petersson et al.38 CBS (complete basis-set) model 386.38
Wenzel et al.11 Nonlinearly optimized GTGs 385.26
Lindgren and Salomonsen56,57 Numerical integration of the coupled-cluster equations 388.31
Janowski and Malinowski58 Calculated 384.98

Extrapolated 387.92
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Given that g orbitals were used in this calculation, we may

reasonably assume that the true limit is somewhat lower than

�388.19 mEh, probably also lower than the lowest energy in

Table 11—namely, �388.31 mEh, obtained by Lindgren and

Salomonsen.56,57

Somewhat surprisingly, in view of the good results of

Bukowski et al. for helium and beryllium,45 the neon correla-

tion energy of �385.26 mEh obtained by Wenzel et al. using

nonlinearly optimized GTGs is rather poor.11 For neon, these

authors used GTGs of the form

gið1; 2Þ ¼ xl11Py
m1
1Pz

n1
1Px

l2
2Qy

m2
2Qz

n2
2Q exp½�aiðr1 � PiÞ2

� biðr2 �QiÞ
2 � gir

2
12�; ð37Þ

which is identical to eqn (36) except for the angular factors. As

for helium, all GTGs were centered on the nucleus, while the

exponents were optimized under the restrictions

aibi þ aigi þ bigi40 and ai þ bi þ gi40 ð38Þ

using the modified weak orthogonality (MWO) functional.11

For each neon pair function, Wenzel et al. used a 40-term

GTG expansion, compared with the 150 and 350 terms,

respectively, used by Bukowski et al. to obtain their excellent

helium and beryllium energies.45 One reason for the relatively

poor MP2-GTG result for neon was that the orbital pairs were

not adapted to spherical symmetry, affecting the quality of the

p2 pairs.13

In Table 12, we give pair energies obtained by some selected

methods, including the GTG approach by Wenzel et al.11 The

energies in the two rightmost columns are both obtained with

the GG2 ansatz, with and without d orbitals. (The aug-cc-

pCVTZ basis also contains f orbitals, but from Table 10 we see

that these contribute less than 0.1 mEh to the total energy.)

Whereas seven of the eleven pair energies differ by less than 0.1

mEh and three by less than 1 mEh, the
1D(2p2) energies differ

by more than 22 mEh. Clearly, for this particular pair, d

orbitals are essential. In MP2-R12 theory, Klopper and

coworkers have also observed this slow convergence of the
1D(2p2) pair37,59 and it was also discussed in the context of

GTO/GTG basis sets by Persson and Taylor.16

We should note that the GG1 calculations of Table 12 were

carried out in a GTO basis without core-correlating orbitals,

which is why this ansatz yields poorer pair-correlation energies

for pairs involving the 1s orbital than for instance the GG0

ansatz here (where core-correlating GTOs were included).

3.2.4. Comparison with various MP2-R12 approaches for

neon. In Table 13, we compare our MP2-GGn results with

those obtained by a selection of MP2-R12 methods. Before

discussing energies, we shall briefly review the different

ansätze.

The R12-SO results in Table 13 have been obtained with the

MP2-R12-SO code of Wind et al.,55 where all three-electron

integrals are calculated explicitly and the RI approximation is

needed only to approximate four-electron integrals. The pair

functions are expanded using the orbital-variant approach of

eqn (10) but with the projector Q0 (with summation over all

orbitals) replaced by Q (with summation over only occupied

orbitals). With this code, the authors demonstrated that the

error introduced by approximating three-electron integrals

using an auxiliary 32s24p18d15f12g9h6i basis is less than

0.01 mEh. Next, the MP2-R12/1A0 and MP2-R12/1B results

of Klopper and Samson17 have been obtained using the

orbital-invariant pair function eqn (11) with the Q0 projector

and the same large auxiliary basis as in the R12-SO calcula-

tions. The MP2-R12/2A0 and MP2-R12/2B calculations differ

from these calculations in the use of the Q projector rather

than the Q0 projector. Finally, the MP2-geminal results of

Ten-no53 have been obtained using numerical quadrature for

two- and three-electron integrals, neglecting the exchange

operator in commutators, and assuming the validity of the

extended Brillouin condition. The pair function is similar to

that of the GG0 ansatz eqn (15) but with fixed linear combina-

tions of ten GCFs, with 0.5 r gv r 1000.0.

Since the MP2-R12-SO calculations in Table 13 use an

orbital-variant ansatz eqn (10) rather than the orbital-invar-

iant ansatz eqn (11) used by all the other MP2-R12 calcula-

tions in the table, we have carried out additional neon

calculations using the orbital-variant GG00 ansatz. Since the

GG0 model has a larger variational space than does the GG00

model, with contributions from all gskl,v rather than from just

gsij,v, its correlation energy is lower. In the small aug-cc-

pCVDZ basis, for example, the difference is 6 mEh; however,

it decreases with increasing X and is only 0.6 mEh in the large

Table 12 Neon MP2 pair energies (�E/mEh)

Pair Symmetry GTGa R12-SOb R12/2Bc GG0d GG1e GG2f GG2g

1s2 40.22 40.252 40.252 40.150 39.965 40.224 40.229
1s2s 1S 3.95 3.974 3.974 3.960 3.929 3.974 3.975
1s2s 3S 1.58 1.582 1.582 1.567 1.566 1.585 1.585
2s2 12.00 12.038 12.039 11.984 12.033 12.044 12.046
1s2p 1P 8.10 8.176 8.177 8.055 8.103 8.139 8.161
1s2p 3P 13.86 13.911 13.910 13.846 13.763 13.825 13.880
2s2p 1P 59.85 60.472 60.482 59.765 60.438 59.702 60.532
2s2p 3P 26.55 26.708 26.708 26.633 26.679 26.439 26.757
2p2 1S 45.24 45.565 45.573 45.450 45.553 45.544 45.574
2p2 1D 87.06 88.042 88.057 86.907 87.891 65.957 88.031
2p2 3P 86.85 87.341 87.340 87.224 87.296 87.110 87.417
Sum 385.26 388.061 388.09 385.541 387.215 364.543 388.189

a Nonlinearly optimized GTGs from ref. 11. b MP2-R12-SO from ref. 55. c MP2-R12/2B from ref. 17. d Orbital basis aug-cc-pCV5Z. e Orbital

basis aug-cc-pVQZ. f Orbital basis aug-cc-pCVTZ (sp). g Orbital basis aug-cc-pCVTZ.
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aug-cc-pCV5Z basis. We expect these differences to be typical

of all pair functions that differ from each other in the use of

orbital-variant and orbital-invariant expansions.

Apart from differences in optimization, the main difference

between the MP2-R12-SO and MP2-GG00 models in Table 13

is the use of a single r12 correlation factor in the R12 ansatz

and a combination of nine GCFs in the GG00 ansatz. From

Table 13, we see that, in comparison with the other ansätze in

the table, these two ansätze behave in a strikingly similar

manner—the difference decreases from 10–16 mEh at the

double-zeta level to 1–2 mEh at the quadruple-zeta level and

0.6 mEh at the quintuple-zeta level. Also, at the quadruple-

and quintuple-zeta levels, the differences between the MP2-

R12-SO and MP2-GG00 energies are smaller than the differ-

ences between the MP2-GG00 and MP2-GG0 energies. In view

of the conclusions of May and coworkers60 regarding the

importance of using a local (Gaussian) correlation function

rather than a non-local (linear) correlation function, this

observation is surprising. Either the use of a local correlation

function is unimportant for the neon atom, or the error

incurred by the WO functional in the MP2-GG00 calculation

is similar to the error incurred by the nonlocal correlation

function in the MP2-R12-SO calculation, for all cardinal

numbers. Although we cannot exclude the latter possibility,

we believe that the WO penalty is small for triple-zeta and

larger basis sets, leading us to the conclusion that linear and

Gaussian correlation factors perform in a similar manner for

the neon atom.

Turning our attention to the MP2-R12/1A0 and MP2-R12/

1B methods, we first note that these differ from the previous

methods in the use of the Q0 projector rather than the Q

projector. Since Q0 is stronger than Q, the resulting energies

should be higher. Indeed, from Table 13, we see that the MP2-

R12/1A0 and MP2-R12/1B energies are consistently higher

than the MP2-GG0, MP2-GG00 and MP2-R12-SO energies

discussed above, for all basis sets. This is particularly true for

the more rigorous MP2-R12/1B model; in the MP2-R12/1A0

model, an additional approximation (neglect of a commutator

involving the exchange operator) reduces the energy some-

what, making it fortuitously similar to the MP2-GG00 energy

in the cc-pCVXZ basis sets but significantly higher than the

MP2-GG0 energy. Finally, comparing the more rigorous

MP2-R12/1B model with the MP2-GG0 model, we note that,

apart from the difference in projectors, they differ in the

correlation factors and in the optimization. Since the com-

bined effect of different correlation factors and different

optimizations was found to be small in our comparison of

the MP2-GG0, MP2-GG00, and MP2-R12-SO energies, we

may assume that the energy difference between the GG0 and

R12/1B ansätze arises mainly from the different projectors.

From the results in Table 13, we thus conclude in accor-

dance with Klopper and Samson17 that the use of the Q0

projector carries a rather large penalty, lifting the MP2-R12/

1A0 and MP2-R12/1B correlation energies by more than 20

mEh at the double-zeta level, by about 10 mEh at the triple-

zeta level, and by 5 mEh at the quadruple-zeta level. Other-

wise, these models converge smoothly, closely following the

MP2-GG0, MP2-GG00 and MP2-R12-SO convergence pat-

terns.

Since the MP2-R12/2A0 and MP2-R12/2B calculations

differ from the MP2-R12/1A0 and MP2-R12/1B calculations

only in the use of Q rather than Q0, the resulting energies

should be lower than the MP2-R12/1A0 and MP2-R12/1B

energies. In fact, we would expect the MP2-R12/2A0 andMP2-

R12/2B energies to be similar to the MP2-R12-SO energies or

somewhat lower, since these methods use an orbital-invariant

rather than orbital-variant ansatz, perhaps leading to energies

similar to those of our GG0 ansatz.

However, an inspection of Table 13 reveals that this is not

the case. Mostly, the MP2-R12/2A0 and MP2-R12/2B energies

are considerably lower than the MP2-GG0 energies and closer

to the basis-set limit. However, the performance is erratic. For

example, whereas the MP2-R12/2A0 energy is the second

highest energy in the cc-pCVDZ basis (after the conventional

MP2 energy), it is the second lowest in the aug-cc-pCVDZ

basis (after the MP2-geminal energy of Ten-no). Moreover,

comparing the MP2-R12/2B and MP2-R12-SO methods in the

cc-pCVXZ basis sets, we find that the former gives energies

Table 13 Neon all-electron MP2 correlation energies (�E/mEh). All calculations have been carried out using the orbital-invariant GG0 ansatz
with the Q projector except GG00 and R12-SO (which use the orbital-variant ansätze eqns (14) and (10), respectively) and R12/1A0 and R12/1B
(which use the stronger Q0 projector)

Orbital basis VOE GG0 GG00 R12-SOa R12/1A0b R12/1Bb R12/2A0b R12/2Bb geminalc

cc-pVDZ 187.57 300.98 290.49 306.6 — — — — —
cc-pVTZ 277.29 350.32 343.19 343.1 — — — — —
cc-pVQZ 326.26 371.77 367.63 365.9 — — — — —
cc-pCVDZ 228.30 310.43 303.98 318.7 302.89 288.45 233.73 343.67 361.18
cc-pCVTZ 329.10 362.47 360.37 362.4 357.46 355.56 368.48 374.48 379.25
cc-pCVQZ 361.51 378.51 377.40 377.1 375.21 373.26 381.17 377.23 385.00
cc-pCV5Z 374.21 383.99 383.32 382.7 380.30 382.57 386.37 384.14 387.01d

aug-cc-pVDZ 209.06 323.58 313.00 322.7 — — — — —
aug-cc-pVTZ 285.91 358.89 351.85 356.1 — — — — —
aug-cc-pVQZ 330.01 375.51 371.42 373.2 — — — — —
aug-cc-pCVDZ 249.90 333.13 326.54 — 312.28 302.91 367.65 342.47 376.02
aug-cc-pCVTZ 337.29 370.72 368.78 — 362.35 360.07 383.94 378.00 383.79
aug-cc-pCVQZ 365.16 382.12 381.14 — 377.35 375.88 386.87 386.16 386.72
aug-cc-pCV5Z 375.93 385.54 384.97 — 384.46 383.92 388.44 387.25 387.55d

a MP2-R12-SO calculations by Wind et al.55 b MP2-R12 calculations by Klopper and Samson.17 c MP2-geminal calculations by Ten-no.53

d h functions removed from the cc-pCV5Z and aug-cc-pCV5Z MP2-geminal calculations.53
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that are lower by 35, 12, 0.1, and 1.4 mEh, respectively, for 2r
X r 5. Thus, the difference between the energies is much

larger than we would expect at the double-zeta level and has

an unexpected minimum at the quadruple-zeta level. It ap-

pears that the good behaviour of the MP2-R12/2B method

may arise from an error cancellation that, for small basis sets,

yields correlation energies closer to the basis-set limit than we

would expect from the pair-function ansatz itself. The irregu-

lar behaviour for small basis sets has been identified by Fliegl

et al.61 as arising from negative eigenvalues in the B matrix in

R12 theory.

Except in the cc-pCVQZ basis, the MP2-R12/2B method

gives considerably lower correlation energies than the MP2-

GG0 method, in spite of the more flexible pair function of the

latter. Moreover, as diffuse functions are added to the

cc-pCVQZ basis, the MP2-GG0 correlation energy decreases

by 3.6 mEh, comparable to 3.7 mEh for conventional MP2 and

2.1 and 2.6 mEh for MP2-R12/1A0 and MP2-R12/2B, respec-

tively—by contrast, the MP2-R12/2A0 and MP2-R12/2B en-

ergies change by as much as 5.7 and 8.9 mEh, respectively.

Since the augmentation with diffuse functions should, in such

large basis sets, only affect the virtual-orbital treatment (as

observed for the MP2-GG0 model), we conclude that the

MP2-R12/2A0 and MP2-R12/2B models have basis-set errors

of about 2 and 5 mEh, respectively, not related to the cusp

treatment. When diffuse functions are added to the larger

cc-pCV5Z basis, the basis-set errors of the two models reduce

to 0.4 mEh and 1.4 mEh, respectively.

Finally, a comparison of the MP2-R12/2A0 and MP2-R12/

2B energies further highlights their erratic behaviour. In the

cc-pCVXZ basis sets with 2 r X r 5, the MP2-R12/2B and

MP2-R12/2A0 energies differ by �110, �6, 4, and 2 mEh,

respectively; with diffuse functions added, the differences

become 25, 6, 0.7, and 1.2 mEh, respectively. In short, the

convergence of the new MP2-R12 methods seems unpredict-

able, noting in particular the strange behaviour at the quad-

ruple-zeta level.

From Table 13, we see that the difference between the MP2-

R12/2A0 energy and the MP2-geminal energy of Ten-no53 in

the large cc-pCVQZ basis is 4 mEh, while the corresponding

difference between the MP2-R12-SO and MP2-GG00 energies

is only 0.3 mEh. This discrepancy cannot easily be explained

by different cusp treatments, noting that the difference in the

cusp treatment is the same in the two cases: the MP2-R12

energies have been obtained with r12 correlation factors, while

the other energies have been obtained with GCFs. Moreover,

the discrepancy disappears when the cc-pCVQZ basis is

extended with diffuse functions, which might suggest that

one or more of the approximations made in the MP2-R12/

2A0 and MP2-geminal models is poor in the absence of diffuse

functions. We note, however, that the discrepancy between the

two models increases again in the larger aug-cc-pCV5Z basis,

suggesting that other factors also contribute.

3.2.5 The hydrogen molecule. In Table 14, we give our MP2

correlation energies for the H2 molecule with a bond length of

1.4a0 = 74.0848 pm. From our experience with helium, we

might expect large pair-function expansions in s orbitals to

give good MP2-GG1 and MP2-GG2 energies also for the

hydrogen molecule. From a study of the s-orbital energies, this

also appears to be the case. However, comparing with the aug-

cc-pVTZ energy, we note that the MP2-GG2 energies ob-

tained with the two s expansions are in fact below the true

MP2 correlation energy, indicating that the Fock operator is

poorly described. Because of polarization, the 1sg orbital

contains a small p contribution and even smaller d and f

contributions. Clearly, then, the Fock operator will be poorly

described in basis sets without polarization functions, leading

to incorrect (i.e., too low) MP2 energies.

By contrast, the H2 energies obtained with sp basis sets are

all above the MP2 limit. With the largest such sets, the MP2-

GGn models with increasing n recover 97.9%, 99.93%, and

99.99% of the estimated limit—see Table 15. When the

partial-wave expansion is extended to include d orbitals, the

GG2 model gives our current best estimate of the MP2

correlation energy (�34.25 mEh), while the GG1 and GG0

models recover 99.98% and 99.6%, respectively, of this en-

ergy. The best MP2-GG0 correlation energy (99.7%) is ob-

tained in the aug-cc-pVQZ basis, which also includes f

orbitals.

In Table 15, we compare our H2 correlation energies with

literature data. Less data exist for molecules than for atoms

since accurate methods are often either restricted to

atoms36,56,58 or only implemented for atoms.55 The best

energies are our GG2 and GG1 values, obtained using 1710

and 171 GTGs, respectively. The energy of Bukowski et al.,33

obtained with 120 nonlinearly optimized s-type GTGs located

on the molecular axis, is only a few mEh higher, however. The

MP2-R12 energies of Klopper and Kutzelnigg63 are also good,

bearing in mind the relatively small basis set used.

3.2.6. Lithium hydride. In Table 16, we present all-electron

MP2 correlation energies for LiH at a bond length of 3.015a0

Table 14 MP2 correlation energies (�E/mEh) of H2 at an inter-
nuclear distance of 74.0848 pm. Energies marked with a double-dagger
(z) are larger in magnitude than the true energy, probably due to a
non-positive-definite Fock operator

Orbital basis VOE GG0 GG1 GG2

aug-cc-pVDZ 27.29 32.74 33.879 34.0464
aug-cc-pVTZ 31.99 33.82 34.209 34.2525
aug-cc-pVQZ 33.25 34.14 34.241 —
aug-cc-pVQZ (s) 18.36 30.11 33.934 34.3232z

aug-cc-pVQZ (sp) 30.45 33.50 34.220 34.2460
aug-cc-pVQZ (spd) 32.74 34.06 34.240 —
aug-cc-pV5Z (s) 18.43 30.13 33.943 34.3680z

aug-cc-pV5Z (sp) 30.65 33.53 34.229 34.2491
aug-cc-pV5Z (spd) 32.98 34.11 34.247 —

Table 15 MP2 correlation energies (�E/mEh) of H2 at an inter-
nuclear distance of 74.0848 pm, listed chronologically. The total
correlation energy is �40.8461 mEh

62

Authors Method Energy

This work MP2-GG0 (aug-cc-pVQZ) 34.14
MP2-GG1 (aug-cc-pV5Z (spd)) 34.247
MP2-GG2 (aug-cc-pVTZ) 34.252

Bukowski et al.33 120 nonlinearly optimized GTGs 34.244
Klopper and Kutzelnigg63 MP2-R12/A (9s8p4d1f) 34.23

MP2-R12/B (9s8p4d1f) 34.17
Jeziorski et al.64 40 nonlinearly optimized GTGs 34.20
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(159.547 pm). No MP2-GG2 energies are listed, as singula-

rities in the solver prevented us from using this ansatz. In its

absence, good correlation energies are recovered with the GG1

ansatz, in agreement with our observations for H2. In the

(14s9p4d3f, 8s4p3d) basis, this ansatz yields our best correla-

tion energy of �72.877 mEh, which according to Table 17

(see below) constitutes 99.98% of the estimated limit. Reason-

ably good energies are also obtained without f orbitals on

lithium. The best MP2-GG0 energy is �71.20 mEh, which

represents only 97.9% of the limit. We recall that, with this

ansatz, far better correlation energies were obtained for H2.

In Table 17, we compare our best LiH correlation energies

with literature data. The best correlation energy is that of

Bukowski et al.45 Using 350 GTGs of the form of eqn (36),

with five of the nonlinear parameters for each GTG optimized

variationally, these authors obtained �72.890 mEh. Their

result is almost matched by Noga et al.,46 who obtained

�72.869 mEh with the MBPT-R12/B method. This method

is not variational, however, making it difficult to evaluate the

quality of the result. The extrapolated complete basis-set

(CBS) value of Petersson et al.38 is far off the limit.

Compared with the literature data, the GG1 ansatz per-

forms very well. In Table 18, we have decomposed the best

correlation energies obtained with the GG1 and GG0 ansätze

into pair energies, comparing with the results of Alexander

et al.66 and of Klopper and Kutzelnigg63 (no pair energies were

published by Bukowski et al. and by Noga et al.). Except for

the 1s2s triplet energy, the GG1 ansatz gives the lowest pair

energies.

3.2.7. Hydrogen fluoride. In Table 19, we present our MP2

correlation energies for HF at a bond length of 1.73280a0

(91.6958 pm), calculated in the augmented core-valence aug-

cc-pCVDZ and aug-cc-pCVTZ basis sets. If we compare

energies obtained from subsets of the aug-cc-pCVTZ basis

set, the importance of d orbitals (as previously observed for

neon) becomes evident. For the GG1 ansatz, for instance,

merely 92.9% of the correlation energy limit of �384.41 mEh

(see Table 20 below) is recovered by the aug-cc-pCVTZ(sp,sp)

basis, which is well saturated in the sp space. However, once d

orbitals have been added to fluorine, as much as 99.5% of the

correlation energy is recovered. The GG2 ansatz behaves

similarly, recovering 95.4% in the aug-cc-pCVTZ(sp,sp) basis,

and 99.98% in the aug-cc-pCVTZ(spd,sp) basis. Therefore,

good HF correlation energies are obtained with spd- and sp-

saturated basis sets on fluorine and hydrogen, respectively, in

agreement with our results for Ne and H2.

By contrast, much larger basis sets are needed for the GG0

ansatz. Based on our experience with the neon atom, the basis

set should be of aug-cc-pCV5Z quality or better to recover

more than 99% of the correlation energy. For the HF mole-

cule, however, we were unable to use basis sets larger than aug-

cc-pCVTZ, in which we recover 96.4% of the MP2 correlation

energy.

In Table 20, we compare our best correlation energies for

the HF molecule with literature data. The current best MP2

correlation energy of �384.41 mEh has been obtained with the

GG2 ansatz in the aug-cc-pCVTZ(spd,sp) basis. The best

energy obtained with the GG1 ansatz was in the aug-cc-

pCVTZ basis, in which 99.81% of the estimated limit was

recovered. From our experience with neon, we expect the true

MP2 correlation energy to be 0.2 to 0.3 mEh lower than our

aug-cc-pCVTZ(spd,spd) value.

A good estimate of the limit has also been obtained by

Klopper,68 who recovered �384.38 mEh with the MP2-R12/B

method, using a 19s14p8d6f4g3h basis for fluorine and a

9s6p4d3f basis for hydrogen. All other highly accurate corre-

lation energies reported in the literature have also been

Table 16 All-electron MP2 correlation energies (�E/mEh) of LiH at
an internuclear distance of 159.547 pm. All basis sets are ANO-2 in
uncontracted form

Basis VOE GG0 GG1

(14s9p, 8s) 49.99 63.81 70.900
(14s9p4d, 8s) 54.41 66.72 71.808
(14s9p, 8s4p) 61.78 69.52 72.678
(14s9p4d, 8s4p) 63.06 70.38 72.809
(14s9p4d3f, 8s4p) 63.68 70.79 72.850
(14s9p4d, 8s4p3d) 65.24 71.20 72.864
(14s9p4d3f, 8s4p3d) 65.40 71.33 72.877

Table 17 MP2 correlation energies (–E/mEh) of LiH at an inter-
nuclear distance of 159.547 pm, listed chronologically. The total
correlation energy is �83.2 mEh

65

Authors Method
Energy/
mEh

This work MP2-GG0 (14s9p4d3f, 8s4p3d) 71.33
MP2-GG1 (14s9p4d3f8s4p3d) 72.877

Bukowski et al.45 350 nonlinearly optimized GTGs 72.890
Noga et al.46 MBPT-R12/A (11s8p6d5f, 9s8p6d5f) 72.973

MBPT-R12/B (11s8p6d5f, 9s8p6d5f) 72.869
Klopper and
Kutzelnigg63

MP2-R12/A (11s7p4d1f, 9s6p3d1f) 72.76

MP2-R12/B (11s7p4d1f, 9s6p3d1f) 72.16
Petersson et al.38 CBS (complete basis-set) model 73.54
Alexander et al.66 700 nonlinearly optimized, randomly

tempered GTGs
72.781

Table 18 MP2 pair correlation energies (�E/mEh) of LiH at an
internuclear distance of 159.547 pm

Pair R12/Aa R12/Ba GTGb GG0c GG1c

1s2 1S+ 39.51 39.45 39.590 38.527 39.609
1s2s 1S+ 1.48 1.41 1.471 1.409 1.490

3S+ 1.37 1.30 1.324 1.284 1.340
2s2 1S+ 30.41 30.00 30.396 30.106 30.437
E(2) 72.76 72.16 72.781 71.326 72.877

a Basis (11s8p6d5f, 9s8p6d5f).63 b Nonlinearly optimized GTGs.66

c Basis (14s9p4d3f, 8s4p3d).

Table 19 All-electron MP2 correlation energies (�E/mEh) of HF at
an internuclear distance of 91.6958 pm

Basis VOE GG0 GG1 GG2

aug-cc-pCVDZ 263.71 337.79 374.03 382.01
aug-cc-pCVTZ (sp,s) 197.21 276.21 350.87 360.05
aug-cc-pCVTZ (sp,sp) 207.60 285.11 357.05 366.66
aug-cc-pCVTZ (spd,s) 309.14 351.26 381.36 383.69
aug-cc-pCVTZ (spd,sp) 313.51 354.70 382.35 384.34
aug-cc-pCVTZ (spd,spd) 317.00 357.35 382.64 384.41
aug-cc-pCVTZ 339.89 370.41 383.69 —
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obtained using different MP2-R12 approaches with one-elec-

tron basis sets of high quality. As seen from Table 20, these

estimates are in good agreement with one another. In two

cases, Klopper and coworkers have obtained an energy lower

than our variationally bounded MP2 correlation energy of

�384.41 mEh, but this has been achieved with the MP2-R12/A

model rather than with the more complete MP2-R12/B model.

A CBS estimate of the correlation energy has been reported by

Petersson et al.38 Although better than conventional orbital-

based MP2 theory, their CBS result is clearly inferior to that of

MP2-R12 theory. Three totally symmetric pair energies have

been published in a discussion of a then-new optimization

technique by Wenzel and Zabolitzky,69 but the complete

correlation energy of HF has not yet been calculated using

the GTG method with nonlinear optimization.

In Table 21, we compare pair energies of HF for some

selected methods. As for the neon atom in Table 12, we have

carried out two sets of calculations with the GG2 ansatz, with

and without d orbitals on fluorine. The calculations also differ

in the d orbitals on hydrogen, but these orbitals change the

total MP2 energy by less than 0.1 mEh (see Table 19) and are

therefore unimportant. Whereas the d orbitals on neon are

crucial for the 2p2 singlet pair function, they are needed in HF

not only for the 1p2 singlet but also for the 3s1p singlet, which

follows from the large d contribution to the 3s orbital in this

molecule.

4. Conclusions

We have presented the MP2-GGn method for calculating

highly accurate MP2 energies for atomic and molecular

closed-shell systems. Our method may be regarded as a hybrid

of the MP2-R12 method developed by Klopper and Kutzel-

nigg5-7 and of the GTG method developed by Szalewicz,

Jeziorski, and others.9–12 The pair energies are obtained by

minimizing the WO functional of Szalewicz and co-

workers,9–12 explicitly evaluating all three-electron integrals.

Since only linear parameters are optimized, the pair energies

are obtained by solving a set of linear equations.

We have demonstrated that GGn pair functions of the form

eqns (15)–(17) give accurate energies for both atoms and

molecules when these functions are optimized with the WO

functional, expanding the GTGs in nine GCFs with even-

tempered exponents 1/9, 1/3, 1, . . . 729. In Table 22, we

compare our best MP2-GGn correlation energies with the best

estimates in the literature. For the three systems Ne, H2, and

HF, the MP2-GGn correlation energies constitute an improve-

ment on all previous results; for He, Be, and LiH, the MP2-

GGn energies are within 0.02% of the best literature data.

Most of these values have been obtained with the GG2

ansatz, which has a limited applicability because of high

memory requirements. The GG1 ansatz also performs well,

however, and can be used for a wider range of systems. From a

memory perspective, the most widely applicable ansatz is the

GG0 ansatz. Although the performance of this ansatz is far

better than that of the orbital approximation, it is perhaps not

as good as hoped for. Since the occupied orbitals are reason-

ably well described even in small basis sets, the only way to

improve such correlation energies is to enlarge the virtual-

orbital expansion. To avoid computing redundant geminal

integrals, separate basis sets should then be introduced for the

orbital and geminal parts of the pair functions. The

Table 20 The MP2 correlation energy (�E/mEh) of HF at an inter-
nuclear distance of 91.6958 pm, listed chronologically. The total
correlation energy is �388 mEh

67

Authors Method Energy

This work MP2-GG0 (aug-cc-pCVTZ) 370.41
MP2-GG1 (aug-cc-pCVTZ) 383.69
MP2-GG2 (aug-cc-pCVTZ(spd,spd)) 384.41

Ten-no53 MP2-geminal (aug-cc-pV5Z, without h
functions)

384.16

Klopper and
Samson17

MP2-R12/1A0 (aug-cc-pV5Z) 381.61

MP2-R12/1B (aug-cc-pV5Z) 381.09
MP2-R12/2A0 (aug-cc-pV5Z) 384.67
MP2-R12/2B (aug-cc-pV5Z) 383.57

Klopper68 MP2-R12/B (19s14p8d6f4g3h,
9s6p4d3f )

384.38

Muller et al.67 MP2-R12/A (18s12p10d8f6g, 10s7p5d) 384.36
MP2-R12/B (18s12p10d8f6g, 10s7p5d) 384.17

Klopper59 MP2-R12/A (15s9p7d5f3g1h,
9s7p5d3f1g)

384.47

MP2 (15s9p7d5f3g1h, 9s7p5d3f1g) 371.68
Petersson et al.38 CBS (complete basis-set) model 378.80

Table 21 The MP2 pair energies (�E/mEh) of HF at an internuclear
distance of 91.6958 pm

Spin Pair R12/Aa GG0b GG1b GG2c GG2d GTG

Singlet 1s2 40.57 40.038 40.546 40.561 40.568 40.2
1s2s 3.60 3.493 3.614 3.608 3.618
2s2 13.06 12.643 13.057 13.279 13.078 12.4
1s3s 2.07 1.859 2.076 2.083 2.084
2s3s 20.16 19.230 20.116 19.623 20.166
3s2 29.30 28.574 29.243 28.968 29.229 27.2
1s1p 4.99 4.422 4.981 4.986 5.000
2s1p 39.97 37.670 39.884 39.217 39.956
3s1p 33.15 31.201 32.998 27.797 33.097
1p2 71.30 68.057 71.067 61.614 71.273

Triplet 1s2s 1.59 1.455 1.596 1.608 1.599
1s3s 3.31 3.082 3.300 3.276 3.311
2s3s 8.81 8.590 8.802 8.840 8.811
1s1p 8.56 7.957 8.532 8.521 8.556
2s1p 18.79 18.143 18.764 18.635 18.822
3s1p 56.49 55.711 56.416 55.441 56.494
1p2 28.74 28.287 28.699 28.599 28.751

Sum 384.47 381.412 383.691 366.656 384.411

a MP2-R12/A from ref. 59. b Using basis aug-cc-pCVTZ. c Using

basis aug-cc-pCVTZ (sp, sp). d Using basis aug-cc-pCVTZ (spd, spd).

Table 22 MP2 correlation energies (�E/mEh) obtained in this work
compared with current best estimates

System This work Current best Energy recovered

He 37.37729 37.37747a 99.9995%
Be 76.355 76.358b 99.996%
Ne 388.19 388.19 100%
H2 34.252 34.252 100%
LiH 72.877 72.890b 99.98%
HF 384.41 384.41 100%

a Patkowski et al.34 b Bukowski et al.45
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introduction of such dual basis sets would enable calculations

on larger molecules, although the calculation of three-electron

integrals would still limit the size of systems that can be

treated. For instance, the aug-cc-pCVTZ calculations on neon

and the aug-cc-pCVTZ(spd,sp) calculations on HF presented

here required 8 and 54 hours, respectively, on a modern Linux

PC, for all three ansätze.

However, the purpose of this paper has not been to present

an efficient method for molecular studies but rather to provide

benchmark values for the pair functions eqns (15)–(17),

optimised with a WO functional. As discussed in ref. 20, the

explicit calculation of three-electron integrals in MP2-GGn

theory can be avoided by invoking the RI approximation,

making the cost of the methods presented here similar to that

of the MP2-R12 methods. Such a development would also

allow us to study in great detail the effects of the RI

approximation, since we would then be able to run

calculations that would be identical except for the use of this

approximation. In the present paper, we have made

careful comparisons with related RI-based methods,

providing useful information about the effects of the RI

approximation.

For neon, the MP2-GG0 method performs better than the

MP2-R12-SO method and the MP2-R12/1A0 and MP2-R12/

1B methods—partly because a more restricted projector

is used and partly because the nine GCFs are more flexible

than a single r12 and therefore better suited to describe the

Coulomb hole except for very small inter-electronic distances.

Comparing with the newer MP2-R12/2A0 and MP2-R12/2B

methods, our approach appears to be more robust, noting that

the R12 methods show some erratic behaviour even at the

quadruple- and quintuple-zeta levels, suggestive of error

cancellation. Although the errors in MP2-R12 theory have

already been thoroughly studied by May and coworkers,60

their conclusion that the error incurred by the various

approximations in the MP2-R12 theory is at most 0.4 mEh

at the cc-pVQZ level (for a set of small molecules) is not in

accordance with the larger errors we have identified. A closer

examination of the errors and their partial cancellations in this

important method may be warranted.

Assuming that the WO penalty is small in triple-zeta and

larger basis sets, we do not find that the Gaussian correlation

factors perform significantly better than linear correlation

factors for the systems studied here, the replacement of linear

r12 by a set of variationally optimised GCFs improving the

convergence only marginally, contradicting the conclusion of

May and coworkers60 regarding the relative performance of

local and nonlocal correlations functions. However, until we

can quantify the WO penalty more precisely, a definite con-

clusion regarding the relative performance of local (Gaussian)

and nonlocal (linear) correlation factors in small systems

cannot be drawn.

For the MP2-GGn method presented here, the major defect

in the pair-function ansatz lies not in the form of the

correlation factor but rather in the set of orbitals with which

the correlation factors are combined to form geminals.

When correlation factors are introduced in singly- and

doubly-excited MO pairs, a significant improvement in the

energy is observed. It would be interesting to investigate

whether a similar energy improvement is also observed for

the MP2-R12 methods.
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