
 
 

 

This paper is published as part of a PCCP Themed Issue on: 
Explicit-r12 Correlation Methods and Local Correlation Methods

 
Guest Editors: Hans-Joachim Werner and Peter Gill 

 
Editorial 

 
Explicit-r12 correlation methods and local correlation 
methods 
Phys. Chem. Chem. Phys., 2008 
DOI: 10.1039/b808067b
 
Papers 

Implementation of the CCSD(T)-F12 method using cusp 
conditions 
Denis Bokhan, Seiichiro Ten-no and Jozef Noga,  Phys. Chem. 
Chem. Phys., 2008 
DOI: 10.1039/b803426p
 
Analysis of non-covalent interactions in (bio)organic 
molecules using orbital-partitioned localized MP2 
Stefan Grimme, Christian Mück-Lichtenfeld and Jens Antony,  
Phys. Chem. Chem. Phys., 2008 
DOI: 10.1039/b803508c
 
Tighter multipole-based integral estimates and parallel 
implementation of linear-scaling AO–MP2 theory 
Bernd Doser, Daniel S. Lambrecht and Christian Ochsenfeld,  
Phys. Chem. Chem. Phys., 2008 
DOI: 10.1039/b804110e
 
Local correlation domains for coupled cluster theory: optical 
rotation and magnetic-field perturbations 
Nicholas J. Russ and T. Daniel Crawford,  Phys. Chem. Chem. 
Phys., 2008 
DOI: 10.1039/b804119a
 
Local and density fitting approximations within the short-
range/long-range hybrid scheme: application to large non-
bonded complexes 
Erich Goll, Thierry Leininger, Frederick R. Manby, Alexander 
Mitrushchenkov, Hans-Joachim Werner and Hermann Stoll,  
Phys. Chem. Chem. Phys., 2008 
DOI: 10.1039/b804672g
 
Equations of explicitly-correlated coupled-cluster methods 
Toru Shiozaki, Muneaki Kamiya, So Hirata and Edward F. 
Valeev,  Phys. Chem. Chem. Phys., 2008 
DOI: 10.1039/b803704n
 
Vanadium oxide compounds with quantum Monte Carlo 
Annika Bande and Arne Lüchow,  Phys. Chem. Chem. Phys., 
2008 
DOI: 10.1039/b803571g
 
Second-order Møller–Plesset calculations on the water 
molecule using Gaussian-type orbital and Gaussian-type 
geminal theory 
Pål Dahle, Trygve Helgaker, Dan Jonsson and Peter R. Taylor,  
Phys. Chem. Chem. Phys., 2008 
DOI: 10.1039/b803577f  
 
 
The - states of the molecular hydrogen 
Jacek Komasa,  Phys. Chem. Chem. Phys., 2008 
DOI: 10.1039/b803548b
 

Slater-type geminals in explicitly-correlated perturbation 
theory: application to n-alkanols and analysis of errors and 
basis-set requirements 
Sebastian Höfener, Florian A. Bischoff, Andreas Glöß and Wim 
Klopper,  Phys. Chem. Chem. Phys., 2008 
DOI: 10.1039/b803575j
 
Accurate calculations of intermolecular interaction energies 
using explicitly correlated wave functions 
Oliver Marchetti and Hans-Joachim Werner,  Phys. Chem. Chem. 
Phys., 2008 
DOI: 10.1039/b804334e
 
Variational formulation of perturbative explicitly-correlated 
coupled-cluster methods 
Martin Torheyden and Edward F. Valeev,  Phys. Chem. Chem. 
Phys., 2008 
DOI: 10.1039/b803620a
 
Resolution of the identity atomic orbital Laplace transformed 
second order Møller–Plesset theory for nonconducting 
periodic systems 
Artur F. Izmaylov and Gustavo E. Scuseria,  Phys. Chem. Chem. 
Phys., 2008 
DOI: 10.1039/b803274m  
 
On the use of the Laplace transform in local correlation 
methods 
Danylo Kats, Denis Usvyat and Martin Schütz,  Phys. Chem. Chem. 
Phys., 2008 
DOI: 10.1039/b802993h
 
Intracule densities in the strong-interaction limit of density 
functional theory 
Paola Gori-Giorgi, Michael Seidl and Andreas Savin,  Phys. Chem. 
Chem. Phys., 2008 
DOI: 10.1039/b803709b
 
Intracule functional models 
Part III. The dot intracule and its Fourier transform 
Yves A. Bernard, Deborah L. Crittenden and Peter M. W. Gill,  
Phys. Chem. Chem. Phys., 2008 
DOI: 10.1039/b803919d  
 
Density matrix renormalisation group Lagrangians 
Garnet Kin-Lic Chan,  Phys. Chem. Chem. Phys., 2008 
DOI: 10.1039/b805292c

 
The interaction of carbohydrates and amino acids with 
aromatic systems studied by density functional and semi-
empirical molecular orbital calculations with dispersion 
corrections 
Raman Sharma, Jonathan P. McNamara, Rajesh K. Raju, Mark A. 
Vincent, Ian H. Hillier and Claudio A. Morgado,  Phys. Chem. 
Chem. Phys., 2008, 10, 2767 
 
The principle-quantum-number (and the radial-quantum-
number) expansion of the correlation energy of two-electron 
atoms 
Werner Kutzelnigg,  Phys. Chem. Chem. Phys., 2008 
DOI: 10.1039/b805284k
 

 

Pu
bl

is
he

d 
on

 1
5 

M
ay

 2
00

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
 P

au
l S

ab
at

ie
r 

on
 1

2/
07

/2
01

7 
13

:3
4:

40
. 

View Article Online / Journal Homepage / Table of Contents for this issue

http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803548b
http://www.rsc.org/Publishing/Journals/CP/article.asp?JournalCode=CP&SubYear=2008&type=Issue&Issue=23
http://www.rsc.org/Publishing/Journals/CP/article.asp?JournalCode=CP&SubYear=2008&type=Issue&Issue=23
http://www.rsc.org/Publishing/Journals/CP/article.asp?JournalCode=CP&SubYear=2008&type=Issue&Issue=23
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b808067b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b808067b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b808067b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b808067b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b808067b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803426p
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803426p
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803426p
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803508c
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803508c
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803508c
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804110e
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804110e
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804110e
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804119a
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804119a
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804119a
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804672g
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804672g
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804672g
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804672g
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803704n
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803704n
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803571g
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803571g
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803577f
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803577f
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803577f
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803577f
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803548b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803548b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803548b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803548b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803575j
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803575j
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803575j
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803575j
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804334e
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804334e
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b804334e
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803620a
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803620a
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803620a
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803274m
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803274m
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803274m
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803274m
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b802993h
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b802993h
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b802993h
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803709b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803709b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803709b
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803919d
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803919d
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b803919d
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b805292c
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b805292c
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b719764k
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b719764k
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b719764k
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b719764k
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b805284k
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b805284k
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b805284k
http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b805284k
http://dx.doi.org/10.1039/b803426p
http://pubs.rsc.org/en/journals/journal/CP
http://pubs.rsc.org/en/journals/journal/CP?issueid=CP010023


Implementation of the CCSD(T)-F12 method using cusp conditions

Denis Bokhan,
ab

Seiichiro Ten-no*
ab

and Jozef Noga
cd

Received 27th February 2008, Accepted 14th April 2008

First published as an Advance Article on the web 15th May 2008

DOI: 10.1039/b803426p

The explicitly-correlated coupled-cluster singles and doubles with perturbative triples method

(CCSD(T)-F12) is implemented using the cusp conditions. Numerical tests for a set of 16

molecules have shown agreement of correlation energies within 1 mEh between the cusp-condition

and fully-optimized CCSD(T)-F12 methods. Benchmark calculations on 13 chemical reactions

with the cusp-condition CCSD(T)-F12 method reproduce experimental enthalpies within

2 kJ mol�1. It is also shown that regular unitary-invariant ansatz cannot exactly satisfy singlet

and triplet cusp conditions in open-shell situations. We present an extended ansatz which can

handle both conditions exactly.

I. Introduction

The basic idea of explicitly-correlated methods1–9 is to include

pair functions directly dependent upon the inter-electronic

distance into the calculation of wave function. This can

significantly accelerate the convergence of standard methods,

which scales as (Lmax + 1)�3,10 where Lmax is the highest

angular momentum involved in the partial wave expansion.

Indeed, by the inclusion of linear-r12
11 terms the convergence

starts to go as (Lmax + 1)�7.12 Such an acceleration is possible

not only because of the correct behaviour of wave functions at

the inter-electronic coalescence points,13,14 but also because of

the general improvement of the shape and size of the Coulomb

hole.15

Explicitly correlated methods which transcend the limita-

tion to tiny molecules have been developed since the introduc-

tion of the resolution of the identity (RI) approximation for

many electron integrals. Recent advances in the field16 have

mainly focused on the accuracy and efficiency of the RI

approximation by the use of auxiliary basis sets,17,18 density

fitting,19,20 and numerical quadratures.21 Another topic is the

use of the exponential correlation factor exp(�gr12)22 which is

more suitable to model the Coulomb hole than the linear r12
function.22–27 The F12 variants of such a correlation factor

turned out to give very much improved results as compared to

the original R12 methods, especially those with a small one-

particle basis set, which is unable to describe the shape of the

Coulomb hole in a broader region around the inter-electronic

coalescence points. A two-point extrapolation scheme of the

F12 method was also examined more recently.28

In addition to the advances of explicitly correlated methods

in second-order Møller–Plesset perturbation theory (MP),

various R12/F12 approaches have been reported in conjunc-

tion with other correlated methods.29–37 Coupled-cluster R12

(CC-R12) theory was put forward in early nineties by one of us

(JN) and coworkers.29,30 More recently, the full CCSD(T)-F12

method has been implemented within the standard approx-

imation.38 Even though the latter method provides very

accurate results and is unitary invariant, its applicability to

large systems (similarly as for CCSD(T)-R12) has its own

limitations: (i) there is an unpleasantly scaling overhead

involving pn5occn
2
bas (n is the number of the pertinent orbitals)

and several other pn4occn
2
bas steps prior to the iterative solving

of the CC equations; (ii) the computations may suffer from the

numerical instabilities due to the linear dependencies among

the geminals.39,40

A simplified unitary invariant ansatz with fixed amplitudes

has been used in the single- and multi-reference MP2-F12

methods.21,27,36 The same ansatz has been employed in ap-

proximate explicitly correlated CCSD(T) methods.41,42 These

approaches do not have any convergence problem and are

significantly cheaper than the methods which optimize the

geminal amplitudes.

In this article, we present an implementation of the full

CCSD(T)-F12 method using the cusp-conditions. In what

follows, the cusp conditions with the intermediate normal-

ization are formulated. The open-shell situation is also con-

sidered and a suitable ansatz in CCSD(T)-F12 is derived. It is

shown that the regular unitary invariant ansatz43 cannot

exactly satisfy the cusp conditions. Numerical results for the

total energies of 16 closed-shell molecules are presented in

section III. We also report reaction enthalpies of 16 isogyric

reactions. Conclusions will be presented in section IV.

II. Cusp conditions

The cusp conditions with intermediate normalization are

introduced from many-body perturbation theory. In the fol-

lowing formulae, we shall use i,j,. . .,a,b,. . ., and p,q,. . . for

occupied, virtual, and general orbitals in the complete basis

set, respectively.
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A The Hartree–Fock conditions

The spin-free singlet (S) and triplet (T) pair functions are

defined as:

fpqgðSÞð~r1;~r2Þ ¼ dpqjpð~r1Þjqð~r2Þ

þ 1ffiffi
2
p ð1� dpqÞðjpð~r1Þjqð~r2Þ þ jpð~r2Þjqð~r1ÞÞ

ð2:1Þ

fpqgðTÞð~r1;~r2Þ ¼ 1ffiffi
2
p ðjpð~r1Þjqð~r2Þ � jpð~r2Þjqð~r1ÞÞ: ð2:2Þ

Representation of the pair functions in the Jacobi coordinates,

~R ¼~r1 þ~r2
2

; ð2:3Þ

~r = ~r1 � ~r2, (2.4)

implies the following relations:

{pq}(S)(~R,~r) = {pq}(S)(~R,�~r), (2.5)

{pq}(T)(~R,~r) = �{pq}(T)(~R,�~r). (2.6)

Using the spherical harmonics basis for the relative coordinates,

~r = (r,y,f), (2.7)

the pair functions can be expanded as

fpqgðSÞð~R;~rÞ ¼
X
l;m

fpqgðSÞlm ðr; ~RÞYlmðy;fÞ;

ðl ¼ 0; 2; . . . ; 2n; . . .Þ;
ð2:8Þ

fpqgðTÞð~R;~rÞ ¼
X
l;m

fpqgðTÞlm ðr; ~RÞYlmðy;fÞ;

ðl ¼ 1; 3; . . . ; 2nþ 1; . . .Þ:
ð2:9Þ

As the Hartree–Fock (HF) potential has no singularity at

the coalescence, the Schrödinger equation for the non-

interacting pair functions in the vicinity of r = 0 can be

rewritten as

� 1

r2
@

@r
r2
@

@r
þ lðl þ 1Þ

r2
þOðr0Þ

� �
fpqgð�Þlm ð~R; rÞ ¼ 0; ð2:10Þ

where the asterisk stands for S and T. The result of the action of

non-local exchange operator on the pair functions also contains

a leading term, proportional to r0. Eqn (2.10) is fulfilled if

{pq}(*)lm(~R,r) = {PQ}(*)lm(~R)r
l + O(rl+2). (2.11)

Thus, we obtain the specific expressions of the singlet and

triplet pairs as

{pq}(S)(r,~R) = {PQ}(S)00 (~R)Y00 + O(r2), (2.12)

fpqgðTÞðr; ~RÞ ¼
X1
m¼�1
fPQgðTÞlm ð~RÞrYlmðy;fÞ þOðr3Þ: ð2:13Þ

B Cusp conditions with intermediate normalization

For the derivation of the cusp conditions of the exact N-electron

wave function, it is convenient to use the exponential ansatz,

|C(1,. . .,N)i = eT̂|HFi, (2.14)

with

T̂ = T̂1 + T̂2 + T̂3 +� � �+ T̂N + T̂02, (2.15)

where T̂m is the usual m-particle cluster excitation operator

and the geminal operator T̂02 is be defined as

T̂ 02 ¼
1

2

X
abijkl

t0
kl
ij habjr12 þOðr212ÞjkliÊaiÊbj : ð2:16Þ

Êpq denotes the unitary group generator,

Êpq = a+pmaqm + a+pkaqk. (2.17)

With this choice of T̂, the intermediate normalization holds

hHF|Ci = 1, and the amplitudes are determined by

hmn|e�T̂ĤeT̂|HFi = 0, (n = 1,. . .,N). (2.18)

The equation for m02 corresponding to T̂02 is not included in

(2.18), since m02 is a subset of m2 in the complete basis set.

The equations are expanded order-by-order using the

partitioning,

Ĥ = Ĥ0 + V̂. (2.19)

The zeroth order Hamiltonian over the HF canonical orbitals

reads

Ĥ0 ¼
X
p

hpjF̂1jpiÊpp ¼
X
p

epÊpp: ð2:20Þ

The first order equation reduces to the pair function equation

in the form,X
kl

½t0klij ð�Þhfabg
ð�ÞjF̂12ðr12 þOðr212ÞÞjfklg

ð�Þi

� hfabgð�Þjr12 þOðr212Þjfijg
ð�Þit0klij ð�Þðek þ elÞ�

þ fabgð�Þ 1

r12

����
����fijgð�Þ

� �
þ . . . ¼ 0;

ð2:21Þ

where F̂12 = F̂1 + F̂2, and the T̂02 amplitudes for singlet and

triplet pairs are

t0klij (S) = t0klij + t0lkij , (2.22)

t0klij (T) = t0klij � t0lkij . (2.23)

It is noted that the generalized Brillouin condition12 is needed

for (2.21) in the finite basis case. Consider the singlet compo-

nent first. Decomposing pair functions into spherical harmo-

nics and taking the condition (2.12) into account, it is possible

to rewrite (2.21) into the form,X
kl

t0
kl
ij ðSÞhfabg

ðSÞ
00 ð~RÞj �

1

r2
@

@r
r2
@

@r
þOðr0Þ

� �

ðrþOðr2ÞÞjfklgðSÞ00 ð~RÞi

þ fabgðSÞ00 ð~RÞ
1

r

����
����fijgðSÞ00 ð~RÞ

� �
þ � � � ¼ 0:

ð2:24Þ

The singularity in the perturbation is eliminated if

t0klij (S) = 1/2dikdjl, (2.25)

This journal is �c the Owner Societies 2008 Phys. Chem. Chem. Phys., 2008, 10, 3320–3326 | 3321
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which corresponds to the s-wave cusp condition. The equation

for triplet pairs is

X
m

X
kl

t0
kl
ij ðTÞhfabg

ðTÞ
1m ð~RÞrj �

1

r2
@

@r
r2
@

@r
þ 2

r2
þOðr0Þ

� �

ðrþOðr2ÞÞjrfklgðTÞ1m ð~RÞi

þ hfabgðTÞ1m ð~RÞjrjfijg
ðTÞ
1m ð~RÞi þ � � � ¼ 0;

ð2:26Þ

which leads to the p-wave cusp condition,

t0klij (T) =
1
4
dikdjl. (2.27)

It is noted that the leading terms cancel individually for each

value of m since {kl}(T)1m is not a function of r. The cusp

conditions are varied for the exact wave function if a new

term proportional to habj 1
r12
jiji does not arise from the con-

nected terms of (V̂eT̂)c in higher-order m2 equations. Espe-

cially, the type of the summations,
P

dghabj 1r12jdgit
dg
ij , does

not break off. Nevertheless, the undesirable component,

hdg|O(r012)|iji, does not participate in T̂02 due to the orthogon-

ality between virtual and occupied orbitals, and the

conditions (2.25) and (2.27) are likely to be valid for the exact

wavefunction.

The diagonal orbital-invariant ansatz from the s- and

p-wave cusp conditions (SP ansatz) was introduced in ref. 21

and 27. Eqn (2.22) and (2.23) lead to the T̂02 amplitudes in the

SP ansatz as

t0ijij(SP) = 3/8, (2.28)

t0jiij(SP) = 1/8, (2.29)

t0iiii(SP) = 1/2. (2.30)

The resulting cluster operator can be expressed in the rational

generator form21 as

T̂ 02ðSPÞ ¼
1

2

X
abij

habj �G12jijiÊaiÊbj ; ð2:31Þ

where �G12 is

�G12 ¼
3

8
þ p12

8

� �
ðr12 þOðr212ÞÞ; ð2:32Þ

and p12 is the permutation operator over the position vectors,

~r1 and ~r2. Two-body correlation factors of spatial spin co-

ordinates48 have been widely used in the quantum Monte

Carlo method. Nevertheless, the presence of the permutation

operator in the rational generator indicates that electron

correlation effects are strictly nonlocal, and the parity distinc-

tion between singlet and triplet pairs is important for a rapid

convergence.

C Open-shell case

For open-shell systems, the cluster operator (2.31) needs to be

considered in terms of spin–orbitals. Particularly, for UHF,

it becomes

T̂ 02ðSPÞ ¼
1

2

X
abij

ha"b"j �G12ji"j"ifaþa"a
þ
b"
aj"ai"g

þ 1

2

X
a0b0i0 j 0

ha0#b0#j �G12ji 0#j 0#ifaþa 0#a
þ
b 0#

aj 0#ai 0# g

þ
X
ab0ij0
ha"b0#j �G12ji"j 0#ifaþa"a

þ
b 0#

aj 0#ai"g;

ð2:33Þ

where the spatial parts of the up and down spin orbitals are

distinguished by a prime. It is important to note that spin-

flipped geminal basis appears in the last term due to the

permutation operator in the rational generator,

(r12+O(r212))p12|imj
0
kiaj0kai0m

=(r12+O(r212))|j
0
mikiaj0kai0m. (2.34)

Since the original unitary-invariant (IJKL) ansatz does not

contain such a term,43 the ansatz cannot satisfy the cusp

conditions exactly for different occupied orbitals for different

spins. This problem can be fixed by the use of the generalized

unitary-invariant ansatz (from now on, we shall use f12 for the

correlation factor [r12 + O(r212)]

T̂ 02ðIJKLÞ ¼
1

2

X
abijkl

t0
k"l"
i"j"
ha"b"jf12jk"l"ifaþa"a

þ
b"
aj"ai"g

þ 1

2

X
a0b0i0j0k0l0

t0
k 0#l 0#
i 0#j 0#
ha0#b0#jf12jk0#l 0#ifaþa 0#a

þ
b 0#

aj 0#ai 0# g

þ
X

ab0 ij0kl0
t0
k"l 0#
i"j 0#
ha"b0#jf12jk"l 0#ifaþa"a

þ
b 0#

aj 0#ai"g

þ
X

ab0 ij0kl0
t0
l 0"k#
i"j 0#
ha"b0#jf12jl 0"k#ifaþa"a

þ
b 0#

aj 0#ai"g:

ð2:35Þ

The corresponding diagonal (IJIJ) ansatz can be obtained by

setting k = i and l = j.

III. CCSD(T)-F12 with CUSP conditions

The SP ansatz derived from the cusp conditions has

been employed by Tew et al.41 and independently by Adler

et al.42 in their approximated CCSD(T)-F12 methods.

Henceforth, we discuss the CCSD(T)-F12 method with the

ansatz in detail. For the finite orbital expansion, we are

using an additional notation, a,b,. . . for virtual orbitals in

the given basis set to distinguish from those in the complete

basis set, a,b,. . ..

The energy functional of CCSD-F12 is

ECCSD-F12 = hHF|(1 + L̂)e�T̂Ĥe�T̂|HFi, (3.36)

with the cluster operator restricted to

T̂ = T̂1 + T̂2 + T̂02, (3.37)

T̂1 ¼
X
ai

tai Êai; ð3:38Þ

3322 | Phys. Chem. Chem. Phys., 2008, 10, 3320–3326 This journal is �c the Owner Societies 2008

Pu
bl

is
he

d 
on

 1
5 

M
ay

 2
00

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
 P

au
l S

ab
at

ie
r 

on
 1

2/
07

/2
01

7 
13

:3
4:

40
. 

View Article Online

http://dx.doi.org/10.1039/b803426p


T̂2 ¼
1

2

X
abij

tabij ÊaiÊbj ; ð3:39Þ

T 02 ¼
1

2

X
ijkl

t0
ij
kl

X
ab

habjf12jkliÊaiÊbj

 

�
X
ab

habjf12jkliÊaiÊbj

!
;

ð3:40Þ

and f12 is the short-range Slater-type geminal22,27 for our

purpose,

f12 ¼ �
1

g
expð�gr12Þ: ð3:41Þ

It is noted that the second term of (3.40) was absent in

(2.16). Nevertheless, both expressions give the same

result with the same geminal amplitudes if the distinct term

is representable by the regular T̂2 operator in such away that

T̂2 + T̂02 is conserved. The corresponding de-excitation

operator is

L̂ = L̂1 + L̂2 + L̂02, (3.42)

L̂1 ¼
X
ai

liaÊia; ð3:43Þ

L̂2 ¼
1

2

X
abij

lijabÊiaÊjb; ð3:44Þ

L02 ¼
1

2

X
ijkl

l0klij
X
ab

habjf12jkliÊiaÊjb

 

�
X
ab

habjf12jkliÊiaÊjb

!
:

ð3:45Þ

Equations for the T̂1, T̂2 and T̂02 can be obtained by differ-

entiation of the CCSD-F12 energy functional (3.36) with

respect to the L̂ amplitudes. On the other hand, the corres-

ponding L̂ equations can be obtained by the differentiation of

the functional (3.36) with respect to tai , t
ab
ij and t0klij .

One of the most important properties of the energy func-

tional (3.36) is the insensitivity of the energy functional to the

small deviations in T̂ and L̂. Let us suppose the approximate

operators,

�̂
T ¼ T̂ þ dT̂ ; ð3:46Þ

�̂L ¼ L̂þ dL̂; ð3:47Þ

with the errors, dT̂ and dL̂. Substituting the approximate

operators into (3.36), we have

ĒCCSD-F12 = ECCSD-F12 + hHF|(1 + L̂)[ �H,dT̂]|HFi
+hHF|dL �H|HFi + O(d2), (3.48)

where �H = e�T̂ĤeT̂. The second and third term on the right-

hand side of eqn (3.48) vanish because of the L and cluster

operator equations. So far, small deviations of dT̂ and dL̂ in

(3.36) cause only a quadratic error in the correlation energy.

The presence of the L-term in (3.36) is essential for the

cancellation of the linear error.

The usual explicitly correlated CC methods do not require L̂
amplitudes for the energy since the cluster operator is fully

optimized. However, since equations for the T̂02 can be

numerically unstable,40 it is more convenient to use the cusp

conditions for T̂02 and L̂02 instead of the full optimization of

the geminal amplitudes. Consequently, for optimized T̂1 and

T̂2, the energy functional (3.36) becomes

ECCSD-F12 = hHF|(1 + L̂02)e
�T̂ĤeT̂|HFi. (3.49)

In our implementation we use the SP ansatz (2.28), (2.29), and

(2.30) from the cusp conditions, and L̂02 in the SP ansatz is

simply given by

L̂02(SP) = T̂0w2(SP). (3.50)

In the order-by-order expansion of the working equations, the

first-order operator is L̂(1) = T̂w(1), and the second order

component of the present method is reduced to the MP2-

F12 energy of the Hylleraas functional with the SP ansatz.21,27

Moreover, the method makes the computational-cost signifi-

cantly cheaper excluding the estimates of laborious intermedi-

ates involving geminal amplitudes from the coupled-cluster

iteration. This feature has been discussed by Tew et al.41 and

Adler et al.42 in their implementations of more approximate

CCSD(T)-F12 methods, which retain terms at most linear to

T̂02. The use of the SP ansatz becomes even more effective for

the inclusion of the quadratic terms as it is in our case.

IV. Results and discussion

A Correlation energies

Correlation energies of selected 16 molecules were calculated

using the uncontracted basis set derived from the augmented

cc-pCVQZ set.49–51 The molecular geometries are taken from

the ref. 45. We have implemented the SP ansatz based on the

CCSD(T)-F12 approach within the standard approximation.38

The approximation C 46 has been used for matrix evaluations.

In all calculations, the exponent of the Slater-type geminal is

g = 1.5. As shown in ref. 30, corresponding perturbative

triples correction in CCSD(T)-F12 using the standard approx-

imation only contains regular terms from the conventional

CCSD(T).44

The SCF and correlation energies are listed in the Table 1.

For most of the molecules, CCSD(T)-F12 results for the fully

optimized (IJKL ansatz) and cusp conditions (SP ansatz)

approaches differ less than by 1 mEh. This is reasonable since

CCSD(T)-F12 approaches with the SP and IJKL ansätze

become equivalent in the limit of complete basis set. As

mentioned above, its main advantage with respect to the full

IJKL ansatz lays in its numerical stability and favorable

scaling which designates this approach for a use with more

extended molecular systems. Current results show that such

calculations are without significant loss in accuracy.

B Reaction enthalpies

In addition to the absolute energies, we have also investigated

the performance of cusp-condition CCSD(T)-F12 method on

reaction enthalpies for the set of 13 reactions, studied by

Bak et al.47 The calculated enthalpies are listed in Table 2.
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Experimental electronic contributions to reaction enthalpies in

last column of Table 2 are obtained by subtracting from the

experimental values the harmonic and unharmonic zero-point

vibrational energy contributions and first-order one-electron

Darwin and mass-velocity scalar relativistic energy contribu-

tion.47

In Fig. 1, we show the normal distribution functions,

rðPÞ ¼ 1

Dstd

ffiffiffiffiffiffi
2p
p exp � 1

2

P� �D
Dstd

� �2
 !

ð4:51Þ

calculated from the statistical measures, i.e. the maximum

absolute error (Dmax
abs ), the mean error (�D), the mean absolute

error �Dabs, and the standard deviation (Dstd) displayed in

Table 3. The errors are relative to the experimental values.

From Table 3 and Fig. 1 one can see a systematic improve-

ment in the accuracy by enhancing the perturbational level as

SCF, MP2, CCSD, and CCSD(T). On the other hand, the

chemical accuracy is provided only with the CCSD(T)-F12

method, and the non-iterative inclusion of the triple excitation

contributions to the correlation energy is crucial in describing

reaction enthalpies even in explicitly correlated methods.

For all of the explicitly correlated methods, the differences

between the standard deviations of fully optimized (IJKL) and

cusp-condition versions (SP) are negligibly small. Although

the statistical measures for the SP ansatz involves reactions

unavailable in the IJKL ansatz, the selection does not alter the

conclusion. So far, it is likely that the CCSD(T)-F12 (SP)

method can be used without serious compromise in accuracy

for predictive reaction enthalpies.

V. Conclusions

In this paper, we have studied the performance of the

CCSD(T)-F12 (SP) method based on the cusp conditions.

For this purpose, we have investigated the total energies of

16 molecules and the reaction enthalpies of 13 isogyric reac-

tions. All the considered molecules are closed-shell systems

with the domination of a single determinant and containing

Table 1 Hartree–Fock and correlation energies from different methods (in a.u.)

SCF

MP2 CCSD CCSD(T)

IJKL SP IJKL SP IJKL SP

H2 �1.334629 �0.034220 �0.034197 �0.040813 �0.040747
HF �100.069492 �0.385476 �0.384944 �0.379659 �0.379359 �0.388095 �0.387794
H2O �76.066515 �0.362688 �0.362215 �0.360413 �0.360186 �0.369914 �0.369687
NH3 �56.224135 �0.323233 �0.322785 �0.328733 �0.328517 �0.337793 �0.337573
CH4 �40.216468 �0.274394 �0.274016 �0.289418 �0.289229 �0.296564 �0.296371
CO2 �187.723173 �0.866081 �0.864473 N.a.a �0.840214 N.a.a �0.872466
CH2 �38.895616 �0.210067 �0.209658 �0.230698 �0.230495 �0.236434 �0.236219
CH2O �113.921987 �0.565561 �0.564648 N.a.a �0.564842 N.a.a �0.583367
F2 �198.770561 �0.743301 �0.741891 �0.732910 �0.731767 �0.754919 �0.753776
N2 �108.991679 �0.538622 �0.537430 �0.526606 �0.526079 �0.547480 �0.546952
CO �112.789504 �0.521174 �0.520141 N.a.a �0.513954 N.a.a �0.533174
HCN �92.914774 �0.500708 �0.499662 �0.495387 �0.494906 �0.515420 �0.514943
C2H2 �76.854879 �0.455774 �0.454785 �0.459453 �0.459110 �0.477774 �0.477434
HNO �129.848153 �0.616594 �0.615235 N.a.a �0.608992 N.a.a �0.631717
C2H4 �78.069798 �0.483230 �0.482387 �0.498786 �0.498420 �0.515629 �0.515259
H2O2 �150.849224 �0.693375 �0.692183 �0.686448 �0.685643 �0.708325 �0.707521
a Not available due to the numerical instability in the m02 equation.

Table 2 Reaction enthalpies (in kJ mol�1) for a set of 13 isogyric reactions involving molecules from Table 1

Reaction SCF

MP2 CCSD CCSD(T)

ExpIJKL SP IJKL SP IJKL SP

CO + H2 - CH2O 2.57 �24.10 �24.49 N.a.a �22.73 N.a.a �22.24 �21.85
N2 + 3H2 - 2NH3 �147.56 �161.17 �162.13 �169.66 �170.44 �162.43 �163.16 �165.38
C2H2 + H2 - C2H4 �213.86 �196.10 �196.54 �209.97 �210.09 �206.09 �206.19 �203.95
CO2 + 4H2 - CH4 + 2H2O �242.78 �234.41 �235.39 N.a.a �259.59 N.a.a �243.55 �245.29
CH2O + 2H2 - CH4 + H2O �246.98 �255.07 �255.35 N.a.a �256.38 N.a.a �250.13 �251.95
CO + 3H2 - CH4 + H2O �244.41 �279.20 �279.85 N.a.a �279.13 N.a.a �272.35 �273.80
HCN + 3H2 - CH4 + NH3 �329.34 �313.39 �315.03 �330.19 �330.92 �320.14 �320.83 �320.35
H2O2 + H2 - 2H2O �394.73 �388.89 �389.60 �377.83 �378.92 �370.46 �371.37 �365.63
HNO + 2H2 - H2O + NH3 �460.96 �463.29 �464.56 N.a.a �456.28 N.a.a �445.33 �445.59
C2H2 + 3H2 - 2CH4 �466.47 �441.14 �441.93 �458.44 �458.87 �447.86 �448.26 �446.71
CH2 + H2 - CH4 �491.98 �571.03 �571.17 �539.00 �539.21 �542.70 �542.93 �544.23
F2 + H2 - 2HF �616.89 �599.39 �600.36 �578.82 �580.41 �565.33 �566.92 �564.93
2CH2 - C2H4 �731.37 �897.03 �896.96 �829.54 �829.64 �843.64 �843.79 �845.71
a Not available.
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only the first row elements, however, a variety of different

chemical bonds is provided.

The calculated total energies of the cusp-condition-based

method are very close to those from the fully-optimized

CCSD(T)-F12 method, that is, the corresponding differences

are less than 1 mEh in most cases. Results for the 13 investi-

gated isogyric reactions suggest that the cusp-condition

CCSD(T)-F12 method has a potential for providing reaction

enthalpies within chemical accuracy (ca. 4 kJ mol�1). A

statistical analysis of the calculated enthalpies has been carried

out to estimate the predictive power of the methods. It has

been proven that the standard deviations from the fully-

optimized and cusp-condition based CCSD(T)-F12 methods

are almost identical. Concerning the applicability of the SP

ansatz in highly accurate calculations for larger molecular

systems, the aforementioned results are especially encoura-

ging. This is strengthened by the fact that the method is orbital

invariant, free from possible numerical instabilities, and much

cheaper than the fully optimized CCSD(T)-F12.

Theoretical analysis for the open-shell systems revealed that

the standard unitary-invariant ansatz cannot satisfy the singlet

and the triplet cusp conditions exactly. An extended ansatz

proposed in this work can fix this problem retaining the

orbital-invariance. We intend to implement the method to

check the effect of the spin-flipped geminal basis in open-shell

molecules.
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