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1. INTRODUCTION

As the name implies, Monte Carlo (MC) methods employ
random numbers to solve problems. The range of problems that
may be treated by MC is substantial; these include simulation of
physical processes, evaluation of multidimensional integrals,
solution of integral and linear operator equations, and applications
in statistical mechanics. All of these functions ofMC can be applied
to the treatment of problems arising in quantum mechanics, and
the intersection of MC methods and quantum mechanics is
generally referred to as quantum Monte Carlo (QMC).1

QMC methods have several advantages:
• QMC methods are among the most accurate tools for
studying molecular quantum mechanics and include thor-
ough treament of static and dynamic correlation effects.
They can provide properties of exact solutions to Schr€odinger’s
equation for Bose ground states. The conventional “fixed-
node” approach to fermion systems typically provides high-
quality results, whereas other QMC variants can produce
exact results for fermions, albeit with exponential scaling
computational cost.
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• The diffusion Monte Carlo (DMC) variant of QMC has
substantially reduced basis set truncation and basis set super-
position errors relative to other ab initiomethods. For bosonic
systems, DMC eliminates basis set errors entirely, whereas for
fermions, these errors are finite and manifested indirectly
owing to the fixed-node constraint.

• QMC is intrinsically parallel, allowing QMC codes to take
advantage of the largest supercomputerswith littlemodification.

• The compute time for each step of a QMC calculation
increases roughly asN3, whereN is a measure of system size
(i.e., the number of particles of the system). Recent devel-
opments have achieved linear scaling in certain cases.

• Computer memory requirements are small and grow mod-
estly with system size.

• Computer codes for QMC are significantly simpler and
smaller than those of basis set molecular quantum me-
chanics computer programs.

• Any Monte Carlo calculation can be improved to achieve
whatever degree of statistical precision is needed. The
random error of QMC calculations decreases in proportion
to the square root of the computational time. This enables
one to estimate the compute time needed for performing a
calculation with a prescribed error bar.

Expansion and perturbative approaches, such as Hartree�Fock
(HF), configuration interaction (CI), many-body perturbation
theory (MBPT), and coupled cluster (CC) approaches, dominate
the field ofmolecular quantummechanics.Methodological improve-
ments and increases in computational resources allow ever-larger
systems to be treated with higher levels of accuracy. However, the
accuracy of these methods is determined by the one-particle (basis
set) and the many-particle (determinants or configuration state
functions) expansions used. Because the latter are typically slowly
convergent in an orbital representation, computational cost and
storage demands can grow rapidly with expansion length and limit
the size of systems that can be treated to high accuracy. Methods
based on density functional theory (DFT) are not as strongly limited
by size considerations but have other challenges.

The QMC method is not constrained by considerations of
basis set and many-particle expansions. It is a powerful method
capable of high accuracy and is readily adapted to parallel
computers. The facile use of highly parallel computer systems
sets QMC apart from other other quantum chemical methods. It
has been applied to molecular systems containing over 300
electrons and, with the imposition of translational symmetry,
to condensed matter systems with over 1000 electrons. The
precision of QMC is determined by how accurately the exact
wave function can be approximated, as shall be described below.
Much has been achieved with the QMCmethod in the computa-
tion of energies and selected other properties for atoms and
molecules.

The first published description of quantum Monte Carlo is
attributed to E. Fermi in a classic paper byMetropolis and Ulam.2

Some years later, Kalos3 proposed Green’s function quantum
Monte Carlo, which was applied to the calculation of the ground
state of three- and four-body nuclei. In retrospect, this paper was
indicative of the versatility of QMC for studies of nuclear, condensed
matter, and atomic and molecular systems. It remained for
Anderson4 to make the first significant foray into atomic and
molecular systems in themid-1970s. These classic papers introduced
the fixed-node approximation, which has served as a bellwether for
the DMC variant of QMC as described below.

1.1. Scope of the Review
The focus in this review is the use of QMC to solve the

electronic Schr€odinger equation for atoms andmolecules, an area
that historically has been labeled ab initio quantum chemistry.
Earlier reviews1,5�16 complement the coverage provided in this
contribution. Several computational physics texts also contain
chapters about QMC.17�19

This review attempts to achieve a reasonable balance between
the level of technical details in the presentation of formal aspects
of QMC methodology pertinent to different approaches and
broader coverage of significance and potential of QMC studies in
resolving contemporary chemical problems. The most common
approaches to QMC are described in section 2. These include
variationalMC (VMC), DMC, auxiliary fieldQMC, reptationMC,
and a handful of other selected approaches. The precedingmethods
are distinct from finite-temperature methods such as path integral
MC(PIMC),which are reviewed in refs 20 and 21. Section 3 covers
critical aspects of QMC calculations, such as construction and
improvement of trial wave functions. Some topics pertinent to
computational efficiency are discussed in sections 4 and 5. A range
of problems addressed in recent QMC investigations of electronic
structure of atoms and molecules and the main challenges to the
QMC approach are reviewed in section 6.

Certain domains of QMC application are beyond the scope of
the present contribution. These include studies of rotational and
vibrational states, including spectroscopy of ultracold clusters,22�34

and some condensedmatter problems,14,20,35�45 althoughmany of
the methods applied to the latter are directly applicable to atoms
and molecules. There have been significant advances made in the
application of QMC to the nuclear Schr€odinger equation. This area
will also not be discussed in this review. The interested reader is
referred, for example, to refs 46�48.

2. QUANTUM MONTE CARLO APPROACHES

In this section, we provide a theoretical background for several
established and emerging QMC computational methods. The
applicability of MC methods is diverse and spans classical
statistical mechanics simulations, operations research, and sta-
tistical analysis. Details of common MC techniques such as
importance sampling, correlated sampling, andMC optimization
are available frommultiple sources.49�59Here, we summarize the
variational (VMC) and diffusion MC (DMC) approaches. Our
discussion of alternative QMC techniques focuses on their
conceptual foundations and their advantages and challenges
relative to VMC and DMC.

2.1. Variational Monte Carlo
The VMC method uses MC integration60 to compute molec-

ular properties from a trial wave function. In the jargon of QMC,
a trial wave function is an approximation to the “true” wave
function that solves the Schr€odinger equation exactly. One may
estimate the energy of a trial wave function by MC integration
and obtain a more accurate wave function by varying the para-
meters of the trial function to minimize the energy estimate. The
following discussion shows how the MC integration techniques
may be adapted to the evaluation of expectation values and
matrix elements and describes methods and criteria for optimiz-
ing wave functions.

The variational energy of an arbitrary wave function is given by
the expectation value of theHamiltonian: E = ÆΨ|Ĥ|Ψæ/ÆΨ|Ψæ.
To evaluate the energy by VMC, the Hamiltonian and overlap
integrals that appear in the expectation value are rewritten in the
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form of eq 1.Z
f ðXÞFðXÞ dX ¼ lim

K f ∞

1
K ∑

K

k:Xk ∈ F
f ðXkÞ ð1Þ

Here, k enumerates points sampled from the probability density
function (PDF) F(X). A natural choice for the PDF is the
normalized square of the trial wave function: F(X) = ΨT

2(X)/R
ΨT

2(Y) dY. This density may be sampled using the Metropolis
method.60 The energy can then be computed as follows,

E ¼
Z

FðXÞĤΨTðXÞ
ΨTðXÞ dX ¼ 1

K ∑
K

k:Xk ∈ ΨT
2

ELðXkÞ ð2Þ

where the “local energy” of Ψ at X is defined by EL(Xk) =
ĤΨ(X)/Ψ(X). The simple form of eq 2 is due to the selection of
ΨT

2/
R
ΨT

2 as the PDF. Because ΨT is an approximate eigen-
function of the Hamiltonian, HΨT≈ EΨT, the variance of the
local energy approaches zero as ΨT approaches the exact
eigenfunction. The relatively small variance of the local energy
allows VMC to estimate the energy much more efficiently than
other properties whose operators do not commute with the
Hamiltonian.

The VMCmethod can also be used to evaluate general matrix
elements of the form Aij = ÆΨi|Ô |Ψjæ.61 This integral may be
rewritten in the form of eq 1.

ÆΨijÂjΨjæ ¼
Z

kðXÞΨiðXÞÂΨjðXÞ
kðXÞ dX

¼ 1
K ∑

K

k:Xk ∈ k

ΨiðXkÞΨjðXkÞ
FðXkÞ

ÂΨjðXkÞ
ΨjðXkÞ

ð3Þ

Coordinates are sampled from the PDF, k, and the matrix
element is evaluated using the average indicated in eq 3. Several
further complications arise when computing off-diagonal
matrix elements. First, there is no obvious choice for k when
computing off-diagonal matrix elements. Averages of Ψi

2 and
Ψj

2 are sometimes used62 so that the densities of both wave
functions are sampled, but this choice is somewhat arbitrary.
Second, there is little reason to expect the summand of eq 3 to
have a particularly small variance, so accurate evaluations of
matrix elements are more computationally demanding than
energies.63

2.2. Fixed-Node Diffusion Monte Carlo (FNDMC)
Although considerable research focuses on the development

of high-quality trial functions, the accuracy of the VMC method
will always be limited by the flexibility and form of the trial wave
function. Highly accurate solutions to the Schr€odinger equation
can be computed by DMC, which uses MC methods for both
solving the Schr€odinger equation and integrating expectation
values. DMC is rooted in the time-dependent Schr€odinger
equation and its solutions,

d
dt

ΦðX, tÞ ¼ � iHΦðX, tÞ ð4aÞ

ΦðX, tÞ ¼ e�itHΦðX, t ¼ 0Þ ð4bÞ
By expanding the wave function Φ(X,t) in eigenfunctions of H
and shifting the potential by the ground-state energy, one obtains
solutions that converge to the ground state when the imaginary

time, τ = it, becomes large:

ΦðX, τÞ ¼ e�τðH � E0Þ ∑
j
cjΨjðXÞ

 !

¼ ∑
j
cj e�τðEj � E0ÞΨjðXÞ

lim
τ f ∞

ΦðX, τÞ ¼ c0Ψ0ðXÞ

ð5Þ

The DMCmethod extracts the ground-state wave function by
propagating the Schr€odinger equation in imaginary time. This is
accomplished by exploiting an isomorphism between the kinetic
energy term in the Hamiltonian and a classical diffusion equa-
tion; the latter can be simulated by a random walk. A second
isomorphism exists between the potential energy and a spatially
inhomogeneous first-order rate equation that can be simulated
by a branching process.

2.2.1. Diffusion. The connection between diffusion and
random walks was established by Einstein in a study of Brownian
motion.64 Suppose a collection of points, X (“walkers”), is
initially sampled from F(X, τ = 0) and that, after a short time,
each walker takes an independent random step, η, sampled from
a 3N-dimensional Gaussian distribution with standard deviation
(2Dτ)1/2:

gðη, τÞ ¼ ½4πDτ��3N=2 expð � η2=4DτÞ ð7Þ
The updated density function will then be

FðX, τÞ ¼
Z

FðX � η, τÞgðη, τÞ dη ð8Þ

The property that eq 7 solves the diffusion equation for a point
source with diffusion constant of D can be used to show that
dF/dτ = D32F. This result indicates that one may start from any
initial density function and simulate its solution to the diffusion
equation using an ensemble of walkers taking random steps.
2.2.2. Branching.Neglecting the diffusion term in eq 6 leads

to an equation that is easily solved,

d
dτ

ΦðX, τÞ ¼ � ðVðXÞ � E0ÞΦðX, τÞ ð9aÞ

ΦðX, τÞ ¼ exp½ � ðVðXÞ � E0Þτ�ΦðX, τÞ ð9bÞ
The solutions to this equation manifest in the MC algorithm

by associating a weight,wk, with each walker. Initially, each walker
has unit weight (i.e.,wk = 1), and its weight is updated at each step
according to wk(τ + Δτ) = wk(τ) exp[�(V(X)�E0)Δτ)]. The
weights of a collection of walkers tend to diverge,65 so only a
small number of walkers contribute to anyMC average.65 For this
reason, it is computationally advantageous to replace weights by a
stochastic birth/death process in which walkers with weights > 1
create offspring at the same position with a probability of wk� 1
and walkers with weights < 1 will die with probability 1 � wk.
2.2.3. Short-Time Approximation. The random walk and

branching processes provide exact solutions to their respective
differential equations, so it is tempting to combine the two by
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advancing one step according to the diffusion equation, then
another by the branching equation. DMC does exactly that. The
Trotter�Suzuki formula (eq 10) shows that, even if the alter-
nating steps are performed symmetrically, separating the diffu-
sion and branching process creates anO (τ3) error known as the
time-step bias.

exp�ðT þ VÞτ ¼ exp � 1
2
Vτ

� �
exp½ � Tτ� exp � 1

2
Vτ

� �
þ O ðτ3Þ

ð10Þ
The large-τ limit is instead reached by iterative application of
short-time solutions:

Φðx, τÞ ¼ expð � ðT þ VÞτÞ

¼ lim
n f ∞

Q
n
exp � ðT þ VÞτ

n

� �

¼ lim
n f ∞

Q
n
exp � V

2
τ

n

� �
exp � T

τ

n

� �
exp � V

2
τ

n

� �

ð11Þ

To remove the time-step bias, a series of DMC calculations
with progressively smaller time steps may then be used to
extrapolate to the zero time-step result. The requirement of a
short time step makes DMC calculations significantly more
costly than VMC, and several clever modifications to the random
walk algorithm have been introduced to minimize time-step
error.66,67

2.2.4. Trial Functions and DMC. DMC calculations use a
trial function to steer the importance sampling68 of the mixed
density F = ΦΨT instead of |Φ| or Φ2. The mixed density
evolves according to a transformation of the time-dependent
Schr€odinger equation that can be derived by multiplying eq 6 by
ΨT:

The introduction of the trial function also modifies the
branching term so that the branching rate depends on the
local energy instead of the potential. This leads to a suppres-
sion of the branching process because the local energy of a
good trial function is nearly constant and is generally a good
approximation to the exact energy, E0. In particular, uncon-
trolled branching at points where the Coulomb potential is
singular can be curtailed by choosing a trial function that
satisfies the cusp conditions.69 As the variance of the local
energy of the trial function decreases, the branching factor
exp[�(EL(X) � E0)Δτ] approaches a constant value. In this
limit, the diffusion and drift operators commute. Time-step
errors can therefore be reduced by improved trial functions
and eliminated by the exact one.
2.2.5. Fixed-Node Approximation. The trial function can

also be used to define the fixed-node approximation (FNA),
which constrains the DMC solution to have the nodes of ΨT.
The FNA is enforced during the random walk by forbidding a
walker from taking a step that generates a trial function sign
change. This condition is implemented by killing the walker. The
FNA is essential for efficient application of DMC to fermions
because imposing the nodes of an antisymmetric trial function on
the solution of the (imaginary) time-dependent Schr€odinger

equation forces the DMC solution to be antisymmetric as well.
Without the fixed-node constraint, DMC calculations would
converge to the ground state without symmetry restriction,
which is a bosonic state. With the FNA, the stationary states of
eq 6 are exact solutions of the Schr€odinger equation subject to
the approximate fixed-node boundary condition. The nodes of
the trial function solely determine the accuracy of FNDMC.
Away from nodes, where the trial function is nonzero, the
variance of the local energy determines the efficiency of the
calculation. More specifically, when the trial function has the
Slater�Jastrow form:ΨT =ΨA e

U, the nodes are given solely by
ΨA because the Jastrow function is positive everywhere. For a
givenΨA, the FNDMC energy will be the same for all forms ofU.
The correlation function eU is important for reducing the
variance of the local energy and the number of points needed
to reduce the statistical error to an acceptable level.
The nodes of the exact wave function are known for only a few

simple systems, so the fixed-node constraint is an approximation.
Unlike time-step error, it is not possible to correct for fixed-node
error by extrapolation. The error introduced by the FN con-
straint is the only uncontrolled approximation in the FNDMC
method. Fortunately, the FNA is quite good, even when modest
trial functions are used. For 55 molecules in the “Gaussian-1
set”,70 atomization energies computed using FNDMC were
typically within 3 kcal/mol (average absolute deviation) of
experimental reference data.71

The centrality of the FNA has spawned considerable research
into improvement of the approach. The strategies for obtaining
better nodes are numerous. The conventional approach is to
select a trial wave function believed to have better nodes (see
section 3). Single configuration wave functions have been con-
structed from canonical HF orbitals, Kohn�Sham orbitals from
DFT, and natural orbitals from post-HF methods. Note that
multiconfiguration wave functions do not necessarily have better
nodes than single configuration wave functions unless their
coefficients are reoptimized in the presence of a correlation
function.72�76 More success has been found with alternative
wave function forms that include correlation more directly than
sums of Slater determinants. These include antisymmetrized
geminal power functions,77,78 valence-bond79 and Pfaffian80

forms, and backflow transformed determinants.81 Only recently
have systematic improvements to the nodes been made possible
by optimization ofΨA in the presence of a correlation function,

82

an idea put forth earlier by Reynolds et al.83

A different approach to the node problem is to develop a
mathematical or physical understanding of the differences be-
tween good and bad nodal surfaces so that trial functions with
better nodal surfaces can be constructed. Relatively little is known
about wave function nodes.73 One often mentioned exception is
the tiling theorem:84 the nodal pockets of the Fermi ground state
are the same within permutational symmetry. Plotting and
comparing nodes may provide physical insight into some features
of the exact nodes.85,86 Plots of a Pfaffian wave function have
revealed tunnels between nodal pockets that are not present in
HF wave functions,80 but the high dimensionality and compli-
cated structure of the nodes make it difficult, in general, to
translate these observations into an improved ansatz. A mathe-
matical analysis of the FNA has been presented by Cances et al.87

A few alternatives to the FN constraint are available within
QMC. The released node method starts from a FNDMC
calculation.35,88 When the FN constraint is relaxed (released
node QMC) an estimate of the exact ground-state energy may be
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obtained by incorporating a factor of �1 for each walker that
crosses the nodal surface:

E ¼
∑
k
skwkELðXkÞ

∑
k
skwk

; sk ¼ sgn½ΨTðXkðτÞÞΨTðXkð0ÞÞ�

ð13Þ
As the number of walkers that cross nodes increases, so does the
cancellation between positive and negative contributions to the
averages, leading to rapid growth of the variance as the denomi-
nator approaches zero. Furthermore, the rate of this degenera-
tion increases with the difference in energy between the Fermi
and Bose ground states, which may be unusably fast for mole-
cules of substantial size.
Other alternatives to the FN approach include the A-function

method.89�91 The method builds nodal surfaces as a sum of
Gaussian functions centered on DMC walkers.
Green’s function Monte Carlo (GFMC)3,54,92 relies on the

standard resolvent operator of Schr€odinger equation,

P̂ðĤÞ ¼ 1

1 þ ðĤ � ERÞδτ
ð14Þ

instead of the imaginary-time evolution operator,

P̂ðĤÞ ¼ e�ðĤ � ERÞδτ ð15Þ
GFMC does not have time-step error, but its computational

time is higher than that of DMC. This makes GFMC a less
common choice for treatment of molecular or atomic electronic
structure problems.
Another method is Fermion Monte Carlo (FMC)93,94 (also

knownby some authors as exactQMC95�97), for which nodes of the
trial function play no special role. In this approach, antisymmetry is
maintained by careful cancellation of positive and negative walkers.
Though FMCmethods have achieved remarkable accuracy for small
systems such asH3

+98 andH3,
99 FMCmethods that can be practically

used for larger systems are under development.

2.3. Self-Healing Diffusion Monte Carlo
The improvement of FNDMC energies is possible only by

improving the nodal surface of the trial wave function. The
quality of VMC optimization is limited by the fact that the VMC
sampling occurs far from nodes. Self-healing DMC (SHDMC)
optimizes nodal surfaces directly100�102 by locally removing
kinks in the FN ground-state wave function. These kinks are
manifestations of discontinuities in the gradient at the nodal
surface of the trial wave function. In SHDMC, an improved nodal
surface is obtained by sampling walkers from a DMC ensemble
and convolving the walker density with a smoothing function to
generate a new antisymmetric wave function.

SHDMC is applicable to both ground101 and excited102 states. It
was shown to converge systematically to a high-accuracy CI
solution for the ground state of oxygen atom and yielded a binding
energy of N2 with near-chemical accuracy. The computational cost
of the SHDMCapproach scales linearly with the number of degrees
of freedom of the nodes, and molecules as large as C20 have been
studied.100 Its accuracy depends only on the size of the available
statistics and the flexibility of the form of trial wave function.

2.4. Auxiliary Field Quantum Monte Carlo
The FN constraint is avoided entirely in the auxiliary fieldQMC

(AFQMC) method103�105 where random walks are performed in

the space of Slater determinants. The sign problem manifests
differently in AFQMC, and analogous constraints must be used.
Like other QMC methods, AFQMC uses an imaginary-time
propagator to project out contributions of excited states in the
trial wave function to obtain the ground-state solution. Unlike
FNDMC, the random walk occurs in a space of nonorthogonal
Slater determinants rather than in the position space of n-particle
configurations so that the antisymmetry of each walker (and
the ensemble of walkers) is ensured without special treatment.
To propagate the Slater determinants in imaginary time, the
Hubbard�Stratonovich transformation is used to recast the two-
body term in the Hamiltonian as a linear combination of
fluctuating one-body auxiliary fields.106 This can be done using
any single-particle basis set, including plane waves and Gaussian-
type functions.106,107 A severe problem emerges, however, in the
treatment of two-body interactions because the one-body opera-
tors are, in general, complex. For large projection times, the phase
of each orbital becomes random and the AFQMCwave function is
dominated by noise. This phase problem is analogous to the
fermion sign problem. The phaseless AFQMC approach108

addresses this issue by confining the random walk based on
overlap of each walker with a trial wave function. The ground-
state energy in phaseless AFQMC is nonvariational. In addition,
the method is more sensitive to basis set truncation than DMC.
The phaseless AFQMC method has been successfully applied to
the energetics of selected atomic, molecular, and hydrogen-
bounded systems.106�109

2.5. Reptation Quantum Monte Carlo
Reptation quantum Monte Carlo (RQMC) is directed at

computing unbiased expectation values of operators that do
not commute with Hamiltonian. This task is challenging in the
DMC framework because the mixed estimators, ÆΦ|Ô |ΨTæ, that
are most readily obtained include biases introduced by the trial
function. Although the forward walking technique110 can be used
to eliminate this bias, it is subject to substantially larger statistical
fluctuations than the mixed estimator.111 The RQMC technique
was devised to evaluate propertis of the “pure” distribution, Φ2,
with reduced variance.

RQMC can be viewed as a modification of a pure diffusion
QMC method insofar as the imaginary-time dynamics of the
quantum system are mapped onto a classical diffusion process.112

However, the basic variable of RQMC is a “reptile” that
corresponds to the path of a DMC-like random walk. This allows
the method to sample the product of a joint probability distribu-
tion for the reptile and a Boltzman factor involving the discre-
tized integral of the local energy along the length of the reptile.

Expectation values are computed by averaging over reptile
random walks.113 In the FN variant of RQMC approach, esti-
mates of the exact energy are obtained from the first and last
configurations of the reptiles. The middle configurations are used
to estimate expectation values of operators that do not commute
with the Hamiltonian.

A number of variations of the original RQMC method have
been developed.114,115 Metropolis�Hastings RQMC corrects
for irreversibility problems that were not properly addressed in
the original RQMC but fails to meet the assumed criterion of
microreversibility. The resulting accumulation of the time-step
bias is resolved in “no-compromise” RQMC, which relaxes the
microreversibility requirement and leads to stabilization of the
middle configurations of reptiles.114 Further development of
“head�tail adjusted” RQMC addresses the issue of low practical
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efficiency of no-compromize RQMC, which suffered from a high
rejection ratio during the random walk and a correspondingly
large accumulation of error.

2.6. Full CI Quantum Monte Carlo
The recently developed full configuration interation (FCI)-

QMC method uses an MC approach to efficiently obtain an FCI
wave function.116�118 In FCI-QMC, the random walk occurs in
the space of the Slater determinants that form the FCI expansion.
Unlike DMC, there is no diffusion associated with the random
walk. The simulation ensemble consists of signed walkers, each
associated with a Slater determinant. The ensemble of walkers
evolves according to a set of population dynamics rules derived
from the imaginary-time evolution propagator. A walker can die
or be cloned with a certain probability and it can spawn a new
walker at a connected Slater determinant. Pairs of walkers of
opposite sign on the same determinant are annihilated. The CI
amplitude on a determinant is then defined to be proportional to
the signed sum of walkers of the determinant. The stochastic
description of a FCI wave function eliminates the requirement
for concurrent storage of all amplitudes. The entire space of
symmetry-allowed determinants is accessible for the random
walk, so that the simulation ultimately samples the FCI wave
function. Evolution in the space of Slater determinants prevents
convergence to a bosonic solution but does not eliminate the sign
problem, which reappears in the inability to a priori predict signs of
CI coefficients. The computational complexity of FCI-QMC scales
similarly to conventional FCI, but smaller scaling constants make
larger FCI spaces computationally feasible. The FCI-QMC ap-
proach has been successfully used to obtain total energies of small
molecules,118 including some systems too challenging for conven-
tional FCI, and ionization potentials of atoms from Li to Mg.116

2.7. Time-Dependent Quantum Monte Carlo
The previously described QMC methods rely on random

walks in the space of electron configurations.Methods that utilize
the time-dependent Schr€odinger equation with imaginary time do
not yield real-time dynamics of electrons in physical space. In time-
dependent QMC (TDQMC), each physical particle is a walker
guided by an individual de Broglie�Bohm pilot-wave119�123

TDQMC can be seen as a set of coupled time-dependent
Schr€odinger equations for the guiding waves in physical space
and a de Broglie�Bohm guiding equation without quantum
potentials for the walkers in physical space. The density of
walkers represents density of the corresponding physical parti-
cles, and the intrinsic statistical nature of quantum objects is due
to guiding waves. Interactions between electrons are accounted
for using explicit Coulomb potentials and pseudopotentials to
describe nonlocal correlation effects. One of the advantages of
TDQMC is its insensitivity to the sign problem, which is due to
correspondence between walker distribution and quantum prob-
ability density. TDQMC is capable of describing real-time
evolution of quantum systems including their interaction with
external fields at a fully correlated level.

3. TRIAL ELECTRONIC WAVE FUNCTIONS

Although QMC methods are capable of computing molecular
properties accurately, most do not yield a wave function per se but
instead sample the many-electron density. Trial wave functions
that are used to guide these calculations have a strong influence
on the computational efficiency of the calculation and a subtle
influence on accuracy. It is therefore desirable to have an accurate

analytical expression for the wave function. Although the QMC
energy is determined by nodes of the wave function, neither the
Metropolis algorithm nor MC integration depends on the form
of ΨT. Even the most elaborate trial wave functions can be
explored at low cost without modifying the VMC algorithm. The
accuracy of a flexible trial function cannot be realized without
optimizing its parameters. This section presents several common
forms of the electronic wave function and describes a few of the
approaches developed to optimize the trial function.

Typically QMC calculations are carried out in the FNA using a
Slater�Jastrow (SJ) wave function, which is written as a product
of an antisymmetric function,ΨA, and an exponentiated Jastrow
function,U:ΨSJ =ΨA e

U. The antisymmetric function describes
the fundamental properties of the wave function including
permutational or spin symmetry. The symmetric Jastrow func-
tion depends explicitly on interelectronic distance and provides a
compact description of short-range, dynamically correlated elec-
tronic motion.

3.1. Antisymmetric Wave Functions
Most basis set ab initio methods build many-electron wave

functions from atomic orbitals (AOs) or molecular orbitals
(MOs). The simplest many-electron wave functions constructed
fromMOs are obtained fromHF theory.Multiconfigurationwave
functions are more general than HF wave functions and may
approach the exact solution in certain limits.

Historically, MO methods have dominated trial-function
construction because these functions are readily obtained from
widely distributed computer codes. Recently, however, some
QMC practitioners have renewed interest in a broader variety of
wave functions including valence bond (VB) functions,79 pairing
wave functions, such as the antisymmetrized geminal power
(AGP),77,78 Pfaffian, and perfect pairing forms.80 All of these wave
function types can be modified by backflow transformations.124

3.1.1. Orbital Parameterization. A generic spin�orbital is
a function of electron spatial coordinates, r = (x, y, z), and spin
coordinate, ω. The combined space/spin coordinate is denoted
by x = (r, ω).

ψðxÞ ¼ ψαðrÞαðωÞ þ ψβðrÞβðωÞ ð16Þ
The spin functions, α(ω) and β(ω), are eigenfunctions of the

square of the one-electron spin operator (̂s2) and the projection
of ŝ on the z-axis (̂sz). Spin orbitals are often constrained to have
only α- or β-character and a common convention is to use
unbarred symbols to indicate α-spin orbitals (i.e.,ψ =ψαα) and
barred symbols for the β-spin orbitals (i.e.,ψ =ψββ). The spatial
orbitals are typically (but not necessarily) expanded in a basis set.
Basis sets can be chosen somewhat arbitrarily, but the quality of
the possible choices can be judged by considering completeness
of the basis set and how quickly the basis converges to eigenfunc-
tions of the Hamiltonian. The most commonly used basis sets
include plane waves, Slater-type orbitals (STO), Gaussian-type
orbitals (GTO), and numerical orbitals.
The plane wave basis is not as well suited for the molecular

Hamiltonian as GTOs and STOs. The electron�nucleus cusp
conditions cannot be satisfied for any finite-size plane wave basis,
although this problem can be avoided by using effective core
potentials. The periodicity of plane wave basis functions makes
this basis preferable for solids compared to isolated molecules.125

Several desirable wave function properties are obtained with
the use of STOs.126 The long-range tail of each function has an
exponential dependence, making it easier to match the correct
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asymptotic behavior of the electron density. The electron�
nucleus cusp condition is readily satisfied by STO functions.
Many of the integrals needed to evaluate molecular energies

cannot be evaluated analytically with STOs, which led to the use
of GTOs owing to ease of integration.127 Several advantages of
STOs are not retained with GTOs. The radial component of the
GTO has a zero derivative at the origin so a single GTO cannot
satisfy the electron�nucleus cusp condition.128 In addition,
GTO basis sets are not complete. Nevertheless, carefully tuned
linear combinations of GTO’s with assorted exponents (contracted
GTO’s) have been developed to give adequate descriptions of the
molecular Hamiltonian,127 and advantageous trade-offs between
expedience and accuracy make contracted GTOs the dominant basis
sets used in quantum chemistry. Recently, mixed Gauss�Slater basis
sets have been proposed for calculations with pseudopotentials.129

In addition to basis set expansions, there are various numerical
methods for parametrizing orbitals including numerical basis sets
of the form ϕ(r) = Ylm(r)f(r), in which the radial function, f(r)
does not have an analytical form but is evaluated by a spline
procedure.130 Numerical orbitals may be more flexible than STO or
GTO basis sets, but their use is more computationally demanding.
Wavelet representations of orbitals131 are exceptionally flexible aswell
and have an intriguing multiresolution property: wavelet algorithms
adaptively increase the flexibility of the orbital in regions where the
molecular energy depends sensitively on the precision of the orbital
and use coarser descriptions where precision is less essential.
3.1.2. Hartree�Fock Wave Functions. One can construct

a simple many-electron wave function by forming the antisym-
metrized product of orbitals. This is conveniently evaluated using
the determinant of the Slater matrix, whose elements are the
values of each orbital (in rows) evaluated at the coordinates of
each electron (in columns). Linear combinations of Slater
determinants can be used to construct configuration state func-
tions (CSFs) that satisfy the total spin constraints (plus any
additional symmetry-related requirements).
HF wave functions are obtained by minimizing the energy of a

single CSF with respect to variations of the spatial orbitals. The
HF energy is not exact because the HF wave function does not
account for electron correlation in singlet wave functions; for
triplet wave functions, correlation is included through the anti-
symmetrizer. The difference between theHF energy and the exact
energy is known as the correlation energy, Ecorr = EHF � Eexact.
The correlation energy is typically a small percentage of the total
energy,132 but this relatively small error is often larger than the
energy differences that account for a large number of chemical
phenomenon. The need for chemical accuracy emphasizes the
importance of exploring more elaborate wave functions and the
HF wave function provides a starting point for many of these
methods.
3.1.3. Configuration Interaction Wave Functions. The

simplest approach to evaluating the correlation energy is to
increase the number of configurations that contribute to the wave
function. Once a reference configuration has been obtained from
aHF calculation, a set of related substituted determinants may be
identified. The substituted determinants are related to the
reference by replacing the orbitals from the occupied space with
orbitals from the unoccupied space. The configuration interac-
tion (CI) method then minimizes the variational energy of a
wave function formed from a linear combination of determinants
(or, equivalently, CSFs) with respect to the CI coefficients. In
principle, CI calculations can provide exact results if the single-
particle basis is complete and the full set of CSFs is used in the CI

expansion (full-CI). The second condition is exceptionally
demanding. The number of determinants included in a calcula-
tion with N electrons and K spatial basis functions is
((2K)!)/(N!(2K � N)!), making full-CI calculations prohibi-
tively expensive for all but the smallest molecules. Truncated CI
calculations in which a small number of orbitals are substituted
into the reference configuration are feasible, and a hierarchy of CI
methods is formed by adding increasingly substituted configura-
tions to the CI expansion. CI with single substitutions (CIS) is
commonly used to estimate excitation energies, but truncated CI
does not provide a size-consistent treatment of the correlation
energy. In practice, CI calculations that include up to four substitu-
tions (CISDTQ) are nearly size-consistent.133 The MCSCF
(multiconfiguration self-consistent field) method is akin to
truncated CI in the sense that the MCSCF also expresses the
wave function as a linear combination of CSFs, but it differs from
CI in that the orbitals are optimized simultaneously with the CI
coefficients.134

Among MO based theories, dynamic correlation is better de-
scribed by perturbation theory or coupled cluster approaches,135

which are both accurate and computationally affordable, at least
for small- tomedium-sizedmolecules. Despite their prevalence in
quantum chemistry, these methods will not be described here
because the number of determinants required to evaluate their
wave functions is presently too large to be used as QMC trial
functions.
3.1.4. Valence-Bond Wave Functions. Valence-bond the-

ory provides another class of wave functions.136,137 General VB
wave functions are linear combinations of “structures” with the
form

ΩS,M, kðXÞ ¼ Â ð½ϕk, 1ðr1Þ:::ϕk, NðrNÞ�ΘS,M, kðω1, :::,ωnÞÞ
ð17Þ

Here, Â is the antisymmetrizer and ϕk,ν are the atomic basis
functions that participate in the kth structure. The spin function
ΘS,M is constructed to make each structure an eigenfunction of
the squared total spin angular momentum operator Ŝ2, and the
projection of the total spin onto the z-axis, Ŝz with quantum
numbers S and M. VB theory has many variants that can be
classified by their methods of selecting structures for the
calculation. A more complete enumeration of VB wave functions
can be found in refs 136�138.
3.1.5. Pairing Wave Functions. An alternative approach to

improving upon HF wave functions is to include correlations
between pairs of electrons more directly by means of two particle
“geminal” functions, G(xi, xj). The antisymmetrized geminal
power (AGP), Pfaffian, and perfect pairing wave functions are
all examples of pairing wave functions; each can be written as an
antisymmetrized product of geminals, Ψ = Â

Q
iGi(x2i,x2i+1)

that differ in the form of G.
The singlet AGP wave function77 for 2N electrons shares the

same singlet coupled spin geminal for each pair:

1ΨAGP ¼ Â ½Gðx1, x2ÞGðx2N�1, x2NÞ�
GAGPðxi, xjÞ ¼ gðri, rjÞ½αðω1Þβðω2Þ � αðω2Þβðω1Þ�

gðxi, xjÞ ¼ ∑
μν

cμνϕμðxiÞϕνðxjÞ ð18Þ

The spatial geminals are symmetric with respect to the exchange
of particle coordinates and may be expressed as a linear combina-
tion of basis functions, ϕμ, in which the matrix of coefficients is
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symmetric (i.e., cμν = cνμ). An additional K unpaired electrons
may be included in an extended AGP wave function by append-
ing the unpaired orbitals to the geminal product:

K þ 1ΨAGP ¼ Â ½Gðx1, x2ÞGðx2N�1, x2NÞψ1ðx2Nþ1ÞψKðx2NþKÞ�
ð19Þ

The AGP wave function can be efficiently evaluated as the
determinant of an (N + K) � (N + K) determinant.78,139

Pfaffian wave functions80 are distinguished from AGP wave
functions by the addition of triplet coupled terms to the spin
geminal:

ΨPf ¼ Â ½GPf ðx1, x2Þ:::GPf ðx2N�1, x2NÞ�
GPf ðx1, x2Þ ¼ gαβðr1, r2Þðαðω1Þβðω2Þ

� βðω1Þβðω2ÞÞ=
ffiffiffi
2

p þ hααðr1, r2Þðαðω1Þαðω2ÞÞ
þhββðr1, r2Þðβðω1Þβðω2ÞÞ ð20Þ

Spatial geminals for the triplet pairs, hσσ
0
, can also be

expressed as linear combinations of basis functions, but their
coefficient matrices must be antisymmetric. Clearly, the Pfaf-
fian form reduces to the AGP wave function when hαα = hββ = 0.
Reference 80 provides a thorough description of the Pfaffian
wave function and an efficient algorithm for evaluating the
Pfaffian of a matrix by first bringing the matrix into a block
diagonal form.
3.1.6. Perfect Pairing Wave Functions. In the perfect

pairing model, each pair of electrons is described by its own geminal.
In contrast, the AGP and Pfaffian functions share the same geminal
for all electron pairs. The perfect pairing (PP) geminal has a more
constrained form than the previously described wave functions. In
each geminal, a pair of “active occupied” orbitals, ψiψi, has a
corresponding i pair of “active virtual” orbitals, ψi*ψi*:

ΨPP ¼ Â ½GPP1ðx1, x2Þ:::GPPNðx2N�1, x2NÞ�
GPPi ¼ ψiψ̅i þ ciψi�ψ̅i� ð21Þ
The significance of this pairing function is that it is capable of

describing the static correlations that are most important when
chemical bonds are broken. In most uses, the core orbitals are
uncorrelated (ci = 0), resulting in the closed-shell generalized
valence bond (GVB) wave function of Goddard et al.140

The GVB-PP function can be seen as an MCSCF wave
function with a particular set of configurations:

ΨPP ¼ jΨ0æ þ ∑
i
cijΨi�̅i�

i ̅ i æ þ ∑
i 6¼j

cicjjΨi�̅i�j�̅j�
i ̅ i j ̅ j æ þ ::: ð22Þ

The relative simplicity of the PP wave function also allows it to be
written in the coupled cluster form.141,142 The coupled cluster
approach allows the PP wave function to be determined with
relative ease. Presently, there is no method for evaluating the PP
wave function apart from its determinant expansion. This expan-
sion includes 2N determinants, which is substantial, but far less
than the factorial number generated in a CASSCF calculation that
includes the same set of active orbitals. This limits the use of PP
wave functions in QMC to wave functions involving small
numbers of active pairs.

3.2. Backflow Transformed Wave Functions
Yet another approach to incorporating correlation effects into

an antisymmetric function is to allow the orbitals (or geminals)
to depend on the coordinates of the other electrons. This is

accomplished by the backflow transformation in which the coordi-
nates of the electrons are modified by a backflow displacement:

ΨBFðXÞ ¼ ΨAðX þ ξÞ ð23Þ
The displacement, ξ, is analogous to the eddies of a classical

fluid moving around a large impurity and was first used by
Feynman and Cohen to show that the energy of a quantum fluid
is minimized by a backflow transformation that conserves the
current around the impurity.143

The displacement function must be a symmetric function to
preserve the overall antisymmetry of ΨA, but there remains a
great deal of flexibility in the form of ξ. For homogeneous
systems, it is common for the displacement of electron i to be
determined by the sum of pairwise displacements in the direc-
tions of the other electrons, j:

ξi ¼ ∑
j
rj þ ηðrijÞðri � rjÞ

where η(rij) is a function of interparticle distance. Various forms
of η(rij), including rational,144 Gaussian,124 and polynomial81

functions, have been suggested. The inhomogeneous backflow
function introduced by Lopez-Ríos et al.81 adds displacements
toward nuclei, leading to significantly lower VMC and DMC
energies and variances for molecular systems.

3.3. Jastrow Wave Functions
The antisymmetric wave functions in the previous section

account for electron correlation indirectly through correlations
among the coefficients of the geminal or CI expansions. More
compact descriptions of electron correlation are achieved by
Jastrow correlation functions that depend explicitly on interpar-
ticle distances. The correlation functions,U, can be parametrized
in a myriad of ways. U can be partitioned into a hierarchy of
terms, U1...UN, in which UN describes correlations among N
electrons.
3.3.1. Electron�Nucleus Correlation Functions,U1.The

earliest use of electron�nucleus (e�n) terms in the correlation
function were due to Fahy et al.,145 and a clear discusion of its
construction can be found in an earlier review by Foulkes
et al.14The e�n correlation function does not describe electron
correlation per se because it is redundant with the orbital
expansion of the antisymmetric function.145 If the correlation
function expansion is truncated at U1 and the antisymmetric
wave function is optimized with respect to all possible variations
of the orbitals, then U1 would be zero everywhere. There remain
two strong reasons for including U1 in the correlation function
expansion. First, U2 depletes more electron density near the
nucleus (where the density is high) than in the tail of the wave
function (where the density is low). This leads to a net shift of
electron density away from the nucleus, which reduces the
energetically favorable e�n interactions. The e�n correlation
function can be used to readjust the electron density without
reoptimizing molecular orbitals.75,145,146

Second, the molecular orbitals are typically expanded in
Gaussian basis sets that do not satisfy the e�n cusp conditions.
The e�n correlation function can satisfy the cusp conditions, but
U1 also influences the electron density in regions beyond the
immediate vicinity of the nucleus, so simple methods for
determining U1 solely from the cusp conditions may have a
detrimental effect on the overall wave function. Careful optimi-
zation of a flexible form of U1 is required if the e�n cusp is to be
satisfied by the one-body correlation function.128,147
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The basic form of U1 is a function of the e�n distances,
U1 = ∑i,ArA(|ri � rA|). An assortment of scaled distance
functions, r, are given in Table 1. The Pad�e function has a
cusp at r = 0 that can be adjusted to match the Coulomb cusp
conditions by adjusting the a parameter. The Sun form also
has a cusp but approaches its asymptotic value far more
quickly than the Pad�e function, which is useful for the linear
scaling methods described in section 4. An exponential form
proposed by Manten and Luchow is similar to the Sun form
but shifted by a constant. By itself, the shift affects only the
normalization of the Slater�Jastrow function, but it has other
consequences when the function is used to construct more
elaborate correlation functions. The polynomial Pade func-
tion does not have a cusp, but its value goes to zero at a finite
distance.
3.3.2. Two-Electron Correlation Functions, U2. Two-

electron correlations provide the largest contributions to the
correlation energy.151 The simplest e�e correlation functions are
spatially homogeneous and depend only on the distances be-
tween the electron pairs. However, to satisfy the different cusp
conditions for like and unlike spins, the function may have a
parametric dependence on spin: U2(xi,xj) = ∑i,jrσi σj

(|ri � rj|). A
variety of scaled distance functions are in common use, and
several are shown in Table 1. These are the same forms used in
the e�n correlation functions, but because the e�e correlation
causes electrons to avoid each other while e�n correlation causes
electrons to approach nuclei, the multiplicative factors used to
scale the interparticle distances will have opposite signs for e�e
and e�n correlations.
Inhomogeneous contributions to U2 can be described by

an expansion in powers of the e�e and e�n scaled distance
functions.

U2ðri, rjÞ ¼ ∑
mno

∑
electrons

i < j
cmnoðr̅iAmr̅jAn þ r̅iA

nr̅jA
mÞr̅ijo ð24Þ

where we have adopted the shorthand of rij = r(|ri � rj|). This
ansatz was first proposed by Boys and Handy (BH),152 and
Schmidt and Moskowitz (SM) later arrived at the same form by
considering averaged backflow effects.153 The SMBH form
includes both the e�n function (via the n = o = 0 terms) and
the homogeneous e�e Jastrow function (via the m = n = 0
terms). The remaining e�e�n terms modulate the e�e correla-
tion function according to the e�n distances.
In SM’s original work, r took the Pad�e form. Any of the forms

in Table 1 are acceptable, but there are qualitative differences
between the powers of these functions. If r is zero at the origin
then rn cannot have a cusp for n > 1 and higher powers of r can be
used to fit longer-range behavior. If r is nonzero at the origin,
then all powers of r can have cusps (if r has a cusp) and higher
powers of r have decreasing range. Schmidt and Moskowitz used
this correlation function to recover ∼75% of the correlation
energy for the first row atoms, 25% more than the homogeneous
e�e Jastrow.153

3.3.3. Filippi�Umrigar Correlation Function. By in-
creasing the number of terms in the BH expansion (SM used
physical arguments to select only a subset of the possible
terms) and adding terms designed to satisfy the cusp condi-
tions due to the simultaneous approach of two electrons
to the nucleus, Filippi and Umrigar obtained between 79%
and 94% of the correlation energy for the first-row homo-
nuclear diatomic molecules.154 The two-electron terms in

their correlation function are

U2 ¼ br̅ij
1 þ b0 r̅ij

þ PðU , S,TÞ þ F̅ðU , S,TÞ þ F̅0ðU , S,TÞ;
U ¼ r̅ij; S ¼ r̅iA þ r̅jA; T ¼ r̅iA � r̅jA

ð25Þ

The function P is a complete fifth-order polynomial of U, S,
and T. The terms in the BH expansion are equivalent to those in
P, although the polynomial coefficients will differ due to the
transformation from riA and rjA to S and T. The F and F0
functions are composed of the leading terms in Fock’s expansion
for the helium atom.
3.3.4. Three-Electron Correlation Functions,U3.The use

of three-electron correlation functions was initially explored by
Huang et al.151 Their study used a complete fifth-order poly-
nomial of the interparticle distances to describe U3, but the
energetic improvements over Filippi and Umrigar’s U2 function
were <0.5% for the Li, Be, and Ne atoms studied. The physical
interpretation for the limited improvement due to U3 is that
correlations among three or more particles must include at least
two particles of the same spin. The antisymmetry ofΨA ensures
that the wave function approaches zero where two electrons of
the same spin meet, so the many-electron density will be very
small wherever high-order correlations are most significant.
Furthermore, the largest three-body effects are accounted for
by products of two-body functions. Most correlation functions
are therefore truncated at U2. Many-body terms such as U3 are
considerably more expensive to compute than U2 but yield only
slight benefits to the accuracy of the calculation, particularly if the
results will be refined at the DMC level.
3.3.5. Multi-Jastrow Wave Functions. Although the pro-

duct form of a SJ wave function has typically been used with a
single global Jastrow factor, the benefit of using different Jastrow
terms for each molecular orbital of the antisymmetric function
was recently demonstrated.155 The latter approach improves
treatment of local electron correlation by facilitating adjustment
to the local molecular environment. Also, the nodal structure of
the trial wave function can better reflect the parameters of Jastrow
functions than the single global Slater�Jastrow wave function.
Thismodification has little effect on the FNDMC eneries for first-
and second-row atoms but improves the dissociation energy of
HF by 2.4 kcal/mol.

3.4. Trial Wave Function Optimization
Section 2.1 described how the energy of a trial function can be

computed by sampling walkers from the electron density, ΨT
2,

and averaging the local energies of these walkers. The fixed
sample optimization method (see, for example, refs 156�158)
takes walkers sampled fromΨT

2(Λ0), the electron density at the

Table 1. ScaledDistance Functions, r(r); The CoulombCusp
Condition Is Satisfied by the Parameter Constraints Listed in
the Third Column

r(r) cusp

Pad�e69 (ar)/(1 + br) a = k

Sun148 �b exp(�αr) b = k/α

exponential149 b(1 � exp(�αr)) b = k/α

polynomial Pad�e150 [1 � z(r/rcut)]/[1 + z(r/rcut)]-

(x) = x2(6 � 8x + 3x2)

n/a
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initial set of parameter values, to compute the energy (or another
optimization criterion) at different values of Λ.

For example, the VMC energymay be rewritten in terms of the
fixed sample density by incorporating weights, wk = [Ψ2(Xk,
Λ)]/[Ψ2(Xk, Λ0)] to account for changes of the density due to
parameter changes.

EðΛÞ ¼

Z
ΨTðΛÞĤΨTðΛÞ dXZ

ΨT
2ðΛÞ dX

¼

Z
ΨT

2ðΛ0ÞΨT
2ðΛÞ

ΨT
2ðΛ0Þ

ĤΨTðΛÞ
ΨTðΛÞZ

ΨT
2ðΛ0ÞΨT

2ðΛÞ
ΨT

2ðΛ0Þ

¼
1
K∑k

wkðΛÞELkðΛÞ
1
K∑k

wkðΛÞ
ð26Þ

Standard multidimensional minimization schemes such as the
conjugate gradient method159 can be then used to minimize
E(Λ).

Minimization of the Monte Carlo energy estimate minimizes
the sum of the exact expectation value and the error due to the
finite sample. Although the variational principle provides a lower
bound for the energy, there is no lower bound for the error of
an energy estimate. Fixed sample energy minimization is there-
fore notoriously unstable.75,160 Optimization algorithms based
on Newton’s, linear, and perturbative methods have been
proposed.75,78,82,161�164

More suitable optimization functions can be found by using
the property that the exact wave function is an eigenfunction of
the Hamiltonian. The variance of the local energies of an exact
eigenfunction is zero because the local energy is a constant
function of X. Accounting for the weights introduced in eq 26,
the variance of the local energy as a function of Λ is

σ2ðΛÞ ¼ ∑wk

ð∑wkÞ2 � ð∑wi
2Þ ∑k

wkðELðXk,ΛÞ � EðΛÞÞ2

ð27Þ
The summands for eq 27 must be positive (or zero) every-

where, so the variance of an approximate wave function is
bounded from below by zero, even for a finite sample. The
coincidence between the lower bound of the variance and the
variance of the exact wave function enables the trial wave
function to be optimized by variance minimization. The exis-
tence of an absolute lower bound makes variance minimization
more robust than energy minimization.69

Similar arguments provide grounds for minimizing the abso-
lute deviation of the local energy:165,166

MðΛÞ ¼ 1
K ∑

K

k
wkðΛÞjELðXk,ΛÞ � EðΛÞj ð28Þ

Like the variance, the mean absolute deviation also has a lower
bound of zero, but two arguments suggest that it may be a more
effective optimization criterion than the variance. The contribu-
tion of each walker to the variance is a quadratic function of the

local energy, but its contribution to the absolute deviation has a
linear dependence on the local energy. It has been suggested that
this difference makes the mean absolute deviation easier to
optimize than the variance because the derivative of the absolute
value is always (1, but the derivative of a quadratic function
approaches zero near its minimum. Also, the quadratic contribu-
tion of each walker to the variance may allow a few particularly
errant walkers to dominate the variance, but the absolute
deviation is not as strongly influenced by outlying local energies.

Several authors, including Schmidt and Moskowitz and Greeff
and Lester, have explored minimizing the unreweighted variance
σu

2 of the local energies without accounting for the changes to
the density due to changes in Λ.153,167

σu
2ðΛÞ ¼ 1

K ∑
K

k
ðELðXkÞ � EðΛÞÞ2 ð29Þ

The unreweighted variance does not minimize the variance of
Ψ(Λ), but it is nevertheless a valid minimization criterion because
the variance of the exact wave function will be zero regardless of the
distribution of walker coordinates.168 Renewed interest from Drum-
mondandNeeds stems from their observation that the unreweighted
variance is sometimes especially easy to minimize.168 When the only
parameters being optimized are linear parameters of the Jastrow
function, the unreweighted variance is a quartic polynomial of a single
variable. The line-minimization step of conjugate gradient-type
algorithms then becomes trivial because the minima of quartic
polynomials can be found algebraically.

Snajdr and Rothstein compared a number of properties
including average interelectronic distances and multipole mo-
ments of wave functions optimized by variance minimization to
those optimized by energy minimization.169 They found that
energy-minimized wave functions providedmore accurate results
for nonenergetic properties. Umrigar and Filippi also found that
energy-optimized wave functions have lower energies and higher
variances than variance-minimized wave functions.170 Consider-
ing that chemical reactivity is determined by energetic differences
and not variance differences, these results suggest that energy
minimization should be revisited.

Several new algorithms avoid the pitfalls of fixed sample
energy minimization by devising alternative estimates of energy
changes due to parameter modifications.82,170�175 These model
energies are constructed from derivatives of the energy of the wave
function and do not correspond to the fixed sample energy of eq 26
except when Λ = Λ0. Unlike the fixed sample energy, the model
energies have lower bounds, making them more stable metrics for
optimization. This description focuses on the “linear” method of
Umrigar et al.,82 which avoids the computationally demanding step
of evaluating second derivatives of the local energy.

The construction of the linear energy model starts from an
explicitly normalized expression for the trial wave function.

~ΨðΛÞ ¼ ΨðΛÞ
ÆΨðΛÞjΨðΛÞæ1=2

ð30Þ

A linearized wave function,ψ(Λ), is obtained by truncating its
Taylor series expansion at first order:

~ΨðΛ0 þ ΔÞ≈ Ψ̅ðΛ0 þ ΔÞ

¼ ~ΨðΛ0Þ þ ∑
i

∂Ψ

∂Λi
Δi þ O ðΔ2Þ ð31Þ
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The initial wave function and its derivatives form a basis set for
describing ψ(Λ0 + Δ). When the Hamiltonian and overlap
matrices are expanded in this basis, the energy of the linearized
wave function becomes

E̅ðΔÞ ¼ ÆΨ̅jĤjΨ̅æ
ÆΨ̅jΨ̅æ

¼
∑
i, j
ΛiH̅ijΛj

∑
i, j
ΛiS̅ijΛj

ð32Þ

The minimum of E(Δ) can be found by solving the general-
ized eigenvalue problem,

∑
j
H̅ijΔj ¼ E̅ ∑

j
SijΔj ð33Þ

which is routinely done using numerical linear algebra software
libraries.176 The solution to eq 33 is then used to update the trial
function according to Ψ(Λ) f Ψ(Λ + Δ).

Eigenvalues of the linearized Hamiltonian also provide esti-
mates of excited-state energies. This property has been used to
optimize excited-state wave functions.177 An state-averaged ex-
tension of the linear method optimizes multiple ground- and
excited-state wave functions.178

3.5. Effective Core Potentials
The purpose of the effective core potential (ECP) approxima-

tion is to remove the core electrons from a calculation so that
computational effort may be focused on the valence electrons
that participate in chemical bonds. Obviously, the ECP must
account for changes to the Coulomb potential arising from
removal of the core electrons. There must also be a commensu-
rate reduction of nuclear charge. Additional terms are needed to
account for the exchange energy and to maintain orthogonality
between the valence orbitals and the core orbitals that have been
removed. The nonlocality of the latter two terms underlies the
unusual form of the ECP:

VECPðrÞ ¼ wLþ1ðrÞ

þ ∑
L

l¼ 0
∑
l

m¼ � l
jYlmæðwLþ1ðrÞ � wlðrÞÞÆYlmj ð34Þ

The value of the ECP depends not only on an electron’s
coordinates but also on the projection of the wave function for
one electron (holding the other electron coordinates constant)
onto the spherical harmonics, Ylm. The local term, wL+1(r),
depends only on the distance of the electron from the nucleus.
The angular potentials wl are determined so that, beyond some
cutoff distance, the “pseudo-orbitals” obtained from an ECP
calculation match those of an all-electron calculation but are
nodeless and smoothly go to zero within the cutoff radius.167 The
wl are then fit to a Gaussian expansion

179 so that the potential can
be rapidly integrated over Gaussian basis functions.

Some flexibility remains in the selection of terms to be
included in this expansion. An assortment of ECPs are possible
within this framework because the form of the pseudo-orbital
within the cutoff radius is not completely defined. So-called soft
ECPs have been designed so that wl cancels the Coulomb
singularity at the nucleus.180 This is valuable for QMC calcula-
tions because their efficiency is sensitive to rapid changes of the
potential. Several sets of soft ECPs have been designed specifi-
cally for QMC so that Gaussian basis function can be used in
QMC calculations without special consideration of the electron�
nucleus cusp conditions.181,182

Localized ECPs have singularies in the nodal regions of the
trial wave function, and the locality approximation is known to
lead to numerical instability in DMC calculations. The “T-moves”
algorithm provides an alternative to the locality approxima-
tion.183 In this approach, the negative matrix elements of the
nonlocal potential are incorporated as an additional displace-
ment step in the random walk, whereas positive matrix elements
are simply added to the local potential. T-moves increase the
stability of simulations by pushing walkers away from regions
where localized ECPs diverge. Also, the T-moves algorithm is
variational in the sense that the ground-state energy of the
effective Hamiltonian is an upper bound to the exact ground-
state energy. More recent work by Casula et al. reduces the time-
step error of the original T-moves algorithm and ensures that, for
a given time step, the effectiveness of the nonlocal T-moves does
not diminish for increasing system size, i.e., it is size-consistent.184

There is also lattice-regularized DMC (LRDMC), in which
the kinetic term is discretized by a finite difference Laplacian. The
regularized Hamiltonian also leads to a variational treatment of
nonlocal potentials.185 The updated version of LRDMC reduced
themethod’s lattice discretization error using an improved effective
lattice Hamiltonian.184 The revised algorithm uses only one lattice
size (earlier LRDMC algorithms used two) and has a known
leading error term, leading to smoother lattice extrapolation.

4. COMPUTATIONAL CONSIDERATIONS

There is a close connection between advances in ab initio
quantum chemistry and the development of computational
resources. The tremendous growth of power and availability of
high-performance computers has made possible computational
studies of increasingly challenging problems. This section pro-
vides an overview ofQMC scaling properties that are pertinent to
parallel computations with any degree of concurrency. Studies of
various alternatives to traditional supercomputers and clusters
are discussed along with relevant algorithmic improvements and
code development efforts.

4.1. Linear Scaling Quantum Monte Carlo
While QMC approaches appeal to quantum chemists primar-

ily for high accuracy, these methods also have computational
advantages. The slowest step of a QMC calculation requires
O (M3) floating point operations (flops) for a molecule of sizeM,
andO (M1.5) steps are needed to achieve a given statistical error.
In contrast, the cost of coupled-cluster methods, which are
sometimes referred to as the “gold standard” of quantum chem-
istry, can increase as fast as O (M7), which leads to prohibitively
expensive calculations for molecules with more than ∼12 first-
row atoms.132,186 Because of their reduced scaling and facile
adaptation to parallel computers, QMC methods hold special
benefits for the evaluation of electronic properties of large
molecules. QMC calculations are nevertheless a significant under-
taking. The requirement of small statistical errors adds a hefty
prefactor to their cost, even for small molecules.

The methods described below reduce these costs so that
QMC can be applied to a broader range of molecules. The factors
that contribute to the cost of a QMC calculation are discussed.
Several of the latter are determined by the statistical nature of the
QMC method. The largest of these considerations is the time
required to compute the local energy. Linear-scaling computa-
tional efforts in energy evaluation can be achieved in recently
introduced VMC and FNDMC approaches reformulated in
terms of N-particle density matrices.187
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4.1.1. Scaling Analysis. The vast majority of the computing
time consumed in a VMC orDMC calculation is spent evaluating
the local energy of the specified trial wave function. The total
compute time is roughly the product of TElocal, the time required
for each evaluation of the local energy, and NMC, the number of
Monte Carlo points (walkers positions) where the local energy is
evaluated. The walkers and the cost of evaluating their local
energies are easily distributed among Nproc nodes of a parallel
computer. There is also a penalty, Tcomm, incurred for commu-
nication between the nodes. The total wall time required to
complete a QMC calculation is roughly

Twall ¼ TElocalNMC

Nproc
þ Tcomm ð35Þ

The TElocal and Tcomm terms can be directly reduced by
algorithmic improvements such as those described later in this
section. On the other hand, NMC is, to a very large extent, an
intrinsic property of the underlying QMC theory. Ceperley188

has previously analyzed the factors that contribute to NMC. First,
the variance of the local energy increases with molecular size, so
the number of independent MC points must increase to reduce
the error to the same tolerance. Second, the MC points will not
be independent from each other until the random walk has taken
sufficient steps for the walker positions to decorrelate. Third, the
time-step bias of a DMCcalculation increases with system size, so
a larger number of steps must be taken before the decorrelation
time is passed.
Suppose the local energies for a monatomic system have a

variance σ1
2. If the system is enlarged to include M identical,

noninteracting atoms, standard error analysis indicates that the
variance increases to σM

2 = Mσ1
2. The MC error decreases as

K�1/2, so if K1 points are needed to reduce the error bar to an
acceptable level for the one-atom system, then KM =MK1 points
are needed to achieve the same error for theM-atom system. For
small- and moderate-size molecules, KM may grow faster than
O (M) because interactions between the atoms cause σM to
increase.
The number of independent points in the MC average may be

less than the total number of points if points sampled by the same
walker are serially correlated. A decorrelation time of k1 must
pass before the local energies of the one-atom system are
independent of earlier values. The local energy of the noninter-
actingM-atom system is just the sum of the local energies of the
independent atoms, so that the total energy decorrelates at the
same rate as the component energies: kM ≈ k1.
Although the decorrelation time is independent of system size,

the degree of serial correlation between steps is determined
largely by the time step, τ. DMC calculations require small time
steps to maintain reasonable branching factors. Assuming that the
local energies are normally distributed with variance of σM

2, the
average branching factor for theM-atom system is approximately

ÆGBæ≈ 1 þ 1
2
Mσ1

2τM
2 ð36Þ

A time step of O (M�1/2) is therefore needed to keep ÆGBæ
constant.
The number of independent points required for DMC is

found by combining the factors just described.

NMC ¼ KM�kMτM ¼ O ðMÞ O ð1Þ
O ðM�1=2Þ ¼ O ðM3=2Þ ð37Þ

Assuming a linear scaling algorithm for the local energy, the
compute time for molecular DMC calculations increases at least
as fast as O (M5/2). For bulk properties that are reported in
energies per atom or per unit cell, the computed energies and
errors may both be reduced by 1/M, so those calculations scale as
O (M3/2).
Several measures can be used to reduce the magnitude ofNMC

(but not its scaling). Trial function optimization decreases NMC

in two ways. If the variance of the local energies is reduced then a
smaller number of points will be needed to achieve the desired
error bar. Reduced variance also permits a larger time step to be
used, c.f. eq 36. Effective core potentials decrease the variance of
local energies by smoothing the Coulomb potential near the
atomic core, thereby reducing NMC via mechanisms similar to
those of wave function optimization. Improved random walk
algorithms with small time-step errors will also decrease serial
correlation.66,67

4.1.2. Molecular Orbital Evaluation. The SJ ansatz (see
section 3) is the most common type of trial wave function used in
QMC. Evaluating the molecular orbitals (MOs) and their
derivatives is usually the most time-consuming step in evaluating
the local energy for SJ wave functions, requiring up to O (N3)
flops for anN-electron wave function. An assortment of methods
for reducing the cost of MO evaluation to O (N) have been
developed by several groups.149,189,190

The Slater matrix for an N-electron determinant will contain
N2 elements consisting of the N occupied orbitals evaluated at
each electron’s coordinates. If the MOs are expanded using a
linear combination of basis functions (i.e., ϕi(x) = ∑μCμiχμ(x))
and the number of basis functions isO (N), thenO (N3) flops are
required to evaluate all of the entries in the Slater matrix.
Linear scaling can be achieved when localized MOs (LMOs)

are used to create sparsity within the Slater matrix. The density of
an LMO is confined to a limited region of space around its
centroid, so only a few LMOs need to be evaluated for each
electron. The second crux on the way to linear scaling is to
accelerate the transformation from basis function to LMOs.
Linear scaling QMC methods have been a popular field of
research, and several algorithms have been published.
Williamson et al. used maximally localized Wannier functions

to express the LMOs189 that are truncated by setting the value of
the orbital to zero outside the sphere containing 99.9% of the
orbital density. The transformation from basis functions to MOs
is avoided by tabulating the orbitals on a 3-D grid and using a
spline procedure for orbital evaluation.
The nonorthogonal LMOs (NOLMOs) of Alf�e and Gillan are

obtained by dividing the volume of the molecule into a set of
overlapping localized regions and maximizing the self-overlap of
the orbitals within the localization region.190 Any part of the
orbital outside its localization region is truncated. The transfor-
mation step is accelerated by rewriting the LMOs in a basis of
“blip” functions. Each blip is nonzero over a small domain so only
64 blips need to be evaluated and transformed.190

The first linear scaling QMC method to use Gaussian basis
functions was due to Manten and Luchow.149 They truncated the
Boys localized orbitals191 by neglecting basis functions centered
on atomsmore than three bond lengths away from the centroid of
the LMO. The deletion of basis functions simultaneously reduces
both the number of LMOs thatmust be evaluated and the number
of basis functions that must be evaluated and transformed.
The MO evaluation algorithm devised by Aspuru-Guzik et al.

truncated the orbital transformation using a numerical cutoff
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rather than a spatial one.192 Their algorithm used a 3-D grid to
identify sparsity in the Slater matrix. For each point on the grid,
the threshold Cμiχμ(x) > 10�12 was applied to create a list of
relevant coefficients and basis functions. In contrast to the
truncation schemes used by other groups, this method neglects
the smallest contributions to the MOs instead of the most
distant. For large molecules, the grid algorithm is substantially
faster than a dense linear transform. However, this grid algorithm
performs poorly for small molecules due to irregular memory
access patterns.
The NOLMOs used in earlier linear scaling QMC calculations

have used finite localization regions to truncate each
orbital.190,193 The “spread” functional used by Liu, Perez-Jorda,
and Yang194 is equivalent to the Boys method for orthogonal
orbitals, but in the nonorthogonal case, it minimizes the spatial
extent of each orbital rather than maximizing the distance
between orbital centers. Liu et al. were able to reduce the spread
functional by 83% on average by relaxing the orthogonality
constraint, but their minimization algorithm required elaborate
procedures to avoid singular transformations.194

4.1.3. Correlation Functions. The SMBH function de-
scribed in section 3.3 is frequently used for its compact and
accurate description of inhomogeneous electron correlation.

USMBH ¼ ∑
A
∑
mno
∑
i < j

cAmnoðr̅iAmr̅jAn þ r̅iA
nr̅jA

mÞr̅ijo ð38Þ

Evaluating the SMBH correlation function requiresO (M3) flops
due to the summation over three particles. It can be the rate-
limiting step in the evaluation of the local energy even if the BH
expansion includes only a modest number of terms.
Manten and Luchow (ML) created a linear scaling algorithm

for evaluating the two-body terms in the BH expansion.149 The
short-range scaled distance function used by ML, rML = 1 �
exp(�αrij), quickly approaches a constant value so that only a
linear number of terms in eq 38 need to be evaluated explicitly.
A linear scaling algorithm for evaluation of three-body terms in

the BH expansion has been described by Austin et al.195 Rewrit-
ing each term as a trace over a matrix product,Umno

A = ∑i 6¼jrAi
mrij

orjA
n ,

permitted the use of fast matrix multiplication libraries. Linear
scaling was then achieved by taking advantage of the sparsity in
the rmatrices. There is no such sparsity if rML is used because the
asymptotic value of this function is one. To create sparsity, r was
shifted so that its asymptotic value is zero. The result is identical
to the correlation function developed by Sun, Lester, and co-
workers (SL),196 rij

SL = �exp(�αrij).
4.1.4. Load Balancing. The independent motion of random

walkers makes it particularly simple to use parallel computers for
QMC calculations. The walker ensembles can be distributed
among many processors, and interprocess communication is
needed only for occasional averaging. A complication arises in
DMC because the branching process can cause unpredictable
imbalances in the number of walkers on each processor. This can
severely degrade parallel efficiency if processors with fewer
walkers must wait for others to complete before continuing past
the parallel barrier associated with averaging.
The cost of idle processors increases in significance as

petascale computers have tens of thousands of processing cores.
To maintain high parallel efficiency, a load-balancing procedure
should redistribute walkers after branching. For example, it is
possible to send walkers from the processor with the greatest
number of walkers to the one with the least until they have the

same number of walkers. The process is repeated until all nodes
have equal numbers of walkers. This is less than ideal because
iterative communication creates multiple communication bar-
riers. The high cost of communication relative to flops magnifies
the need for an alternative strategy.
Early versions of the Zori program197 used a similar approach,

but the result of the iterative procedure was computed before any
walkers were exchanged; this reduced the amount of communica-
tion, but the O (Nproc

2) memory required to store the “transfer
matrix” is impractically large when several thousand processors are
used. The load-balancing algorithm adopted in more recent ver-
sions of the code requires only one global communication step and
two O (Nproc) arrays.

198

5. PARALLELIZATION AND HARDWARE
ACCELERATION

Advances in the design of high-performance computing
(HPC) systems and the evolution of modern hardware are of
immediate relevance, especially in the view of the intrinsic parallel-
ism of QMC. HPC has traditionally been dominated by massively
parallel supercomputers connected by custom networks. Clusters
of workstations connected by commodity networks also have
niches in the HPC community. Hardware accelerators such as
graphical processing units (GPUs) and field-programmable gate
arrays (FPGAs) are gaining momentum as components of super-
computer and cluster systems.199�201 Public resource computing
has also emerged as an alternative to HPC centers.

The adoption of GPUs in cluster systems has been motivated
largely by their high floating-point throughput, high memory
bandwidth, and low hardware cost. As supercomputers approach
the peta- and exascale, the power demands for running and
cooling these systems are driving HPC centers toward GPUs or
other hardware architectures that offer more computing and
memory resources per watt. The primary impediment to wide-
spread adoption of GPUs for scientific computing is the difficulty
of transferring legacy programs to the new architecture. The
languages for programming GPUs are often tied to particular
hardware platforms, and significant code reorganization and
specialized programming models are required to obtain max-
imum efficiency of the GPU.

Meredith et al. and Anderson et al. have modified versions
of their QMC codes to assess the performance of QMC on
GPUs.200,201 GPU hardware accelerated their overall QMC code
by a factor of 6; individual kernels achieved speed-ups as large
as 30�.200,201 A study by Weber et al. has also assessed the
programming and debugging efforts required to achieve fine-
grained parallelism on a variety of GPU-based platforms and
languages.199 The timing data from this QMC application were
used to construct a model for predicting the performance of
other scientific applications on GPUs. Meredith et al. also
compared single-precision GPU results to double-precision
CPU results and concluded that the negligibly small differences
between the two should not prevent scientifically meaningful
results from being obtained from GPU-based QMC codes.200

FPGA accelerated systems are being explored as tools
for exploiting the polygranular parallelism of the QMC
algorithm.199,202 The most computationally intensive parts of
the algorithm are mapped onto reconfigurable FPGA hardware,
which allows extensive optimization through pipelining, fine-
grained parallelism, and fixed-point arithmetic.202 The remaining
components of the QMC code that are either less demanding or
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offer only coarse-grained parallelism are executed on the CPU.
With FPGA hardware acceleration of the wave function and
potential energy routines, a 25� speedup was observed relative
to a serial reference code.202 Significantmodification of theQMC
algorithmwas required to obtain accurate results with fixed-point
arithmetic; this increases FPGA development costs compared to
CPU- and GPU-based systems.

Public resource computing relies on the donation of spare
computer time by personal computer owners worldwide.
QMC@Home, the first large-scale distributed quantum chemical
project, used FNDMC to obtain interaction energies between
stacked Watson�Crick DNA base pair complexes (adenine/
thymine and cytosine/guanine).203 By 2008, QMC@Home had
access to 15 Tflop/s sustained computing power, rivaling top500
supercomputers of the time for the price of a midsize server. A
specially adapted version of the Amolqc204 software was used for
the QMC calculations. Work-scheduling, data-handling, account-
ing, and community features were provided by Berkeley Open
Infrastructure for Network Computing (BOINC) which is based
on standard web-server components.205

The loosely coupled parallelism of QMC permits efficient use
of low cost clusters assembled from a mixed assortment of com-
puting and network hardware. Feldmann et al. used a manager-
worker programmingmodel to balance the distribution of walkers
among the nodes of a heterogeneous parallel computer.206 The
performance of manager-worker scheme approached the theore-
tical performance limit of their heterogeneous cluster and per-
formed as well as a conventional algorithm on homogeneous
compute systems.

5.1. Advances in Algorithms and Software
Software development is an ongoing process motivated by a

wide range of considerations, from improving performance
of existing algorithms and implementing new theoretical
approaches to exploration of the efficiency of new programming
languages.207 One important factor that is often overlooked by
scientific software developers is software accessibility to the
general user, so that computations can be set up, executed, and
analyzed in a simple and understandable way. Development of
friendly graphical user interfaces (GUIs) is becoming an impor-
tant aspect of the design of production-package scientific soft-
ware. Introduction of a simple GUI for the Zori QMC software208

is expected to facilitate a broader use of QMC and provide
instructional advantages for students in higher education.209

Zori software itself has undergone significant improvements in
its latest version.198 New features of Zori 2.0 include faster wave
function evaluation algorithms and robust wave function opti-
mization methods. Optimization procedures were merged into
the random walk to streamline the procedure for running VMC
calculations. The preparation of Zori input files was simplified by
updates to its GUI and user-friendly scripts. Zori 2.0 is an open
source program licensed under GPL.

Another QMC software package distributed free of charge is
QWalk.210 QWalk is a state-of-the-art code providing functionality
for QMC electronic structure calculations of medium-to-large
molecules and solids. The modular form of QWalk encourages
and facilitates addition of new features. The current version is
highly flexible in the choice of wave function, Hamiltonian,
observable, and MC method. QWalk features an efficient paralle-
lization scheme that has been used with up to 10 000 processors.

Even higher concurrencies, up to 100 000 cores, have been
achieved with almost perfect parallel efficiency in the CASINO

code.211 With supercomputers achieving petascale performance,
such a degree of parallelism opens new venues forQMCapplications
and is perceived as critical for addressing problems that cannot be
tackled by other ab initio methods due to conceptual or technical
limitations. CHAMP212 andQMCPACK213 are among other QMC
software packages that are available for use by communities at large.

The efficiency of various stages of QMC algorithms is con-
stantly being improved. For example, a strategy for the genera-
tion of the ensemble of random walkers has been designed214

that shortens the equilibration phase of QMC simulations and
reduces the total run time. Improved algorithms for updating trial
wave functions215,216 provide speed and storage savings that
facilitate the treatment of large systems with multideterminant
wave functions. Alternative sampling strategies that lead to better
statistical and computational properties of VMC calculations
have been proposed.217 An increase of computational power
facilitates QMC computations of such large scales that the supply
of psueudo-random numbers may be exhausted during produc-
tion-quality runs. Stochastic simulations of such intensity raise
the bar for the quality of (pseudo)-random number generators
(RNGs). The performance of several RNGs in VMC and DMC
calculations was evaluated218 to ascertain numerical reliability of
the results.

6. APPLICATIONS

This section summarizes the range of computations that have
been performed using QMC. Considering availability of earlier
reviews,7,13,15 we focus on the work done in the past five years.
The key aspects of the computational methodologies used in
these studies are presented together with their main findings.

The traditional strength of QMC methods in determining
accurate absolute energies is reflected by the number of studies
dedicated to atomic, molecular, and reaction energetics, including
ionization potentials, electron affinities, and inter- and intramo-
lecular binding energies. Recent progress with the RQMC and
AFQMC methods has contributed to more active pursuit of
properties that do not commute with the Hamiltonian. Recent
advances in QMC methodologies facilitate studies that have
targeted selected molecular properties in addition to energies,
including electron densities, equilibrium geometries, and transi-
tion moments.

6.1. Ground-State Systems
Ground-state QMC calculations are the most abundant.

Preparation of trial wave functions of excited states in VMC
faces the same difficulties as standard orbital-based methods. In
DMC, there are no bounds for excited states analogous to the
variational principle for the ground state. No tiling theorem exists
in FNDMC treatment of excited states. The availability of
accurate experimental data and, especially in the case of small
systems, computational results from alternative ab initio ap-
proaches makes atoms and molecules in their ground states ideal
targets for testing and benchmarking QMC techniques. The
aspects of QMC currently being tested vary—from the applica-
tion of different types of basis sets to new importance sampling
strategies.219

The main challenge for improving the accuracy of FNDMC
calculations is to improve the quality of the nodes of trial wave
functions. This objective motivates investigations of novel opti-
mization methods220,221 and tests of more flexible trial wave
functions. Considerable effort has therefore been expended in
the pursuit of understanding the fundamental structure of nodal
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surfaces.84,86,89,222,223 For example, Bressanini and Morosi ex-
amined the algebraic structure of RHF, UHF, and GVB wave
functions for the ground state of the N atom and showed that the
nodes of any one of these wave functions could be reproduced by
either of the other two forms.73 Although this result seems to
indicate that variational optimization of a given trial function form
might notminimize theDMCenergy for that form, studies that have
reoptimized the parameters of multideterminant wave functions in
the presence of a Jastrow factor have observed consistent decreases in
the DMC energy for larger active spaces.75,76

Computational efficiency has also stimulated modifications to
tailor ECPs and their corresponding basis sets for QMC (see
section 3.5). Relativistic ECPs and relativistic approximations
within QMC are critically important to understanding the
chemistry of transition metals and heavy elements.224

As noted in section 2.1, DMC samples a mixed distribution,
which introduces a bias for calculations of properties that do not
commute with the Hamiltonian. This issue has been addressed
in studies of expectation values of multipole moments,63,225

differential operators,226,227 relativistic corrections,228 and Born�
Oppenheimer forces on nuclei.229 Methods for sampling the
“pure” density must overcome the increased variance and higher
computational demands associated with computing the weight-
ing factors that correct for the mixed distribution. Vrbik has
proposed a scheme for computing derivatives of the DMC
energy from the mixed density by analyzing the serial correlation
of walker weights.230 In addition, a new sampling method based
on the Hellmann�Feynman theorem has been developed to
sample a large class of operators diagonal in real space, including
densities and interaction energies, exactly within FNDMC.231

Estimators of operators other than the Hamiltonian suffer
from substantial fluctuations, and the zero-variance principle
does not hold. Variance can be reduced by construction of new
estimators that decrease fluctuations without biasing the result-
ing estimate.232,233 The calculation of forces is particularly
sensitive to the magnitude of the variance because estimators
are related to derivatives of the total energy. Various aspects of
force calculations have been investigated, including their sensi-
tivity to whether the trial function satisfies the electron�nucleus
cusp condition,234 the effect of Pulay’s correction in calculations
based on the Hellmann�Feynman theorem,235 and the applic-
ability of adjoint algorithmic differentiation.236 A stochastic line-
minimization algorithm relying on Bayesian inference was de-
vised to find precise structural minima.237 A series of papers
by Badinski and co-workers have made significant andvances
toward evalulating the Pulay terms in the expressions for the
forces for systems with nonlocal pseudopotentials inDMC,238�241

including accurate estimates for “nodal terms”240 and force esti-
mates that use zero-variance properties to improve statistical
efficiency.238

Mixed estimators are avoided in the RQMC approach dis-
cussed in section 2.5. Recent developments have increased the
efficiency of RQMC for large systems.114 An assessment of
electron distributions in atoms and molecules showed that “no-
compromise” RQMC achieved the highest accuracy among a
variety of QMC methods.242 The AFQMC method has demon-
strated excellent performance in the traditionally challenging
description of stretched bonds and a related issue of spin-
contamination.243

6.1.1. Atoms. Ground-state energies of positive and negative
ions of elements from Li to Ar have been characterized using
all-electron nonrelativistic FNDMC to address challenges of

adequate and consistent treatment of correlation effects in systems
with varying charges and numbers of electrons. A comparison of
computed ionization potentials and electron affinities with experi-
mental values validated the computed results.244

All-electron VMC and DMC calculations of the ground-state
energies of first-row atoms enabled assessment of trial wave
functions of four types: single-determinant SJ, multideterminant
SJ, single-determinant SJ with backflow transformations, and
multideterminant SJ with backflow transformations. The DMC
method with backflow-transformed multideterminant SJ trial
wave functions recovered 99% or more of the correlation energy
for Li, Be, B, C, N, and Ne, 97% for O, and 98% for F.245

All-electron and pseudopotential VMC and DMC calculations
of the ground-state energies of Ne and Ne+ were used to gauge
the effect of trial wave function quality.246 The SJ wave functions
with HF orbitals, optimized orbitals, and orbitals transformed to
include backflow correlations were used. The HF orbitals give
nearly optimal single-determinant nodal surfaces for the ground
states of Ne and Ne+. Backflow-transformed wave functions
yielded the most accurate results for both VMC and DMC,
although the computational cost per move in VMC and DMC
increased by a factor of between 4 and 7. In comparison to
backflow transformation, orbital optimization slightly improved
VMC energies but had very little effect on the DMC results for
this system. All QMC calculations, irrespective of the form of the
trial wave function, the type of the QMC method, the use of all-
electron basis sets, or pseudopotentials, led to excellent agree-
ment with the experiment for the Ne IP. Even in the worst case of
VMC nonrelativistic pseudopotential calculations, the error was
only 0.60(3)% of the IP value.246

All-electron ground-state energy calculations of 3d transition-
metal atoms were carried out to obtain accurate correlation
energies. This work relied on the FN approximation to domain
Green’s function Monte Carlo (FN GFMC).247 Application of
QMC to such systems is traditionally challenging due to large
fluctuations induced by core electrons and complicated atomic
shell structure leading to inhomogeneous charge distributions.
Relativistic ECPs provide a comparatively easy way to include

a simplified accounting for some relativistic effects in QMC
calculations. If relativistic effects are very large, then relativistic
ECPs are inadequate.248 In ref 249, relativistic contributions to
the total energies of Cu and Cu+ were evaluated as differences
between Dirac�Fock and Hartree�Fock energies. Electron
correlation effects were obtained using nonrelativistic DMC
calculations.
Theoretical consistency requires a simultaneous treatment of

the relativistic and correlation effects.250 This can be achieved if
relativistic local energies are used in theQMC simulations. A new
all-electron relativistic VMC approach was proposed to address
this problem.251 The relativistic local energy was derived from
the zeroth-order relativistic approximation (ZORA) Hamilto-
nian. The IPs of the first-row atoms were computed to demon-
strate that along with relativistic effects the method recovers
electron correlations at the same level as nonrelativistic QMC.
An electron�nucleus cusp correction scheme for ZORA-QMC
was proposed252 to extend the nonrelativistic correction
scheme.253 The new scheme replaces the MOs of the SJ wave
function with an exponential-type correction function and im-
proves the stability of computations with both STOs and GTOs.
6.1.2. Molecules.Harkless and Irikura used VMC and DMC

to address the challenges of computing an accurate dissociation
energy for Be2. Their approach used a CASSCF trial function to
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account for the near-degeneracies among the 2s and 2p states of
Be.254 A variety of active spaces and strategies for truncating the
CAS expansion were explored to assess the sensitivity of
FNDMC to perturbations of the trial wave function. The best
agreement between FNDMC and experiment was obtained
when the active space included the valence electrons and the
orbitals with the closest energies. Larger active spaces resulted in
significantly larger dissociation energies that were attributed to
inadequate optimization of trial wave functions with large numbers
of determinants.
The performance of VMC and FNDMC in the prediction of

ground-state energies and derived properties, such as dissocia-
tion energies and ionization potentials, of a range of small
molecules (Li2, Be2, H2O, NH3, CH4, and H2CO) has been
benchmarked. The focus of the study255 was the effect of STOs
and of the size of Jastrow correlation function in the Boys�
Handy form.With the single-reference trial wave functions without
reoptimization of orbital parameters, fixed-node energies were
found to lie within 95% of the estimated exact values and to
within 1% of reported values. It was shown that systematic
inclusion of two- and three-body terms in the Jastrow factor is
also important for QMC calculations of molecular systems.
A phaseless AFQMC study of bond stretching in the BH and

N2 molecules and an H50 chain has been reported. A trial wave
function based on UHF orbitals was sufficient to produce
potential curves in agreement with experimental, CCSD(T),
and DMRG data. At large separations the AFQMC approach led
to more uniform behavior and higher accuracy than CCSD(T)
except at a few stretched configurations. Problematic cases were
completely resolved with MCSCF trial wave functions.256

The extended linear optimization method has enabled robust
simultaneous optimization of large numbers of linear and non-
linear parameters of the trial wave function.221 Using this
method, Toulouse and Umrigar optimized the basis function
exponents, orbital coefficients, CAS coefficients, and Jastrow
parameters for the ground state of C2. The C2 FNDMC potential
energy curve was size-consistent with a spin-restricted single-
determinant SJ trial wave function, but the spin symmetry of the
system was broken at the dissociation limit. However, the correct
spin symmetry and size consistency were preserved in both VMC
and FNDMC calculations with CAS-SJ trial functions.
To resolve a recent controversy over the stability of an elusive

covalently boundO4 species, a FNDMC study was performed.257

A single HF determinant was insufficient to obtain accurate
nodes and led to considerable errors in both the heat of
formation and the dissociation barrier height compared to the
best available reference data. The problem was resolved with a
CASSCF trial wave function truncated according to size of CI
coefficients. The values obtained for the heat of formation agreed
with existing ab initio benchmarks, supported the reliability of this
type of trial function, and provided confidence in the calculated
barrier values. The DMC findings indicate that a chemically
bound O4 species should be detectable experimentally.257

Performance of single-reference versus multireference wave
functions and canonical orbitals versus natural orbitals from CI
with single and double excitations were compared in a VMC/
FNDMC study of bond dissociation energies for symmetric and
asymmetric arrangements of S4.

258 For single-reference trial
functions, orbital choice had a noticeable effect on the absolute
and relative energies, particularly for DMC. Proper description
of the dissociation required a multireference wave function.

The choice of orbitals was less significant for multireference
wave functions.
The energetics of the isomerization reaction of bicyclobutadiene

were obtained at the FNDMC level of theory. This reaction involves
a biradical species that typically poses a significant challenge to most
ab initio approaches.259 Static and dynamic correlation contribute
differently to the product and reactant molecules, so the multi-
reference trial wave function must include a carefully selected set of
CSFs for a balanced description of electron correlation in both
systems. As few as three CSFs were sufficient for adequate error
cancellation in this system. Overall, FNDMC findings were in closer
agreement with experiment than CCSD(T) results.
An accurate OH bond dissociation energy in phenol was estab-

lished fromDMC calculations using single-determinant SJ trial wave
functions. The findings were 87.0( 0.3 kcal/mol (HF orbitals) and
87.5 ( 0.3 kcal/mol (Kohn�Sham orbitals). The experimental
values range from 86 to 90 kcal/mol, and orbital-based theories
predicted energies range from 86 to 91 kcal/mol.260

FNDMC and DFT were used to predict the growth mechan-
ism for a molecular line of styrene on a hydrogenated silicon
surface.261 The two approaches agreed that an intra-dimer-row
growth model was preferred over an inter-dimer-row model. The
predicted adsorption/reaction energies and barrier heights, how-
ever, differed considerably. The study showed that, for surface
reactions, DFT predictions should be interpreted with caution and
that FNDMC provides a viable alternative for large systems.
The adiabatic positron affinities of HCN and LiH were

recently obtained from FNDMC calculations.262 The study relied
on a product form of the trial wave functionwithmulticomponent
electron-positron determinant and a Jastrow factor including two-
and three-body terms. The electron�positron and positron�
nucleus cusp conditions were imposed with a Jastrow factor.
ElectronMOsweremodified to satisfy the electron�nucleus cusp
condition. Agreement between the DMC result for LiH and
existing benchmark data supported the credibility and adequacy
of the chosen theoretical framework for small positronic mole-
cules. The DMC result predicted positron binding to HCN to be
20� stronger than that from HF theory, indicating that correla-
tion effects are important to the description of weakly bound
positronic molecular compounds.
The FNDMC method with new scalar-relativistic soft-core

Hartree�Fock ECPs was used to obtain potential curves around
the equilibrium geometries of selected dimers and diatomic hydrides,
namely, As2, Br2, Sb2, I2, and XH (X = Ga, Br, In, I, and At), to
determine the equilibrium bond lengths and vibrational frequencies
using polynomial fits. These results were consistent with those of
CCSD(T) and supported the use of a new family of scalar-relativistic
ECPs constructed by Burkatzki, Filippi, and Dolg (BFD) to obtain
an accurate account of relativistic effects.248

A family of small vanadium oxide molecules was characterized
with respect to their ionization and atomization energies and
oxygen abstraction.263 The FNDMC results obtained with soft
ECPs and Gaussian basis functions were not significantly differ-
ent from all-electron FNDMC calculations with cusp-corrected
bases. The study showed that, for transition-metal systems, more
accurate results are obtained with trial wave functions from
generalized-gradient approximation (GGA) rather than hybrid
density functionals. In the cases where experimental data are
available, the accuracy of FNDMC results was comparable to
CCSD(T) predictions.
A family of porphyrin complexes with several transition metals

was investigated using FNDMC. All-electron basis sets with both
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large-core and small-core ECPs were employed.264 Stable DMC
runs were obtained only with nondivergent large-core Trail-
Needs ECPs.265 The results showed a pronounced dependence
of metal-porphyrin binding energies on the metal atom basis set.
Significant (∼0.8 eV) variation between DMC, hybrid DFT, and
HF values was reported.264

The efficiency, precision, and accuracy of all-electron VMC
and FNDMC calculations were tested in a study of 55 molecules
from the G2 set266 using Slater-type basis sets to construct HF
and DFT determinants for trial wave functions. Electron�
nucleus cusp conditions were enforced. The performance gain of
STO over GTO was estimated to be 45%. On average, 95% of the
correlation energy was recovered in DMC calculations. Atomiza-
tion energies were reproduced with a mean average deviation of
3.2 kcal/mol from the experimental values.
6.1.3. Weakly Bound Systems. The availability of “exact”

FMC results for the He2 potential energy curve
267 makes this an

ideal system for studying the influence of trial functions on
FNDMC calculations for weakly bound systems. The FNDMC
method has been found to yield a highly accurate energy of He2
and the dipole/induced-dipole interaction energy for He�
LiH.268 A later investigation of the potential curve of helium
dimer demonstrated that VMC with a SJ trial wave function is
unable to account for correlation effects responsible for van der
Waals (vdW) bonding.269 The FNDMC treatment, on the other
hand, yielded results in close agreement with existing theoretical
values even though the trial wave function was less accurate than
that used in an earlier VMC calculation.268 Further improvement
in the binding energy of this system was achieved with RQMC
computations using a single-determinant SJ trial wave function
optimized by a stochastic reconfiguration method.270

Despite being the simplest molecular assembly pertinent to
aqueous solvation effects, the water dimer already poses signifi-
cant computational challenges. The equilibrium dissociation
energy of water dimer has been computed using all-electron
FNDMC.271 The trial wave functions in the SJ form used a single
Slater determinant from either HF or hybrid DFT calculations
with atomic natural orbital (ANO) basis sets. The molecular
orbitals were modified to satisfy the electron�nucleus cusp
condition. The results of these FNDMC calculations matched
existing experimental data and results of coupled cluster calcula-
tions within the FNDMC statistical error (0.18 kcal/mol). No
significant sensitivity of the equilibrium dissociation energy to
the type of the trial wave function was observed. An extension of
this study addressed the effect of ECPs and backflow
corrections.272 The effect of the locality approximation and
the “T-moves” algorithm in the ECP treatment were also
examined. The time step errors of the T-moves algorithm are
larger than those from the locality approximation. The errors
cancel, however, when energy differences are taken, such as for
the dissociation energy.
A systematic investigation of binding between two benzene

rings in face-to-face and parallel displaced geometries has been
reported.273 A QMC framework was devised that facilitates
reliable description of interactions driven by vdW forces. The
LRDMC approach was used with a highly correlated Jastrow-
AGP (JAGP) trial wave function. A strategy for overcoming the
lack of size consistency of JAGP ansatz was proposed. The trial
wave function was optimized using the stochastic reconfiguration
technique. Agreement between the experimental and computa-
tional results illustrated QMC’s ability to accurately describe
weak intermolecular attractions.

A detailed study of molecular hydrogen adsorption on benzene274

compared JAGP (VMC and LRDMC) and SJ single-determinant
product form (FNDMC) wave functions. The QMC methods
achieved agreement within 0.2 mhartree among each other and
agreed with earlier CCSD(T) and MP2 results. The LRDMC
approach was also used to perform bonding analysis by comparing
charge densities of the molecular complex and the noninteracting
molecules. The change of electron density near the equilibrium
distance showed the formation of static dipoles, indicating that the
binding mechanism is not based solely on vdW forces.
Potential energy curves for a water�benzene complex were

obtained using a variety of the most popular computational
methods.275 Agreement between DMC and CCSD(T) curves
was reported. Differences on the order of 20�30 meV were
attributed to fixed-node error.
The performance of DFT in the description of weak interac-

tions was evaluated by comparison to FNDMC and RQMC
results for complexes of various molecules and benzene.276 The
DFT electron densities were found to be in good agreement with
those from accurate RQMC results. The approximate description
of exchange effects in DFT was demonstrated to have a sig-
nificant impact on binding energies. Strategies for improvement
upon existing shortcomings of exchange-correlation approxima-
tions were discussed. QMC computations of exact behavior of
electron densities in realistic environments were suggested as a
viable metric for guiding such improvements.
A comparative study of the quality of FNDMC and standard-,

hybrid-, and meta-GGA functionals description of a nanoscale
MgH2 cluster277 showed mixed performance of DFT across
cluster sizes. In general, the results strongly suggested that it is
critically important to benchmark DFT with highly accurate and
reliable methods when nanoscale metal hydride structures are
treated.
QMC calculations were performed to obtain an accurate

treatment of electron correlation in the binding of NO2 to
carbon nanotubes (CNTs) and to resolve discrepancies between
MP2 andDFT results.278 Findings fromVMC and FNDMCwith
single-determinant and multideterminant trial wave functions of
SJ form showed weak binding of two adsorbate molecules,
suggesting that charge transfer is not involved in the binding of
these systems. These results imply an alternative explanation of
the experimentally observed conductivity changes in CNT-based
molecular sensors.
An FNDMC study with a single-determinant SJ wave function

utilizing Trail-Needs ECPs addressed the issue of relative stability
of two polymorphs of a para-diiodobenzene molecular crystal.
The DMC results improve upon inconclusive and inconsistent
results from DFT and predict higher stability of the α-phase
relative to the β-phase at zero temperature. The study emphasizes
the importance of an accurate treatment of noncovalent interac-
tions by accurate accounting of electron correlation.279

DMC calculations for 1-D and 2-D homogeneous electron
gases (HEGs) were used to obtain accurate binding energies for
pairs of thick parallel metal wires.280 The DMC results showed
significant quantitative differences from random-phase approx-
imation (RPA) calculations and completely disagreed with the
standard pairwise vdW model. The data obtained can serve as
benchmarks in future theoretical studies and in parametrization
of model interactions.
Insights into the nature of binding between graphite layers

were gained from VMC and LRDMC and a single-determinant
Slater�Jastrow trial wave function.281 For the first time, the
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binding energy and long-range behavior of the total energy were
characterized. The computed “cleavage energy” required to
separate graphene layers agreed with the latest experimental data
within 6 meV/atom. A power law for variation of the interaction
energy with interlayer separation was derived that is close to one
found for two semiconducting planes.
Periodic longitudinal chains of hydrogen molecules served as a

generic model of a periodic system in FNDMC calculations of
linear and nonlinear susceptibilities.282 The importance of such
calculations for systems where DFT traditionally fails was
emphasized. The feasibility of accurate DMC calculations was
demonstrated, and excellent agreement with the most accurate
ab initio results was found.
FNDMC and complete basis set MP2 results served as

reference data in an examination of the ability of exchange
correlation density functionals to describe hydrogen bonds and
van der Waals interations in water hexamers.283 Four low-energy
isomers of the water clusters were studied. The DMC and MP2
calculations predicted the same energy ordering for the isomers and
agreed on the dissociation energy differences (excluding zero-point
corrections) within 4meV/H2O. The total (nonstatistical) error in
the DMC calculations due to the FNA and pseudopotential
localization approximation were estimated to be ∼10 meV/H2O.
None of the exchange correlation functionals predicted the correct
energy ordering or the correct minimum energy isomer.
The experimental crystal structure of the nitrate�triazine�

triazine complex has an unusual asymmetrical geometry in which
the π-stacked triazine rings are staggered and not perfectly faced
and the nitrate ion is off-center and tilted with respect to the
nearest triazine ring.284 The interactions that lead to these
structural features were explored with dispersion-corrected den-
sity functional theory (DCDFT) and FNDMC calculations.285

Binding between this complex was attributed not only to the
anion�π and π�π interactions but also to a cooperative
anion�π�π effect. DCDFT routinely identified qualitatively
similar minimum energy geometrie, but consistently overesti-
mated binding energies relative to MP2 and DMC. This study
included a constrained optimization of a chloride�triazine com-
plex at the DMC level using correlated sampling; the equilibrium
chloride�centroid distance was indistinguishable from the dis-
tance predicted by MP2.
6.1.4. SolventEffects:QMC/MDandEmbeddingMethods.

The treatment of large systems can be tremendously simplified if
they can be represented as composed of fragments whose reliable
description requires different levels of accuracy. A broad range of
embedding techniques facilitate very accurate but more compu-
tationally demanding treatment of a chemically relevant fragment
while the remaining fragments are treated at a less expensive
lower level.
Hydration of selected atomic ions was studied bymeans of VMC

simulations to test a new theoretical model for polarization effects
within a continuum model in the framework of nonlinear response
theory.286 The computed free energies of polarization were in good
agreement with estimates derived from experiment. A particular case
of spherical solutes was considered with strategies outlined for
generalization to nonspherical solutes. The dielectric continuum
model was later extended to nonspherical solvents by Amovilli
et al.,287 and the newmethod was validated by comparison to HF
and DFT continuum solvent models for a collection of small
molecules and anions.287

A mean field embedding scheme for QMC was proposed by
Flad et al.288 Orbital localization is used to separate a QMC active

region from the rest of the system. The two regions were coupled
by introducing nonlocal effective potentials into the Hamiltonian.
The first implementation of a QMC/MD approach was

reported by Grossman and Mitas.289 Nuclear trajectories were
generated in DFT/MD simulations, and accurate DMC energies
were obtained for regularly sampled nuclear configurations. It
was found that only three DMC steps were necessary to update
the walker positions for each step along the nuclear paths. As a
result, the QMC component of the simulation increased the
overall computer time only by a factor of 2. Despite large variance
in the QMC energies at each step, very small error bars for
thermodynamic properties were achieved by averaging over the
entire run. The study reported the value of the heat of water
evaporation to be 9.1(4) kcal/mol, in excellent agreement with
the experimentally measured value of 9.9 kcal/mol. (The DFT
estimate is ∼30% too low.)
To facilitate application of QMC approaches to the descrip-

tion of chemical reactions in the condensed phase, an explicit
solvent model was developed for QMC in the framework of a
hybrid approach combining quantum mechanics and molecular
mechanics (QM/MM).290 The solute and the most relevant
solvent molecules are treated at VMC or FNDMC level, and a
force-field is used for the remaining solvent molecules. Coupling
between the QMC and MM regions was achieved via a standard
coupling Hamiltonian, modified to avoid collapse of walkers on
nuclei of the MM part. The resulting QMC/MM approach with
TIP3P model of water was tested in calculations of water�dimer
binding energies in different configurations along with some
selected water-solvated complexes. Introduction of QMC for the
QM part was shown to yield significant improvement in accuracy
and to produce results in excellent accord with other ab initio
approaches. It is anticipated that QMC/MM hybrids will facil-
itate large-scale QMC/MD simulations.
Implementation of QMC with fragment molecular orbitals

(FMOs) facilitates an equally accurate but less demanding treatment
of large systems.291 The efficiency and accuracy of the VMC-FMO
method was demonstrated in a study of the total energy of a glycine
trimer.
Very recently, Attaccalite and Sorella292 carried out QMC/

MD calculations with QMC forces for liquid hydrogen and
evaluated its properties under various thermodynamic condi-
tions. Molecular dynamics methods compatible with VMC and
PIMC have also been introduced.293

6.1.5. Properties Other Than the Energy. Transition-
metal chemistry is abundant and computationally challenging.
A FNQMC study of oxides of the five first transition-metal atoms
(Sc, Ti, V, Cr, and Mn) aimed to characterize their binding
energies, equilibrium geometries, and dipole moments. FNDMC
with single-determinant trial wave functions provided remark-
ably accurate results, which were on average 50% better than
available meta-GGA andCCSD(T) results. The same conclusion
applies to interatomic distances, which were obtained by means
of Bayesian fitting. More challenging calculations of the dipole
moment were performed using RQMC. The results reinforce the
view that trial wave functions with accurate nodes are needed to
achieve agreement with experimental data.150

Some of the difficulty of eliminating trial function bias from
DMC calculations of expectation values of nondifferential opera-
tors that do not commute with the Hamiltonian can be overcome
with RQMC(see section 2). RQMCwas used to study a variety of
ground-state properties of a water molecule, such as dipole
moment, components of the quadrupole moment tensor, and
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diamagnetic shielding.294 SCF guiding functions of varying qual-
ity were benchmarked to gain insights on how the accuracy of the
expectation values was affected by nodes. The advantages of the
head�tail adjusted RQMC algorithm were demonstrated.
The influence of electron correlation on the expectation values

of the electron density, the intracule density, the extracule
density, their respective Laplacians, and the two forms of kinetic
energy density was revealed in a VMC study of hydrogen
molecule.295 VMC calculations with explicitly correlated wave
functions were performed for three values of the interatomic
separation and clearly confirmed the traditional description of
this system as a combination of covalent and ionic structures.
Substantial differences between the properties studied and the
HF calculations were found.
New local estimators for assigning electron and spin densities

to nuclei were tested in VMC simulations of several first-row
atoms and selected heavy elements (Ar and K).296 The problem
of evaluating properties with infinitely local estimators and
unbounded variances was addressed by introducing appropriate
sampling strategies. Improved computational efficiency was
achieved with respect to alternative computational schemes.
Efficient QMC estimators for extracule and intracule densities

were derived.297 The bond-length dependence of electron cor-
relation effects along the dissociation curve of hydrogenmolecule
was studied with their help. Anisotropic correlation effects were
demonstrated to accompany the localized increase of the correla-
tion energy at stretched geometries. A small long-range part of the
Coulomb hole was found at the equilibrium bond length.
An investigation of long-range asymptotic behavior of the

electron density of nonrelativistic two-electron He-like ions
combined DFT and numerical DMC simulations. This approach
made possible considerable analytic progress in the description
of the problem.298

The origin of the collapse of the 3.3μmCHstretching band in the
unidentified infrared (UIR) bands of polyaromatic hydrocarbons
upon ionization was investigated in a comparative study relying on
MRCISD and FNDMC formalisms.299 Electric dipole moments of
the neutral CH fragment in the ground electronic state and its cation
in the ground and first electronic excited state were calculated to
assess the scaling of IR intensities.DMCcalculationswere carried out
with a full-valence CAS wave function, expanded in STOs, and
multiplied by two- and three-body Jastrow factors. In QMC, the
dipole moment is more sensitive to imperfections of trial wave
function than total energies. A new hybrid estimate for the dipole
moment was proposed that combines DMC and VMC estimates
andhas amore favorable sytematic bias that is linear in thefixed-node
error but quadratic in the error in the wave function. Results of
MRCISD and FNDMC were in agreement with each other and led
to an interpretative model for predicting the strength of the
respective band of neutral or ionized PAHs.

6.2. Excited-State Properties
QMC calculations of excited states that are the lowest of a

given symmetry are straightforward. It is more challenging to
obtain excited states of the same symmetry as a lower state. No
theorem exists that insures that such a calculation evolves to the
appropriate state. An early calculation of the (E1Sg

+) state of H2

using a MCSCF trial function was the first example of FNDMC
to successfully address this problem.300 Challenging calculations
of excited states for small hydrocarbon systems have been carried
out by Schautz and Filippi.301,302 These systems present parti-
cularly difficult computational challenges due to the fact that they

exhibit a number of near-degenerate excited states and require
precise treatment of electron correlation. Careful optimization of
the variational trial functions for ground and excited states enabled
the authors to identify the correct excitations within the given
symmetry types and to compute accurate energy differences.

An approach to field-free calculations of polarizabilities of
excited states has been proposed by Li et al.303 The VMCmethod
was used to optimize trial wave functions of the three lowest
singlet and triplet states of S, P, and D symmetry of helium
atom.304 The electric dipole oscillator strengths for all possible
1S-1P, 1P-1D, 3S-3P, and 3P-3D transitions were calculated with
these explicitly correlated wave functions. The next most im-
portant operator, the electric quadrupole, was calculated to
enable computation of oscillator strengths for all possible 1S-
1D, 1P-1P, 1D-1D, 3S-3D, 3P-3P, and 3D-3D transitions of the
helium atom.305 A favorable relationship between the quality of
the results and the compactness of the trial wave function was
demonstrated. It was noticed that reduction of fluctuations of the
local multipole operators around the origin is necessary for
accurate oscillator strength calculations.

A large set of electronic states of scandium dimer was char-
acterized using a variety of ab initio methods to establish its
ground state.306 FNDMC calculations used a product form of the
trial wave functionwith aUHFdeterminant, relativistic ECPs, and
associated basis sets. States of the same spatial symmetry but
different multiplicity were treated at theDMC level. In contrast to
the general assumption of a quintet ground state, DMC and
CASPT2 predicted a triplet state to be the most stable.

The low-lying electronic excited states of dinitrogen (N2)
were characterized by QMC computations of their respective
vertical excitation energies.307 Various strategies for generating
trial wave functions were compared. Optimization of the inde-
pendent-particle part of the trial wave functions was avoided in
the interest of simplicity and robustness. On the basis of
comparison to available experimental data, the least favorable
performance was given by VMC calculations with single-deter-
minant andmultideterminant CISD trial wave functions. The best
performance was demonstrated in the case of VMC and DMC
calculations with CASSCF trial wave functions.

As an alternative to the FNDMC approach, excited states can
be efficiently treated by AFQMC.308 Potential energy curves of
the ground state and two low-lying singlet excited states of C2

were computed. Accurate results were obtained with truncated
CASSCF trial wave functions without further optimization. Small
basis set AFQMC calculations agreed with full CI calculations;
large basis set calculationsmatched experimental values of spectro-
scopic constants.

The ground state of methylene and its three lowest adiabatic
excited states were studied.309 Jastrow�Slater multideterminant
trial wave functions for VMC and FNDMC computations were
generated from increasing CASSCF expansions. Simultaneous
optimization of Jastrow, CSF, and orbital parameters essentially
eliminated dependence of the DMC excitation energies on active
space size. Lower excited states were accurately characterized
even with the smallest CAS, which suggested that static correla-
tion effects have the most important effects on the nodes.

In a systematic investigation of photoisomerization of model
retinal chromophores,310 QMC was used to facilitate a balanced
descriptionof static and dynamic correlation effects and test generally
accepted results of CASSCF calculations. The study featured VMC
and FNDMC vertical excitations energies of several chromophores
and geometry optimization of the ground and excited states of the
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model systems at the VMC level. It was noted that accurate VMC
gradients required optimization of all wave function parameters in an
energy-minimization scheme. The results obtained suggest the need
to reinvestigate the photoisomerization mechanism of the retinal
chromophore in the gas phase and protein environments using
methods more reliable and accurate than CASSCF.

The singlet vertical transition of acrolein, involving an oxygen
lone pair and antibonding p-orbital of CO fragment, provided
insight into the contribution of various factors to the fixed-node
error.311 Minimal and extended CASSCF expansions were used
to construct trial functions. Orbital optimization was performed
in state-specific CASSCF calculations and compared to a com-
mon set of optimized orbitals from state-averaged CASSCF.
Three basis sets of increasing size were employed. Extensive
benchmarking involved all possible combinations of the afore-
mentioned parameters. A very simple strategy that relied on a
basis set ab initio wave function and no QMC optimization of
orbital parameters was sufficient to obtain very accurate energies
of electronic transitions in CO.

Vertical excitation energies of neutral and anionic forms of the
green fluorescent protein (GFP) chromophore were computed
with TD-DFT, EOM-CC, CASPT2, and FNDMC.178 For the
anionic species, the CASPT2 and DMC calculations converged
quickly with the size of the CAS expansion, and all computational
methods agreed within 0.12 eV. Agreement among the theore-
tical methods and a Kamlet�Taft fit to solution-phase absorp-
tion data raised concerns about the accuracy of gas-phase
photodestruction spectroscopy for these systems. The neutral
molecule required significantly large CAS expansions for the
CASPT2 calculations to converge and the discrepancy among
the methods is larger, ∼0.5 eV.

Dubeck�y et al. computed the S0-S1 vertical excitation energies of
the cis and trans isomers of azobenzene using FNDMC.312 The
trial wave function was obtained from a CASSCF calculation with a
(14,12) active space, truncating the configuation expansion to
include a vastly recuced number of determinants, and reoptimizing
the truncated CAS wave function in the presence of a Jastrow
factor. This more compact wave function allowed the experimental
results to be reproduced with chemical accuracy. A novel metric of
nodal differences between wave functions was also developed and
used to show that the truncated CASwave functions provide better
initial guesses for VMC optimization than DFT.

Send et al. used FNDMC, CASPT2, third-order coupled
cluster linear response theory (exCC3), and TDDFT to generate
a set of benchmark values for the lowest vertical excitation energies
of a series of cyanine dyes.313 For all methods, the excitation
energy decreased smoothly as the dye molecules increased in size.
Except for the smallest cyanine, DMC excitation energies were
largest among ab initio values, followed by exCC3 and CASPT2.
The maximum difference between CASPT2 and DMC excitation
energies was 0.34 eV. TDDFT with the B2PYLP function gave
remarkable agreement with DMC. The significant discrepancy
between the theoretical and experimental excitation energies was
attributed to nonvertical transitions.

6.3. General Theory
The electron localization function (ELF) is a popular and

powerful tool for analyzing electronic densities in terms of bonding
elements. The electron pair localization function (EPLF) is a
counterpart of ELF suitable for analyzing QMC ensembles.314

EPLF is a simple and practical tool that can be used with QMC to
identify regions that maximize the probability of finding electron

pairs.315 Such regions bear close resemblance to ELF domains or
domains of orbital localization.

An ELF-QMC study investigated the potential of several
molecules as amination agents. Equilibrated FNDMC ensembles
were analyzed in terms of several modified EPLF functions. The
modifications were intended to enhance the ability to discern
nitrogen lone pairs and estimate their volumes. It was proposed
that integrals of EPLFs can be used to distinguish between
nucleophilic and electrophilic systems.316

The influence of correlation on the interpretation and origin of
Hund’smultiplicity rulewas investigated in a systematicQMCstudyof
various atoms.317,318 From FNDMC results, it was concluded that the
stability of the highest spin-multiplicity originated from enhancement
of the electron�nucleus attraction energy.

QMC simulations have also helped to reveal connections between
fluctuations of charge in atomic domains and bond orders.319

Mueller et al.’s approach used Baders’s analysis of HF densities to
identify atomic domains and then used DMC to ascertain bond
orders. Comparison of DMC and HF bond orders facilitated
quantification of correlation effects. Significant reduction of bond
orders of Lewis covalent bonds upon incorporation of electron
correlation was reported, along with enhancement of bond
orders between nonbonded atoms.

The exchange-correlation energy density of a series of small
molecules was evaluated in a study that combined a coupling-
constant integration procedure and VMC.320 Comparison of “exact”
QMC results with LDApredictions revealed that the spatial variation
of errors in LDAXCenergy essentially followed the sign and shapeof
the Laplacian of electron density. This finding led to the conclusion
that improved models for XC functional should incorporate the
Laplacian of the electron density.

A combined study of kinetic and potential contributions to the
correlation energy of H2 was performed using VMC and DMC.321

The spatial changes discerned in the electron density distributionwere
demonstrated to agree with the correlation virial theorem and the
electrostatic theorem. The study emphasized the role of the correla-
tional virial theorem as the most important guiding principle in the
investigation of electron correlation effects in molecules and solids.

The VMC capability to inexpensively evaluate complicated
integrals was recently used in a study of the performance of the
Boys�Handy transcorrelated (TC) equation for Jastrow factors.322

Test calculations demonstrated that the TC approach is a viable
alternative to F12 methods.

7. CONCLUSION

In this review, we presented an overview of QMCmethods for
the electronic structure of atoms, molecules, and molecular
assemblies. The coverage included basic theoretical aspects,
considerations of computational efficiency, and QMC’s practical
applicability to a wide range of chemical problems. The latter
include ground- and excited-state properties. The fixed-node
QMC (FNDMC) was discussed and emphasized owing to the
exceptional accuracy, reliability, and robustness of the method.
Until recently, applications of QMC method were limited to
small systems of light atoms. Recent developments and results
clearly indicate the feasibility of the QMC computations for large
systems that are beyond the reach of other ab initio methods.

Recent progress in algorithms, the growth of computational power
and the inherent parallelism of QMC are pivotal to overcoming
limitations imposed by the statistical nature of QMC calculations.
Even large systems in challenging chemical contexts can be
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simulated with chemical accuracy. Methodological advances
have eased the application of QMC in its different forms to
electronic properties besides the energy. The ability of QMC
to evaluate quantum operators for wave functions that cannot
be integrated analytically remains a major strength of the approach.
This capability has facilitated significant contributions of the QMC
method to fundamental understanding of the electronic wave
function and its properties. The rigorous theoretical underpinning
for QMC translates into reliable results that may serve as reference
data for calibrating other methods.

8. OUTLOOK

The following considerations are pertinent to the future of QMC
methods. The fermion sign problem has yet to be resolved. The fixed-
node approximation to DMC recovers from 90% to 95% of the
correlation energy and therefore captures enough many-body
effects to predict cohesive energies, barrier heights, optical
gaps, and similar quantities within a few percent of experi-
ments. The missing correlation is nevertheless crucial for
subtle effects such as magnetic phenomena, differences be-
tween near-degenerate states, and macroscopic quantum
phenomena such as superconductivity.

Another issue is the development of methods suitable for
efficient application to very large systems. The challenge here is
to construct more efficient and accurate representations the
many-body wave function. Advances in this area will also
stimulate progress in QMC-based dynamical methods. QMC
approaches that treat nuclear and electronic degrees on the same
footing remain an open area of research. A separate aspect of
future QMC progress is the availability of user-friendly software
packages that provide all the necessary capabilities, from gen-
eration of trial wave functions to statistical analysis and visual-
ization of the results.
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