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A new derivation is presented for the recursion relation of Obara and Saika (OS) for two-electron

integrals over Gaussian basis functions for general interaction potentials g(r12), where r12 denotes

the interelectronic distance. The decisive vertical OS recursion is proved directly from the

recursion relation for Gaussian basis functions and the structure of the primitive integral

expression for s functions. The resulting simple formulae greatly facilitate extensions of OS-based

codes for Coulomb interactions to general g, which has already proved useful in implementations.

The present derivation further extends the validity of the OS recursion beyond interactions

covered so far.

1. Introduction

The use of GTOs (Gaussian type orbitals) as basis

functions and the availability of efficient algorithms to com-

pute all necessary integrals is essential for contemporary

molecular electronic structure theory. Much effort has

thus been devoted to the development of fast integral codes.

A remarkable level of efficiency had been reached in the late

seventies with the work of Dupuis, Rys and King (DRK),1–3

McMurchie and Davidson (MD),4 and Pople and Hehre

(PH)5 to mention some popular procedures. Saunders6 has

presented a good review covering the developments up to

about 1982. The field then lay ‘dormant’7 until Obara

and Saika (OS)8 derived a recursion relation, consisting essen-

tially of a single equation for the computation of a

complete batch of integrals. Similar techniques had actually

been used before by Schlegel9 to construct efficient algorithms

for integral derivatives. The OS scheme made it easy to

implement and optimize the code for high efficiency.

The paper of OS also opened the way for a better under-

standing of the structure behind integral evaluations and led to

numerous further studies, e.g. ref. 7,10–13. These resulted in

the discovery of additional recursion relations, clarified

the connections between different algorithms, and led to

more efficient codes. A review of these developments has

been given by Gill,14 to which the reader is referred for a

detailed account.

The present work first describes an algebraic derivation,

based on operator equations, of OS recursion relations,

which uses only the recursion formula for Gaussian basis

functions together with the structure of the integral ex-

pression for s functions. This is much simpler and more direct

than the derivation of OS based on the Laplace transform of

1/r12, which could be considered an unnecessary detour.

Dunlap15 has given an algebraic derivation of three-

center two-electron integrals over solid spherical harmonics,

as opposed to Cartesian Gaussians, and has mentioned that

‘It is tedious, but straightforward, to extend this approach

to four centers, thereby extending the method of OS

from Cartesian Gaussians to spherical harmonic Gaussians’.

The present treatment of Cartesian Gaussians for four-center

integrals turns out to be extremely simple and holds for

quite general interaction potentials g(r12). May and Manby16

have mentioned that the OS recursion and its derivation

hold for any g(r12) for which a Laplace transformation

can be found. The present treatment extends the validity of

OS beyond this condition under very mild assumptions.

General interactions of the type g(r12), other than the 1/r12
originally considered by OS, occur in various computational

procedures. We mention the following examples: explicit R12

theories17,18 as well as its extension to damped Coulomb

interactions,19 attenuated Coulomb interaction procedures,20

or the ‘anti-Coulomb’ operator, g(r12) = r12, required for

an optimal approximation of the potential caused by a

given charge distribution.21 The necessary integral routines

have typically been obtained by modifications of existing

algorithms,20 or by an MD procedure,17,19 to give just few

examples. A detailed account has been given in the review

by Gill.14

Obara and Saika have, in a remarkable and elaborate paper,

extended their recursion relations to more general inter-

actions besides scalar potentials g(r12).
22 The resulting equa-

tions do not demonstrate the crucial fact that the case g(r12)

can be treated by very minor modifications of an existing OS

code for g(r12) = 1/r12, as will be shown below. Weber

and Daul23 have considered the damped Coulomb interaction,

see section 5, and have shown that the OS scheme holds in

this case as well. OS-type recursions have also been derived

by Ten-no in the treatment of three-electron integrals

occurring in explicitly-correlated methods, and for wave func-

tions including terms e�gr12.24,25 In a very recent work

Saunders26 has extended the OS scheme to more general

types of Gaussian basis functions, the separable polynomial

Gaussians.
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The following section provides the necessary definitions.

The main result of this work, the derivation of a vertical

recursion relation, is presented thereafter. This is then ex-

tended to the case of general quantum numbers in section 4.

For the sake of completeness, we also collect the expression for

intermediate quantities required to extend OS codes to the

most common interaction potentials, section 5.

2. Definitions and notation

We consider unnormalized atom-centered GTOs specified by

the orbital exponent a, the center A, and quantum numbers

a = (ax,ay,az)

|ai = fa(r) = (x � Ax)
ax (y � Ay)

ay (z � Az)
aze�a|r�A|

2

. (1)

In the short hand notation |ai, we have suppressed the other

parameters since we consider a batch of integrals and are

mainly interested in the dependence on a. The functions fb, fc,

fd are defined in the same way with orbital exponents b, g, d,
at centers B, C, D, and quantum numbers b, c, d. The two-

electron integral in question is defined as

I(ab|cd) =
R
fa(r1) fc(r2) g(r12) fb(r1) fd(r2)dt (2)

for general interaction potentials g. With the usual definitions:

z ¼ aþ b; Z ¼ gþ d; r ¼ zZ
zþ Z

; ð3Þ

P ¼ aAþ bB

z
; Q ¼ gC þ dD

Z
; ð4Þ

T = r|P � Q|2, (5)

Sab ¼ e
�abz jA�Bj2

; Scd ¼ e
�gdZ jC�Dj2

; ð6Þ

one gets the basic integral

I0 ¼ Ið00j00Þ ¼ p
zþ Z

� �3
2
SabScdG0ðr;TÞ ð7Þ

with

G0(r,T) =
R
e�r|r�P1Q|

2

g(r)d3r. (8)

Eqn (7) is obtained from eqn (2) by a variable transformation

to R = (r1 þ r2) and r = (r1 � r2), and integration over R. G0

depends only on r and |P �Q|2; it is more convenient to take r
and T as variables. As mentioned above, G0 can be analytically

evaluated for various cases of interest, for which explicit

expressions will be given in section 5.

Integrals over functions with higher angular momentum can

be obtained by recursion as is well known, e.g.:

D̂ ¼ @

2a@Ax
; ð9Þ

jaþ 1xi ¼ D̂jai þ ax

2a
ja� 1xi; ð10Þ

Iððaþ 1xÞbjcdÞ ¼ D̂IðabjcdÞ þ ax

2a
Iðða� 1xÞbjcdÞ; ð11Þ

with 1i = (dix,diy,diz) for i = x,y,z. In fact, eqn (11) holds for

any arbitrary operator, not just multiplicative. We will further

need the definition

Gnðr;TÞ ¼ � @

@T

� �n

G0ðr;TÞ; ð12Þ

and the following easily verified equations:

D̂Sab = (Px � Ax)Sab, (13)

D̂Gkðr;TÞ ¼ �
r
z
ðPx �QxÞGkþ1ðr;TÞ; ð14Þ

D̂ðPx � AxÞ ¼ �
b
2az

; D̂ðPx �QxÞ ¼
1

2z
: ð15Þ

It is appropriate at this stage to consider the validity of

the present derivation: it is only required that G0 exists, is

sufficiently differentiable with respect to T, and that integration

and differentiation can be interchanged, i.e. the step from (10) to

(11). This is more general than previous derivations of OS

schemes and even covers exponentially increasing cases as

g(r12) = er12.

3. A vertical recursion relation

The derivations presented in this section have been moti-

vated by the aim to give a direct proof of recursion relations

that are based solely on (11) and are thus valid for general

interactions. It will now be shown for a special class of

integrals how this equation leads to an explicit integral

expression from which the desired recursion follows directly.

We start with the definition of an operator M̂n, with D̂ and a
as in (9)

M̂n ¼
X½n2�
i¼0
ð2i � 1Þ!! n

2i

� �
ð2aÞ�i D̂n�2i

; ð16Þ

which obeys the recursion relation

M̂nþ1 ¼ M̂n D̂þ
n

2a
M̂n�1 ð17Þ

as is verified by induction with M̂0 = 1. This is (10) in operator

form and we have

|n,0,0i = M̂n|0,0,0i. (18)

The operators M̂n fulfil another relationship of importance for

the present work. Let Y be linear in the sense

D̂Y = m, (19)

where m is constant, then

M̂nY = YM̂n þ nmM̂n�1. (20)

For a proof of (20) one inserts the commutator

D̂n�2iY = YD̂n�2i þ (n�2i)mD̂n�2i�1 (21)

into (16) and uses standard equations for binomial coefficients.

The rest of the present paper relies entirely on the definition

(16) of M̂n and eqn (17) and (20).

For a special class of integrals one then has an explicit

expression

In = I((n,0,0)0|00) = M̂nI0 (22)
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since this fulfils (11) as a consequence of (17). For the deriva-

tion of a recursion relation, it is convenient to define

I ðmÞn ¼ I ðmÞððn; 0; 0Þ0j00Þ

¼ M̂n
p

zþ Z

� �3
2
SabScdGmðr;TÞ: ð23Þ

The I(m)
n represent true integrals only for m = 0; as a

consequence of (17) they also obey the recursion relation (11).

Let us now consider D̂I(m)
n = M̂nD̂I(m)

0 . From (13), (14), and

(23) one first gets

D̂I
ðmÞ
0 ¼ ðPx � AxÞI ðmÞ0 � r

z
ðPx �QxÞI ðmþ1Þ0 : ð24Þ

The commutator relationships (20) for Y = (Px – Ax) and

Y = (Px – Qx) together with (15) leads to

D̂I ðmÞn ¼ M̂n½D̂I
ðmÞ
0 �

¼ ðPx � AxÞI ðmÞn � r
z
ðPx �QxÞI ðmþ1Þn

� nb
2az

I
ðmÞ
n�1 �

nr

2z2
I
ðmþ1Þ
n�1 : ð25Þ

We finally combine (17) and (25) and get

I
ðmÞ
nþ1 ¼ ðPx � AxÞI ðmÞn � r

z
ðPx �QxÞI ðmþ1Þn þ n

2z
I
ðmÞ
n�1

� nr

2z2
I
ðmþ1Þ
n�1 : ð26Þ

This is the desired recursion formula, which has been proved

under the following assumptions on g: G0 exists, is differenti-

able in T, and (11) follows from (10).

4. Recursion relations for general quantum

numbers

The derivations of the preceding section are readily extended to

the general case; it is mainly necessary to be more specific with the

variables on which M̂ depends. In analogy to (16), one defines

M̂ðn; t;XÞ ¼
X½n2�
i¼0
ð2i � 1Þ!! n

2i

� �
ð2tÞ�i @

2t@X

� �n�2i
; ð27Þ

which also obeys, see (17),

M̂ðnþ 1; t;XÞ ¼ M̂ðn; t;XÞ @

2t@X
þ n

2t
M̂ðn� 1; t;XÞ: ð28Þ

The operators M̂(n,t,Ai), i = x, y, z, commute with each other,

facilitating the formation of

M̂ðaÞ ¼
Y

i¼x;y;z
M̂ðai; a;AiÞ ð29Þ

since the ordering in the product is irrelevant. In M̂(a) we have

suppressed a and A since they are obvious from the context. We

then define

I(m)(ab|cd) = M̂(a)M̂(b)M̂(c)M̂(d)I(m)
0 , (30)

with I(m)
0 from (23) (note that M̂0 = 1). The operators in (30)

commute again. The case m= 0 corresponds to a true integral

I(0)(ab|cd) = I(ab|cd) since (30) fulfils (11) by virtue of (28).

For the derivation of the recursion formula, one proceeds as

in the preceding section and considers an increase of angular

momentum on one of the centers, e.g. the transition from a to

(a þ 1i), since other indices are analogous. Using (28), one has

to consider M̂ðaÞ @
2a@Ai

M̂ðbÞM̂ðcÞM̂ðdÞ. The additional differ-

entiation commutes with the M̂ operators and can be applied

directly on I(m)
0 , as in (24). One then brings the factors (Pi � Ai)

and (Pi � Qi) to the left of all M̂ operators in using the

commutator relationship (21) and its corresponding analo-

gues. Commuting (Pi � Ai) with M̂ gives contributions from

the i component of M̂(a) and M̂(b), whereas for (Pi � Qi) one

gets contributions from the i component of all operators. The

final result is eqn (39) of OS, which is now proved for general

g(r12); the only change required is the replacement of Fn, (40)

below, by Gn (12):

I ðmÞððaþ 1iÞbjcdÞ ¼ðPi � AiÞI ðmÞðabjcdÞ

� r
z
ðPi �QiÞI ðmþ1ÞðabjcdÞ

þ ai

2z
½I ðmÞðða� 1iÞbjcdÞ

� r
z
I ðmþ1Þðða� 1iÞbjcdÞ�

þ bi

2z
½I ðmÞðaðb� 1iÞjcdÞ

� r
z
I ðmþ1Þðaðb� 1iÞjcdÞ

þ ci

2ðzþ ZÞ I
ðmþ1Þðabjðc� 1iÞdÞ

þ di

2ðzþ ZÞ I
ðmþ1Þðabjcðd � 1iÞÞ

ð31Þ

The most important case is the one where angular momentum

is increased on a single center only

I ðmÞððaþ 1iÞ0j00Þ ¼ðPi � AiÞI ðmÞða0j00Þ

� r
z
ðPi �QiÞI ðmþ1Þða0j00Þ

þ ai

2z
½I ðmÞðða� 1iÞ0j00Þ

� r
z
I ðmþ1Þðða� 1iÞ0j00Þ�;

ð32Þ

since this appears indispensable. One may further employ the

recursion in which angular momentum is raised on the third

center (in addition to the one on center A)

I ðmÞða0jðcþ 1iÞ0Þ ¼ðQi � CiÞI ðmÞða0jc0Þ

þ r
Z
ðPi �QiÞI ðmþ1Þða0jc0Þ

þ ci

2Z
½I ðmÞða0jðc� 1iÞ0Þ

� r
Z
I ðmþ1Þða0jðc� 1iÞ0Þ�

þ ai

2ðzþ ZÞ I
ðmþ1Þðða� 1iÞ0jc0Þ:

ð33Þ
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The remaining integrals are best obtained from a transfer

relationship, e.g.

I((a þ 1i)b|cd) = I(a(b þ 1i)|cd) þ (Bi � Ai)I(ab|cd), (34)

which also applies for contractions and provides a convenient

and efficient way to get all integrals from I(a0|c0). Eqn (34)

holds for all multiplicative potentials, but not if g is replaced

by an arbitrary operator.27

The recursion (33) can be replaced by a horizontal recursion

which redistributes angular momentum between centers A

and C and permits one to get I(a0|c0) from I(10|00) for 1 =

0,(a þ b)11,12

Iða0jðcþ 1iÞ0Þ ¼½ðQi � CiÞ þ
z
Z
ðPi � AiÞ�Iða0jc0Þ

þ ai

2Z
Iðða� 1iÞ0jc0Þ þ

ci

2Z
Iða0jðc� 1iÞ0Þ

� z
Z
Iððaþ 1iÞ0jc0Þ:

ð35Þ

Eqn (35) is valid for arbitrary potentials g since it follows

from the translational invariance of integrals applied to

I(a0|c0)�
@

@Ai
þ @

@Bi
þ @

@Ci
þ @

@Di

�
Iða0jc0Þ ¼ 0; ð36Þ

together with (10) and the transfer relationship to

eliminate terms with angular momentum on centers B and

D. Eqn (35) can also be derived from (33).11 The hori-

zontal recursion (35) leads to a favorable flop count for

higher angular momentum functions,10,11 and is more efficient

in this case, e.g. correlated treatments. Eqn (35) offers

little advantage over (33) in Hartree Fock or density func-

tional calculations since relatively few f or g functions are used

and the overwhelming majority of integral batches concerns

cases where the sum of angular momenta is less or equal

to four.

Eqns (32) and (33) have been proved by Weber and Daul23

for the Coulomb case with damping �e�or212. The case g(r12) =
r12 has been considered repeatedly since it is of importance for

the approximation of the Coulomb potential21 and in R12

theories. Klopper and Röhse28 derived a recursion similar to

(32), and Valeev and Schaefer27 one similar to (33); the

equations include integrals over r12 as well as over 1/r12, which

is different from the present work.

5. Explicit expressions for G0

An implementation of the procedures presented above re-

quires explicit expressions for G0, eqn (8). For a generalization

of an OS program one has only to adapt G0 and its derivatives,

(12), which are typically evaluated in a single subroutine. G0

can, of course, be obtained by the comparison of the present

expression for I0, eqn (7), with literature results cited in the

text. For the sake of completeness we collect G0 for various

g(r12), which are conveniently obtained from the definition of

G0, eqn (8). This covers well known cases together with

new ones.

The trivial cases of the delta function and the overlap lead to

g(r) = d(r) :G0(r,T) = e�T, (37)

gðrÞ ¼ 1 : G0ðr;TÞ ¼
p
r

� �3
2
; ð38Þ

and the well known Coulomb case to

gðrÞ ¼ r�1 : G0ðr;TÞ ¼
2p
r
F0ðTÞ; ð39Þ

where Fn denote Boys’ functions

FnðTÞ ¼
Z 1

0

t2ne�Tt
2

dt ¼
X1
i¼0

ð�TÞi

ð2i þ 2nþ 1Þi!

¼ e�T ð2n� 1Þ!!
X1
i¼0

ð2TÞi

ð2i þ 2nþ 1Þ!! :
ð40Þ

The damped two-electron integrals resulting from

~gðrÞ ¼ e�or
2
gðrÞ ð41Þ

lead to G̃0(r,T,o), which is obtained from the definition of G0,

eqn (8), as

~G0ðr;T ;oÞ ¼ e
�oT
rþoG0 rþ o;

Tr
rþ o

� �
; ð42Þ

where G0 corresponds to the interaction potential g. The last

two equations provide a simple and systematic procedure to go

from g(r) to r2g(r), since one only has to take the partial

derivative with respect to o at o = 0:19

gðrÞ ! r2gðrÞ : G0ðr;TÞ !
T

r
G0 þ

@G0

@T

� �
� @G0

@r
: ð43Þ

Together with (38) and (39) this yields, e.g.

gðrÞ ¼ r : G0ðr;TÞ ¼
2p
r2
½ð1þ TÞF0ðTÞ � TF1ðTÞ�; ð44Þ

gðrÞ ¼ r2 : G0ðr;TÞ ¼

ffiffiffiffiffi
p3

r5

s
T þ 3

2

� �
: ð45Þ

For other g we first reduce (8) to a one-dimensional integral by

integrating over angles in spherical coordinates with the

direction of (P � Q) as z axis

G0ðr;TÞ ¼
2p

r
3
2
ffiffiffiffi
T
p

Z 1
0

g
yffiffiffi
r
p
� �

ye�y
2�T sinhð2y

ffiffiffiffi
T
p
Þdy:

ð46Þ

Expanding sinh in a power series yields

G0ðr;TÞ ¼
4p

r
3
2

e�T
X1
i¼0

ai
22i

ð2i þ 1Þ!T
i ð47Þ

ai ¼
Z 1
0

g
yffiffiffi
r
p
� �

yð2iþ2Þe�y
2
dy: ð48Þ

eqn (48) can be easily evaluated for many g, e.g.

gðrÞ ¼ ra; a4� 3 : ai ¼
1

2
ffiffiffi
r
p a G i þ aþ 3

2

� �
: ð49Þ
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The representation (47) for G0 is numerically stable if g Z 0

(or g r 0), since the coefficients ai are then of the same sign.

Eqn (47) defines a holomorphic function in T with T = N as

only singularity provided g(r) does not increase too strongly

for large r. This condition holds even if g(r) increases like er.

One can thus use (47) to get approximations for G0, e.g. within

small intervals of T, which is usually done anyway for the sake

of efficiency.

From eqn (46)–(48) one gets the following integral directly,

which is needed for the computation of lower bounds for

energies:

gðrÞ ¼ r�2 : G0ðr;TÞ ¼
2
ffiffiffi
p
p 3ffiffiffi
r
p e�TF0ð�TÞ: ð50Þ

This involves F0 with negative argument, which is related to

Dawson’s integral D(x)29

DðxÞ ¼ e�x
2

Z x

0

et
2

dt ¼ xe�x
2

F0ð�x2Þ: ð51Þ

With the damping considered by Gill and Adamson20 one has

gðrÞ ¼ 1� erfðorÞ
r

: G0ðr;TÞ

¼ 2p
r
F0ðTÞ �

2p
r

offiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ r

p F0
o2T

o2 þ r

� �
; ð52Þ

the additional term arising from erf(or) follows directly by

integration of (42) with G0 from (39). Eqn (52) is slightly more

complicated than (42), both dampings are very similar asymp-

totically for large r, but (41) may be of advantage since it has a

smaller effect near r = 0.

All examples considered so far display a simple structure of

G0, one has to deal only with Fn(T), a function of a single

variable. The reason is essentially that ai, (48), factorize into a

function of i multiplied by a term in r which is independent of

i. This picture is essentially maintained in the damped Cou-

lomb interactions (42) and (52). The situation is entirely

different for the case

g̃(r) = e�grg(r) (53)

considered by Ten-no.25 In eqn (46) and (48) there is no

factorization of the kind found so far, and the evaluation of

G0, e.g. from (46), becomes more complicated as discussed by

Ten-no.

6. Summary

Treatments of molecular integrals, e.g. over GTOs, invariably

have to cope with the numerous necessary definitions given in

section 2. The main results of the present work can be

summarized as follows.

(i) A direct and short derivation of a vertical recursion

formula for special integrals, eqn (26), based solely on the

recursion for GTOs (10).

(ii) The derivation does not refer to the explicit form of the

interaction potential g(r12), thus extending the OS scheme to

general interactions. The only change required is the replace-

ment of Fn(T) (40) by Gn(r,T) (12).

(iii) The validity of the OS recursion has been proved under

the mild assumptions that G0 exists, is differentiable in T, and

integration and differentiation can be interchanged, eqn (10)

and (11).

(iv) In section 4, it was demonstrated that these results are

easily extended to all integrals, again without limitations on

the form of g(r12).

(v) With the explicit formulae collected in section 5 it is very

easy to extend an OS-based code for g(r12) = 1/r12 to arbitrary

potentials g(r12) without losing efficiency. This has been

demonstrated for two examples: an extension of the TURBO-

MOLE30 code to damped Coulomb interactions (42) for four-

center integrals and an implementation31 of (44) for three-

center integrals required in RI-MP2-R12 theories, the latter

with considerably increased efficiency as compared to a pre-

vious implementation.32

The considerations presented in this work concerned only

multiplicative operators g(r12). The representation of integrals

given in (30), however, is valid even for arbitrary operators

replacing g in (2), which may turn out to be useful in future

work. The above derivation of recursion relations depends

crucially on (24) and this will not hold in general. Although the

treatment given in sections 2 and 3 can be generalized to some

extent, the author has not pursued this in detail. In cases of

some importance, integrals involving more general operators

can be expressed as linear combinations of integrals over

g(r12). To give an example, in explicit R12 theories one needs

integrals over [r12,D1]; the treatment of this case, as discussed

in ref. 19, 27 and 28 is easily carried over to the present

method.

The situation is similar for the general recursion formulae

derived by Obara and Saika.22 That treatment deals with

integrals which include (besides the Gaussians): g(r12) repre-

sentable by a Laplace transform, terms obtainable by certain

limiting processes to generate a delta function or powers of

(x � ax) etc., or partial derivatives with respect to coordinates

of electrons or centers of Gaussians (the former is trivially

converted to the latter). All these cases yield integrals covered

in the present work or linear combinations of integrals result-

ing from differentiation with respect to centers, which only

changes quantum numbers. One would thus first compute the

necessary integrals and then the required linear combinations,

whereas the general OS scheme gets the final integrals directly.

The general recursion is more complicated and costly, how-

ever, and it remains to be established which procedure is

preferable.
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