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Local explicitly correlated second-order perturbation theory
for the accurate treatment of large molecules
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A local explicitly correlated LMP2-F12 method is described that can be applied to large molecules.
The steep scaling of computer time with molecular size is reduced by the use of local
approximations, the scaling with respect to the basis set size per atom is improved by density fitting,
and the slow convergence of the correlation energy with orbital basis size is much accelerated by the
introduction of terms into the wave function that explicitly depend on the interelectronic distance.
The local approximations lead to almost linear scaling of the computational effort with molecular
size without much affecting the accuracy. At the same time, the domain error of conventional LMP2
is removed in LMP2-F12. LMP2-F12 calculations on molecules of chemical interest involving up
to 80 atoms, 200 correlated electrons, and 2600 contracted Gaussian-type orbitals, as well as several
reactions of large biochemical molecules are reported. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3040174�

I. INTRODUCTION

The slow convergence of the electron correlation energy
with basis set size can be accelerated by including terms into
the wave function that depend explicitly on the interelec-
tronic distances rij. This leads to very numerous and expen-
sive many-electron integrals, but pioneering work of Kut-
zelnigg and co-workers1–4 showed that these can be well
approximated by resolutions of the identity �RIs�. The origi-
nal R12-methods included only linear r12 terms,1–3,5,6 but
more recently it has been found that much better accuracy
can be achieved by using a short-range correlation factor. In
particular, a simple Slater function F�r12�=exp�−�r12� turns
out to be particularly efficient in correcting for the basis set
error.7–9 Methods that include such terms are now denoted
F12 methods.

In the past few years much progress has been made in
the development of F12 theories and their efficient imple-
mentation. Not only various MP2-F125–7,10–18 but also
coupled-cluster19–28 approximations have been described in
literature. One of the key findings of all these methods is that
using aug-cc-pVnZ �Ref. 29� basis sets, the results show at
least the quality of conventional aug-cc-pV�n+2�Z calcula-
tions, e.g., with triple-zeta basis sets quintuple zeta quality is
reached.9,14–17,24,25,28,30

Whereas in conventional MP2 theory the computer time
scales as O�N 5�, where N stands for the number of atoms or
electrons in the molecule, MP2-F12 theory can show a scal-
ing up to O�N 8�, depending on the approximation and
implementation.5,13,14,16 For the treatment of large molecules
of chemical interest a reduction in the scaling is therefore of
major importance. For instance, the QM shell in mixed quan-
tum mechanical/molecular mechanics �QM/MM� treatments
of enzymes often comprises 50–100 atoms so that really

large systems could be treated accurately as soon as the cal-
culation of the QM part is possible within a reasonable
time.31

Low-order or even linear scaling of the computational
resources with the molecular size can be achieved by exploit-
ing the fact that electron correlation is essentially a short-
range effect.32–35 By localizing the orbitals it is possible to
classify the correlated electron pairs according to their dis-
tance; neglecting very distant pairs then eliminating the qua-
dratic dependence of the number of pairs on the molecular
size. Furthermore, the excitations from a pair of localized
occupied molecular orbitals �LMOs� can be restricted to sub-
sets �domains� of local virtual orbitals that are spatially close
to the LMOs, thereby making the computational effort for
each electron pair independent of the molecular size. Ulti-
mately, these two approximations lead to linear scaling, and
this has been demonstrated already for the whole hierarchy
of closed-shell single-reference electron correlation
methods.36–42

In the current work we aim to develop low-order scaling
algorithms for explicitly correlated second-order Møller–
Plesset perturbation theory, MP2-F12.13–15 In order to reduce
scaling, local RI approximations can be introduced.13,14 Fur-
thermore, the necessary two-electron integrals can be effi-
ciently computed using density fitting �DF� approximations,
which involve another auxiliary basis set. Again, local ap-
proximations can be used to reduce the scaling �local
DF�.43,44 Of course, each of these approximations introduces
a certain error, and one must be careful that these errors are
not larger than the gain of accuracy one aims to achieve with
the F12 treatment. In conventional calculations, the basis set
error is usually much larger than the error caused by local
approximations. This is reversed when explicitly correlateda�Electronic mail: werner@theochem.uni-stuttgart.de.
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methods are used. The accuracy of the local approximations
will therefore be systematically investigated in the current
paper.

II. THEORY

In the current work, we will only consider closed shells
but extension to open-shell cases17 is straightforward. MP2-
F12 theory has been discussed in many previous
papers,5,14,16–18 and will therefore be reviewed here only
briefly. Our formulation will be based on the general MP2-
F12 formulation we presented earlier,16 but a number of ap-
proximations will be introduced in order to reduce the com-
putational effort and the scaling with molecular size. First of
all, the diagonal ansatz2,16 will be used throughout this work.
Previous benchmarks have shown that it mostly yields better
results than the full orbital-invariant ansatz45 because gemi-
nal basis set superposition errors �BSSEs� are avoided.16,17

However, since the diagonal ansatz is not orbital invariant,
localized orbitals must be used to ensure size consistency. In
the present context this is no disadvantage since we are aim-
ing at a localized description anyway. The orbital localiza-
tion has been carried out using the method of Pipek and
Mezey.46

In the following i , j , . . . will denote occupied orbitals,
a ,b , . . . are virtual orbitals, r ,s , . . . are any orbitals, and
�� ,�� are orbitals of an orthogonal infinite basis. The latter
contains the orbital basis as a subset. � ,� denote orthogonal
auxiliary basis functions that are used in the RI approxima-
tions. Summation over repeated dummy indices �Einstein
summation rule� will be implied in most expressions.

A. The wave function ansatz and the energy
expression

The first-order wave function ���1�� used in closed-shell
MP2-F12 theory can be written as

���1�� =
1

2 �
p=�1

�
i,j
��

a,b
T ab

ij,p��ij,p
ab � + Tij,p��ij,p�	 , �1�

where

��ij,p
ab � = 1

2 �ÊaiÊbj + pÊbiÊaj��0� �p = � 1� �2�

are conventional doubly excited configurations; p=1 and p
=−1 denote singlet and triplet coupling of the two excited

electrons, respectively. Êai=�a
†�i+ �̄a

†�̄i are the usual spin-
summed one-particle excitation operators, and �0� is the
closed-shell Hartree–Fock reference function. Here and in
the following, �ij , p� indicates that the corresponding quan-
tity has been symmetrized �p=1� or antisymmetrized
�p=−1� in the labels i and j, e.g., �ij , p�= 1

2 ��ij�+ p�ji��. Note
that the configurations have the symmetries �ij,p

ab = p�ij,p
ba ,

�ij,p= p� ji,p, and this implies similar symmetries for the
amplitudes T ab

ij,p= pT ba
ij,p and Tij,p= pTji,p. The inclusion of the

full summations in Eq. �1� is convenient to eliminate any
normalization factors in the working equations.

The explicitly correlated configurations ��ij,p� are de-
fined as

��ij,p� = ��ij,p
�����
�����Q̂12F̂12�ij,p� , �3�

where F̂12�r12��F�r12� is the nonlinear correlation factor,

and Q̂12 a strong-orthogonality projector �ansatz 3�,

F̂12 = − �−1 exp�− �r12� , �4�

Q̂12 = 1 − �ab�
ab� + �mn�
mn� − �m��
m�� − ��m�
�m� . �5�

The projector ensures that the explicitly correlated configu-
rations are orthogonal to the Hartree–Fock wave function
and to the conventional configurations �ij,p

ab .
In order to simplify the theory as much as possible we

use approximation 3�A, in which �i� the extended Brillouin
conditions �EBC� are assumed to be valid �frx=0, where x is
any function that is orthogonal to the orbital basis�, and �ii�
exchange terms k̂ are neglected.5 Furthermore, small terms
involving the overlap matrix Xij,kl

�p� of the explicitly correlated
configurations are neglected. This corresponds to approxima-
tion MP2-F12 /3�A�D,NOX�, as defined in Ref. 16. These
approximations lead to a slight overestimation of the MP2-
F12 correlation energies �relative to an exact treatment with
the same basis set�, but as has been shown in previous
work,16 this has very little impact on energy differences such
as reaction energies.

The EBC approximation �indicated by the star in the
method designation� has the advantage that the first-order
equations for the amplitudes Tij,p of the explicitly correlated
configurations and the conventional amplitudes T ab

ij,p de-
couple entirely. The conventional amplitudes and energy
contribution can then be obtained by standard canonical MP2
theory; optionally, local approximations can be introduced;
in this case the first-order LMP2 equations have to be solved
iteratively.36,37,47 The amplitudes Tij,p can simply be obtained
as

Tij,p = − Vij,p/Bij,p, �6�

where

Vij,p = 
ij,p�r12
−1Q̂12F̂12�ij,p� , �7�

Bij,p = 
ij,p��F̂12, t̂12�Q̂12F̂12�ij,p� , �8�

where t̂12= t̂1+ t̂2 is the kinetic energy operator. The F12-
energy correction is then given by

EF12 = − �
p=�1

�2 − p��
i�j

�2 − 	ij�Vij,p
2 /Bij,p. �9�

Explicit expressions for the quantities Vij,p and Bij,p can be
found in Refs. 14 and 16.

B. Local approximations

As outlined in Sec. I, electron correlation in nonmetallic
systems is a short-range effect, and therefore the correlation
of distant pairs can be neglected if a local orbital basis is

used. Due to the short-range character of the F̂12 correlation
factor, the energy contributions of the explicitly correlated
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terms can be expected to decay even faster than the conven-
tional ones, and it may therefore be sufficient to compute
these terms only for orbital pairs that are relatively close
�strong or close pairs�. For this purpose the pairs are classi-
fied as usual in local correlation methods: first, to each LMO
a subset of atoms is assigned. This assignment can be based
on some sort of population analysis, as discussed, e.g., in
Refs. 48 and 49. In the current work we have applied the
method of Boughton and Pulay48 with a completeness crite-
rion of 0.985. The functions selected for a LMO i comprise
an orbital domain �i�. The pair classification can then be
based on distance criteria: pairs are neglected if the mini-
mum distance R between any function in the domain �i� and
any function in the domain �j� is larger than a given thresh-
old. We distinguish strong pairs �R=0�, close pairs �1
R
�3�, weak pairs �3
R�8�, distant pairs �8
R�15�, and
very distant pairs �R�15� �all distances in a0�. Thus, in
strong pairs the domains of i and j share at least one atom,
and in close pairs the closest atoms in i and j are typically
separated by one bond. Asymptotically, the number of pairs
in each class, except for the very distant pairs, scales linearly
with molecular size, which is one of the requirements for
achieving linear scaling of the computational cost.

The pair approximations outlined above are used in the
MP2-F12�loc� method, which will be summarized in Sec.
II C. In addition, domain approximations can be introduced.
These will be discussed in Sec. II D.

C. The MP2-F12„loc… method

In the MP2-F12�loc� method as introduced in Ref. 14,
local pair approximations are only used in the F12 energy
contribution �cf. Eq. �9��, while the conventional MP2 en-
ergy contribution is computed with standard canonical MP2
methods. No domain approximations are employed, and
therefore the MP2-F12�loc� correlation energy becomes
equal to the full MP2-F12 correlation energy if all pairs are
included in the F12 treatment.

In addition to the pair approximation made in the wave
function ansatz, local RI and DF approximations can be in-
troduced in order to reduce the effort to compute the matrix
elements Vij,p and Bij,p. These approximations will be dis-
cussed in Secs. II E and II F, respectively.

Since for small- and medium-size molecules the calcu-
lation of the F12-energy contribution is much more expen-
sive than the canonical MP2 calculation, significant savings
can be achieved by using these approximations. However,
for very large molecules the MP2 part will dominate since it
scales with O�N 5�, while the F12 calculation without distant
pairs scales at most with O�N 4� �or less if local DF and RI
approximations are used�. In order to reduce the scaling of
the MP2 part, domain approximations must be introduced.
This will be discussed in Sec. II D.

D. The LMP2-F12 method

In the LMP2-F12 method proposed recently15 local do-
main approximations32,36 are used in the conventional part of
the first-order wave function, which then takes the form

���1�� =
1

2 �
p=�1

�
i,j � �

ã,b̃��ij�

T
ãb̃

ij,p
��ij,p

ãb̃ � + Tij,p��ij,p�	 . �10�

For each pair ij the indices ã , b̃ refer to a set of orthonormal
orbitals that span the pair domain �ij�. Each domain is ini-
tially defined by a subspace of �nonorthogonal� projected
atomic orbitals �PAOs� that are spatially close to the orbitals
i and j. For each domain, this subset of PAOs is symmetri-
cally orthonormalized to obtain the pair-specific functions

ã , b̃.
The domain approximation introduces an error in the

conventional MP2 energy that may be much larger than the
remaining basis set error of the MP2-F12 method. Fortu-
nately, this error can be largely removed by modifying the

projector Q̂12 used in the definition of the explicitly corre-
lated configurations ��ij,p� so that the summation over ����
in Eq. �3� is extended by the virtual orbital pairs that are
excluded by the domain approximation in the conventional
part. This means that for a pair ij the projector becomes

Q̂12
ij � 1 − �

ã,b̃��ij�

�ãb̃�
ãb̃� + �
m,n

�mn�
mn�

− �
m

�
�

��m��
m�� + ��m�
�m�� . �11�

The essential difference to the full projector is that the con-
tribution �ab�
ab� in Eq. �5� has been replaced by its local
counterpart. Thus, for a given pair ij only the contribution

�ã,b̃��ij�T ãb̃

ij,p
��ij,p

ãb̃ � in the conventional LMP2 wave function

is projected out from the explicitly correlated part, and the
explicitly correlated configurations can �partly� compensate

the domain error made by restricting the summation ã , b̃ in
the latter term. In a recent communication15 it was demon-
strated for the correlation energies of a number of small mol-
ecules and for reaction energies involving these molecules
that this modification of the wave function and the projector
yields as accurate results as obtained with the full �nonlocal�
MP2-F12 ansatz. In the current paper it will be shown that
this also holds for large molecules.

Apart from the reduction of the domain error, this ansatz
has the advantage that the number of matrix elements such

as K
ãb̃

ij,p
= 
ij , p�r12

−1�ãb̃�, F
ãb̃

ij,p
= 
ij , p�F̂12�ãb̃�, and U

ãb̃

ij,p

= 
ij , p��F̂12, t̂12��ãb̃�, that arise by inserting Q̂12
ij into Eqs. �7�

and �8�, is strongly reduced. In fact, if distant pairs are ne-
glected, their number scales only linearly with molecular
size. Still, the number of integrals K m�

ij , F m�
ij , etc., that arise

from the last three terms of the projector, scales as O�N 3�,
and without further approximations their evaluation using
DF even scales as O�N 4�. In Sec. II E we will introduce
local RI approximations that reduce this scaling as well.

E. Local resolution of the identity

As an example we consider terms like K �m
ij,pF �m

ij,p, where i,
j, and m are localized orbitals. In order to fully exploit lo-
cality, it is necessary to use local RI functions � as well.
Unfortunately, a single set of well localized orthogonal func-
tions � cannot be obtained. However, for each individual
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pair ij it is possible to generate a subspace of orbitals
�̃ij � �ij�RI that are localized in the same region of space as
the orbitals i and j. This can be achieved by selecting for
each pair ij a subspace of RI basis functions �� �ij�RI that
are spatially close �within a predefined distance� of the local-
ized orbitals i and j. For each individual pair the selected
basis functions are then symmetrically orthonormalized to
yield the corresponding set of orthonormal functions �̃ij.
Since these orbitals are different for each pair �and orbitals
�̃ij and �̃�kl belonging to different pairs �ij�� �kl� are nonor-
thogonal� the total number of functions �̃ij is much larger
than the number of RI basis functions, i.e., we use a highly
redundant set of localized orbitals. This makes it formally
necessary to add the superscript ij to these functions. How-
ever, since it will always be obvious from the context to
which pair the orbitals belong, we will omit these labels in
the following.

Due to the Gaussian product theorem, the integrals K �̃m
ij

and F �̃m
ij decrease exponentially with the distance between i

and �̃ or j and m. Due to the �anti�symmetrization in i and j
the integrals K �m

ij,p will be small if m or � are far from i and
j. We can therefore approximate the matrix elements in
Eq. �7� as

Vij,p = �Kij,p
F − �

ã,b̃��ij�

K
ãb̃

ij,p
F

ãb̃

ij,p

+ �
m,n��ij�MO

K mn
ij,pF mn

ij,p − 2 �
m��ij�MO

�
�̃��ij�RI

K �̃m
ij,pF �̃m

ij,p	 ,

�12�

where �ij�MO denotes a domain of localized orbitals m that
are spatially close to the orbitals i or j. The sizes of the RI
domains �ij�RI and the MO domains �ij�MO are asymptoti-
cally independent of the molecular size, and therefore the
number of required integrals K �̃m

ij,p scales as O�N � �always
assuming that the number of pairs ij scales linearly�. A simi-
lar expression holds for the quantities Bij,p.

Thus, asymptotically the computational effort per pair
becomes independent of the molecular size, and the overall
effort for evaluating the RIs will scale linearly. This can lead
to enormous savings in calculations for large molecules.
Since the number of occupied orbitals m is much smaller
than the number of RI functions, we currently include all
occupied orbitals in the domains �ij�MO. This introduces an
O�N 2� overhead, but with a small prefactor.

Similar local RI approximations can be made for the
MP2-F12�loc� method. In this case the projector is approxi-
mated as

Q̂12
ij � 1 − �

r̃,s̃��ij�AO

�r̃ s̃ �
r̃ s̃ �

+ �
m��ij�MO

�
r̃��ij�AO

��mr̃ �
mr̃ � + �r̃m�
r̃m��

− �
m��ij�MO

�
�̃��ij�RI

��m�̃�
m�̃� + ��̃m�
�̃m�� , �13�

where the orthonormal orbitals r̃ , s̃ span the AO pair domains
�ij�AO. These domains include all atomic orbitals at the same

atoms as used for the RI domains �ij�RI. As will be shown in
Sec. III C, the major part of the error caused by the local RI
approximation arises from local approximations in the repre-
sentation of −�rs�
rs�, and large domains are necessary to
achieve sufficient accuracy. This means that the crossover
point to low-order �linear� scaling will be reached only for
very large molecules.

F. Local density fitting

DF approximations are widely used nowadays in elec-
tronic structure theory. Originating from density functional
theory �DFT�50–52 their usage spreads today from MP243,53–56

and CC2 �Ref. 57� over �local� CCSD�T� �Ref. 58� to
MP2-F12.11,13,14,16,17,59 The overall scaling with respect to
system size is not affected by standard DF, but it significantly
reduces the prefactor and reduces the scaling with respect to
NAO /Natoms from quartic to cubic. If other than Coulomb
integrals are computed, it is essential to use robust fitting
approximations11,60 to ensure integral accuracy.

For the AO integrals such as K �
ij or F �

ij a local variant
of DF can be applied.13,43 The summation over the inherently
local fitting functions A ,B can be restricted to domains �i�fit,
very similar as in the RI summations discussed in Sec. II E.
Only those fitting functions are included in these domains
which are within a distance Rfit �or a certain number of
bonds� from the AOs in the orbital domain �i�,

F�
ij � �

A��i�fit

Di
A F�j

A + �
B��j�fit

Fi
B D�j

B

− �
A��i�fit

�
B��j�fit

Di
A FABD�j

B . �14�

The fitting coefficients Di
B are obtained by solving the linear

equations

�
B��i�fit

JABDi
B = Ji

A �∀A � �i�fit� . �15�

Similar but slightly more complicated expressions hold for
the commutator integrals U��

ij . For details see Refs. 11, 13,
14, and 59.

In this case the overhead of the local fitting is that for
each orbital domain �i�fit the Coulomb submatrix JAB, with
A ,B� �i�fit must be inverted �or the corresponding LU-
decomposition be performed�. Thus, as for the local RI, there
will be a certain molecular size below which local DF will be
more expensive than standard DF. The accuracy and effi-
ciency of local DF will be investigated in Sec. III B.

G. Screening of three-index integrals

The cost of integral evaluation is reduced through con-
ventional Schwarz screening. However since the F12-
specific integrals all have short-range kernels ŵ12

= F̂12, F̂12r12
−1 ,�1

2F̂12 it is also very advantageous to screen on
the distance between the orbital product ������ and the fitting
function ��A��. In our integral package all integrals are gen-
erated from two-index intermediates. If we assume that the
zero-angular momentum integral offers a reasonable estimate
of the magnitude of general integrals, we can use bounds on
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�s�ŵ12�s� integrals for approximate screening of the general
integrals. This assumption will certainly not lead to a rigor-
ous bound on the three-index integrals, but we find captures
enough of the short-ranged nature of the kernels to be useful.
A rigorous extension to arbitrary angular momentum could
be made, based on the work of Lambrecht and
co-workers.61,62

The correlation factor in this work is a Slater-type func-
tion fitted to an optimized Gaussian expansion.14 Screening
could be performed based either on the asymptotic form of
the approximated Slater or on that of the most diffuse Gauss-
ian. After tests we have settled on the former. To establish
bounds on the �s�ŵ12�s� integrals we first define relevant no-
tation: the two Gaussian atomic orbitals have exponents �
and � and sit on centers a distance x apart. We define the
variables �=�+�, �=�� /�, �=��+��+��=���+��, �
=��� /�=�� / ��+��, T=�x2, and U=�2 / �4��. We also use
Ten-no’s function7

Gm�T,U� = 
0

1

dt t2me−Tt2+U�1−t−2�. �16�

For the case ŵ12=e−�r12 we follow Ten-no and write

�s�e−�r12�s� =
�5/2�

�2�3/2 �G−1�T,U� − G0�T,U�� . �17�

The difference in square brackets is given by

G−1�T,U� − G0�T,U� = 
0

1

dt�t−2 − 1�e−Tt2+U�1−t−2�. �18�

In the limit of large T, the inequality

G−1�T,U� − G0�T,U� � 
0

�

dt�t−2 − 1�e−Tt2+U�1−t−2� �19�

holds, and rapidly becomes tight, supplying the approximate
bound

�s�e−�r12�s� �
�3

����3/2e�2/4�e−�x�1 −
�

2x�
� . �20�

For a generally looser �but completely rigorous� bound we
can use

G−1�T,U� − G0�T,U� � 
0

1

dt t−2e−Tt2+U�1−t−2�

� 
0

�

dt t−2e−Tt2+U�1−t−2�. �21�

Evaluating this last integral gives the bound

�s�e−�r12�s� �
�3

����3/2e�2/4�e−�x. �22�

For the case ŵ12=e−�r12r12
−1 we have

�s�r12
−1e−�r12�s� =

2�5/2

�2�3/2G0�T,U� . �23�

For the special function we can use the inequality

G0�T,U� � 
0

�

dt exp�− Tt2 + U�1 − t−2��

=
1

2
��

T
�1/2

eU−2�TU �24�

and the bound becomes tight for large T. This leads to

�s�r12
−1e−�r12�s� �

�3

����3/2e�2/4� e−�x

x
. �25�

For the final case of ŵ12=�1
2e−�r12 we note that

�s���1
2e−�r12��s� = �2�s�e−�r12�s� − 2� �s�e−�r12r12

−1�s� �26�

so the bound on the integral can be built based on the pre-
ceding inequalities.

III. RESULTS AND DISCUSSION

For simplicity we denote the �aug-�cc-pVnZ orbital basis
sets29,63 as �A�VnZ. In some calculations the diffuse basis
functions on hydrogen atoms have been omitted and these
basis sets will be denoted AVnZ�.

All calculations employed DF approximations in the HF,
MP2, and MP2-F12 steps. This strongly reduces the compu-
tational effort for the integral-direct evaluation of the inte-
grals. For the DF in the MP2 and MP2-F12, the
AVnZ /MP2FIT fitting basis sets of Weigend et al.56 were
used. For the DF-HF calculations64 we used the VnZ /JKFIT
fitting basis sets65 �without local approximations�. The latter
basis sets were also used as RI basis sets in the explicitly
correlated calculations. The cardinal number n in the fitting
sets was always the same as in the orbital basis sets. Unless
otherwise noted, for all MP2-F12�loc� and LMP2-F12 calcu-
lations the aug-cc-pVTZ orbital basis, the VTZ/JKFIT RI
basis, and the AVTZ/MP2FIT DF basis sets have been used.
As in our previous work14,15 the exponent � in the correlation

factor F̂12 has been chosen to be 1.4a0
−1. In general, the re-

sults are not very sensitive to the choice of this parameter.
The geometries of glutathionedisulphide �GSSG� and

borrelidin have been optimized using DFT with the BP86
functional and the TZVP basis sets.66–71 All other geometries
have been optimized at the DF-LMP2 �Ref. 43� level using
the VTZ basis sets and all pairs.

Since the residual equations for conventional and explic-
itly correlated double amplitudes are not coupled, the
F12 /3�A�loc� energy corrections EF12 can be added to con-
ventional MP2 or LMP2 correlation energies �depending on
which projector is used�. Since for the AVTZ orbital basis the
HF errors are not entirely negligible, only correlation ener-
gies or contributions of the correlation energy to reaction
energies will be considered. We note that the basis set error
of the HF energy can be strongly reduced by including single
excitations into the complementary auxiliary orbitals and
computing the corresponding energy correction
perturbatively.17,25,30 This correction has not been applied in
the current work since in the local method the CABS ap-
proach is not used. However, it would be possible to evaluate
the correction at the expense of one Fock matrix evaluation
in the union of the AO and RI basis sets.
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A. Accuracy of weak pair approximations

Table I lists the effects of different pair approximations
on the F12 contributions EF12 to the correlation energies for
four test molecules, namely, cholesterol C27H46O, progester-
one C21H30O2, borrelidin C28H43NO6, and GSSG
C20H32N6O12S2 �cf. Figs. 1–4�.

The pair classes are defined as described in Sec. II B. As
expected, distant and very distant pairs contribute only a
negligible amount to the energy correction EF12, e.g., 0.035
mH for progesterone. If weak pairs are neglected, the error
increases to a few millihartree, if also close pairs are ne-
glected to more than 10 mH. Obviously, the absolute errors
increase with the molecular size. However, it is anticipated
that the errors cancel to a large amount when energy differ-
ences are computed. The effect of these approximations for
reaction energies will be investigated in Sec. III F.

B. Accuracy of local DF

In Table II the errors of EF12 due to local DF approxi-
mations are shown for the same molecules and basis sets as
in Table I. The orbital fitting domains �i�fit contain all fitting
functions of the auxiliary fitting basis set that are located at

the atoms in the orbital domain �i� �cf. Sec. II B�, and in
addition at all centers that are separated by at most LDF bonds
from these atoms. The deviation from the conventionally
density-fitted result �full DF� decreases quickly with the do-
main size determined by LDF. For LDF=3, which is the de-
fault in our program, it does not amount to more than a few
hundreds of millihartree for a large molecule such as preg-
nenolone �C21H32O2�. As will be shown in Sec. III F, the
effect of the local DF approximation on energy differences is
even smaller. Hence errors of local DF approximations are
negligible, whereas the time savings in the fitting and subse-
quent assembly steps are considerable, as will be demon-
strated later.

C. Accuracy of local RI

In this section we will study the effects of local approxi-

mations in the strong-orthogonality projector Q̂12 as de-
scribed in Sec. II E. First, we will consider the MP2-F12�loc�
case, in which the conventional MP2 contribution is unaf-
fected by local approximations, and domains will only be

introduced in the projector Q̂12. The pair-specific local AO
and RI domains �ij�AO and �ij�RI, respectively, are comprised
of all AO and RI basis functions located within a radius RRI

from any atom in the pair domain �ij�. This is similar to the
local RI approximations used in our previous work.13,14

The effect of this local RI approximation on the absolute
MP2-F12�loc� correlation energies of our test molecules is

TABLE I. Effect of pair approximations on the F12 energy contribution EF12 �in −mH�. The projector in Eq. �13� without local DF or local RI approximations
has been used. For the definition of the pair classes see text.

Pairs

Progesterone Cholesterol Borrelidin GSSG

Npair
a EF12 �Eb Npair

a EF12 �Eb Npair
a EF12 �Eb Npair

a EF12 �Eb

Allc 2016 397.680 — 3240 470.551 — 4851 653.991 — 3276 872.406 —
Strong+close+weak 1191 397.645 −0.035 1472 470.498 −0.053 1694 653.909 −0.082 1978 872.266 −0.140
Strong+close 433 394.406 −3.274 521 466.237 −4.314 618 648.677 −5.314 727 866.348 −6.058
Strong 206 384.655 −13.025 247 454.070 −16.481 317 634.178 −19.813 384 847.749 −24.657

aNumber of pairs treated in F12.
bDeviation from the calculation with all pairs in millihartree.
cVery distant pairs were neglected.

FIG. 1. �Color online� Cholesterol C27H46O is the major precursor for the
steroidogenesis in the body and plays hence a fundamental role in the syn-
thesis of sex hormones. In the first reaction step the side chain of cholesterol
is cleaved by an enzyme. Furthermore cholesterol is essential in building
and maintaining cell membranes and affects the channeling of signal
molecules.

FIG. 2. �Color online� Progesterone C21H30O2 is one of the sex hormones
derived from cholesterol. It is involved in the female menstrual cycle, preg-
nancy and embryogenesis of humans and other species.
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shown in the left part of Table III. It is found that in the
current calculations with a Slater function as correlation fac-
tor the local RI slightly overestimates the correlation contri-
butions relative to the results with full RI domains, whereas
in our previous calculations with a linear correlation factor,13

the correlation contribution was always underestimated. Fur-
thermore, in comparison to linear R12 theory the F12 results
converge much faster with respect to the domain size. Typi-
cally, for a given domain size, the errors are an order of
magnitude smaller. For example, with a RI domain radius
5a0 the MP2-F12�loc� results do not deviate by more than
2%–3% from the full RI result, while our previous R12 re-
sults showed errors of about 20%.13

Despite the better convergence of the local RI approxi-
mations in F12 theory, the errors are still much larger than
those caused by the local DF approximations, and they turn
out to be quite critical when energy differences are computed
�cf. Sec. III F�. Therefore, rather large RI domains �e.g.,
RRI=13a0� must be used to obtain converged results. This
means that local RI approximations in the MP2-F12�loc�
method will be useful only in calculations for large mol-
ecules.

In order to investigate this error further, we have tested
the effect of the domain approximation on the different con-
tributions in the projector, cf. Eq. �13�. The correlation ener-
gies for a linear glycine polypeptide, �gly�8, are shown in

Fig. 5 as a function of the RI domain size. When domains are
introduced in all terms �circles�, convergence is very slow,
and the correlation energy is overestimated, as also seen in
Table III. The domains have to be extended by about 13a0 in
order to get close to the exact result. However, if domains
are only used for �̃ in the RI contribution −�m�̃�
m�̃�
− ��̃m�
�̃m� �diamonds�, convergence with the domain size is
very much improved, and already with RRI=3a0 a rather ac-
curate correlation energy is obtained. This result somewhat
deteriorates if also the terms �mr̃ �
mr̃ �+ �r̃m�
r̃m� are ap-
proximated �triangles�.

From these results it follows that the largest effect comes
from the contributions −�r̃ s̃ �
r̃ s̃ �. This term contains the pro-
jector −v̂1v̂2, which removes the contributions of the conven-

TABLE II. Error of EF12 �in millihartree� caused by local fitting for different
orbital fitting domains LDF �see text�. The projector in Eq. �13� without local
RI approximations has been used. Strong, close, and weak pairs were in-
cluded. The total F12 energy contributions without local DF can be found in
the second row of Table I.

LDF Progesterone Cholesterol Borrelidin GSSG

1 0.364 0.493 0.483 0.479
2 0.129 0.183 0.192 0.192
3 0.049 0.075 0.087 0.092
4 0.015 0.029 0.035 0.053
5 0.005 0.014 0.015 0.034

TABLE III. F12 energy contributions EF12 and total correlation energies �in
−mH� as a function of the cutoff radius RRI �in a0, see text�. All pairs were
included, and no local DF approximations were applied. In the MP2-
F12�loc� case the projector in Eq. �13� and in the LMP2-F12 case the pro-
jector in Eq. �11� with local RI �cf. Eq. �12�� has been used.

MP2-F12�loc� LMP2-F12

RRI EF12 Etot
corr RRI EF12 Etol

corr

Progesterone
0a — 4069.198 0a — 3982.665
7 403.387 4472.584 3 478.433 4461.097
9 399.461 4468.658 5 477.942 4460.607
11 398.361 4467.559 7 477.888 4460.552
13 397.927 4467.124 9 477.865 4460.530
� 397.680 4466.877 � 477.860 4460.524

Cholesterol
0a — 4986.499 0a — 4872.430
7 478.640 5465.139 3 577.049 5449.478
9 473.503 5460.003 5 576.389 5448.818
11 471.948 5458.448 7 576.304 5448.734
13 471.109 5457.609 9 576.282 5448.712
� 470.551 5457.051 � 576.275 5448.705

Borrelidin
0a — 6446.416 0a — 6328.649
7 663.416 7109.832 3 764.052 7092.701
9 658.068 7104.483 5 763.277 7091.926
11 655.780 7102.196 7 763.167 7091.816
13 654.795 7101.211 9 763.148 7091.798
� 653.991 7100.407 � 763.142 7091.792

aPure MP2 and LMP2 correlation energies.

FIG. 3. �Color online� Borrelidin C28H43NO6 is a potent inhibitor of angio-
genesis, and the enantioselective synthesis of this polyketide macrolide has
attracted increasing attention during the last years �Refs. 77 and 78�. As a
highly potential anticancer drug it can inhibit the spontaneous formation of
lung metastases.

FIG. 4. �Color online� GSSG C20H32N6O12S2 is the oxidized form of Glu-
tathione �GSH�. As reducing agent the thiol group of the cysteine fragment
in GSH is able to donate a reducing equivalent �H++e−� to reactive radical
species. Hence GSH is an antioxidant and protects cells from those free
radicals.
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tional double excitations from the explicitly correlated part
of the wave function. Apparently, if approximations are in-
troduced into this term, these contributions are incompletely
removed, and the remainder leads to the observed overesti-
mation of the correlation energy.

This problem of double counting can be avoided by re-
stricting the conventional double excitations for a given pair
ij to the same domains as used to approximate the projector
−v̂1v̂2, cf. Eq. �11�. Thus, the domain error of the LMP2
wave function, which typically reduces the correlation en-
ergy by 1%–2%, can be �partly� compensated by contribu-
tions of the explicitly correlated terms,15 which contain a
fixed contraction of the missing configurations, cf. Eq. �3�.

The result for this approximation is shown in the right
part of Table III as well as in Fig. 5 �open diamonds�. It is
seen that the convergence with the RI domain size radius RRI

is much faster than in the left column of Table III since in
this case the RI domains vary only in the terms −�m�̃�
m�̃�
− ��̃m�
�̃m�.

For a value RRI=5a0 the energies are converged to about
0.1 mH. Furthermore, Table III also demonstrates that the
domain error in the LMP2 �i.e., the difference of the pure
MP2 and LMP2 correlation energies� is dramatically reduced
by the F12 correction. While for pure LMP2 the correlation
energies are smaller by about 100 mH �2%� than the MP2
correlation energies, the difference in the total MP2-F12�loc�
and LMP2-F12 correlation energies only amounts to 6–10
mH �0.1%–0.2%�. Similarly, in Fig. 5 the LMP2-F12 corre-
lation energy is very close to the MP2-F12�loc� one. Thus,
one can expect that the MP2-F12�loc� and LMP2-F12
methods give very similar results. The effect of the local RI
approximations on energy differences will be further inves-
tigated in Sec. III F, while the effect of the local approxima-
tions on the CPU times will be demonstrated in Sec. III E.

D. Accuracy of prescreening

The accuracy and the savings due to prescreening based
on a Slater-type geminal �see Sec. II G� are demonstrated in
Table IV. Depending on the screening threshold THRF12,
the CPU times for integral evaluation are reduced by a factor
of 2–3. With a threshold THRF12=10−8 the error in the en-
ergy is less than 10−7 hartree, and stable and accurate results
are also obtained for other systems. Therefore this value has
been used as default in all further calculations.

E. Timings and scaling with molecular size

The diagonal ansatz with the neglect of distant pairs in
combination with the approximations discussed in Secs. II B
and II F leads to either linear or quadratic scaling of the
transformation, fitting, and assembly steps. The dependence
of the CPU times on the molecular size is demonstrated in
Figs. 6 and 7 for linear glycine chains �gly�n as a function of
the number n of glycine residues, n=1, . . . ,12. The calcula-
tion for �gly�12 included 87 atoms, 3128 basis functions, and
272 electrons were correlated. The onset of linear scaling can
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FIG. 5. MP2-F12�loc� and LMP2-F12 correlation energies for �gly�8 as a
function of the cutoff radius RRI �see text�. All pairs �including very distant
pairs� were correlated. Full symbols: MP2-F12�loc� using the projector in
Eq. �13�. Open symbols: LMP2-F12 using the projector in Eq. �11�; circles:
all terms of the projector �13� treated with local approximations; diamonds:
only −�m�̃�
m�̃�− ��̃m�
�̃m� in Eq. �13� is treated with local approximations;
triangles: only �mr̃ �
mr̃ �+ �r̃m�
r̃m�− �m�̃�
m�̃�− ��̃m�
�̃m� in Eq. �13� is
treated with local approximations.

TABLE IV. Accuracy and CPU times �in minutes on opteron 2.4 GHz
processors� for integral evaluation depending on the prescreening threshold
THRF12 �in a.u.�, using MP2-F12�loc�.

−log�THRF12� −EF12 /mH CPU time

�gly�7 6 617.4828 67.3
7 617.4441 73.8
8 617.4441 85.4

Off 617.4441 203.5
GSSG 6 849.9058 177.3

7 849.8761 202.0
8 849.8759 225.7

Off 849.8759 563.7
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FIG. 6. CPU times for three-index integral evaluation for linear glycine
polypeptides �gly�n �in hours on MACPRO with Xeon Woodcrest 3.0 GHz

processor�. The integral kernels are J=r12
−1, F= F̂12, KF=r12

−1F̂12,

UF= �t̂12 , F̂12�F̂12, X= �t̂1 , F̂12�, and Y = �t̂1 ,r12
−1�. The latter two integral types

are required to compute U��
ij , cf. Ref. 11.
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be expected early in such one-dimensional systems, and
therefore they are suitable test systems, though rather unre-
alistic models for real applications.

The number of significant three-index integrals with

short-range kernels such as F̂12 scales linearly with molecu-
lar size, and due to the screening the CPU time for evaluat-
ing these integrals scales linearly as well �cf. Fig. 6�. Only
the number of Coulomb integrals over r12

−1 as well as the

integrals over the commutator Ŷ = �t̂1 ,r12
−1� scale quadratically

with molecular size, and therefore linear cost scaling is not
reached by integral screening for these integrals. The scaling

for Ŷ integrals is better than for Coulomb integrals because
the kernel has a shorter range form. It can be expressed as11

�t̂1 ,r12
−1�=2�	�r12�− ��� 1r12

−1� ·�� 1; the first term is manifestly
short range, and the second decays like r12

−2. This leads to the

lower-scaling integral evaluation for Ŷ integrals, seen in
Fig. 6.

If distant pairs are neglected and both local DF and local
RI approximations are activated, only three-index integrals
����ŵ12�A� are needed for which the RI basis functions �
and the fitting functions A are within a certain distance. This
is because for a pair ij the functions in the domain �ij�RI are
close to either i or j. If distant pairs are neglected, j is close
to i, and thus � must be within a certain distance of i. A
similar argument can be applied to the fitting functions A.
Thus, for each orbital i, one can determine which � and A
contribute. The corresponding pair of centers is stored. Re-
peating this for all orbitals i yields all center pairs which
must be considered. Asymptotically, this will lead to linear
cost scaling for all integrals involving RI basis functions.
The savings will be the larger the smaller the RI and DF
domains, and the more pairs are neglected.

For the integrals ���r12
−1�A� such a test is not possible

since we need the integrals �mn�r12
−1�A� for all occupied orbit-

als mn, and therefore all  ,�. Thus, linear scaling cannot be
reached for these integrals. If finite domains �ij�MO would be

used, one could construct appropriate test densities and apply
screening techniques similar to those described earlier43 for
LMP2 in order to reach linear scaling. However, this has not
been implemented so far.

The first integral transformation step, e.g., �i�F̂12�A�
= ���F̂12�A�C�i, is done for each individual fitting function A
in terms of blocks over the indices , �. Normally, a block
contains all functions at a given center, but merging of the
functions at neighboring centers is possible if the block size
becomes too small, e.g., for hydrogen atoms. For each block
of indices  ,� the maximum values of the integrals and or-
bital coefficients Ci �for each i� are determined, and the
transformation of the block is skipped if the product of the
integral and coefficient maximum values is smaller than a
threshold. For the integrals with short-range kernels such as

F̂12 the number of integrals as well as the number of signifi-
cant molecular orbital coefficients Ci scale linearly with
molecular size, and then the CPU time for the transformation
scales linearly as well. For the remaining integral types the
transformation scales quadratically.

Figure 7 shows the total CPU times of the MP2-F12�loc�
and LMP2-F12 calculations, excluding the times for the in-
tegral evaluation; the latter �cf. Fig. 6� is almost the same in
both cases. In both cases, the times with and without local RI
and local DF approximations are compared. We first consider
the case without local RI approximations �full symbols�.
Even then the CPU times for the LMP2-F12 calculation with
the local projector �11� are significantly smaller than the ones
with the full projector �13� since instead of all integrals Krs

ij ,

Frs
ij , and Urs

ij , only the corresponding integrals with ãb̃� �ij�
are needed. The number of the latter integrals scales linearly
with molecular size, while the number of all Frs

ij scales cubi-
cally �always assuming that very distant pairs are neglected�.
Accordingly, the time for assembly of the integrals such as
Frs

ij �cf. Eq. �14�� should scale as O�N 4�, while the time for
assembly of the integrals such as F

ãb̃

ij
scales only quadrati-

cally. If local DF approximations are activated, the scaling
for the assembly step is reduced to O�N 3� and O�N �, re-
spectively, since asymptotically the size of the fitting do-
mains becomes independent of the molecular size.

If local RI approximations are activated as well �open
symbols�, the scaling of the most expensive integral types is
further reduced: The CPU time for the integrals Fr̃ s̃

ij �MP2-
F12�loc�� or F

ãb̃

ij �LMP2-F12� scales linearly, the one for Fm�̃
ij

quadratically, and the one for Fmn
ij cubically. However, the

time for the latter integrals is very small so that the apparent
scaling for medium molecular sizes is between linear and
quadratic. Strict linear scaling could be achieved by defining
MO domains m� �ij�MO �cf. Sec. II E�. However, this has
not been attempted so far. It should be noted that even if
local RI approximations are used in projector �13�, the num-
ber of integrals Fr̃ s̃

ij �r̃ , s̃� �ij�AO� is much larger than the

number of integrals F
ãb̃

ij
�ã , b̃� �ij�� needed with projector

�11� since in order to get accurate results, the domains �ij�AO

must be much larger than the pair domains �ij�.
Even though the scaling of our implementation is not yet

fully linear, the reduction of the overall CPU times by the

2 4 6 8 10 12
Protein size / (gly)

n

0

10

20

30

40

50

60

70

80

90
C

PU
tim

e
/h

MP2-F12,full DF,full RI
MP2-F12,local DF,local RI
LMP2-F12,full DF,full RI
LMP2-F12,local DF,local RI

FIG. 7. CPU times of transformation, fitting, and assembly steps of the F12
calculations for glycine polypeptides �gly�n �calculated as total CPU times
minus the times for integral evaluation and MP2/LMP2, in hours on MACPRO

with Xeon Woodcrest 3.0 GHz processor�. Strong, close, and weak pairs
were included in the F12 treatment. In the MP2-F12�loc� and LMP2-F12
calculations with local RI the cutoff radius RRI was set to 13a0 and 5a0,
respectively.
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local DF and RI approximations is very significant, as seen
in Fig. 7. For �Gly�12, the CPU time �without integral evalu-
ation� is reduced by a factor of about 17 �MP2-F12�loc�� or
11 �LMP2-F12�. In the latter case the saving is smaller since
the use of the local projector without any further local ap-
proximation saves already a factor of about 3.5, and so over-
all the local projector plus the local RI and DF approxima-
tions save a factor of nearly 40. Even if the integral time is
included, the overall saving is about a factor of 7 �MP2-
F12�loc�� or 10 �LMP2-F12� relative to MP2-F12 with the
same pairs but no other local approximations.

Timings for a more realistic case, the molecule choles-
terol �74 atoms, 2346 basis functions, and 160 correlated
electrons� are presented in Table V. Dramatic savings are
achieved for the “assembly” steps, i.e., the time needed for
the F12 calculation apart from integral evaluation. The local
approximations allow here for savings by a factor of about
38. On the other hand, the savings for the integrals are small
since the same integrals over AOs are required in MP2-F12
and LMP2-F12. For the integral sets involving RI basis func-
tions some savings are possible if local RI and local DF
approximations are used �see above�, but the onset of linear
scaling occurs rather late and with a large prefactor.

From Figs. 6 and 7 as well as from Table V it is seen that
in full MP2-F12 calculations for large systems, most CPU
time is spent in the fitting and assembly steps, which scale
with O�N5�. However, if LMP2-F12 with local DF and RI
approximations is used, the assembly time scales linearly and
becomes very small, and then most of the time is required for
the integral evaluation.

By far most of the time is spent for the commutator

integrals over X̂= �t̂1 , F̂12� and Ŷ = �t̂1 ,r12
−1�, which are needed

to compute the matrices Uij �cf. Eq. �38� in Ref. 11�. We note
that in approximation 3C,16,72 these integrals are not re-
quired, and further savings in the integral evaluation might
be possible by using this method. However, in approximation
3C various additional integral transformations to intermedi-
ate orbital spaces are necessary, which may compensate part
of the savings. The development of a 3C�loc� program is
currently under way in our group.

F. Reactions involving large molecules

In this section we will demonstrate the performance of
MP12-F12�loc� and LMP2-F12 for reactions involving large

molecules �up to 65 atoms� of biochemical and pharmaco-
logical interest. When computing reaction energies using lo-
cal methods it is essential to make sure that the domains in
the reactants and products are consistent.49,73,74 The Pipek–
Mezey localization often yields artificially large contribu-
tions of diffuse basis functions at hydrogen atoms that are
bound to aromatic rings. Therefore, we used in the andros-
tendione reaction �cf. Fig. 8� for the hydrogen atoms the
VTZ basis without diffuse functions �basis AVTZ��. The con-
tributions of the two most diffuse functions of each angular
momentum at each atom were eliminated in the localization
criterion, which further improves the localization.73,74 Fur-
thermore, the domains of the �-orbitals in the aromatic sys-
tems were merged.74 It was carefully checked that the result-
ing domains were consistent for the reactants and products of
all reactions studied. In the calculations with AVQZ basis
sets, the domains obtained with the AVTZ basis set were
used. The structures of reactants and products were opti-
mized using DF-LMP2/VTZ and all pairs �apart from very
distant ones�.

As a first example we consider a ring closure reaction
yielding androstenedione, which is the precursor of male and
female sex hormones. This reaction �cf. Fig. 8� is the last
step in an androstenedione total synthesis. The cleavage of
the protecting group o-hydroxy phenol and the C–C bond
formation takes place in aqueous solution under the catalytic
influence of H2O and H+. However, since purpose of the
current calculations is solely to test the accuracy of the local
approximations on reaction energies, we did neither consider
zero-point energies nor solvent and other environmental ef-
fects in this work.

MP2, LMP2, MP2-F12�loc�, and LMP2-F12 correlation
contributions to the reaction energy are summarized in Table
VI. The basis set limit was estimated by extrapolating the
MP2/AVTZ� and MP2/AVQZ� correlation energies using the
two-point extrapolation formula En=ECBS+A /n3 �n=3, 4�.

TABLE V. CPU times �in hours on opteron 2.4 GHz processors� for cholesterol, C27H46O using different local
approximations in MP2-F12�loc� or LMP2-F12. The RI domain sizes were 15a0 and 5a0 for MP2-F12�loc� and
LMP2-F12, respectively.

Pairs RI DF U J F+UF+KF Assemblya

MP2-F12�loc�
Allb full full 11.7 1.2 5.1 121.8

LMP2-F12
Allb full full 10.9 1.0 16.6 27.6
Strong full full 10.8 1.0 4.8 10.2
Strong loc full 10.7 1.0 4.8 7.5
Strong loc loc 10.2 0.8 4.7 3.2

aCPU-times for F12 energy correction, excluding integral evaluation and MP2/LMP2.
bAll apart from very distant pairs.

FIG. 8. �Color online� A ring closure reaction yielding androstenedione.
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The correlation contribution of the reaction energy using
conventional MP2 is rather strongly basis set dependent. The
MP2/AVTZ� result differs from the extrapolated MP2/
CBS�34� value by 2.0 kcal mol−1, and the MP2/AVQZ�
value still deviates by 0.84 kcal mol−1 from the MP2/
CBS�34� one.

On the contrary, the DF-LMP2 calculations show a much
weaker basis set effect, but as compared to the CBS�34�
estimate, the LMP2/AVQZ� correlation contribution to the
reaction energy is underestimated by approximately
1 kcal mol−1. Very likely, this “domain error” is partly due
to the much reduced intramolecular BSSE in LMP2 calcula-
tions, which leads to a destabilization of the reactants and
thus to a reduction of the �positive� correlation contribution
to the reaction energy.

The MP2-F12�loc�/AVTZ� value without any local ap-
proximations differs from the CBS�34� reference value by
only 0.37 kcal mol−1. The corresponding LMP2-F12/AVTZ�
result is even closer to the CBS�34� value. The deviation
merely amounts to 0.01 kcal mol−1, but this may be fortu-
itous since the CBS�34� could also be in error by a few tens

of a kcal mol−1. In any case, it is obvious that the effect of
the domain approximation is much reduced in the LMP2-F12
calculations as compared to the corresponding LMP2 calcu-
lations, and the MP2 basis set limit is reached within “chemi-
cal accuracy.”

The neglect of distant and very distant pairs in the F12
treatment has virtually no effect on the computed reaction
energy. The further neglect of weak pairs causes deviations
of 0.21 and 0.55 kcal mol−1 for MP2-F12�loc� and LMP2-
F12, respectively, from the all-pair result. The error for
LMP2-F12 is larger than for MP2-F12�loc� since the domain
error of the weak pairs is not compensated by the F12 terms.
If also close pairs are neglected, these errors even increase to
0.57 and 1.13 kcal mol−1 for MP2-F12�loc� and LMP2-F12,
respectively. Thus, somewhat unexpectedly, the F12 correc-
tion also significantly affects the contributions of close and
weak pairs, and therefore it is recommended to include all
strong, close, and weak pairs into LMP2-F12 calculations if
one aims for high accuracy.

In all cases the effect of local DF is negligible
��0.01 kcal mol−1�. In the case of local RI the situation for
MP2-F12�loc� and LMP2-F12 is quite different. In MP2-
F12�loc� a distance criterion RRI of at least 13a0 is needed to
obtain an accurate reaction energy; using this value, the error
caused by the local RI still amounts to 0.13 kcal mol−1.
LMP2-F12 requires much smaller RI domains of just RRI

=5a0, and the deviation then amounts to at most
0.03 kcal mol−1. With RRI=3a0 we obtain �Ecorr

=5.92 kcal mol−1 �strong+weak+close pairs included in the
F12 treatment�, i.e., the error increases to 0.14 kcal mol−1.

As a second example we consider the esterification of
propionic acid chloride with testosterone �cf. Fig. 9�. Esters
of different carboxylic acid chain length play an important
role in hormone therapy. The larger the chain of the carboxy-
lic acid in the ester, the longer the testosterone derivative
stays in body tissues because of increased lipophilicity.

The results are presented in Table VII. The conclusions
are rather similar to the androstenedione reaction. The MP2/
AVTZ value differs from the MP2/CBS�34� reference by
1.42 kcal mol−1, the MP2/AVQZ result still by
0.60 kcal mol−1. Again the MP2 basis set dependence is
probably affected by intramolecular basis set superposition
effects: the smaller the basis set the larger is the BSSE in the
product propionic acid ester, which artificially lowers the
correlation contribution of the �again positive� correlation
contribution to the reaction energy. The almost BSSE-free
LMP2 results lie much closer to the CBS value; the differ-
ences amount to just 0.26 kcal mol−1 �AVTZ� and
0.21 kcal mol−1 �AVQZ�.

The MP2-F12�loc�/AVTZ all pairs result deviates from

TABLE VI. The effect of local approximations on the correlation contribu-
tions �Ecorr �in kcal mol−1� to the reaction energy of the androstenedione
ring closure. In LMP2 and LMP2-F12, very distant pairs were always ne-
glected. The HF/AVTZ and AVQZ values are −0.73 and −1.29 kcal mol−1,
respectively.

Pairs DF RI �Ecorr

DF-LMP2
AVTZ� full ¯ 4.78
AVQZ�a full ¯ 4.84

DF-MP2
AVTZ� full ¯ 7.80
AVQZ� full ¯ 6.64
CBS�34� 5.80

DF-MP2-F12�loc�/AVTZ�

Allb full full 6.17
Strong+close+weak full full 6.17
Strong+close+weak loc full 6.17
Strong+close+weak loc loc 6.31
Strong+close full full 5.96
Strong+close loc full 5.97
Strong+close loc loc 6.10
Strong full full 5.60
Strong loc full 5.61
Strong loc loc 5.74

DF-LMP2-F12/AVTZ�

Allb full full 5.81
Strong+close+weak full full 5.78
Strong+close+weak loc loc 5.81
Strong+close full full 5.26
Strong+close loc loc 5.27
Strong full full 4.68
Strong loc loc 4.68

aThe orbital domains for the AVQZ� basis were taken from the AVTZ�
calculation.
bWithout very distant pairs.

FIG. 9. �Color online� Esterification of propionic acid chloride with
testosterone.
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the MP2/CBS�34� value by only 0.01 kcal mol−1, whereas
LMP2-F12 yields a difference of 0.29 kcal mol−1. Due to the
limited accuracy of CBS�34�, it is not possible to decide
which is more accurate. Again, the RI and DF errors for
LMP2-F12 are very small �the total errors amount to
0.01–0.02 kcal mol−1�, and distant pairs can be safely ne-
glected. Despite the much larger RI domains in the MP2-
F12�loc� method, the error of the local RI approximation is
much larger than in the LMP2-F12 case.

We have also computed reaction energies for a number
of other reactions, and the conclusions were similar as for the
ones presented here. In order to obtain results that are close
to the basis set limit, the inclusion of strong and close pairs
in the MP2-F12�loc� or LMP2-F12 treatment is usually suf-
ficient to achieve chemical accuracy. If only strong pairs are
included, errors over 1.0 kcal mol−1 can occur, and this is
therefore not recommended. Errors caused by local DF ap-
proximations were negligible.

IV. CONCLUSIONS

New MP2-F12�loc� and LMP2-F12 methods have been
presented which involve pair approximations, efficient pre-

screening techniques for short-ranged integrals, local DF,
and local RI approximations. The effect of these approxima-
tions was systematically studied for correlation and reaction
energies of large molecules.

If all pairs are correlated and no local DF and RI ap-
proximations are applied, the MP2-F12�loc� method is
equivalent to MP2-F12 and should therefore approach the
MP2 basis set limit. This is not so obvious for LMP2-F12
since in the underlying LMP2 wave function the excitations
are restricted to domains, and therefore the LMP2 correlation
energies are somewhat smaller than the MP2 ones. This may
substantially affect energy differences, and in the current
study LMP2/AVTZ and MP2/AVTZ correlation contributions
to reaction energies differed by up to 3 kcal mol−1. How-
ever, as shown earlier15 for small molecules, these domain
errors are to a large extent eliminated by the additional F12
terms in the LMP2-F12 first-order wave function. The
present work shows that this also holds for reactions involv-
ing large molecules: in all cases that we studied so far, the
MP2-F12�loc� and LMP2-F12 values agreed within about
0.3 kcal mol−1. Thus, the LMP2-F12 method does not only
correct for basis set errors but also for the domain errors in
LMP2. At the same time, it leads to dramatic savings of CPU
time, as compared to full MP2-F12 calculations, in particu-
lar, if the contributions of distant pairs are neglected. Using
local DF and RI approximations, which have a negligible
effect on the accuracy, almost linear scaling of the overall
computational effort with molecular size can be reached.
LMP2-F12 is therefore the method of choice for large mol-
ecules.

Our results demonstrate that the LMP2-F12 calculations
with triple-zeta basis sets can now be carried out for reac-
tions involving molecules with up to 100 light atoms, which
means that many reactions of interest in organic, biochemi-
cal, or pharmacological chemistry can be studied. For the
first time, near-basis-set-limit accuracy can be reached for
such extended systems. The methods are easy to use and
available in the current release of the MOLPRO quantum
chemistry package.75 As already shown earlier31,49 it is also
possible to use such methods in QM/MM hybrid methods,
using electrostatic embedding to describe the effect of a pro-
tein environment.

Of course, our current results apply only to the MP2
approximation, which in many cases is insufficient in order
to obtain quantitative results. The next goal is therefore to
extend the local approximations to coupled-cluster methods.
Recently, we have shown that highly accurate results can be
obtained using very simple CCSD�T�-F12 approximations, in
which MP2-F12 is the first step.25,28,30 In order to be able to
treat large molecules at this level, it is highly desirable to
develop a corresponding explicitly correlated local coupled-
cluster �LCCSD�T�-F12� method. Previous work has shown
that the domain error in LMP2 and LCCSD�T� calculations
is very similar.73,76 It can therefore be anticipated that the
domain error will also be small in LCCSD�T�-F12 calcula-
tions when the same local projector as in LMP2-F12 is used.
Another very important advantage of employing this projec-
tor in LCCSD�T�-F12 calculations is that exactly the same
transformed integrals involving four external �virtual� orbit-

TABLE VII. The effect of local approximations on the correlation contri-
bution �Ecorr �in kcal mol−1� to the reaction energy of the testosterone es-
terification reaction. In the LMP2, very distant pairs were neglected. The
HF/AVTZ and AVQZ values are −6.50 and −6.26 kcal mol−1, respectively.

Pairs DF RI �Ecorr

DF-LMP2
AVTZ full ¯ 1.41
AVQZa full ¯ 1.88

DF-MP2
AVTZ full ¯ 0.25
AVQZ full ¯ 1.07
CBS�34� 1.67

DF-MP2-F12�loc�/AVTZ
Allb full full 1.66
Strong+close+weak full full 1.66
Strong+close+weak loc full 1.68
Strong+close+weak loc loc 1.59
Strong+close full full 1.69
Strong+close loc full 1.68
Strong+close loc loc 1.60
Strong full full 1.28
Strong loc full 1.28
Strong loc loc 1.19

DF-LMP2-F12/AVTZ
Allb full full 1.96
Strong+close+weak full full 1.99
Strong+close+weak loc loc 1.97
Strong+close full full 2.14
Strong+close loc loc 2.13
Strong full full 1.78
Strong loc loc 1.77

aThe orbital domains for the AVQZ basis were taken from the AVTZ calcu-
lation.
bWithout very distant pairs.
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als as in the LCCSD�T� method38–42 will be needed. The
number of these integrals scales linearly with molecular size.
Thus, as compared to standard LCCSD�T� calculations, the
additional effort for the F12 treatment will be small. Further
work in this direction is currently in progress in our labora-
tory.
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